JP2005307371A - Wet process nonwoven fabric and prepreg, composite material - Google Patents
Wet process nonwoven fabric and prepreg, composite material Download PDFInfo
- Publication number
- JP2005307371A JP2005307371A JP2004123188A JP2004123188A JP2005307371A JP 2005307371 A JP2005307371 A JP 2005307371A JP 2004123188 A JP2004123188 A JP 2004123188A JP 2004123188 A JP2004123188 A JP 2004123188A JP 2005307371 A JP2005307371 A JP 2005307371A
- Authority
- JP
- Japan
- Prior art keywords
- nonwoven fabric
- fibers
- prepreg
- composite material
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Paper (AREA)
Abstract
【課題】 樹脂成分の浸透性が良好な湿式法不織布を提供すること、またこれを用いることにより表面平滑性の良好な複合材料の提供、ならびにそれに用いるプリプレグを提供することにある。
【解決手段】 無機繊維と繊維を結合するバインダー成分からなる湿式法不織布であって、不織布断面における総繊維本数に占める隣接繊維の本数の割合が5%以上95%以下であることを特徴とする湿式法不織布。その隣接繊維が不織布断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下であることが好ましく、無機繊維の平均繊維径が4μm〜20μmであり、かつ平均繊維長が1mm〜25mmであることが好ましい。この湿式法不織布に、樹脂成分を付着させたプリプレグを少なくとも1枚以上用いてプレス成形して複合材料が作成できる。
【選択図】 なし
PROBLEM TO BE SOLVED: To provide a wet process nonwoven fabric having good permeability of a resin component, to provide a composite material having good surface smoothness by using this, and to provide a prepreg used therefor.
A wet process nonwoven fabric comprising a binder component that binds inorganic fibers and fibers, wherein the ratio of the number of adjacent fibers to the total number of fibers in the cross section of the nonwoven fabric is 5% or more and 95% or less. Wet method nonwoven fabric. It is preferable that the ratio (Z / X) of the adjacent fiber number Z in the thickness direction and the adjacent fiber number X in the plane direction in the nonwoven fabric cross section is 0.8 or less, and the average fiber diameter of the inorganic fibers is 4 μm to 20 μm. And the average fiber length is preferably 1 mm to 25 mm. A composite material can be produced by press-molding at least one prepreg having a resin component adhered to the wet method nonwoven fabric.
[Selection figure] None
Description
本発明は、無機繊維を用いた湿式法不織布およびこれを用いたプリプレグ、複合材料に関する。更に詳しく述べるならば、プリプレグに用いる樹脂成分の浸透性が良好で、表面平滑性に優れた複合材料を製造するのに好適な湿式法不織布およびプリプレグ、複合材料に関するものである。 The present invention relates to a wet process nonwoven fabric using inorganic fibers, a prepreg using the same, and a composite material. More specifically, the present invention relates to a wet method nonwoven fabric, a prepreg, and a composite material suitable for producing a composite material in which the resin component used in the prepreg has good permeability and excellent surface smoothness.
FRP(Fiber Reinforced Plastics)は、繊維強化プラスチックと言われるように、マトリックスとなる樹脂(プラスチック)中に繊維を含ませることにより、樹脂自体の強度を向上させている。このFRPの一種に繊維として湿式法無機繊維不織布を用いプレス成形で得られる板状の複合材料の中に、電気回路基板に用いるプリント配線板とか建材に用いる化粧板などがある。これらは、吸水率を小さくする為、あるいは不燃性を得る為、マトリックスの樹脂中に顔料を多く配合してある。 FRP (Fiber Reinforced Plastics) improves the strength of the resin itself by including fibers in a resin (plastic) serving as a matrix, as called fiber reinforced plastics. One type of FRP is a printed wiring board used for an electric circuit board or a decorative board used for a building material among plate-like composite materials obtained by press molding using a wet process inorganic fiber nonwoven fabric as a fiber. In order to reduce the water absorption rate or to obtain nonflammability, a large amount of pigment is blended in the matrix resin.
従来の湿式法不織布は、良好の地合いの不織布を得る為に繊維を1本1本ばらばらに分散し、その分散状態を維持するように抄紙する。例えば、ベンダイン型界面活性剤を用いて硝子繊維を分散し、さらにアニオン系ポリアクリルアミドを粘材として、繊維の分散性およびその安定性の向上を図り、地合いを改善した不織布を作製したものが提案されている(特許文献1参照)。
またフェノール樹脂と無機充填材からなる成分を硝子繊維不織布に含浸、乾燥して得たプリプレグを複数枚重ねてプレス成形して作られる複合材料が提案されている(特許文献2、3参照)。これらの不織布は、繊維が1本1本ばらばらに存在する為、不織布断面において、繊維交点付近以外に隣接繊維が殆どない状態である。このような従来の無機繊維の湿式法不織布に無機充填材を含む樹脂成分を付着させる場合、不織布の目開きが小さく、無機充填材および樹脂成分の不織布への浸透性が悪く、その結果として複合材料の表面平滑性が悪化しがちであった。
In order to obtain a nonwoven fabric having a good texture, conventional wet method nonwoven fabrics are made by dispersing fibers one by one in order to maintain the dispersion state. For example, a non-woven fabric with improved texture is proposed by dispersing glass fibers using a bendine-type surfactant and using anionic polyacrylamide as an adhesive to improve fiber dispersibility and stability. (See Patent Document 1).
Further, a composite material has been proposed which is made by press-molding a plurality of prepregs obtained by impregnating and drying a glass fiber nonwoven fabric with a component comprising a phenol resin and an inorganic filler (see
また、FRPの耐衝撃性を向上する目的で、無機繊維と結合するバインダー成分からなる湿式法不織布中に100本以上の繊維を集束させた繊維を20質量%以上含ませる方法が既に提案されいる(特許文献4参照)。しかし、100本以上の集束した無機繊維を20質量%以上含んだ不織布は、不織布厚さが薄い場合、地合い不良となる問題があった。
本発明の課題は、樹脂成分の浸透性が良好な湿式法不織布を提供すること、またこれを用いることにより表面平滑性の良好な複合材料の提供、ならびにそれに用いるプリプレグを提供することにある。 An object of the present invention is to provide a wet process nonwoven fabric having good permeability of a resin component, to provide a composite material having good surface smoothness by using this, and to provide a prepreg used therefor.
上記課題を解決するため、本発明は以下の(1)〜(11)の構成を採用する。
(1) 無機繊維と繊維を結合するバインダー成分からなる湿式法不織布であって、不織布断面における総繊維本数に占める隣接繊維の本数の割合が5%以上95%以下であることを特徴とする湿式法不織布。
(2) 前記隣接繊維が不織布断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下であることを特徴とする上記(1)に記載の湿式法不織布。
(3) 無機繊維の平均繊維径が4μm〜20μmであり、かつ平均繊維長が1mm〜25mmであることを特徴とする上記(1)または(2)に記載の湿式法不織布。
(4) 無機繊維が硝子繊維であることを特徴とする上記(1)〜(3)のいずれかに記載の湿式法不織布。
(5) 前記湿式法不織布の密度が、0.10g/cm3〜0.25g/cm3であることを特徴とする上記(1)〜(4)のいずれかに記載の湿式法不織布。
(6) バインダー量が3質量%〜25質量%であることを特徴とする上記(1)〜(5)のいずれかに記載の湿式法不織布。
(7) 上記(1)〜(6)のいずれかに記載の湿式法不織布に、樹脂成分を付着させたことを特徴としたプリプレグ。
(8) 前記プリプレグの断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下である隣接繊維の本数の割合が5%以上95%以下であることを特徴とする上記(7)に記載のプリプレグ。
(9) 請求項8に記載のプリプレグを少なくとも1枚以上用いてプレス成形させたことを特徴とする複合材料。
(10) 前記複合材料の断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下である隣接繊維の本数の割合が5%以上95%以下である層を含むことを特徴とする上記(9)に記載の複合材料。
(11) 前記複合材料が、プリント配線板または化粧板であることを特徴とする上記(10)に記載の複合材料。
In order to solve the above problems, the present invention employs the following configurations (1) to (11).
(1) A wet method nonwoven fabric comprising a binder component that binds inorganic fibers and fibers, wherein the ratio of the number of adjacent fibers to the total number of fibers in the cross section of the nonwoven fabric is 5% to 95%. Method nonwoven fabric.
(2) The ratio (Z / X) of the number of adjacent fibers in the thickness direction Z and the number of adjacent fibers in the plane direction X (Z / X) of the adjacent fibers in the nonwoven fabric cross section is 0.8 or less. Wet method nonwoven fabric.
(3) The wet method nonwoven fabric according to (1) or (2) above, wherein the inorganic fiber has an average fiber diameter of 4 μm to 20 μm and an average fiber length of 1 mm to 25 mm.
(4) The wet method nonwoven fabric according to any one of the above (1) to (3), wherein the inorganic fiber is a glass fiber.
(5) Density of the
(6) The wet process nonwoven fabric according to any one of (1) to (5) above, wherein the binder amount is 3% by mass to 25% by mass.
(7) A prepreg in which a resin component is adhered to the wet method nonwoven fabric according to any one of (1) to (6).
(8) The ratio of the number of adjacent fibers in which the ratio (Z / X) of the number of adjacent fibers Z in the thickness direction and the number X of adjacent fibers in the planar direction in the cross section of the prepreg is 0.8 or less is 5% or more and 95% or less. The prepreg as described in (7) above, wherein
(9) A composite material obtained by press molding using at least one prepreg according to claim 8.
(10) The ratio of the number of adjacent fibers in which the ratio (Z / X) of the number of adjacent fibers Z in the thickness direction to the number X of adjacent fibers in the planar direction in the cross section of the composite material is 0.8 or less is 5% or more and 95% or less. The composite material as described in (9) above, comprising a layer that is
(11) The composite material according to (10), wherein the composite material is a printed wiring board or a decorative board.
本発明により、樹脂成分の浸透性の良好な無機繊維不織布ならびにそれを用いたプリプレグ、複合材料を提供することが可能となり、産業上極めて有用なものである。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an inorganic fiber nonwoven fabric having good resin component permeability, a prepreg using the same, and a composite material, which are extremely useful industrially.
従来の湿式法不織布に存在する1本1本バラバラの繊維の一部に集束繊維を存在させることにより達成された。樹脂成分の浸透性が良くなる理由は定かでないが、おそらく集束繊維を含ませることにより不織布の目開きが大きくなり、粘性の高い樹脂成分が不織布中に入り込みやすくなり、良好に不織布中に浸透する。
しかし、従来の技術における特許文献4のように、一般に集束した繊維が存在する不織布は地合いが悪く、例え目開きが大きくなることにより樹脂成分の浸透性が改善されたのみでは、不織布の地合いの悪化により、複合材料の表面平滑性は改善されない。そこで、鋭意検討を重ねた結果、集束した繊維が存在するにもかかわらず地合いの良好な湿式法不織布を本発明を成功させるに至ったのである。
地合いを決める因子として、不織布中に存在する集束繊維の割合が重要であることを突き止めた。(なお、集束とは、繊維複数本(2本以上)が繊維長手方向にまとまった状態のことを言う。)
This was achieved by allowing the bundled fibers to be present in a part of the individual fibers that are present in the conventional wet method nonwoven fabric. The reason why the permeability of the resin component is improved is not clear, but perhaps the inclusion of bundling fibers increases the opening of the nonwoven fabric, making it easier for the viscous resin component to penetrate into the nonwoven fabric and penetrates into the nonwoven fabric well. .
However, as in Patent Document 4 in the prior art, generally, a nonwoven fabric in which concentrated fibers are present has a poor texture. For example, if the penetration of the resin component is improved by increasing the opening, the texture of the nonwoven fabric is not improved. Due to the deterioration, the surface smoothness of the composite material is not improved. As a result of extensive studies, the present invention has succeeded in producing a wet-type nonwoven fabric having a good texture despite the presence of concentrated fibers.
As a factor that determines the texture, we have found that the proportion of bundled fibers present in the nonwoven fabric is important. (Note that the term “bundling” refers to a state in which a plurality of fibers (two or more) are gathered in the fiber longitudinal direction.)
不織布中の集束繊維の割合を正確に求めることは実際のところ非常に難しい。そこで鋭意検討を重ねた結果、不織布断面観察により容易に求めることのできる隣接繊維の本数の割合と地合いとの間に関係があることを見出した。
すなわち本発明では、不織布断面における総繊維本数に占める隣接繊維の本数の割合が5%以上95%以下である必要がある。5%未満の場合、不織布の目開きへの効果が小さく、95%より大きい場合は、不織布の地合いが不良となり易い。隣接繊維の本数の割合が10%以下75%であればより好ましく、15%以下50%以上であれば非常に好ましい。
In practice, it is very difficult to accurately determine the ratio of the bundled fibers in the nonwoven fabric. As a result of extensive studies, it was found that there is a relationship between the ratio of the number of adjacent fibers that can be easily obtained by observing the cross section of the nonwoven fabric and the texture.
That is, in the present invention, the ratio of the number of adjacent fibers to the total number of fibers in the cross section of the nonwoven fabric needs to be 5% or more and 95% or less. If it is less than 5%, the effect on the opening of the nonwoven fabric is small, and if it is more than 95%, the texture of the nonwoven fabric tends to be poor. More preferably, the ratio of the number of adjacent fibers is 10% or less and 75%, and 15% or less and 50% or more is very preferable.
本発明における隣接とは、一つの不織布断面を観察したときに、任意の2本の繊維の中心を結ぶ線分間距離をL1とし、該線分と該繊維が交差する2つの交点の交点間距離L2が、(L1)≧(3×L2)を満たす時、この2本の繊維はお互いに隣接しているとみなす。但し、本定義において隣接繊維とみなされる中には、必ずしも集束繊維とは限らない。例えば、1本1本バラバラに分散した繊維であっても繊維同士が交点を持つ場合、本定義では隣接と見なされるからである。しかし、このように1断面中に繊維同士の交点が存在する頻度は低くその影響は小さいため、不織布断面の総繊維本数に占める隣接繊維の本数の割合の数値を用いいれば十分にその不織布の状態を把握することができる。
(L1)≧(3×L2)を満たす隣接繊維の集合体である1つの隣接繊維束の内、不織布断面における厚さ方向の隣接繊維本数Zと厚さ方向に対し垂直方向である平面方向の隣接繊維本数Xの比率(Z/X)値が0.8以下であるものを隣接繊維とすることが好ましい。比率(Z/X)値が0.8より大きいものを隣接繊維として隣接繊維本数を集計した場合は、理由は定かでないが、樹脂成分の浸透性が悪くなることがある。この比率(Z/X)値が0.7以下であればより好ましく、0.6以下であれば更により好ましい。また、繊維本数を把握する観察断面積は、少なくとも0.2mm2以上、好ましくは0.4mm2以上である。0.2mm2より観察面積が小さい場合、製造された不織布の特性を十分に把握できない可能性がある。また、本発明では無機繊維のみの本数を数える。
The term “adjacent” in the present invention refers to the distance between line segments connecting the centers of any two fibers when observing a cross section of one nonwoven fabric, and the distance between the intersections of the two intersections where the line segments intersect with the fibers. When L2 satisfies (L1) ≧ (3 × L2), the two fibers are considered to be adjacent to each other. However, while being regarded as adjacent fibers in this definition, they are not necessarily bundled fibers. For example, even if the fibers are dispersed one by one, if the fibers have intersections, they are regarded as adjacent in this definition. However, since the frequency of intersections between fibers in one cross section is low and the effect is small, it is sufficient to use the numerical value of the ratio of the number of adjacent fibers in the total number of fibers in the cross section of the nonwoven fabric. The state can be grasped.
Among the adjacent fiber bundles that are aggregates of adjacent fibers satisfying (L1) ≧ (3 × L2), the number of adjacent fibers Z in the thickness direction in the nonwoven fabric cross section and the plane direction perpendicular to the thickness direction It is preferable to use adjacent fibers having a ratio (Z / X) of the number X of adjacent fibers of 0.8 or less. When the number of adjacent fibers is counted as an adjacent fiber having a ratio (Z / X) value greater than 0.8, the permeability of the resin component may deteriorate, although the reason is not clear. The ratio (Z / X) value is more preferably 0.7 or less, and even more preferably 0.6 or less. The observation cross-sectional area for determining the number of fibers is at least 0.2 mm 2 or more, preferably 0.4 mm 2 or more. When the observation area is smaller than 0.2 mm 2 , the characteristics of the manufactured nonwoven fabric may not be sufficiently grasped. In the present invention, the number of inorganic fibers alone is counted.
比率(Z/X)値の求めかたは、例えば、図1のような不織布の断面の場合、それぞれ(1)(2)(3)が(L1)≧(3×L2)を満たす隣接繊維束である。(1)(2)(3)それぞれの隣接繊維束における(Z/X)値は、(1)の場合厚さ方向の隣接繊維本数Z=1本、平面方向の隣接繊維本数X=6本であり、 従って(Z/X)=1/6=0.167となる。
(2)の場合は、厚さ方向の隣接繊維本数Z=2本、平面方向の隣接繊維本数X=7本、従ってZ/X値=2/7=0.286、(3)の場合は、厚さ方向の隣接繊維本数Z=2.5本、平面方向の隣接繊維本数X=6.5本、従ってZ/X値=2.5/6.5=0.385となる。このようにZおよびXは、各隣接繊維束におけるZ(厚さ)方向の最大値、X(平面)方向の最大値である。
The ratio (Z / X) value can be obtained, for example, in the case of a cross section of a nonwoven fabric as shown in FIG. 1 by using adjacent fiber bundles in which (1), (2), and (3) satisfy (L1) ≧ (3 × L2), respectively. is there. (1) (2) (3) (Z / X) value in each adjacent fiber bundle is the number of adjacent fibers Z = 1 in the thickness direction and the number of adjacent fibers X = 6 in the plane direction in the case of (1) Therefore, (Z / X) = 1/6 = 0.167.
In the case of (2), the number of adjacent fibers in the thickness direction Z = 2, the number of adjacent fibers in the plane direction X = 7, so Z / X value = 2/7 = 0.286, in the case of (3) The number of adjacent fibers Z in the vertical direction Z = 2.5, the number of adjacent fibers X in the plane direction X = 6.5, and therefore Z / X value = 2.5 / 6.5 = 0.385. Thus, Z and X are the maximum value in the Z (thickness) direction and the maximum value in the X (plane) direction in each adjacent fiber bundle.
本発明の不織布は、湿式法により製造される湿式法不織布である。湿式法として公知の抄紙技術のものを使うことができる。例えば、長網、丸網、傾斜ワイヤー、ツインワイヤー等の公知の抄紙機、当業者が実験室レベルで検討に用いる手抄きマシーン等を挙げることができる。
不織布断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下を満足する不織布の形状が形成されるプロセスは、主にワイヤーパートにおいて集束繊維の束を含む繊維分散液がワイヤーにより抄かれる過程(水がワイヤーから抜ける過程)に形成される。本発明では、ワイヤーパート上および/またはドライヤーパート上でプレスロール、フェルトを押し付けて更に補助的に効果を高めることもできる。
The nonwoven fabric of the present invention is a wet method nonwoven fabric produced by a wet method. A known papermaking technique can be used as the wet method. For example, a well-known paper machine such as a long net, a round net, an inclined wire, and a twin wire, and a hand-making machine used by a person skilled in the art for examination at a laboratory level can be used.
The process of forming the shape of the nonwoven fabric in which the ratio (Z / X) of the number of adjacent fibers Z in the thickness direction and the number X of adjacent fibers in the planar direction in the nonwoven fabric cross section satisfies 0.8 or less is mainly in the wire part. It is formed in a process in which a fiber dispersion containing bundles is made by a wire (a process in which water is removed from the wire). In the present invention, press rolls and felt can be pressed on the wire part and / or the dryer part to further enhance the effect.
本発明の無機繊維は、平均繊維径(平均繊維径は、真円換算したときの平均繊維径を言う)が4μm〜20μmであり、かつ平均繊維長が1mm〜25mmであることが好ましい。より好ましくは平均繊維径4μm〜15μmであり、かつ平均繊維長が2mm〜15mmである。平均繊維径が4μm未満および/または平均繊維長が1mm未満の場合は、アスベストと同様に健康に害を与える恐れがあり好ましくなく、平均繊維径が20μmより大きい場合および/または平均繊維長が25mmより大きい場合は、不織布の地合い不良となり易い問題がある。 The inorganic fiber of the present invention preferably has an average fiber diameter (the average fiber diameter is an average fiber diameter when converted into a perfect circle) of 4 μm to 20 μm and an average fiber length of 1 mm to 25 mm. More preferably, the average fiber diameter is 4 μm to 15 μm, and the average fiber length is 2 mm to 15 mm. When the average fiber diameter is less than 4 μm and / or the average fiber length is less than 1 mm, it is not preferable because it may be harmful to health as with asbestos. When the average fiber diameter is greater than 20 μm and / or the average fiber length is 25 mm. If it is larger, there is a problem that the nonwoven fabric tends to be poorly formed.
本発明の無機繊維は、セラミック繊維、硝子繊維、炭素繊維等を挙げることができる。中でも硝子繊維が価格的な意味からより好ましい。硝子繊維としては、E硝子繊維、D硝子繊維、S硝子繊維、NE硝子繊維、C硝子繊維、石英硝子繊維、高珪酸硝子繊維等を挙げることができる。
本発明の無機繊維は、値段的観点から円形断面のものが好ましいといえば好ましいが、如何なる形状の断面(例えば、楕円、まゆ形、偏平、星型等)であっても、本発明の目的を達成することができる。
Examples of the inorganic fiber of the present invention include ceramic fiber, glass fiber, and carbon fiber. Among these, glass fiber is more preferable from the viewpoint of price. Examples of the glass fiber include E glass fiber, D glass fiber, S glass fiber, NE glass fiber, C glass fiber, quartz glass fiber, and high silicate glass fiber.
The inorganic fiber of the present invention preferably has a circular cross section from the viewpoint of cost. However, the object of the present invention is not limited to any cross section (for example, oval, eyebrows, flat, star shape, etc.). Can be achieved.
本発明の不織布密度は、0.10g/cm3〜0.25g/cm3であることが好ましい。0.10g/cm3未満の場合は、複合材料まで成形した際に、表面平滑性が改善されないことがある。また、0.25g/cm3より大きい場合は、不織布の空隙率が小さくなるため複合材料の樹脂成分の付着量が不十分となる場合がある。不織布密度は、0.13g/cm3〜0.21g/cm3であればより好ましく、0.16g/cm3〜0.19g/cm3であれば更に好ましい。不織布密度は、JIS P−8118に基づき50KPaにて測定することが好ましい。
また不織布の坪量は、5g/m2〜300g/m2が好ましく、より好ましくは10g/m2〜200g/m2、更に好ましきは15 g/m2〜150 g/m2である。
Nonwoven Density of the present invention is preferably 0.10g / cm 3 ~0.25g / cm 3 . If it is less than 0.10 g / cm 3 , surface smoothness may not be improved when molding up to a composite material. On the other hand, if it is larger than 0.25 g / cm 3 , the porosity of the non-woven fabric becomes small, so that the amount of the resin component attached to the composite material may be insufficient. Nonwoven density is more preferably if 0.13g / cm 3 ~0.21g / cm 3 , further preferably if 0.16g / cm 3 ~0.19g / cm 3 . The nonwoven fabric density is preferably measured at 50 KPa based on JIS P-8118.
The basis weight of the nonwoven fabric is preferably from 5g / m 2 ~300g / m 2 , more preferably 10g / m 2 ~200g / m 2 , more Konomashiki is 15 g / m 2 ~150 g /
本発明の不織布は、バインダー量が3質量%〜25質量%であることが好ましい。3質量%未満の場合は、不織布の強度が弱く裂け易く、25質量%より多い場合は、プリプレグを作る際に用いる樹脂成分が付着し難くなることがある。バインダー量が4質量%〜20質量%であればより好ましく、6質量%〜15質量%であれば更に好ましい。 The nonwoven fabric of the present invention preferably has a binder amount of 3% by mass to 25% by mass. When the amount is less than 3% by mass, the strength of the nonwoven fabric is weak and easily torn, and when it is more than 25% by mass, the resin component used when making the prepreg may be difficult to adhere. The amount of the binder is more preferably 4% by mass to 20% by mass, and further preferably 6% by mass to 15% by mass.
本発明に用いるバインダー成分が、バインダー繊維または粉末のバインダーを使用する場合は、集束繊維の束を含む繊維分散液に予め含ませておくことが好ましい。バインダー成分として、液系のバインダーを使用する場合は、ワイヤーパートで形成したウエットシートにバインダー成分を供給し付着させ、ドライヤーパートで乾燥し不織布を製造することが好ましい。このような液系のバインダーの供給方法は、例えば、含浸方式、スプレー方式、メイヤーバー方式、グラビア方式、マイクログラビア方式、ダイ方式、ブレード方式、マイクロロッド方式、エアナイフ方式、カーテン方式、スライド方式、ロール方式等の公知の塗布方法を挙げることができる。もちろん公知であればこれらの例に限定されることはない。不織布の強度増強の為、製造した不織布に更にバインダー成分をオフマシーン等で更に付着させることもできる。 When the binder component used in the present invention uses a binder fiber or powder binder, it is preferably included in advance in a fiber dispersion containing a bundle of bundled fibers. When a liquid binder is used as the binder component, it is preferable to produce a nonwoven fabric by supplying and attaching the binder component to a wet sheet formed with a wire part and drying it with a dryer part. Such liquid binder supply methods include, for example, impregnation method, spray method, Mayer bar method, gravure method, micro gravure method, die method, blade method, micro rod method, air knife method, curtain method, slide method, A known coating method such as a roll method can be exemplified. Of course, the examples are not limited to these examples. In order to increase the strength of the nonwoven fabric, a binder component can be further adhered to the produced nonwoven fabric by an off-machine or the like.
本発明に用いるバインダー成分は、公知のものであれば何等制限されることはない。例えば、アクリル樹脂、ポリイミド樹脂、ウレタン樹脂、ポリビニルアルコール、ポリアクリルアミド、水溶性セルロース、澱粉、SBR、メラミン樹脂、エポキシ樹脂、フェノール樹脂等の公知の液系バインダーの他に、メタアラミド繊維、液晶高分子繊維、熱可塑性ポリイミド繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、アクリル繊維、ポリビニルアルコール繊維、ポリスチレン繊維等の公知の熱可塑性繊維、KP、GP、TMP等の木質パルプなどのバインダー繊維を挙げることができる。本発明では、液系バインダー、バインダー繊維を1種類で使用しても良いし複数種使用しても良い。本発明のバインダー中に顔料を含有させることもできる。顔料として例えば、後で述べる無機充填材を挙げることができる。 If the binder component used for this invention is a well-known thing, it will not be restrict | limited at all. For example, in addition to known liquid binders such as acrylic resin, polyimide resin, urethane resin, polyvinyl alcohol, polyacrylamide, water-soluble cellulose, starch, SBR, melamine resin, epoxy resin, phenol resin, meta-aramid fiber, liquid crystal polymer Examples thereof include known thermoplastic fibers such as fibers, thermoplastic polyimide fibers, polypropylene fibers, polyethylene terephthalate fibers, acrylic fibers, polyvinyl alcohol fibers, and polystyrene fibers, and binder fibers such as wood pulp such as KP, GP, and TMP. In the present invention, one type of liquid binder or binder fiber may be used, or a plurality of types may be used. A pigment can also be contained in the binder of the present invention. Examples of the pigment include an inorganic filler described later.
本発明の不織布の成分は、繊維を結合するバインダー成分と無機繊維をからなるが、湿式法不織布の製造上必要な補助添加剤、無機繊維とバインダー成分をより強く結合するための結合補助剤(例えば、シランカップリング剤など)等の微量添加することができる。 The component of the nonwoven fabric of the present invention comprises a binder component that binds fibers and inorganic fibers. However, auxiliary additives necessary for the production of wet method nonwoven fabrics, and binding aids for binding inorganic fibers and binder components more strongly ( For example, a small amount of silane coupling agent or the like can be added.
本発明のプリプレグは、樹脂成分を上記湿式法不織布に付着したものである。本発明では無機充填材を樹脂成分中に含有することは何ら制限されることはない。樹脂成分に無機充填材を含有させることにより、このプリプレグをプレス成形して製造する複合材料の不燃性、水分吸収性、等の品質を向上することができる。無機充填材は樹脂成分中30質量%以上含有させることが好ましく、より好ましくは50質量%以上、60質量%〜90質量%であれば更に好ましい。 The prepreg of the present invention is obtained by adhering a resin component to the wet method nonwoven fabric. In this invention, containing an inorganic filler in a resin component is not restrict | limited at all. By including an inorganic filler in the resin component, it is possible to improve the quality of the composite material produced by press-molding this prepreg, such as incombustibility and moisture absorption. The inorganic filler is preferably contained in the resin component in an amount of 30% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass to 90% by mass.
本発明の無機充填剤としては、公知の無機顔料を使用できる。例えば、カオリン、シリカ、炭酸カルシウム、珪酸カルシウム、水酸化アルミニウム、タルク、雲母粉、ゼオライト、雲母粉、酸化チタン等を挙げることができ、特に不燃性の効果の点で水酸化アルミニウムが適している。無機充填材は少なくとも1種類以上用いることができる。用いる無機充填材の粒径は特に限定されることはないが、平均粒径40μm以下であることが好ましく、あまり大きいと不織布への樹脂成分の浸透性が悪化することがある。 Known inorganic pigments can be used as the inorganic filler of the present invention. For example, kaolin, silica, calcium carbonate, calcium silicate, aluminum hydroxide, talc, mica powder, zeolite, mica powder, titanium oxide and the like can be mentioned, and aluminum hydroxide is particularly suitable in terms of nonflammability effect. . At least one inorganic filler can be used. The particle size of the inorganic filler to be used is not particularly limited, but the average particle size is preferably 40 μm or less, and if it is too large, the permeability of the resin component to the nonwoven fabric may be deteriorated.
樹脂成分の樹脂としては、公知の熱可塑性樹脂、熱硬化性樹脂を用いることができ、一般的には熱硬化性樹脂を用いるが好ましく、例えば、エポキシ系樹脂、フェノール系樹脂、メラミン樹脂、ユリア樹脂、ポリイミド系樹脂、シアネート系樹脂、熱硬化型ポリフェニレンオキサイド樹脂等がより好ましく使用される。
本発明のプリプレグの製造方法は、樹脂成分の塗料を、公知の方法を用いて付着でき、例えば、含浸方式、スプレー方式、ダイ方式、ロール方式などがあり、これを乾燥して作成する。
As the resin of the resin component, known thermoplastic resins and thermosetting resins can be used. In general, thermosetting resins are preferably used. For example, epoxy resins, phenol resins, melamine resins, ureas are preferable. Resins, polyimide resins, cyanate resins, thermosetting polyphenylene oxide resins, and the like are more preferably used.
The method for producing a prepreg of the present invention can be applied by applying a resin component paint using a known method, such as an impregnation method, a spray method, a die method, and a roll method.
本発明のプリプレグは、上記湿式法不織布を用いており、プリプレグの断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下である隣接繊維の本数の割合が5%以上95%以下を満足する。用いる湿式法不織布の(Z/X)値によっては、プリプレグの(Z/X)値は0.7以下であることがより好ましく、0.6以下であれば更に好ましい。また隣接繊維の本数の割合も10%以上75%以下であればより好ましく、更に好ましくは15%以上50%以下である。
また、プリプレグの繊維本数を把握する観察断面積は、少なくとも0.2mm2以上、好ましくは0.4mm2以上である。0.2mm2より観察面積が小さい場合、プリプレグの特性を十分に把握できない可能性がある。
The prepreg of the present invention uses the above wet method nonwoven fabric, and the ratio of the adjacent fiber number Z in the thickness direction to the adjacent fiber number X in the planar direction (Z / X) in the cross section of the prepreg is 0.8 or less. The ratio of the number satisfies 5% to 95%. Depending on the (Z / X) value of the wet process nonwoven fabric used, the (Z / X) value of the prepreg is more preferably 0.7 or less, and even more preferably 0.6 or less. Further, the ratio of the number of adjacent fibers is more preferably 10% or more and 75% or less, and further preferably 15% or more and 50% or less.
Further, the observation cross-sectional area for grasping the number of fibers of the prepreg is at least 0.2 mm 2 or more, preferably 0.4 mm 2 or more. If the observation area is smaller than 0.2 mm 2 , the prepreg characteristics may not be fully understood.
本発明の複合材料は、上記プリプレグを少なくとも1枚以上用いてプレス成形したものである。上記プリプレグ以外のプリプレグをミックスしたタイプの複合材料としても良い。
本発明の複合材料は、上記本発明のプリプレグを少なくとも1枚以上用いているためその部分の層において、複合材料の断面における厚さ方向の隣接繊維本数Zと平面方向の隣接繊維本数Xの比率(Z/X)が0.8以下である隣接繊維の本数の割合が5%以上95%以下を満足する。用いる湿式法不織布の(Z/X)値によっては、複合材料のある層における(Z/X)値は0.7以下となることがより好ましく、0.6以下となることが更に好ましい。隣接繊維の本数の割合も10%以上75%以下となることがより好ましく、更に好ましくは15%以上50%以下である。また、複合材料の繊維本数を把握する観察断面積は、少なくとも0.2mm2以上、好ましくは0.4mm2以上、より好ましきは1mm2以上である。0.2mm2より観察面積が小さい場合、複合材料の特性を十分に把握できない可能性がある。
The composite material of the present invention is formed by press molding using at least one of the above prepregs. It is good also as a composite material of the type which mixed prepregs other than the said prepreg.
Since the composite material of the present invention uses at least one prepreg of the present invention, the ratio of the number of adjacent fibers Z in the thickness direction and the number of adjacent fibers X in the plane direction in the cross section of the composite material in the layer of that portion The ratio of the number of adjacent fibers having (Z / X) of 0.8 or less satisfies 5% or more and 95% or less. Depending on the (Z / X) value of the wet process nonwoven fabric used, the (Z / X) value in the layer with the composite material is more preferably 0.7 or less, and even more preferably 0.6 or less. The ratio of the number of adjacent fibers is also preferably 10% to 75%, and more preferably 15% to 50%. Further, the observation cross-sectional area for grasping the number of fibers of the composite material is at least 0.2 mm 2 or more, preferably 0.4 mm 2 or more, and more preferably 1 mm 2 or more. If the observation area than 0.2 mm 2 is small, there may not be sufficiently grasped properties of the composite.
本発明の複合材料は、プリント配線板または化粧板であることが好ましい。この為、複合材料の表層および/または各層に銅箔等の電気回路を設けることもできるし、あるいは、化粧板用表面材を組み合わせた複合材料とすることもできる。
本発明では、バインダー成分、無機充填材と含む樹脂成分中に、必要に応じて補助添加成分(例えば、シランカップリング剤、界面活性剤 等)と添加することができる。
The composite material of the present invention is preferably a printed wiring board or a decorative board. For this reason, an electrical circuit such as a copper foil can be provided on the surface layer and / or each layer of the composite material, or a composite material in which a decorative sheet surface material is combined.
In the present invention, an auxiliary additive component (for example, a silane coupling agent, a surfactant, etc.) can be added to the resin component including the binder component and the inorganic filler as necessary.
以下に本発明を実施例によって、さらに具体的に説明するが、もちろん本発明の範囲はこれらに限定されるものではない。なお、実施例において、特に断らない限り「%」及び「部」はすべて「質量%」及び「質量部」を示す。 The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples. In Examples, “%” and “parts” indicate “% by mass” and “parts by mass” unless otherwise specified.
<実施例1>
丸断面形状繊維径φ13μm繊維長9mmのE硝子繊維チョップと丸断面形状繊維径φ6μm繊維長3mmのE硝子繊維チョップを質量比1:1となるように調整した繊維にノニオン系界面活性剤であるポリエチレングリコールステアレート(エマノーン3299、花王社製)を対繊維1%で混合し、続いて、ポリエチレンイミン(商品名:エポミンP−1000(原液30%、日本触媒社製)を対繊維0.05%になるように添加し、スリーワンモーターを用いて繊維濃度0.02%で水中攪拌させた。この繊維分散液中には目視により結束繊維がない事を確かめた。この繊維分散液中にアニオン系水溶性高分子であるアニオン性ポリアクリルアミド(スミフロックFA40H、住友化学工業社製)0.1%溶液を前記分散液100部に対して0.5部の割合で攪拌し、繊維を集束させ、集束繊維の束を含む繊維分散液を調成した。この集束繊維の束を含む繊維分散液をワイヤメッシュ数80メッシュのプラスチックワイヤーを使用して角型手抄きマシーンにて湿式抄紙した。続いて得られたウエットシートにスプレーにてバインダー成分としてアクリルエマルジョン(A−104、東亞合成社製)を付着させ160℃の乾燥機にて10分間乾燥させ、坪量100g/m2、バインダー量10%の不織布を得た。得られた不織布の厚さおよびバルク密度をJIS P−8118に基づき50kPaにて測定した。地合いは目視評価により判断した。また、不織布をSEM断面観察用包埋樹脂にて包埋し、ミクロトームにて不織布の断面を削り出し、SEM(反射電子像)にて不織布の断面0.5mm2を観察し、隣接繊維束毎の(Z/X)値と隣接繊維本数を集計し、各(Z/X)値に対応する隣接繊維本数の不織布断面中に含まれる本数割合を求めた。結果を表1に示す。
<Example 1>
It is a nonionic surfactant for fibers adjusted to a mass ratio of E glass fiber chop with round cross-section fiber diameter φ13μm fiber length 9mm and E glass fiber chop with round cross-section fiber diameter φ6μm fiber length 3mm. Polyethylene glycol stearate (Emanon 3299, manufactured by Kao Corporation) was mixed at 1% to fiber, followed by polyethyleneimine (trade name: Epomin P-1000 (stock solution 30%, manufactured by Nippon Shokubai Co., Ltd.) to 0.05% fiber. The mixture was stirred in water at a fiber concentration of 0.02% using a three-one motor, and it was confirmed by visual observation that this fiber dispersion was free of bundled fibers. A molecular anionic polyacrylamide (Sumifloc FA40H, manufactured by Sumitomo Chemical Co., Ltd.) 0.1% solution is stirred at a ratio of 0.5 part with respect to 100 parts of the dispersion to focus the fibers. A fiber dispersion containing bundles of bundled fibers was prepared, and the fiber dispersion containing bundles of bundled fibers was wet-made by a square handmaking machine using a plastic wire having a number of meshes of 80 mesh. Subsequently, an acrylic emulsion (A-104, manufactured by Toagosei Co., Ltd.) was attached as a binder component to the obtained wet sheet by spraying, and dried for 10 minutes with a dryer at 160 ° C., basis weight 100 g / m 2 , amount of binder 10% of the nonwoven fabric was obtained, and the thickness and bulk density of the nonwoven fabric were measured at 50 kPa based on JIS P-8118. The texture was judged by visual evaluation. embedded in, cut out the non-woven fabric of cross with a microtome, and observing the cross-section 0.5 mm 2 of the nonwoven fabric by SEM (backscattered electron image), for each adjacent fiber bundle (Z / X) value and an adjacent number of fibers Aggregate Was determined percentage in number contained in the nonwoven fabric cross section adjacent the number of fibers. The results are shown in Table 1 for each (Z / X) value.
<実施例2>
丸断面形状繊維径φ13μm繊維長9mmのE硝子繊維チョップと丸断面形状繊維径φ6μm繊維長3mmのE硝子繊維チョップを質量比1:1となるように調整した繊維にノニオン系界面活性剤であるポリエチレングリコールステアレート(エマノーン3299、花王社製)を対繊維1%で混合し、続いて、ポリエチレンイミン(商品名:エポミンP−1000(原液30%、日本触媒社製)を対繊維0.02%になるように添加し、スリーワンモーターを用いて繊維濃度0.02%で水中攪拌させた。この繊維分散液中には目視により結束繊維がない事を確かめた。この繊維分散液中にアニオン系水溶性高分子であるアニオン性ポリアクリルアミド(スミフロックFA40H、住友化学工業社製)0.1%溶液を前記分散液100部に対して0.5部の割合で攪拌し、繊維を集束させ、集束繊維の束を含む繊維分散液を調成した。この集束繊維の束を含む繊維分散液をワイヤメッシュ数80メッシュのプラスチックワイヤーを使用して角型手抄きマシーンにて湿式抄紙した。続いて得られたウエットシートにスプレーにてバインダー成分としてアクリルエマルジョン(A−104、東亞合成社製)を付着させ160℃の乾燥機にて10分間乾燥させ、坪量100g/m2、バインダー量10%の不織布を得た。得られた不織布の厚さおよびバルク密度をJIS P−8118に基づき50kPaにて測定した。実施例1と同様に紙質を測定し、結果を表1に示す。
<Example 2>
It is a nonionic surfactant for fibers adjusted to a mass ratio of E glass fiber chop with round cross-section fiber diameter φ13μm fiber length 9mm and E glass fiber chop with round cross-section fiber diameter φ6μm fiber length 3mm. Polyethylene glycol stearate (Emanon 3299, manufactured by Kao Corporation) was mixed at 1% to fiber, followed by polyethyleneimine (trade name: Epomin P-1000 (stock solution 30%, manufactured by Nippon Shokubai Co., Ltd.) to 0.02% to fiber. The mixture was stirred in water at a fiber concentration of 0.02% using a three-one motor, and it was confirmed by visual observation that this fiber dispersion was free of bundled fibers. A molecular anionic polyacrylamide (Sumifloc FA40H, manufactured by Sumitomo Chemical Co., Ltd.) 0.1% solution is stirred at a ratio of 0.5 part with respect to 100 parts of the dispersion to focus the fibers. A fiber dispersion containing bundles of bundled fibers was prepared, and the fiber dispersion containing bundles of bundled fibers was wet-made by a square handmaking machine using a plastic wire having a number of meshes of 80 mesh. Subsequently, an acrylic emulsion (A-104, manufactured by Toagosei Co., Ltd.) was attached as a binder component to the obtained wet sheet by spraying, and dried for 10 minutes with a dryer at 160 ° C., basis weight 100 g / m 2 , amount of binder 10% nonwoven fabric was obtained, and the thickness and bulk density of the nonwoven fabric were measured at 50 kPa based on JIS P-8118. Paper quality was measured in the same manner as in Example 1, and the results are shown in Table 1.
<実施例3>
丸断面形状繊維径φ6μm繊維長3mmのE硝子繊維チョップをノニオン系界面活性剤であるポリエチレングリコールステアレート(エマノーン3299、花王社製)を対繊維1%で混合し、スリーワンモーターを用いて繊維濃度0.02%で水中攪拌させた。その後アニオン系水溶性高分子であるアニオン系水溶性高分子であるアニオン性ポリアクリルアミド(スミフロックFA40H、住友化学工業社製)0.1%溶液を前記分散液100部に対して0.2部の割合で混合し、繊維分散液を調成した。この繊維分散液中には目視により結束繊維がない事を確かめた。この成分分散液中にポリエチレンイミン0.0005%溶液(商品名:エポミンP−1000(原液30%、日本触媒社製)を0.2部加えて攪拌し、繊維を集束させ、集束繊維の束を含む繊維分散液を調成した。この集束繊維の束を含む繊維分散液をワイヤメッシュ数80メッシュのプラスチックワイヤーを使用して角型手抄きマシーンにて湿式抄紙した。続いて得られたウエットシートにスプレーにてバインダー成分としてアクリルエマルジョン(A−104、東亞合成社製)を付着させ160℃の乾燥機にて10分間乾燥させ、坪量100g/m2、バインダー量10%の不織布を得た。得られた不織布の厚さおよびバルク密度をJIS P−8118に基づき50kPaにて測定した。実施例1と同様に紙質を測定し、結果を表1に示す。
<Example 3>
E glass fiber chop with a circular cross-section shape fiber diameter of φ6μm and fiber length of 3mm is mixed with polyethylene glycol stearate (Emanon 3299, manufactured by Kao Corporation), a nonionic surfactant, at 1% of the fiber, and the fiber concentration is measured using a three-one motor. Stir in water at 0.02%. Thereafter, an anionic water-soluble polymer, an anionic water-soluble polymer, an anionic polyacrylamide (Sumifloc FA40H, manufactured by Sumitomo Chemical Co., Ltd.) 0.1% solution was mixed at a ratio of 0.2 part to 100 parts of the dispersion. A fiber dispersion was prepared. It was confirmed by visual observation that this fiber dispersion was free of bound fibers. In this component dispersion, 0.2 part of a polyethyleneimine 0.0005% solution (trade name: Epomin P-1000 (stock solution 30%, manufactured by Nippon Shokubai Co., Ltd.)) is added and stirred to bundle the fibers, and the fiber dispersion contains a bundle of bundled fibers. The fiber dispersion containing the bundle of bundled fibers was wet-made by a square hand-making machine using a plastic wire with a wire mesh number of 80 mesh, and then the resulting wet sheet was sprayed. Acrylic emulsion (A-104, manufactured by Toagosei Co., Ltd.) was attached as a binder component and dried for 10 minutes in a dryer at 160 ° C. to obtain a nonwoven fabric having a basis weight of 100 g / m 2 and a binder amount of 10%. The thickness and bulk density of the resulting nonwoven fabric were measured at 50 kPa based on JIS P-8118. Paper quality was measured in the same manner as in Example 1, and the results are shown in Table 1.
<比較例1>
ポリエチレンイミンを未添加とする以外、実施例1と同様な検討を行った。結果を表1に示す。
<比較例2>
ポリエチレンイミンを未添加とする以外、実施例2と同様な検討を行った。結果を表1に示す。
<比較例3>
ポリエチレンイミンを未添加とする以外、実施例1と同様な検討を行った。結果を表1に示す。
<Comparative Example 1>
The same examination as in Example 1 was conducted except that polyethyleneimine was not added. The results are shown in Table 1.
<Comparative example 2>
The same examination as in Example 2 was performed except that polyethyleneimine was not added. The results are shown in Table 1.
<Comparative Example 3>
The same examination as in Example 1 was conducted except that polyethyleneimine was not added. The results are shown in Table 1.
レゾール型フェノール樹脂(固形分50%)40部に平均粒径5μmの水酸化アルミニウム50部、平均粒径20μmの雲母粉30部、メタノール20部を混合した樹脂成分塗料を実施例1の不織布に付着量が固形分で1000g/m2(固形分)になるように含浸し、乾燥してプリプレグを得た。このプリプレグを包埋樹脂にて包埋し、ミクロトームにてプリプレグの断面を削り出し、SEM(反射電子像)にてプリプレグの断面0.5mm2を観察し、隣接繊維束毎の(Z/X)値と隣接繊維本数を集計し、各(Z/X)値に対応する隣接繊維本数のプリプレグ断面中に含まれる本数割合を求めた。結果を表2に示す。
A resin component paint obtained by mixing 40 parts of a resol type phenolic resin (solid content 50%) with 50 parts of aluminum hydroxide having an average particle diameter of 5 μm, 30 parts of mica powder having an average particle diameter of 20 μm, and 20 parts of methanol is used as the nonwoven fabric of Example 1. The prepreg was obtained by impregnation so that the adhesion amount was 1000 g / m 2 (solid content) in solid content and dried. Were embedded prepreg at embedding resin, shaving prepreg cross section with a microtome, SEM observation of the cross-section 0.5 mm 2 of the prepreg at (backscattered electron image), for each adjacent fiber bundle (Z / X) The values and the number of adjacent fibers were tabulated, and the ratio of the number of fibers included in the prepreg cross section of the number of adjacent fibers corresponding to each (Z / X) value was determined. The results are shown in Table 2.
<実施例5>
レゾール型フェノール樹脂(固形分50%)80部に平均粒径5μmの水酸化アルミニウム60部を混合した樹脂成分塗料を実施例2の不織布に付着量が固形分で1000g/m2(固形分)になるように含浸し、乾燥してプリプレグを得た。実施例4と同様に得られたプリプレグの性質を測定し、結果を表2に示す。
<Example 5>
A resin component paint in which 80 parts of a resole phenolic resin (solid content 50%) is mixed with 60 parts of aluminum hydroxide having an average particle size of 5 μm is attached to the nonwoven fabric of Example 2 at a solid content of 1000 g / m 2 (solid content). To obtain a prepreg. The properties of the prepreg obtained in the same manner as in Example 4 were measured, and the results are shown in Table 2.
<実施例6>
エポキシ樹脂40部(固形分50%)、フェニルイミダゾール0.15部に平均粒径5μmの水酸化アルミニウム50部、平均粒径20μmの雲母粉30部をメチルエチルケトン20部を混合した樹脂成分塗料を実施例3の不織布に付着量が固形分で1000g/m2になるように含浸し、乾燥してプリプレグを得た。実施例4と同様に得られたプリプレグの性質を測定し、結果を表2に示す。
<Example 6>
Example 3 A resin component paint obtained by mixing 40 parts of epoxy resin (solid content 50%), 0.15 part of phenylimidazole, 50 parts of aluminum hydroxide having an average particle diameter of 5 μm, 30 parts of mica powder having an average particle diameter of 20 μm and 20 parts of methyl ethyl ketone The nonwoven fabric was impregnated with a solid content of 1000 g / m 2 and dried to obtain a prepreg. The properties of the prepreg obtained in the same manner as in Example 4 were measured, and the results are shown in Table 2.
<比較例4>
比較例1の不織布を使用する以外、実施例4と同様な検討を行った。結果を表2に示す。
<比較例5>
比較例2の不織布を使用する以外、実施例5と同様な検討を行った。結果を表2に示す。
<比較例6>
比較例3の不織布を使用する以外、実施例6と同様な検討を行った。結果を表2に示す。
<Comparative example 4>
The same examination as in Example 4 was performed except that the nonwoven fabric of Comparative Example 1 was used. The results are shown in Table 2.
<Comparative Example 5>
The same examination as in Example 5 was performed except that the nonwoven fabric of Comparative Example 2 was used. The results are shown in Table 2.
<Comparative Example 6>
The same examination as in Example 6 was performed except that the nonwoven fabric of Comparative Example 3 was used. The results are shown in Table 2.
坪量64g/m2のグラビア印刷された紙にメラミン樹脂を固形分で130g/m2付着含浸乾燥させた含浸紙に実施例4のプリプレグを7枚重ね、150℃、80kgf/m2、20分間の条件でプレス成形し、複合材料である化粧板を作成した。得られた複合材料を、ミクロトームにて断面を削り出し、SEM(反射電子像)にて不織布部部分の断面0.5mm2を観察し、隣接繊維束毎の(Z/X)値と隣接繊維本数を集計し、各(Z/X)値に対応する隣接繊維本数の不織布部分の断面中に含まれる本数割合を求めた。結果を表3に示す。
Basis weight 64 g / m 2 of the gravure printing melamine resin paper piled seven to 130 g / m 2 adhered impregnated dried prepreg of Example 4 in the impregnated paper was in solid, 150 ℃, 80kgf / m 2 , 20 It was press-molded under the condition of minutes, and a decorative board as a composite material was prepared. The resulting composite material, cut out a section with a microtome, and observing the cross-section 0.5 mm 2 of the nonwoven fabric portion at SEM (backscattered electron image), for each adjacent fiber bundle (Z / X) value and an adjacent number of fibers And the number ratio contained in the cross section of the nonwoven fabric portion of the number of adjacent fibers corresponding to each (Z / X) value was obtained. The results are shown in Table 3.
<実施例8>
実施例5のプリプレグを使用する以外、実施例7と同様な検討を行った。結果を表3に示す。
<Example 8>
The same examination as in Example 7 was performed except that the prepreg of Example 5 was used. The results are shown in Table 3.
<実施例9>
エポキシ樹脂40部(固形分50%)、フェニルイミダゾール0.15部を混合した樹脂成分塗料を200g/m2のガラスクロスに付着量が固形分で160g/m2になるように含浸し、乾燥してガラスクロスプリプレグを得た。このガラスクロスプリプレグ2枚を重ね、その上に実施例6のプリプレグを3枚重ね、150℃、80kgf/m2、60分間の条件でプレス成形し、複合材料を作成した。この複合材料の性質を結果を表3に示す。
<Example 9>
A resin component paint mixed with 40 parts of epoxy resin (solid content 50%) and 0.15 part of phenylimidazole is impregnated on a glass cloth of 200 g / m 2 so that the amount of adhesion is 160 g / m 2 in solid content and dried. A glass cloth prepreg was obtained. Two glass cloth prepregs were stacked, and three prepregs of Example 6 were stacked thereon, and press molded under conditions of 150 ° C., 80 kgf / m 2 , 60 minutes to prepare a composite material. The properties of this composite material are shown in Table 3.
<比較例7>
比較例4のプリプレグを使用する以外、実施例7と同様な検討を行った。結果を表3に示す。
<比較例8>
比較例5のプリプレグを使用する以外、実施例7と同様な検討を行った。結果を表3に示す。
<比較例9>
実施例6のプリプレグを使用する以外、実施例9と同様な検討を行った。結果を表3に示す。
<Comparative Example 7>
The same examination as in Example 7 was performed except that the prepreg of Comparative Example 4 was used. The results are shown in Table 3.
<Comparative Example 8>
The same examination as in Example 7 was performed except that the prepreg of Comparative Example 5 was used. The results are shown in Table 3.
<Comparative Example 9>
The same examination as in Example 9 was performed except that the prepreg of Example 6 was used. The results are shown in Table 3.
(1)〜(3)隣接繊維束の例
(1) to (3) Examples of adjacent fiber bundles
Claims (11)
The composite material according to claim 10, wherein the composite material is a printed wiring board or a decorative board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004123188A JP2005307371A (en) | 2004-04-19 | 2004-04-19 | Wet process nonwoven fabric and prepreg, composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004123188A JP2005307371A (en) | 2004-04-19 | 2004-04-19 | Wet process nonwoven fabric and prepreg, composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005307371A true JP2005307371A (en) | 2005-11-04 |
Family
ID=35436460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004123188A Pending JP2005307371A (en) | 2004-04-19 | 2004-04-19 | Wet process nonwoven fabric and prepreg, composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005307371A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013092420A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Rayon Co Ltd | Cross-sectional sample preparation method for wet porous fiber |
JP2016079553A (en) * | 2014-10-20 | 2016-05-16 | 王子ホールディングス株式会社 | Nonwoven fabric, production method therefor, and fiber-reinforced plastic formed article |
JP2017210581A (en) * | 2016-05-27 | 2017-11-30 | 王子ホールディングス株式会社 | Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body |
CN115073864A (en) * | 2022-07-05 | 2022-09-20 | 陕西生益科技有限公司 | Magnetic-dielectric non-woven fabric prepreg, copper-clad plate comprising same and application |
CN115075057A (en) * | 2022-07-05 | 2022-09-20 | 广东生益科技股份有限公司 | Low-dielectric-loss non-woven fabric and preparation method and application thereof |
CN115071226A (en) * | 2022-07-05 | 2022-09-20 | 广东生益科技股份有限公司 | Fluorine-containing resin copper-clad plate and multilayer circuit board |
CN115198564A (en) * | 2022-07-05 | 2022-10-18 | 广东生益科技股份有限公司 | Low-dielectric-loss non-woven fabric and preparation method and application thereof |
CN115302869A (en) * | 2022-07-05 | 2022-11-08 | 广东生益科技股份有限公司 | High-frequency copper-clad plate and printed circuit board comprising same |
CN115302870A (en) * | 2022-07-05 | 2022-11-08 | 陕西生益科技有限公司 | Copper-clad laminate and application thereof |
CN116334949A (en) * | 2021-12-24 | 2023-06-27 | 广东生益科技股份有限公司 | Low dielectric loss non-woven fabric and preparation and application thereof |
-
2004
- 2004-04-19 JP JP2004123188A patent/JP2005307371A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013092420A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Rayon Co Ltd | Cross-sectional sample preparation method for wet porous fiber |
JP2016079553A (en) * | 2014-10-20 | 2016-05-16 | 王子ホールディングス株式会社 | Nonwoven fabric, production method therefor, and fiber-reinforced plastic formed article |
JP2017210581A (en) * | 2016-05-27 | 2017-11-30 | 王子ホールディングス株式会社 | Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body |
CN116334949B (en) * | 2021-12-24 | 2024-08-30 | 广东生益科技股份有限公司 | Low dielectric loss non-woven fabric and preparation and application thereof |
US20230202126A1 (en) * | 2021-12-24 | 2023-06-29 | Shengyi Technology Co., Ltd. | Low dielectric loss non-woven fabric, preparation method thereof and use thereof |
CN116334949A (en) * | 2021-12-24 | 2023-06-27 | 广东生益科技股份有限公司 | Low dielectric loss non-woven fabric and preparation and application thereof |
CN115302870A (en) * | 2022-07-05 | 2022-11-08 | 陕西生益科技有限公司 | Copper-clad laminate and application thereof |
CN115302869A (en) * | 2022-07-05 | 2022-11-08 | 广东生益科技股份有限公司 | High-frequency copper-clad plate and printed circuit board comprising same |
CN115198564A (en) * | 2022-07-05 | 2022-10-18 | 广东生益科技股份有限公司 | Low-dielectric-loss non-woven fabric and preparation method and application thereof |
CN115071226A (en) * | 2022-07-05 | 2022-09-20 | 广东生益科技股份有限公司 | Fluorine-containing resin copper-clad plate and multilayer circuit board |
CN115075057A (en) * | 2022-07-05 | 2022-09-20 | 广东生益科技股份有限公司 | Low-dielectric-loss non-woven fabric and preparation method and application thereof |
CN115075057B (en) * | 2022-07-05 | 2023-11-07 | 广东生益科技股份有限公司 | Low dielectric loss non-woven fabric and preparation method and application thereof |
CN115073864B (en) * | 2022-07-05 | 2023-11-10 | 陕西生益科技有限公司 | Magneto-dielectric non-woven fabric prepreg, copper-clad plate containing same and application |
CN115198564B (en) * | 2022-07-05 | 2023-12-22 | 广东生益科技股份有限公司 | Low dielectric loss non-woven fabric and preparation method and application thereof |
CN115302869B (en) * | 2022-07-05 | 2024-05-24 | 广东生益科技股份有限公司 | High-frequency copper-clad plate and printed circuit board comprising same |
CN115071226B (en) * | 2022-07-05 | 2024-06-14 | 广东生益科技股份有限公司 | Fluorine-containing resin copper-clad plate and multilayer circuit board |
CN115073864A (en) * | 2022-07-05 | 2022-09-20 | 陕西生益科技有限公司 | Magnetic-dielectric non-woven fabric prepreg, copper-clad plate comprising same and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6042936A (en) | Microsphere containing circuit board paper | |
US20090008050A1 (en) | Methods for producing wet-spun non-woven fabrics | |
EP1462559B1 (en) | Nonwoven fiber mats with good hiding properties, laminates and method | |
CN1942629A (en) | Aramid paper blend | |
JP2005307371A (en) | Wet process nonwoven fabric and prepreg, composite material | |
CN101965425A (en) | Core having a high shear strength and articles made from same | |
CN113306502A (en) | Vehicle undercover and method for manufacturing same | |
WO2008008510A2 (en) | Highly filled fibrous veil | |
CN108136695B (en) | Porous single resin fiber composite material and preparation method thereof | |
CN113811653A (en) | Conductive paper structures, methods and applications for making conductive paper structures | |
JP2012500735A (en) | Honeycomb core having high compressive strength and article produced therefrom | |
JP2013511629A (en) | Collapsible core based on carbon fiber paper and articles made therefrom | |
US20100143684A1 (en) | Fibrous veil impregnated with surface finish formulation | |
CA2663681A1 (en) | Highly filled fibrous veil | |
CN106794653B (en) | Honeycomb core with high compression-strength | |
JP5841507B2 (en) | Base fabric for foamed plastic heat insulating surface material and method for producing the same | |
JP5564401B2 (en) | Process release paper base paper for prepreg | |
US20060292948A1 (en) | Fibrous veil impregnated with surface finish formulation | |
JP2015066681A (en) | Composite sheet for building component, and building component | |
JP2005144867A (en) | Fiber-reinforced inorganic molded sheet and method for producing the same | |
JP4168361B2 (en) | Inorganic fiber mat standard plate for measuring thermal conductivity and method for producing the same | |
DE102011122012A1 (en) | Impregnated abrasive base papers and abrasive papers made from them | |
KR102200957B1 (en) | Porous fiber reinforced composite material | |
RU2769139C1 (en) | Decorative layered material | |
JP2006002257A (en) | Wet process glass nonwoven fabric and prepreg, composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090929 |