[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005310747A - Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element - Google Patents

Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element Download PDF

Info

Publication number
JP2005310747A
JP2005310747A JP2005002166A JP2005002166A JP2005310747A JP 2005310747 A JP2005310747 A JP 2005310747A JP 2005002166 A JP2005002166 A JP 2005002166A JP 2005002166 A JP2005002166 A JP 2005002166A JP 2005310747 A JP2005310747 A JP 2005310747A
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
electrode
polymer
binder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002166A
Other languages
Japanese (ja)
Other versions
JP2005310747A5 (en
Inventor
Michiyasu Sakuma
充康 佐久間
Hiroshi Sato
宏 佐藤
Koji Maruyama
浩司 丸山
Nobuo Ahiko
信男 阿彦
Kuniyuki Saito
国幸 斉藤
Masaomi Yoshida
正臣 吉田
Masao Abe
正雄 安部
Aisaku Nagai
愛作 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2005002166A priority Critical patent/JP2005310747A/en
Priority to KR1020050023509A priority patent/KR20060044522A/en
Publication of JP2005310747A publication Critical patent/JP2005310747A/en
Publication of JP2005310747A5 publication Critical patent/JP2005310747A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/36Details; Accessories
    • A63H3/44Dolls' hair or wigs; Eyelashes; Eyebrows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/16Dolls made of parts that can be put together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a binder for forming a nonaqueous electrochemical element electrode giving an electrode having stability to a nonaqueous electrolyte and good adhesiveness to a collector base body and giving electrode mix slurry having good application processing suitabilty for forming the electrode. <P>SOLUTION: A vinylidene fluoride homopolymer A having an inherent viscosity of 0.5-1.5 dl/g and a vinylidene fluoride polymer B having an inherent viscosity 1.4 or more times higher than that of the polymer A are mixed so that a ratio of the polymer A to the total quantity of the polymers A and B becomes 60-98 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液に対して安定で且つ集電基体に対する良好な接着力を有する電極を形成するに適した非水系電池電極形成用のフッ化ビニリデン系重合体バインダー、ならびに該バインダーを用いて形成される電極合剤、電極構造体および非水系電気化学素子に関する。   The present invention relates to a vinylidene fluoride polymer binder for forming a non-aqueous battery electrode suitable for forming an electrode that is stable with respect to a non-aqueous electrolyte and has good adhesion to a current collecting substrate, and the binder. The present invention relates to an electrode mixture, an electrode structure, and a non-aqueous electrochemical element formed using the same.

非水系電池、電気二重層キャパシタ等の非水系電気化学素子の電極活物質のバインダーとして、フッ化ビニリデン系重合体が使用されているが、従来のフッ化ビニリデン系重合体は活物質との結着力や集電体との接着力が比較的に弱いため、使用中に活物質の脱落や合剤層の集電体からの剥離などの現象が見られた。このため、電池を長期間使用中にその放電容量の低下が大きくなる場合があり、実用上問題であった。   Vinylidene fluoride polymers are used as binders for electrode active materials in non-aqueous electrochemical devices such as non-aqueous batteries and electric double layer capacitors, but conventional vinylidene fluoride polymers are bound to active materials. Due to the relatively weak adhesion and adhesion to the current collector, phenomena such as falling off of the active material and peeling of the mixture layer from the current collector were observed during use. For this reason, the decrease in the discharge capacity may become large during long-term use of the battery, which is a practical problem.

この問題を解決するために、シラン変性したフッ化ビニリデン系重合体(特許文献1)、カルボキシル基またはカーボネート基を含有するフッ化ビニリデン系重合体(特許文献2)等の接着性官能基を有するフッ化ビニリデン重合体が提案されているが、いずれも材料の安定性や生産性において未だ満足とはいえず、他方従来のフッ化ビニリデン系重合体に比べて電解液に対する初期膨潤度が増大するという欠点も認められた。   In order to solve this problem, it has an adhesive functional group such as a silane-modified vinylidene fluoride polymer (Patent Document 1) and a vinylidene fluoride polymer containing a carboxyl group or a carbonate group (Patent Document 2). Vinylidene fluoride polymers have been proposed, but none of them is yet satisfactory in terms of material stability and productivity, and on the other hand, the initial swelling degree with respect to the electrolytic solution is increased as compared with conventional vinylidene fluoride polymers. The fault was also recognized.

これに対し、従来のフッ化ビニリデン重合体の分子量(重量平均分子量が約40万以下あるいはインヘレント粘度が1.5dl/g以下)に比べて極めて高い分子量(重量平均分子量が60万以上、あるいはインヘレント粘度が2.0dl/gを超える)の、いわば超高分子量フッ化ビニリデン重合体を用いることにより、非水電解液に対する耐膨潤性を良好に維持しつつ粉末電極材料の保持力を改善することも提案されている(特許文献3)。しかしながら、このような超高分子量フッ化ビニリデン重合体は、有機溶媒に溶解して形成したバインダー溶液ならびに電極活物質等の粉末電極材料を分散させて得られる電極合剤が著しく高粘度化し、しばしば加温状態でないと、電極の塗布形成が不可能となる場合もあるという加工特性上の問題がある。
特開平6−93025号公報 特開平6−172452号公報 特開平9−289023号公報 特開平9−320607号公報
In contrast, the molecular weight (weight average molecular weight is about 400,000 or less or inherent viscosity is 1.5 dl / g or less) of a conventional vinylidene fluoride polymer (weight average molecular weight is 600,000 or more, or inherent). By using ultra-high molecular weight vinylidene fluoride polymer (viscosity exceeding 2.0 dl / g), it is possible to improve the holding power of the powder electrode material while maintaining good swelling resistance against non-aqueous electrolyte Has also been proposed (Patent Document 3). However, such an ultra-high molecular weight vinylidene fluoride polymer has a remarkably high viscosity of an electrode mixture obtained by dispersing a binder solution formed by dissolving in an organic solvent and a powder electrode material such as an electrode active material. If it is not in a heated state, there is a problem in processing characteristics that it may be impossible to apply and form electrodes.
JP-A-6-93025 Japanese Patent Laid-Open No. 6-172452 Japanese Patent Laid-Open No. 9-289023 Japanese Patent Laid-Open No. 9-320607

従って、本発明の主要な目的は、非水電解液に対して安定で且つ集電基体に対する良好な接着力を有し、更に電極形成時の加工特性を同時に満足する、非水系電気化学素子電極の形成に適したフッ化ビニリデン系重合体バインダーを提供することにある。   Therefore, the main object of the present invention is to provide a non-aqueous electrochemical device electrode that is stable with respect to the non-aqueous electrolyte, has good adhesion to the current collecting substrate, and further satisfies the processing characteristics at the time of electrode formation. It is an object to provide a vinylidene fluoride polymer binder suitable for the formation of.

本発明の別の目的は、上記バインダーを用いて良好な特性を有する電極合剤、電極構造体および非水系電気化学素子を提供することにある。   Another object of the present invention is to provide an electrode mixture, an electrode structure, and a non-aqueous electrochemical device having good characteristics using the binder.

本発明の非水系電気化学素子電極形成用バインダーは、上述の目的の達成のために開発されたものであり、インヘレント粘度が0.5〜1.5dl/gであるフッ化ビニリデン単独重合体(A)と、インヘレント粘度が重合体(A)の1.4倍以上であるフッ化ビニリデン重合体(B)とからなり、重合体(A)と(B)との合計量に対する重合体(A)の割合が60〜98重量%の範囲にあることを特徴とするものである。   The binder for forming a non-aqueous electrochemical element electrode of the present invention has been developed to achieve the above-mentioned object, and a vinylidene fluoride homopolymer having an inherent viscosity of 0.5 to 1.5 dl / g ( A) and a vinylidene fluoride polymer (B) having an inherent viscosity of 1.4 times or more that of the polymer (A), the polymer (A) with respect to the total amount of the polymers (A) and (B) ) Is in the range of 60 to 98% by weight.

本発明の非水系電気化学素子電極形成用バインダーは、端的に云ってインヘレント粘度が0.5〜1.5dl/gで代表される中〜高分子量のフッ化ビニリデン単独重合体(A)を主成分とし、比較的少量の超高分子量フッ化ビニリデン重合体(B)からなり、非水電解液に対する安定性、集電基体に対する良好な接着力および電極形成時の良好な加工性を兼ね備えることを特徴とするものである。本発明の非水系電気化学素子電極形成用バインダーが二種の重合体(A)および(B)の組合せにより優れた特性の調和を示す理由は必ずしも明らかではないが、以下のように推定されている。   The binder for forming a non-aqueous electrochemical device electrode of the present invention is mainly composed of a medium to high molecular weight vinylidene fluoride homopolymer (A) represented by an inherent viscosity of 0.5 to 1.5 dl / g. It is composed of a relatively small amount of ultra-high molecular weight vinylidene fluoride polymer (B) as a component, and has both stability to a non-aqueous electrolyte, good adhesion to a current collecting substrate, and good workability during electrode formation. It is a feature. The reason why the binder for forming a non-aqueous electrochemical element electrode of the present invention shows excellent harmony of properties due to the combination of the two polymers (A) and (B) is not necessarily clear, but is estimated as follows. Yes.

すなわち、本発明の電極バインダーは、中〜高分子量フッ化ビニリデン単独重合体(A)を主成分とするため、超高分子量フッ化ビニリデン重合体(B)を主成分とする場合のように、有機溶媒に溶解して得られるバインダー溶液ならびに更に粉末電極材料を分散させて得られる電極合剤が著しく高粘度化することがなく、塗布による電極加工特性が良好に維持される。そして、非水電解液に対する良好な安定性は主として主成分を占めるフッ化ビニリデン単独重合体(A)の良好な結晶性にあると考えられる。また本発明の電極バインダーは、超高分子量フッ化ビニリデン重合体(B)が官能基を有する共重合体である場合(後記実施例4〜8)のみでなく、フッ化ビニリデンの単独重合体である場合(後記実施例1〜3)においても、集電基体に対する良好な接着力を示す。これは、フッ化ビニリデン単独重合体のみを用いてインヘレント粘度を増大して行った場合に見られる接着力の増大よりは大である(すなわち本発明の混合バインダーは、単独重合体のインヘレント粘度から推定されるよりは、同じインヘレント粘度においてより大なる集電基体への接着力を示す。換言すればバインダー溶液粘度のそれほどの増大を招かずに接着力の向上が得られる。)。上記特許文献3の発明の開発時においてインヘレント粘度の上昇に伴なう接着力の増大は見られたが、これは主として分子量の増大に伴う粉末電極材料の保持力の向上として得られるものであって、集電基体への接着力の向上はそれほどでもなかった。これに対し、本発明の混合バインダーがそのインヘレント粘度に比べて相対的に大なる集電基体への接着力を示すのは、主成分であるフッ化ビニリデン単独重合体の形成する結晶部分の間の非晶質部に超高分子量フッ化ビニリデン重合体(B)が偏在することによっているためと考えられる。このように、本発明の電極バインダーの機能発現には、中ないし高分子量のフッ化ビニリデン単独重合体(A)の高結晶性が寄与しており、水性媒体中での懸濁重合により得られたものが好ましく用いられる。   That is, since the electrode binder of the present invention has a medium to high molecular weight vinylidene fluoride homopolymer (A) as a main component, as in the case where the ultra high molecular weight vinylidene fluoride polymer (B) is a main component, The binder solution obtained by dissolving in an organic solvent and the electrode mixture obtained by further dispersing the powder electrode material do not significantly increase the viscosity, and the electrode processing characteristics by coating are maintained well. And it is thought that the favorable stability with respect to a non-aqueous electrolyte exists in the favorable crystallinity of the vinylidene fluoride homopolymer (A) which mainly occupies a main component. The electrode binder of the present invention is not only a case where the ultrahigh molecular weight vinylidene fluoride polymer (B) is a copolymer having a functional group (Examples 4 to 8 described later), but also a vinylidene fluoride homopolymer. In some cases (Examples 1 to 3 below), good adhesion to the current collecting substrate is exhibited. This is greater than the increase in adhesion seen when increasing the inherent viscosity using only the vinylidene fluoride homopolymer (ie, the mixed binder of the present invention is based on the inherent viscosity of the homopolymer). Rather than estimated, it shows a greater adhesion to the current collector substrate at the same inherent viscosity, in other words, an improvement in adhesion is obtained without causing a significant increase in binder solution viscosity. In the development of the invention of the above-mentioned Patent Document 3, an increase in adhesive force was observed with an increase in inherent viscosity. This was mainly obtained as an improvement in the holding power of the powder electrode material with an increase in molecular weight. Thus, the improvement in adhesion to the current collector substrate was not so much. On the other hand, the mixed binder of the present invention exhibits a relatively large adhesive force to the current collecting substrate as compared with its inherent viscosity between the crystalline parts formed by the main component vinylidene fluoride homopolymer. This is presumably because the ultrahigh molecular weight vinylidene fluoride polymer (B) is unevenly distributed in the amorphous part. Thus, the high crystallinity of the medium to high molecular weight vinylidene fluoride homopolymer (A) contributes to the functional manifestation of the electrode binder of the present invention, and is obtained by suspension polymerization in an aqueous medium. Are preferably used.

なお、本発明者らは、既にインヘレント粘度が1.2dl/g以上の高〜超高分子量フッ化ビニリデン重合体と接着性官能基を有するフッ化ビニリデン重合体との組合せからなるバインダー組成物を既に提案している(特許文献4)が、結晶性で中〜高分子量のフッ化ビニリデン重合体を主成分とするものでないため、電極合剤スラリーの粘度が上昇して塗布加工適性が必ずしも満足できるものではなかった。   In addition, the inventors have already prepared a binder composition comprising a combination of a high to ultrahigh molecular weight vinylidene fluoride polymer having an inherent viscosity of 1.2 dl / g or more and a vinylidene fluoride polymer having an adhesive functional group. Although it has already been proposed (Patent Document 4), since it is not composed mainly of a crystalline, medium to high molecular weight vinylidene fluoride polymer, the viscosity of the electrode mixture slurry is increased, and the coating processability is always satisfactory. It wasn't possible.

本発明の非水系電気化学素子電極形成用バインダーの主たる成分をなすのは、フッ化ビニリデン単独重合体(A)であり、そのインヘレント粘度(本書においては、樹脂4gを1リットルのN,N−ジメチルホルムアミドに溶解した溶液の30℃における対数粘度をいう)が0.5〜1.5dl/g、好ましくは0.8〜1.3dl/g、特に好ましくは1.0〜1.3dl/gであるものを用いる。0.5dl/g未満では、電極合剤スラリーの粘度が低いため塗布加工性が劣り、接着性を維持するのが困難になる。また、1.5dl/gを超えると、電極合剤スラリーの粘度が高くなりすぎて生産性が劣る。上記したように水性媒体中での懸濁重合で形成して高い結晶化度としたものが好ましい。   The main component of the binder for forming a non-aqueous electrochemical device electrode of the present invention is a vinylidene fluoride homopolymer (A), and its inherent viscosity (in this document, 4 g of resin is added to 1 liter of N, N- Logarithmic viscosity at 30 ° C. of a solution dissolved in dimethylformamide) is 0.5 to 1.5 dl / g, preferably 0.8 to 1.3 dl / g, particularly preferably 1.0 to 1.3 dl / g. Use what is. If it is less than 0.5 dl / g, since the viscosity of the electrode mixture slurry is low, the coating processability is inferior and it is difficult to maintain the adhesiveness. Moreover, when it exceeds 1.5 dl / g, the viscosity of an electrode mixture slurry will become high too much and productivity will be inferior. As described above, those formed by suspension polymerization in an aqueous medium and having high crystallinity are preferred.

上記フッ化ビニリデン単独重合体(A)とともに、本発明の非水系電気化学素子電極形成用バインダーを形成するフッ化ビニリデン重合体(B)は、上述したようにフッ化ビニリデンの単独重合体あるいは共重合体のいずれでもよい。フッ化ビニリデン共重合体には、フッ化ビニリデンと、これと共重合可能な他の単量体、例えばエチレン、プロピレン等の炭化水素系単量体、またはフッ化ビニル・トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等のフッ化ビニリデン以外の含フッ素単量体との共重合体が含まれるが、共重合体の場合、フッ化ビニリデン単位を90モル%以上、特に95モル%以上の範囲で維持することが好ましい。   The vinylidene fluoride polymer (B) that forms the binder for forming a non-aqueous electrochemical device electrode of the present invention together with the above-mentioned vinylidene fluoride homopolymer (A) is a vinylidene fluoride homopolymer or copolymer as described above. Any of polymers may be used. The vinylidene fluoride copolymer includes vinylidene fluoride and other monomers copolymerizable therewith, such as hydrocarbon monomers such as ethylene and propylene, or vinyl fluoride / trifluoroethylene, trifluoro Copolymers with fluorinated monomers other than vinylidene fluoride such as chloroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether, etc. are included, but in the case of copolymers, vinylidene fluoride units are 90 mol% As mentioned above, it is preferable to maintain in the range of 95 mol% or more.

またフッ化ビニリデン重合体(B)には、上述したフッ化ビニリデンの単独又は共重合体を構成するモノマーの100重量部に対して、0.1〜3重量部のカルボキシル基、エポキシ基、ヒドロキシル基およびカルボニル基から選択された少なくとも一つの接着性官能基を有し且つフッ化ビニリデンと共重合可能なモノマーを共重合させて、これら接着性官能基の導入により改質したフッ化ビニリデン重合体(B)を用いることも好ましい。カルボキシル基を有するモノマーとしては、アクリル酸、クロトン酸などの不飽和一塩基酸、またはマレイン酸、シトラコン酸などの不飽和二塩基酸もしくはそのモノアルキルエステルが挙げられる。またエポキシ基を有するモノマーとしては、アリルグリシジルエーテル、メタアリルグリシジルエーテル、クロトン酸グリシジルエステル、アリル酢酸グリシジルエステル等が挙げられる。また、ヒドロキシル基を有するモノマーとしては、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート等が;またカルボニル基を有するモノマーとしては、エチレンカーボネート等が挙げられる。これら接着性官能基を有するモノマーは、接着性官能基を有さないフッ化ビニリデン重合体形成モノマー100重量部に対し、0.1〜3重量部と少量であるので、フッ化ビニリデン重合体形成モノマーとともに水性媒体中での懸濁重合により形成可能である。   The vinylidene fluoride polymer (B) includes 0.1 to 3 parts by weight of a carboxyl group, an epoxy group, and a hydroxyl group with respect to 100 parts by weight of the monomer constituting the vinylidene fluoride homopolymer or copolymer. A vinylidene fluoride polymer modified by copolymerizing a monomer having at least one adhesive functional group selected from a carbonyl group and a copolymerizable with vinylidene fluoride, and introducing these adhesive functional groups It is also preferable to use (B). Examples of the monomer having a carboxyl group include unsaturated monobasic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, and monoalkyl esters thereof. Examples of the monomer having an epoxy group include allyl glycidyl ether, methallyl glycidyl ether, crotonic acid glycidyl ester, and allylic acetic acid glycidyl ester. Examples of the monomer having a hydroxyl group include hydroxyethyl acrylate and hydroxypropyl acrylate; and examples of the monomer having a carbonyl group include ethylene carbonate. Since these monomers having an adhesive functional group are a small amount of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinylidene fluoride polymer forming monomer having no adhesive functional group, vinylidene fluoride polymer formation It can be formed by suspension polymerization in an aqueous medium with monomers.

本発明に従い、上述した、好ましくは接着性官能基を有するフッ化ビニリデン重合体(B)としては、フッ化ビニリデン単独重合体(A)のインヘレント粘度の1.4倍以上、好ましくは1.6倍以上、更に好ましくは2.0倍以上のインヘレント粘度を有するものが用いられる。この比が1.4倍未満では、フッ化ビニリデン単独重合体(A)に加えて、超高分子量フッ化ビニリデン重合体(B)を用いる効果が乏しくなる。この比が20を超えると溶媒への溶解が困難になり、好ましくは15以下、より好ましくは10以下である。   According to the present invention, the vinylidene fluoride polymer (B) preferably having an adhesive functional group described above is 1.4 times or more, preferably 1.6 times the inherent viscosity of the vinylidene fluoride homopolymer (A). Those having an inherent viscosity of twice or more, more preferably 2.0 times or more are used. If this ratio is less than 1.4 times, the effect of using the ultrahigh molecular weight vinylidene fluoride polymer (B) in addition to the vinylidene fluoride homopolymer (A) becomes poor. When this ratio exceeds 20, dissolution in a solvent becomes difficult, preferably 15 or less, more preferably 10 or less.

フッ化ビニリデン重合体(B)はフッ化ビニリデン単独重合体(A)との合計量に対し、2〜40重量%、好ましくは5〜30重量%となる量範囲で用いられる。2重量%未満では、超高分子量フッ化ビニリデン重合体(B)の併用の効果が乏しく、40重量%を超えると、結晶性で中〜高分子量のフッ化ビニリデン単独重合体(A)を主成分とする本発明の電極バインダーの効果が得られない。   The vinylidene fluoride polymer (B) is used in an amount range of 2 to 40% by weight, preferably 5 to 30% by weight, based on the total amount with the vinylidene fluoride homopolymer (A). If it is less than 2% by weight, the combined effect of the ultra-high molecular weight vinylidene fluoride polymer (B) is poor, and if it exceeds 40% by weight, the crystalline medium to high molecular weight vinylidene fluoride homopolymer (A) is mainly used. The effect of the electrode binder of the present invention as a component cannot be obtained.

上述したフッ化ビニリデン系重合体(A)および(B)は、いずれも、懸濁重合、乳化重合、溶液重合等の方法により製造することができるが、後処理の容易さ等の点から、水系の懸濁重合、乳化重合が好ましく、上述したように水系懸濁重合が特に好ましい。特に結晶性のフッ化ビニリデン単独重合体(A)の製造のためには然りである。   The vinylidene fluoride polymers (A) and (B) described above can be produced by methods such as suspension polymerization, emulsion polymerization, solution polymerization, etc., but from the viewpoint of ease of post-treatment, etc. Aqueous suspension polymerization and emulsion polymerization are preferable, and as described above, aqueous suspension polymerization is particularly preferable. This is especially true for the production of the crystalline vinylidene fluoride homopolymer (A).

水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、水に対して0.005〜1.0重量%、好ましくは0.01〜0.4重量%の範囲で添加して使用する。   In suspension polymerization using water as a dispersion medium, a suspending agent such as methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, and gelatin is added to 0.005 with respect to water. It is used by adding in the range of -1.0% by weight, preferably 0.01-0.4% by weight.

重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、単量体合計量に対して0.1〜5重量%、好ましくは0.5〜2重量%である。   As polymerization initiators, diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (perfluoroacyl) Peroxide and the like can be used. The amount used is 0.1 to 5% by weight, preferably 0.5 to 2% by weight, based on the total amount of monomers.

酢酸エチル、酢酸メチル、アセトン、エタノール、n−プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られる重合体の重合度を調節することも可能である。その使用量は、通常は、単量体合計量に対して0.1〜5重量%、好ましくは0.5〜3重量%である。   Chain transfer agents such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, and carbon tetrachloride can be added to adjust the degree of polymerization of the resulting polymer. is there. The amount used is usually 0.1 to 5% by weight, preferably 0.5 to 3% by weight, based on the total amount of monomers.

単量体の合計仕込量は、単量体合計量:水の重量比で、1:1〜1:10、好ましくは1:2〜1:5であり、重合は温度10〜50℃で10〜100時間行う。   The total charge of the monomers is 1: 1 to 1:10, preferably 1: 2 to 1: 5, in a weight ratio of the total amount of monomer to water, and the polymerization is performed at a temperature of 10 to 50 ° C. Perform for ~ 100 hours.

本発明のバインダーは、上記フッ化ビニリデン系重合体(A)とフッ化ビニリデン系重合体(B)とを、両者の合計量に対する重合体(A)の割合が60〜98重量%、好ましくは70〜95重量%、となるように混合することにより得られる。60重量%未満では、主成分としてその結晶化度を生かした本発明の上述した効果が得難い。98重量%を超えて用いると、超高分子量フッ化ビニリデン重合体(B)の併用による接着力の改善効果が得難くなる。   In the binder of the present invention, the ratio of the polymer (A) to the total amount of the vinylidene fluoride polymer (A) and the vinylidene fluoride polymer (B) is preferably 60 to 98% by weight, preferably It is obtained by mixing so that it may become 70 to 95 weight%. If it is less than 60% by weight, it is difficult to obtain the above-described effect of the present invention that makes use of its crystallinity as a main component. When it is used in excess of 98% by weight, it is difficult to obtain an effect of improving the adhesive force by the combined use of the ultrahigh molecular weight vinylidene fluoride polymer (B).

本発明のバインダーは、上記フッ化ビニリデン系重合体(A)とフッ化ビニリデン系重合体(B)とを粉体混合し、後述する粉末電極材料と混合して、溶融成形あるいは粉末成形により集電基体上に電極合剤層を形成する態様で用いることも可能である。しかし、より好ましくは、その有機溶媒に溶解した際の低粘度適性および皮膜形成特性を利用して、有機溶媒に溶解してバインダー溶液を形成し、更に粉末電極材料を分散させて電極合剤スラリーを形成させることにより、粉末電極材料に対しより少ない使用量でバインダー効果を発生させ、電極合剤層の内部抵抗の増大を防止することが好ましい。フッ化ビニリデン系重合体を有機溶媒に溶解する際には、超高分子量フッ化ビニリデン重合体(B)を先に加え、目視でほぼ溶解(すなわち実質的に溶解)したことを確認した後、中〜高分子量フッ化ビニリデン重合体(A)を添加し、溶解させることが望ましい。このような順序を選択することで、重合体(A)と重合体(B)がより均質に絡み合った溶液が得られる。その結果、電極バインダーとして使用したときに、集電基体への接着力が向上する。これは、上記の順序を採用することにより、バインダー組成物中において、単に重合体(A)と重合体(B)が別々に影響しあわずに存在した場合に比べ、先に結晶化し始める重合体(B)の周りに都合よく重合体(A)が配置された偏在構造が可能となったため、と考えられる。   The binder of the present invention is a powder mixture of the vinylidene fluoride polymer (A) and the vinylidene fluoride polymer (B), mixed with a powder electrode material described later, and collected by melt molding or powder molding. It is also possible to use the electrode mixture layer on the electric substrate. However, more preferably, by utilizing the low viscosity suitability and film-forming properties when dissolved in the organic solvent, the binder solution is formed by dissolving in the organic solvent, and the electrode mixture slurry is further dispersed by dispersing the powder electrode material. It is preferable that the binder effect is generated with a smaller amount of use with respect to the powder electrode material by preventing the increase of the internal resistance of the electrode mixture layer. When dissolving the vinylidene fluoride polymer in the organic solvent, after adding the ultra-high molecular weight vinylidene fluoride polymer (B) first, and confirming that it was substantially dissolved (that is, substantially dissolved), It is desirable to add and dissolve the medium to high molecular weight vinylidene fluoride polymer (A). By selecting such an order, a solution in which the polymer (A) and the polymer (B) are intertwined more uniformly can be obtained. As a result, when used as an electrode binder, the adhesive force to the current collecting substrate is improved. By adopting the above order, this is because the polymer (A) and the polymer (B) in the binder composition simply start to crystallize earlier than if they existed without affecting each other separately. This is probably because the uneven distribution structure in which the polymer (A) is conveniently arranged around the combined body (B) is possible.

上記フッ化ビニリデン系重合体(A)および(B)を溶解して、本発明のバインダー溶液を得るために用いられる有機溶媒は、好ましくは極性のものであり、例えばN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルフォキシド、ヘキサメチルフォスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルフォスフェイト、トリメチルフォスフェイト、などが挙げられる。上記の極性有機溶媒の中でも、溶解力の大きいN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの含窒素系有機溶媒がより好ましく用いられる。また、これら有機溶媒は単独での使用のみならず二種以上を混合した混合溶媒として用いることも出来る。   The organic solvent used for dissolving the vinylidene fluoride polymers (A) and (B) to obtain the binder solution of the present invention is preferably polar, for example, N-methyl-2-pyrrolidone. , N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, triethylphosphate, trimethylphosphate, and the like. Among the above polar organic solvents, nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like having a high dissolving power are more preferably used. These organic solvents can be used not only alone but also as a mixed solvent in which two or more kinds are mixed.

本発明のバインダー溶液を得るに当り、これら有機溶媒100重量部当り、前記フッ化ビニリデン系重合体(A)および(B)を、合計量で、0.1〜20重量部、更に好ましくは0.5〜15重量部、特に1〜10重量部、の割合で溶解することが好ましい。0.1重量部未満では、溶液中での重合体の占める割合が小さすぎ、粉末電極材料を相互に結着させるバインダーとしての効果が得られない。また、20重量部を超えると、超高分子量フッ化ビニリデン系重合体(B)を含むため、溶液自体の粘度が異常に高くなり過ぎて電極合剤の調整が困難になることがある。   In obtaining the binder solution of the present invention, the total amount of the vinylidene fluoride polymers (A) and (B) per 100 parts by weight of these organic solvents is 0.1 to 20 parts by weight, more preferably 0. It is preferable to dissolve at a ratio of 5 to 15 parts by weight, particularly 1 to 10 parts by weight. If it is less than 0.1 part by weight, the proportion of the polymer in the solution is too small, and the effect as a binder for binding the powder electrode materials to each other cannot be obtained. On the other hand, when the amount exceeds 20 parts by weight, since the ultrahigh molecular weight vinylidene fluoride polymer (B) is contained, the viscosity of the solution itself becomes excessively high and adjustment of the electrode mixture may be difficult.

本発明の電極合剤は、非水系電池の正極合剤、負極合剤、電気二重層キャパシタの分極性電極形成用の電極合剤のいずれにも適用可能である。   The electrode mixture of the present invention can be applied to any of a positive electrode mixture, a negative electrode mixture of a non-aqueous battery, and an electrode mixture for forming a polarizable electrode of an electric double layer capacitor.

上記のようにして得られた本発明のフッ化ビニリデン系重合体バインダー溶液に、粉末電極材料(非水系電池電極活物質あるいは電気二重層キャパシタの分極性電極形成用の粉末炭素材料、および必要に応じて加えられる導電助剤、その他の助剤)を分散混合することにより電極合剤スラリーが得られる。   To the vinylidene fluoride polymer binder solution of the present invention obtained as described above, a powder electrode material (a nonaqueous battery electrode active material or a powder carbon material for forming a polarizable electrode of an electric double layer capacitor, and if necessary) Electrode mixture slurry can be obtained by dispersing and mixing conductive auxiliary agents and other auxiliary agents added accordingly.

リチウムイオン二次電池用の活物質としては、正極の場合は、一般式LiMY(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種:YはO、S等のカルコゲン元素)で表わされる複合金属カルコゲン化合物、特にLiNiCo1−x(0≦x≦1)をはじめとする複合金属酸化物やLiMnなどのスピネル構造をとる複合金属酸化物が好ましい。負極の場合は、黒鉛、活性炭、あるいはフェノール樹脂やピッチ等を焼成炭化したもの等の粉末状炭素質材料に加えて、金属酸化物系のGeO、GeO、SnO、SnO、PbO、PbOなど、あるいはこれらの複合金属酸化物(例えば特開平7−249409号公報に開示されるもの)等が用いられる。 As an active material for a lithium ion secondary battery, in the case of a positive electrode, the general formula LiMY 2 (M is at least one of transition metals such as Co, Ni, Fe, Mn, Cr, V, etc .: Y is O, S, etc. Composite metal chalcogen compounds represented by the above-mentioned chalcogen elements, in particular, composite metal oxides including LiNi x Co 1-x O 2 (0 ≦ x ≦ 1) and spinel structures such as LiMn 2 O 4 Things are preferred. In the case of the negative electrode, in addition to powdered carbonaceous materials such as graphite, activated carbon, or a baked carbonized material such as phenol resin or pitch, metal oxide-based GeO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 Or composite metal oxides thereof (for example, those disclosed in JP-A-7-249409) are used.

電気二重層キャパシタの分極性電極形成用の電極合剤を形成するための、粉末炭素材料としては、比表面積が500〜3000m/gのものを好適に用いることができ、具体例としては、やしがら系活性炭、フェノール系活性炭、石油コークス系・ピッチ系活性炭、ポリ塩化ビニリデン系活性炭、ポリアセン等が挙げられる。 As a powder carbon material for forming an electrode mixture for forming a polarizable electrode of an electric double layer capacitor, a specific surface area of 500 to 3000 m 2 / g can be suitably used. As a specific example, Examples include coconut-based activated carbon, phenol-based activated carbon, petroleum coke-based / pitch-based activated carbon, polyvinylidene chloride-based activated carbon, and polyacene.

導電助剤は、電池においてLiCoO等の電子伝導性の小さい活物質を使用する場合に、あるいは電気二重層キャパシタにおいて、電極合剤層の導電性を向上する目的で必要に応じて添加するもので、カーボンブラック、黒鉛微粉末あるいは繊維等の炭素質物質やニッケル、アルミニウム等の金属微粉末あるいは、繊維が使用される。 A conductive auxiliary agent is added as necessary for the purpose of improving the conductivity of the electrode mixture layer when an active material having a low electron conductivity such as LiCoO 2 is used in the battery or in an electric double layer capacitor. Thus, carbonaceous material such as carbon black, graphite fine powder or fiber, metal fine powder such as nickel or aluminum, or fiber is used.

本発明の電極合剤は、粉末電極材料100重量部と、重合体固形分として合計量で0.1〜50重量部、特に1〜20重量部のフッ化ビニリデン系重合体(A)および(B)を含むバインダー溶液とを混合して、形成することが好ましい。   The electrode mixture of the present invention comprises 100 parts by weight of a powder electrode material and 0.1 to 50 parts by weight, particularly 1 to 20 parts by weight of vinylidene fluoride polymer (A) and ( It is preferably formed by mixing with a binder solution containing B).

上述のようにして形成された電極合剤スラリーを、例えば図1に断面図を示すように、鉄、ステンレス鋼、鋼、銅、アルミニウム、ニッケル、チタン等の金属箔あるいは金属網等からなり、厚さが5〜100μm、小規模の場合には例えば5〜20μmとなるような集電体11の少なくとも一面、好ましくは両面に塗布し、例えば50〜170℃で乾燥して、例えば小規模の場合厚さが10〜1000μmの電極合剤層12a,12bを形成することにより、非水系電池用電極10が形成される。   The electrode mixture slurry formed as described above, for example, as shown in a cross-sectional view in FIG. 1, consists of a metal foil or a metal net of iron, stainless steel, steel, copper, aluminum, nickel, titanium, etc. The thickness is 5 to 100 μm, and in the case of a small scale, for example, it is applied to at least one side, preferably both sides, of the current collector 11 such as 5 to 20 μm, and dried at 50 to 170 ° C. In this case, the non-aqueous battery electrode 10 is formed by forming the electrode mixture layers 12a and 12b having a thickness of 10 to 1000 μm.

図2は、このようにして形成された電極を含む本発明の非水系電気化学素子の一例としての、リチウム二次電池の部分分解斜視図である。   FIG. 2 is a partially exploded perspective view of a lithium secondary battery as an example of the non-aqueous electrochemical element of the present invention including the electrode formed as described above.

すなわち、この二次電池は、基本的には正極1および負極2間に、電解液を含浸したポリプロピレン、ポリエチレン等の高分子物質の微多孔性膜からなるセパレータ3を配置積層したものを渦巻き状に巻き回した発電素子が、負極端子5aを形成する有底の金属ケーシング5中に収容された構造を有する。この二次電池は更に、負極は負極端子と電気的に接続され、頂部においてガスケット6および安全弁7を配置したのち、凸部において前記正極1と電気的に接続された正極端子8aを構成する頂部プレート8を配置し、ケーシング5の頂部リム5bをかしめて、全体を封止した構造をなしている。正極1および/または負極2は、例えば図1に示した電極構造体10の構造を示す。   In other words, this secondary battery basically has a spiral structure in which a separator 3 made of a microporous film of a polymer material such as polypropylene or polyethylene impregnated with an electrolyte is disposed between a positive electrode 1 and a negative electrode 2. The electric power generating element wound around is housed in a bottomed metal casing 5 forming the negative electrode terminal 5a. In this secondary battery, the negative electrode is further electrically connected to the negative electrode terminal, the gasket 6 and the safety valve 7 are arranged at the top, and then the top portion constituting the positive electrode terminal 8a electrically connected to the positive electrode 1 at the convex portion. The plate 8 is disposed, and the top rim 5b of the casing 5 is caulked to form a sealed structure. The positive electrode 1 and / or the negative electrode 2 show the structure of the electrode structure 10 shown, for example in FIG.

セパレータ3に含浸される非水電解液としては、例えばリチウム塩などの電解質を非水系溶媒(有機溶媒)に溶解したものを用いることができる。   As the nonaqueous electrolytic solution impregnated in the separator 3, for example, an electrolyte such as a lithium salt dissolved in a nonaqueous solvent (organic solvent) can be used.

ここで電解質としては、LiPF、LiAsF、LiClO、LiBF、CHSOLi、CFSOLi、LiCl、LiBr等がある。また、電解質の有機溶媒としてはプロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル、プロピオン酸エチル、およびこれらの混合溶媒などが用いられるが、必ずしもこれらに限定されるものではない。 Here, examples of the electrolyte include LiPF 6 , LiAsF 6 , LiClO 4 , LiBF 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiCl, and LiBr. Moreover, as an organic solvent of the electrolyte, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, methyl propionate, ethyl propionate , And mixed solvents thereof are used, but are not necessarily limited thereto.

なお、上記においては円筒形電池の例を示したが、本発明の非水系電池を、コイン形、角形またはペーパー形電池として構成することも可能である。   In addition, although the example of the cylindrical battery was shown in the above, it is also possible to comprise the non-aqueous battery of the present invention as a coin type, a square type or a paper type battery.

電気二重層キャパシタとしては、図3に示す構造のものを例示することができる。すなわち、図3は、単セルの電気二重層キャパシタの一例の断面図である。この電気二重層キャパシタは、2つの分極性電極21,22によりセパレーター23を挟み、これらをさらにステンレススチール製キャップ24と、電解液26を入れたステンレス製缶25との間に、パッキング27を介して封入したものである。その結果、電解液26はセパレータ23に含浸され一対の分極性電極21および22間に配置されることとなる。電解液の溶媒としてはプロピレンカーボネートが一般的であり、電解質としては第4級ホスホニウム塩、第4級アンモニウム塩が一般的であり、例えば、(CNBFのプロピレンカーボネート溶液などの有機電解液を使用することができる。電解液中の電解質の濃度は5〜95重量%の範囲で適宜選択することができる。 An example of the electric double layer capacitor is the one shown in FIG. That is, FIG. 3 is a cross-sectional view of an example of a single cell electric double layer capacitor. In this electric double layer capacitor, a separator 23 is sandwiched between two polarizable electrodes 21 and 22, and these are further sandwiched between a stainless steel cap 24 and a stainless steel can 25 containing an electrolyte solution 26 through a packing 27. Is enclosed. As a result, the electrolyte solution 26 is impregnated in the separator 23 and disposed between the pair of polarizable electrodes 21 and 22. Propylene carbonate is generally used as the solvent for the electrolytic solution, and quaternary phosphonium salts and quaternary ammonium salts are generally used as the electrolyte. For example, a propylene carbonate solution of (C 2 H 5 ) 4 NBF 4 or the like. The organic electrolyte solution can be used. The concentration of the electrolyte in the electrolytic solution can be appropriately selected within the range of 5 to 95% by weight.

以下、本発明を参考試験、実施例および比較例により更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference tests, examples and comparative examples.

<重合体(A)および(B)>
フッ化ビニリデン単独重合体(A)あるいは超高分子量フッ化ビニリデン重合体(B)としてインヘレント粘度(以下「ηinh」と略記する)の異なる以下の重合体(1)〜(11)を用意した。
<Polymers (A) and (B)>
The following polymers (1) to (11) having different inherent viscosities (hereinafter abbreviated as “η inh ”) were prepared as vinylidene fluoride homopolymer (A) or ultrahigh molecular weight vinylidene fluoride polymer (B). .

(重合体(1)〜(3)および(9))
重合体(1),(2)、(3)および(9)として、呉羽化学工業(株)製のフッ化ビニリデン単独重合体である「KF#850」(ηinh=0.85dl/g)、「KF#1100」(ηinh=1.1dl/g)、「KF#1300」(ηinh=1.3dl/g)および「KF♯1000」(ηinh=1.0dl/g)をそれぞれ使用した。
(Polymers (1) to (3) and (9))
As the polymers (1), (2), (3) and (9), “KF # 850” which is a homopolymer of vinylidene fluoride manufactured by Kureha Chemical Industry Co., Ltd. (η inh = 0.85 dl / g) , “KF # 1100” (η inh = 1.1 dl / g), “KF # 1300” (η inh = 1.3 dl / g) and “KF # 1000” (η inh = 1.0 dl / g), respectively used.

(重合体(4)):ηinh=1.9dl/g
内容積2リットルのオートクレーブにイオン交換水1075g、メチルセルロース0.4g、フッ化ビニリデン420g、ジイソプロピルパーオキシジカーボネート(IPP)3.8gを仕込み25℃で懸濁重合した。重合完了後、重合体スラリーを脱水、水洗、脱水後、80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは1.9dl/gであった。
(Polymer (4)): η inh = 1.9 dl / g
An autoclave having an internal volume of 2 liters was charged with 1075 g of ion-exchanged water, 0.4 g of methylcellulose, 420 g of vinylidene fluoride and 3.8 g of diisopropyl peroxydicarbonate (IPP), and suspension polymerization was carried out at 25 ° C. After the polymerization was completed, the polymer slurry was dehydrated, washed with water, dehydrated, and dried at 80 ° C. for 20 hours to obtain a polymer powder. Η inh of the obtained vinylidene fluoride polymer was 1.9 dl / g.

(重合体(5)):ηinh=3.1dl/g
ジイソプロピルパーオキシジカーボネート(IPP)の仕込み量を1.9gとした以外は重合体例(4)と同様にして重合し、脱水、水洗・脱水後、80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは3.1であった。
(Polymer (5)): η inh = 3.1 dl / g
Polymerization was conducted in the same manner as in Polymer Example (4) except that the amount of diisopropyl peroxydicarbonate (IPP) was changed to 1.9 g. After dehydration, washing and dehydration, the polymer powder was dried at 80 ° C. for 20 hours. Obtained. Η inh of the obtained vinylidene fluoride polymer was 3.1.

(重合体(6)):ηinh=7.8dl/g
ジイソプロピルパーオキシジカーボネート(IPP)の仕込み量を0.3gとした以外は重合体例(4)と同様にして重合し、脱水、水洗・脱水後、80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは7.8dl/gであった。
(Polymer (6)): η inh = 7.8 dl / g
Polymerization was carried out in the same manner as in Polymer Example (4) except that the amount of diisopropyl peroxydicarbonate (IPP) charged was 0.3 g, dehydrated, washed with water, dehydrated and dried at 80 ° C. for 20 hours to obtain a polymer powder. Obtained. Η inh of the obtained vinylidene fluoride polymer was 7.8 dl / g.

(重合体(7)):P(VDF/HEP/MMM)共重合体;ηinh=3.1dl/g
内容積2リットルのオートクレーブにイオン交換水1040g、メチルセルロース0.8g、フッ化ビニリデン388g、6フッ化プロピレン12g、ジイソプロピルパーオキシジカーボネート(IPP)0.9g、マレイン酸モノメチルエステル1.2gを仕込み、29℃で42時間懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗後80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは3.1dl/g、カルボニル基含有量0.4×10−4モル/gであった。
(Polymer (7)): P (VDF / HEP / MMM) copolymer; η inh = 3.1 dl / g
An autoclave with an internal volume of 2 liters was charged with 1040 g of ion exchange water, 0.8 g of methyl cellulose, 388 g of vinylidene fluoride, 12 g of propylene hexafluoride, 0.9 g of diisopropyl peroxydicarbonate (IPP), and 1.2 g of maleic acid monomethyl ester, Suspension polymerization was performed at 29 ° C. for 42 hours. After the polymerization was completed, the polymer slurry was dehydrated, washed with water and then dried at 80 ° C. for 20 hours to obtain a polymer powder. Η inh of the obtained vinylidene fluoride polymer was 3.1 dl / g, and the carbonyl group content was 0.4 × 10 −4 mol / g.

(重合体(8)):P(VDF/MMM)共重合体;ηinh=1.7dl/g
内容積2リットルのオートクレーブにイオン交換水1040g、メチルセルロース0.8g、フッ化ビニリデン396g、ジイソプロピルパーオキシジカーボネート(IPP)3.0g、マレイン酸モノメチルエステル4.0gを仕込み、28℃で45時間懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗後80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは1.7dl/g、カルボニル基含有量1.2×10−4モル/gであった。
(Polymer (8)): P (VDF / MMM) copolymer; η inh = 1.7 dl / g
An autoclave with an internal volume of 2 liters was charged with 1040 g of ion exchange water, 0.8 g of methyl cellulose, 396 g of vinylidene fluoride, 3.0 g of diisopropyl peroxydicarbonate (IPP), and 4.0 g of maleic acid monomethyl ester, and suspended at 28 ° C. for 45 hours. Turbid polymerization was performed. After the polymerization was completed, the polymer slurry was dehydrated, washed with water and then dried at 80 ° C. for 20 hours to obtain a polymer powder. Η inh of the obtained vinylidene fluoride polymer was 1.7 dl / g, and the carbonyl group content was 1.2 × 10 −4 mol / g.

重合体(7)および(8)については、以下の方法によってカルボニル基含有量を求めた。   For the polymers (7) and (8), the carbonyl group content was determined by the following method.

[カルボニル基含有量の測定]
ポリフッ化ビニリデン樹脂とポリメチルメタクリレート樹脂を所定割合で混合した試料についてのIRスペクトルの881cm−1の吸収に対する1726cm−1の吸収の比とカルボニル基含有量の関係をプロットし検量線を作成する。
[Measurement of carbonyl group content]
A calibration curve is prepared by plotting the relationship between the ratio of the absorption at 1726 cm −1 to the absorption at 881 cm −1 in the IR spectrum and the carbonyl group content for a sample in which the polyvinylidene fluoride resin and the polymethyl methacrylate resin are mixed at a predetermined ratio.

試料重合体を熱水洗浄後、ベンゼンにて80℃で24時間のソックスレー抽出により、ポリマー中に残留している未反応モノマー及びホモポリマーを除去したものについて、IRスペクトルのカルボニル基による1747cm−1の吸収の、881cm−1の吸収に対する比を求め、先に作成した検量線からカルボニル基含有量を求める。 After washing the sample polymer with hot water and removing unreacted monomer and homopolymer remaining in the polymer by Soxhlet extraction with benzene at 80 ° C. for 24 hours, 1747 cm −1 due to the carbonyl group in the IR spectrum. The ratio of the absorption to the absorption of 881 cm −1 is determined, and the carbonyl group content is determined from the calibration curve prepared earlier.

(重合体(10)):P(VDF/GMA)共重合体:ηinh=1.8dl/g
内容積2リットルのオートクレープにイオン交換水1036g、メチルセルロース0.6g、フッ化ビニリデン400g、グリシジルメタクリレート12g、ジイソプロピルパーオキシカーボネート(IPP)3.2gを仕込み、28℃で32時間懸濁重合を行った。重合完了後、重合スラリーを脱水、水洗後、80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは1.8dl/gであった。
(Polymer (10)): P (VDF / GMA) Copolymer: η inh = 1.8 dl / g
An autoclave with an internal volume of 2 liters was charged with 1036 g of ion-exchanged water, 0.6 g of methyl cellulose, 400 g of vinylidene fluoride, 12 g of glycidyl methacrylate, and 3.2 g of diisopropyl peroxycarbonate (IPP), and subjected to suspension polymerization at 28 ° C. for 32 hours. It was. After the polymerization was completed, the polymerization slurry was dehydrated, washed with water, and dried at 80 ° C. for 20 hours to obtain a polymer powder. Η inh of the obtained vinylidene fluoride polymer was 1.8 dl / g.

(重合体(11)):P(VDF/MAA/HEMA)共重合体:ηinh=1.9dl/g
内容積2リットルのオートクレープにイオン交換水1036g、メチルセルロース0.6g、フッ化ビニリデン400g、メタクリル酸4g、ヒドロキシエチルメタクリレート2g、ジイソプロピルパーオキシカーボネート(IPP)3.2gを仕込み、28℃で23時間懸濁重合を行った。重合完了後、重合スラリーを脱水、水洗後、80℃で20時間乾燥して重合体粉末を得た。得られたフッ化ビニリデン重合体のηinhは1.9dl/gであった。
(Polymer (11)): P (VDF / MAA / HEMA) Copolymer: η inh = 1.9 dl / g
An autoclave with an internal volume of 2 liters was charged with 1036 g of ion-exchanged water, 0.6 g of methylcellulose, 400 g of vinylidene fluoride, 4 g of methacrylic acid, 2 g of hydroxyethyl methacrylate, and 3.2 g of diisopropyl peroxycarbonate (IPP) at 28 ° C. for 23 hours. Suspension polymerization was performed. After the polymerization was completed, the polymerization slurry was dehydrated, washed with water, and dried at 80 ° C. for 20 hours to obtain a polymer powder. Η inh of the obtained vinylidene fluoride polymer was 1.9 dl / g.

(実施例1〜11、比較例1〜5)
<バインダー>
後記表1に組成を示すように、上記重合体(1)〜(11)の組合せ(実施例1〜11および比較例5)またはいずれか単独(比較例1〜4)により、実施例1〜11ならびに比較例1〜5のバインダーを得た。これらバインダーを構成するフッ化ビニリデン重合体(以下、単に「バインダー」と記す)は、それぞれ、表1に示すインヘレント粘度(ηinh)値を示した。いずれの例においても、所定の割合の2種の重合体の併用にかかるバインダーについては、まず高分子量側重合体を有機溶媒(NMP)に溶解し、目視でほぼ溶解を確認してから残りの重合体を更に溶解して、それぞれのバインダー溶液を得た。
(Examples 1-11, Comparative Examples 1-5)
<Binder>
As shown in Table 1 below, Examples 1 to 11 can be obtained by combining the above polymers (1) to (11) (Examples 1 to 11 and Comparative Example 5) or alone (Comparative Examples 1 to 4). 11 and Comparative Examples 1 to 5 were obtained. Each of the vinylidene fluoride polymers constituting the binder (hereinafter simply referred to as “binder”) exhibited the inherent viscosity (η inh ) values shown in Table 1. In any example, with respect to a binder used in combination of two kinds of polymers at a predetermined ratio, firstly, the high molecular weight side polymer is dissolved in an organic solvent (NMP), and after the dissolution is visually confirmed, the remaining weight is determined. The coalescence was further dissolved to obtain each binder solution.

・膨潤度測定法
上記各バインダーをN−メチル−2−ピロリドン(NMP)に溶解して得たバインダー溶液(濃度:約10重量%)を110℃で乾燥し約100μm厚さのキャストフィルムを得た。別途、エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)/ジエチルカーボネート(DEC)の重量比で3:5:2の混合溶液に1mol/リットルのLiPFを添加して得た電解液に、上記で得られたキャストフィルムを80℃で7時間、浸漬して重量増加を測定し、増加率を膨潤度(%)として求めた。
Swelling degree measurement method A binder solution (concentration: about 10% by weight) obtained by dissolving each of the above binders in N-methyl-2-pyrrolidone (NMP) is dried at 110 ° C. to obtain a cast film having a thickness of about 100 μm. It was. Separately, to the electrolyte obtained by adding 1 mol / liter LiPF 6 to a mixed solution of 3: 5: 2 by weight ratio of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / diethyl carbonate (DEC), The cast film obtained in (1) was immersed at 80 ° C. for 7 hours to measure the weight increase, and the rate of increase was determined as the degree of swelling (%).

各バインダーについての測定結果を、まとめて後記表1に示す。   The measurement results for each binder are collectively shown in Table 1 below.

<電極合剤>
上記各バインダー2重量部(重合体2種の場合はその合計量)を溶媒N−メチル−2−ピロリドン(NMP)中に(重合体2種の場合には、高分子量側重合体→低分子量側重合体の順序に)溶解して、約5重量%濃度のバインダー溶液を形成し、これに正極活物質としてLiCoO(日本化学工業(株)製「セルシードC−5H」;平均粒径=5μm)100重量部および導電助剤としてカーボンブラック(電気化学工業(株)製「デンカブラック」;平均粒径=45nm)2重量部を分散させて、バインダー、活物質および導電助剤の合計固形分濃度が73重量%の電極合剤(スラリー)を得た。
<Electrode mixture>
In the solvent N-methyl-2-pyrrolidone (NMP), 2 parts by weight of each of the above binders (total amount in the case of two polymers) (in the case of two polymers, high molecular weight side polymer → low molecular weight side weight) Dissolved to form a binder solution having a concentration of about 5% by weight, and LiCoO 2 (“Cell Seed C-5H” manufactured by Nippon Chemical Industry Co., Ltd .; average particle size = 5 μm) as a positive electrode active material. 100 parts by weight and 2 parts by weight of carbon black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd .; average particle size = 45 nm) as a conductive auxiliary agent are dispersed, and the total solid content concentration of the binder, the active material and the conductive auxiliary agent Was 73% by weight of electrode mixture (slurry).

<電極合剤層>
上記電極合剤(スラリー)を、厚み15μmのAl箔上にバーコータで塗布し、90℃で10分、ついで110℃で10分乾燥して、乾燥合剤目付け量が250g/mの電極(合剤)層を形成した。
<Electrode mixture layer>
The electrode mixture (slurry) was applied onto a 15 μm thick Al foil with a bar coater, dried at 90 ° C. for 10 minutes, and then at 110 ° C. for 10 minutes, and an electrode having a dry mixture basis weight of 250 g / m 2 ( A mixture) layer was formed.

上記実施例1〜8および比較例1〜4のバインダーをそれぞれ用いて上記のようにして得た電極合剤(スラリー)についてはスラリー粘度(mPa・s)を、電極(合剤)層については剥離強度(gf/10mm)を以下の方法により測定した。結果をまとめて後記表1に示す。   About the electrode mixture (slurry) obtained as described above using the binders of Examples 1 to 8 and Comparative Examples 1 to 4, respectively, the slurry viscosity (mPa · s) and the electrode (mixture) layer The peel strength (gf / 10 mm) was measured by the following method. The results are summarized in Table 1 below.

・粘度測定法
電極合剤スラリーの粘度は、該電極合剤スラリー0.5mlをE型粘度計(東機産業株式会社製「RE−80R」ロータ3°×R14)を用いて測定温度30℃にて測定した。各電極合剤スラリーについて、ロータ回転速度5rpmのときの測定値を後記表1に示す。
・ Viscosity measurement method The viscosity of the electrode mixture slurry was measured at 30 ° C. using 0.5 ml of the electrode mixture slurry using an E-type viscometer (“RE-80R” rotor 3 ° × R14 manufactured by Toki Sangyo Co., Ltd.). Measured with Table 1 shows the measured values of each electrode mixture slurry at a rotor rotational speed of 5 rpm.

・剥離強度測定法
塗工により形成した電極の上面とプラスチックの厚板(アクリル樹脂製、厚さ5mm)を貼り合わせ、JIS K−6854に準じて90度剥離試験を行って、剥離強度を求めた。
・ Peel strength measurement method The upper surface of the electrode formed by coating and a plastic plate (made of acrylic resin, thickness 5 mm) are bonded together, and a 90 degree peel test is performed in accordance with JIS K-6854 to determine the peel strength. It was.

(参考例)
なお、上記実施例2と同様の組成を与える組み合わせの重合体(2)と重合体(5)とを同時にNMPに投入して、溶解を試みたところ、高分子量の重合体(5)と思われる不溶物が見られた。このようにして得られた未溶解物を含むバインダー溶液(濃度:約10または5重量%)を用いて、上記実施例と同様に、膨潤度、電極合剤スラリー粘度、電極(合剤)層剥離強度を測定した。
(Reference example)
A combination of the polymer (2) and the polymer (5) giving the same composition as in Example 2 above was poured into NMP at the same time, and when dissolution was attempted, it was considered to be a high molecular weight polymer (5). Insoluble matter was seen. Using the binder solution (concentration: about 10 or 5% by weight) containing the undissolved material thus obtained, the degree of swelling, the electrode mixture slurry viscosity, and the electrode (mixture) layer were the same as in the above examples. The peel strength was measured.

上記実施例、比較例および参考例についての測定結果をまとめて次表1に示す。

Figure 2005310747
The measurement results for the above Examples, Comparative Examples and Reference Examples are summarized in Table 1 below.
Figure 2005310747

上記表1の結果から示されるように、本発明の中〜高分子量フッ化ビニリデン単独重合体(A)(重合体(1)〜(3)および(9))を主成分とし、少量成分の超高分子量フッ化ビニリデン重合体(B)(重合体(5)〜(8)および(10)〜(11)、このうち重合体(7)、(8)および(10)〜(11)は接着性官能基を有する)と組み合せて得られたバインダーは、低い膨潤度で示される良好な耐非水電解液性を示し、且つ同等なηinhを有するフッ化ビニリデン重合体の単独に比べて低い電極合剤スラリー粘度(すなわち良好な塗布加工適性)と高い剥離強度(すなわち集電基体に対する良好な接着力)の良好な調和を示す。 As shown from the results in Table 1 above, the medium to high molecular weight vinylidene fluoride homopolymer (A) (polymers (1) to (3) and (9)) of the present invention is the main component, Ultra-high molecular weight vinylidene fluoride polymer (B) (polymers (5) to (8) and (10) to (11), of which polymers (7), (8) and (10) to (11) are The binder obtained in combination with an adhesive functional group) exhibits good non-aqueous electrolyte resistance with a low degree of swelling, and compared to a vinylidene fluoride polymer alone having an equivalent η inh. It shows a good balance between low electrode mix slurry viscosity (ie good application processability) and high peel strength (ie good adhesion to the current collector substrate).

上述したように、本発明によれば、中〜高フッ化ビニリデンのフッ化ビニリデン単独重合体(A)を主成分とし、比較的少量の超高分子量フッ化ビニリデン重合体と組合せた非水系電気化学素子電極形成用バインダーが与えられ、これを用いることにより電極形成時の良好な塗布加工適性を有する電極合剤およびこれを集電基体上に塗布乾燥することにより集電基体と良好な接着力を示す電極、更にはこれを含む非水系電気化学素子が与えられる。   As described above, according to the present invention, a non-aqueous electric system comprising a vinylidene fluoride homopolymer (A) of medium to high vinylidene fluoride as a main component and combined with a relatively small amount of an ultrahigh molecular weight vinylidene fluoride polymer. A binder for forming a chemical element electrode is provided. By using this binder, an electrode mixture having good application processability at the time of electrode formation, and by applying and drying this on a current collecting substrate, good adhesion to the current collecting substrate. Further, a non-aqueous electrochemical device including the electrode is provided.

非水系電池に採用される電極構造体の部分断面図。The fragmentary sectional view of the electrode structure employ | adopted as a non-aqueous battery. 本発明に従い構成可能な非水溶媒系二次電池の一部分解斜視図。1 is a partially exploded perspective view of a non-aqueous solvent secondary battery that can be configured according to the present invention. 本発明に従い構成可能な電気二重層キャパシタの一実施例の構造の断面図。1 is a cross-sectional view of the structure of an embodiment of an electric double layer capacitor that can be configured in accordance with the present invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
5 ケーシング(5a:底部、5b:リム)
6 ガスケット
7 安全弁
8 頂部プレート
10 電極構造体
11 集電体
12a,12b 電極合剤層
21,22 分極性電極
23 セパレータ
24 キャップ
25 缶
26 電解液
27 パッキング
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 5 Casing (5a: bottom part, 5b: rim)
6 Gasket 7 Safety valve 8 Top plate 10 Electrode structure 11 Current collector 12a, 12b Electrode mixture layer 21, 22 Polarized electrode 23 Separator 24 Cap 25 Can 26 Electrolyte 27 Packing

Claims (11)

インヘレント粘度が0.5〜1.5dl/gであるフッ化ビニリデン単独重合体(A)と、インヘレント粘度が重合体(A)の1.4倍以上であるフッ化ビニリデン重合体(B)とからなり、重合体(A)と(B)との合計量に対する重合体(A)の割合が60〜98重量%の範囲にある非水系電気化学素子電極形成用バインダー。 A vinylidene fluoride homopolymer (A) having an inherent viscosity of 0.5 to 1.5 dl / g; and a vinylidene fluoride polymer (B) having an inherent viscosity of 1.4 times or more that of the polymer (A); A binder for forming a non-aqueous electrochemical element electrode in which the ratio of the polymer (A) to the total amount of the polymers (A) and (B) is in the range of 60 to 98% by weight. フッ化ビニリデン単独重合体(A)のインヘレント粘度が1.0〜1.3dl/gである請求項1に記載のバインダー。 The binder according to claim 1, wherein the inherent viscosity of the vinylidene fluoride homopolymer (A) is 1.0 to 1.3 dl / g. フッ化ビニリデン重合体(B)がフッ化ビニリデン単独重合体である請求項1または2に記載のバインダー。 The binder according to claim 1 or 2, wherein the vinylidene fluoride polymer (B) is a vinylidene fluoride homopolymer. フッ化ビニリデン重合体(B)がフッ化ビニリデン共重合体である請求項1または2に記載のバインダー。 The binder according to claim 1 or 2, wherein the vinylidene fluoride polymer (B) is a vinylidene fluoride copolymer. フッ化ビニリデン重合体(B)が官能基を有するフッ化ビニリデン共重合体である請求項4に記載のバインダー。 The binder according to claim 4, wherein the vinylidene fluoride polymer (B) is a vinylidene fluoride copolymer having a functional group. フッ化ビニリデン重合体(B)の官能基がカルボキシル基、エポキシ基、ヒドロキシル基、カルボニル基の少なくとも一つから選択されることを特徴とする請求項5に記載のバインダー。 The binder according to claim 5, wherein the functional group of the vinylidene fluoride polymer (B) is selected from at least one of a carboxyl group, an epoxy group, a hydroxyl group, and a carbonyl group. 重合体(A)および(B)が、ともに水性媒体中での懸濁重合により得られた重合体である請求項1〜6のいずれかに記載のバインダー。 Both the polymers (A) and (B) are polymers obtained by suspension polymerization in an aqueous medium, The binder according to any one of claims 1 to 6. 有機溶媒中に請求項1〜7のいずれかに記載のバインダーを溶解し、更に粉末電極材料を分散させてなる電極合剤。 An electrode mixture obtained by dissolving the binder according to any one of claims 1 to 7 in an organic solvent and further dispersing a powder electrode material. 有機溶媒中に、重合体(B)を実質的に溶解完了後、重合体(A)を溶解して形成したバインダー溶液中に、粉末電極材料を分散させてなる請求項8に記載の電極合剤。 The electrode composite according to claim 8, wherein the powder electrode material is dispersed in a binder solution formed by dissolving the polymer (A) after the polymer (B) is substantially completely dissolved in the organic solvent. Agent. 請求項8または9に記載の電極合剤を集電体上に塗布することにより得られる電極。 The electrode obtained by apply | coating the electrode mixture of Claim 8 or 9 on a collector. 一対の電極間に非水電解液を配置してなり、該一対の電極の少なくとも一方が請求項10に記載の電極からなる非水系電気化学素子。 A non-aqueous electrochemical element comprising a non-aqueous electrolyte disposed between a pair of electrodes, wherein at least one of the pair of electrodes comprises the electrode according to claim 10.
JP2005002166A 2004-03-23 2005-01-07 Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element Pending JP2005310747A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005002166A JP2005310747A (en) 2004-03-23 2005-01-07 Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
KR1020050023509A KR20060044522A (en) 2004-03-23 2005-03-22 Non-aqueous electrochemical device Binder for electrode formation, electrode mixture, electrode structure and electrochemical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085015 2004-03-23
JP2005002166A JP2005310747A (en) 2004-03-23 2005-01-07 Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element

Publications (2)

Publication Number Publication Date
JP2005310747A true JP2005310747A (en) 2005-11-04
JP2005310747A5 JP2005310747A5 (en) 2008-01-31

Family

ID=35439242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002166A Pending JP2005310747A (en) 2004-03-23 2005-01-07 Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element

Country Status (2)

Country Link
JP (1) JP2005310747A (en)
KR (1) KR20060044522A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156102A (en) * 2004-11-29 2006-06-15 Dainippon Printing Co Ltd Coating composition for positive electrode active material layer, positive electrode plate formed from composition, and nonaqueous electrolytic solution secondary battery having this positive electrode plate
WO2009047969A1 (en) * 2007-10-11 2009-04-16 Kureha Corporation Vinylidene fluoride polymer powder and use thereof
WO2010035587A1 (en) * 2008-09-26 2010-04-01 株式会社クレハ Negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011006596A (en) * 2009-06-26 2011-01-13 Kureha Corp Polymer composition and polymer piezoelectric film
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
JP2014520377A (en) * 2011-06-23 2014-08-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Secondary battery
WO2017056974A1 (en) * 2015-09-30 2017-04-06 株式会社クレハ Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2020030690A1 (en) * 2018-08-09 2020-02-13 Solvay Specialty Polymers Italy S.P.A. Self crosslinking pvdf
WO2023023945A1 (en) 2021-08-24 2023-03-02 株式会社吴羽 Adhesive composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
CN115799524A (en) * 2022-12-14 2023-03-14 浙江锋锂新能源科技有限公司 A composite current collector and its preparation method and application in hybrid solid-state batteries
JP2023512028A (en) * 2020-01-29 2023-03-23 アルケマ フランス Electrode formulation for Li-ion batteries and method for producing solvent-free electrodes
JP2024542289A (en) * 2021-12-28 2024-11-13 株式会社クレハ Binders, electrode mixtures, and electrodes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287563B2 (en) 2011-01-20 2016-03-15 Samsung Sdi Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery including the same
CN120077077A (en) * 2022-10-18 2025-05-30 索尔维特殊聚合物意大利有限公司 Secondary battery electrode adhesive
WO2024083606A1 (en) * 2022-10-18 2024-04-25 Solvay Specialty Polymers Italy S.P.A. Vinylidene fluoride copolymers for lithium battery electrodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180725A (en) * 1995-12-26 1997-07-11 Kureha Chem Ind Co Ltd Binder solution for battery and electrode mix
JPH09320607A (en) * 1996-05-27 1997-12-12 Kureha Chem Ind Co Ltd Binder for electrode formation, electrode mix and electrode structure for non-aqueous battery and the battery
JPH10255760A (en) * 1997-03-14 1998-09-25 Hitachi Maxell Ltd Lithium secondary battery
JPH10298298A (en) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd Method for dissolving polyvinylidene fluoride resin
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition
JP2003155313A (en) * 2001-11-26 2003-05-27 Kureha Chem Ind Co Ltd Epoxy group-containing vinylidene fluoride-based copolymer, resin composition containing the same, electrode structure and non-aqueous electrochemical device
JP2004079327A (en) * 2002-08-16 2004-03-11 Hitachi Maxell Ltd Non-aqueous secondary battery, positive electrode for non-aqueous secondary battery, and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180725A (en) * 1995-12-26 1997-07-11 Kureha Chem Ind Co Ltd Binder solution for battery and electrode mix
JPH09320607A (en) * 1996-05-27 1997-12-12 Kureha Chem Ind Co Ltd Binder for electrode formation, electrode mix and electrode structure for non-aqueous battery and the battery
JPH10255760A (en) * 1997-03-14 1998-09-25 Hitachi Maxell Ltd Lithium secondary battery
JPH10298298A (en) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd Method for dissolving polyvinylidene fluoride resin
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition
JP2003155313A (en) * 2001-11-26 2003-05-27 Kureha Chem Ind Co Ltd Epoxy group-containing vinylidene fluoride-based copolymer, resin composition containing the same, electrode structure and non-aqueous electrochemical device
JP2004079327A (en) * 2002-08-16 2004-03-11 Hitachi Maxell Ltd Non-aqueous secondary battery, positive electrode for non-aqueous secondary battery, and method of manufacturing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156102A (en) * 2004-11-29 2006-06-15 Dainippon Printing Co Ltd Coating composition for positive electrode active material layer, positive electrode plate formed from composition, and nonaqueous electrolytic solution secondary battery having this positive electrode plate
WO2009047969A1 (en) * 2007-10-11 2009-04-16 Kureha Corporation Vinylidene fluoride polymer powder and use thereof
US8298446B2 (en) 2007-10-11 2012-10-30 Kureha Corporation Vinylidene fluoride based polymer powder and use thereof
JP5372765B2 (en) * 2007-10-11 2013-12-18 株式会社クレハ Vinylidene fluoride polymer powder and use thereof
WO2010035587A1 (en) * 2008-09-26 2010-04-01 株式会社クレハ Negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2010035587A1 (en) * 2008-09-26 2012-02-23 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
US8642210B2 (en) 2008-09-26 2014-02-04 Mitsuyasu Sakuma Negative electrode mixture for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US8455385B2 (en) 2008-12-26 2013-06-04 Tdk Corporation Method of manufacturing lithium-ion secondary battery positive electrode, method of manufacturing lithium-ion secondary battery, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
JP2011006596A (en) * 2009-06-26 2011-01-13 Kureha Corp Polymer composition and polymer piezoelectric film
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JPWO2012049967A1 (en) * 2010-10-14 2014-02-24 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP2014520377A (en) * 2011-06-23 2014-08-21 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Secondary battery
WO2017056974A1 (en) * 2015-09-30 2017-04-06 株式会社クレハ Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
WO2020030690A1 (en) * 2018-08-09 2020-02-13 Solvay Specialty Polymers Italy S.P.A. Self crosslinking pvdf
KR20210042127A (en) * 2018-08-09 2021-04-16 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Self-crosslinking PVDF
JP2021533235A (en) * 2018-08-09 2021-12-02 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Self-crosslinked PVDF
JP7539863B2 (en) 2018-08-09 2024-08-26 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Self-crosslinking PVDF
KR102814322B1 (en) 2018-08-09 2025-05-30 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Self-crosslinking PVDF
JP2023512028A (en) * 2020-01-29 2023-03-23 アルケマ フランス Electrode formulation for Li-ion batteries and method for producing solvent-free electrodes
WO2023023945A1 (en) 2021-08-24 2023-03-02 株式会社吴羽 Adhesive composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
KR20240055012A (en) 2021-08-24 2024-04-26 가부시끼가이샤 구레하 Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
JP2024542370A (en) * 2021-08-24 2024-11-15 株式会社クレハ Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
EP4404292A4 (en) * 2021-08-24 2025-05-21 Kureha Corp ADHESIVE COMPOSITION, ELECTRODE MIXTURE, ELECTRODE AND SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
JP2024542289A (en) * 2021-12-28 2024-11-13 株式会社クレハ Binders, electrode mixtures, and electrodes
CN115799524A (en) * 2022-12-14 2023-03-14 浙江锋锂新能源科技有限公司 A composite current collector and its preparation method and application in hybrid solid-state batteries

Also Published As

Publication number Publication date
KR20060044522A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
JP5053073B2 (en) Vinylidene fluoride core / shell polymer and its use in non-aqueous electrochemical devices
JP6797223B2 (en) Binder composition, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5366823B2 (en) Cathode structure for non-aqueous battery
JP3703582B2 (en) Electrode binder, electrode binder solution, electrode mixture, electrode structure and battery
JP5382120B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP5041090B2 (en) Electrode binder composition
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP5949915B2 (en) Electrode mixture
CN107408668B (en) Electrode for Li-ion battery with improved conductivity
JP5949914B2 (en) Electrode mixture
JPWO2004049475A1 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
KR100263735B1 (en) Binder Solution and Electrode Formation Composition for Non-Aqueous Battery
US20120107689A1 (en) Binder composition for electrode
CN102308417A (en) Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry
JP7160696B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
KR20160102404A (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP3518712B2 (en) Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JPH11195419A (en) Depolarizing mix for nonaqueous battery and nonaqueous battery
JP3540097B2 (en) Electrode mixture for non-aqueous battery and non-aqueous battery
JP7060405B2 (en) Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
JP6696534B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JPH10302800A (en) Battery binder solution, electrode mix containing the same and electrode body structure and battery using mix
CN100508256C (en) Binder for forming electrode of nonaqueous electrochemical device, electrode mixture, electrode structure, and electrochemical device
CN115702173A (en) Electrode binder composition for lithium ion electric storage device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025