JP2005305454A - Method for producing fine-grained hot rolled steel sheet - Google Patents
Method for producing fine-grained hot rolled steel sheet Download PDFInfo
- Publication number
- JP2005305454A JP2005305454A JP2004122069A JP2004122069A JP2005305454A JP 2005305454 A JP2005305454 A JP 2005305454A JP 2004122069 A JP2004122069 A JP 2004122069A JP 2004122069 A JP2004122069 A JP 2004122069A JP 2005305454 A JP2005305454 A JP 2005305454A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- rolling mill
- less
- ferrite
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 113
- 239000010959 steel Substances 0.000 title claims abstract description 113
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000005096 rolling process Methods 0.000 claims abstract description 238
- 238000001816 cooling Methods 0.000 claims abstract description 67
- 229910000859 α-Fe Inorganic materials 0.000 claims description 67
- 230000009467 reduction Effects 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 description 26
- 229910001566 austenite Inorganic materials 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 238000012360 testing method Methods 0.000 description 11
- 229910000734 martensite Inorganic materials 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 7
- 238000005098 hot rolling Methods 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 229910001563 bainite Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000840 Capped steel Inorganic materials 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910001327 Rimmed steel Inorganic materials 0.000 description 1
- 229910001336 Semi-killed steel Inorganic materials 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、微細粒熱延鋼板の製造方法に関し、詳しくは、自動車、各種の産業機械或いは建築用に使用される高強度部材の素材として好適な微細粒熱延鋼板の製造方法、なかでも、熱延のままで微細組織を有する、加工性に優れた微細粒熱延鋼板の製造方法に関する。 The present invention relates to a method for producing a fine-grain hot-rolled steel sheet, and more specifically, a method for producing a fine-grain hot-rolled steel sheet suitable as a material for a high-strength member used for automobiles, various industrial machines or buildings, The present invention relates to a method for producing a fine-grain hot-rolled steel sheet having a fine structure as it is hot rolled and excellent in workability.
自動車をはじめとする輸送用機械や各種産業機械の構造部材、或いは建築用の素材として用いられる鋼材は、強度、加工性及び靱性などの機械的性質に優れることが要求される。こうした機械的性質を総合的に向上させるためには鋼材の組織を微細化することが有効であり、鋼材の組織微細化による高強度化は、合金成分を節減できるので製品コストの低減にも有効である。このため、従来から微細な組織を得るための製造方法が数多く検討されてきた。 Steel materials used as structural members for transportation machines including automobiles and various industrial machines, or as building materials are required to be excellent in mechanical properties such as strength, workability and toughness. In order to improve these mechanical properties comprehensively, it is effective to refine the structure of steel, and strengthening the structure by refining the structure of steel can also reduce the alloy components, thus reducing the product cost. It is. For this reason, many manufacturing methods for obtaining a fine structure have been studied.
従来技術における組織の微細化手段としては、例えば、特許文献1〜3に「大圧下圧延」に関する技術が、また、特許文献4及び5に「制御圧延・制御冷却」に関する技術が提案されている。 As the means for refining the structure in the prior art, for example, Patent Documents 1 to 3 propose a technique related to “large rolling rolling”, and Patent Documents 4 and 5 propose a technique related to “controlled rolling / controlled cooling”. .
すなわち、特許文献1には、連続熱間圧延の後段において、圧下率が40%以上、平均歪速度が60秒-1の圧下を加え、更に、2秒以内に連続して圧下率が40%以上の圧下を加える大圧下圧延により組織を微細化する技術が開示されている。 That is, in Patent Document 1, in a subsequent stage of continuous hot rolling, a rolling reduction of 40% or more and an average strain rate of 60 seconds −1 are applied, and further, the rolling reduction is continuously 40% within 2 seconds. A technique for refining the structure by the large reduction rolling that applies the above reduction is disclosed.
特許文献2には、圧延直後、0.5秒以内の圧延歪を蓄積した状態から急冷して鋼の組織を微細化する技術が開示されている。 Patent Document 2 discloses a technique in which a steel structure is refined by quenching immediately after rolling from a state of accumulating rolling strain within 0.5 seconds.
特許文献3には、いわゆる「C−Si−Mn鋼」を動的再結晶域で多パス圧延し、平均粒径で2μm未満の細粒組織とする技術が開示されている。 Patent Document 3 discloses a technique in which so-called “C—Si—Mn steel” is subjected to multi-pass rolling in a dynamic recrystallization region to obtain a fine grain structure having an average grain size of less than 2 μm.
特許文献4には、いわゆる「C−Si−Mn鋼」の仕上げ圧延前に表面を強制冷却し、表層部が細粒の熱延鋼板を得る技術が開示されている。 Patent Document 4 discloses a technique for forcibly cooling the surface of a so-called “C—Si—Mn steel” before finish rolling to obtain a hot-rolled steel sheet having a fine surface layer.
特許文献5には、いわゆる「C−Si−Mn−Ti鋼」において、1100〜950℃の温度範囲で圧下量が20%以上となる圧延を施して動的再結晶させる第1段階の圧延工程と、950℃未満で700℃以上の温度範囲で5℃/秒以上の冷却速度で冷却しながら1パス当たりの圧下量が20%以上で、累積圧下率が50%以上となる圧延を行って静的再結晶を繰り返す第2段階の圧延工程とによって、平均粒径が2μm以下の鋼板を得る技術が開示されている。 Patent Document 5 discloses a first-stage rolling process in which a so-called “C—Si—Mn—Ti steel” is subjected to dynamic recrystallization by rolling at a temperature range of 1100 to 950 ° C. so that the reduction amount is 20% or more. And rolling at a temperature range of less than 950 ° C. and 700 ° C. or higher at a cooling rate of 5 ° C./second or more, with a reduction amount of 20% or more per pass and a cumulative reduction ratio of 50% or more. A technique for obtaining a steel sheet having an average grain size of 2 μm or less by a second stage rolling process in which static recrystallization is repeated is disclosed.
本発明の目的は、自動車、各種の産業機械或いは建築用に使用される高強度部材の素材として好適なフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法を提供することである。 An object of the present invention is to provide a method for producing a fine-grain hot-rolled steel sheet having an average grain diameter of ferrite of 5 μm or less, which is suitable as a material for high-strength members used for automobiles, various industrial machines or buildings. .
前述の特許文献1〜5で開示された技術では、フェライトの平均粒径が5μm以下の微細粒熱延鋼板が必ずしも安定且つ確実に得られるわけではない。 In the techniques disclosed in Patent Documents 1 to 5 described above, a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less is not necessarily obtained stably and reliably.
すなわち、特許文献1で提案された技術は、1パス当たりの圧下量を40%以上にする必要があり、一般的なホットストリップミルでは実現し難い。更に、板厚形状の制御も困難である。 That is, the technique proposed in Patent Document 1 requires a reduction amount per pass of 40% or more, which is difficult to achieve with a general hot strip mill. Furthermore, it is difficult to control the plate thickness.
特許文献2で提案された技術は、最終圧延機での圧下率が低い場合に安定して微細粒を得ることが困難である。 The technique proposed in Patent Document 2 is difficult to stably obtain fine grains when the rolling reduction in the final rolling mill is low.
また、特許文献3で提案された技術も一般的なホットストリップミルへの適用は困難である。これは、一般的なホットストリップミルにおいて、圧延温度を安定して動的再結晶温度域に制御することは極めて困難なためである。 Also, the technique proposed in Patent Document 3 is difficult to apply to a general hot strip mill. This is because it is extremely difficult to stably control the rolling temperature in the dynamic recrystallization temperature range in a general hot strip mill.
特許文献4で提案された技術は、鋼板の内部における粒径は10μm以上と大きいし、表層部の細粒化を行っただけでは鋼材全体の強化への寄与は極めて僅かしかない。 The technique proposed in Patent Document 4 has a large particle size of 10 μm or more inside the steel plate, and the contribution to the strengthening of the entire steel material is very slight just by making the surface layer finer.
特許文献5で提案された技術では、Tiの含有量が規定値を下回る鋼の場合には、前述の第1段階の動的再結晶が不十分となって結晶粒を微細化し難いし、Ti無添加の鋼の場合には、この圧延技術を適用してもその粒径は11μm以上のものでしかない。 In the technique proposed in Patent Document 5, in the case of steel in which the Ti content is lower than the specified value, the first stage of dynamic recrystallization is insufficient, and it is difficult to refine crystal grains. In the case of an additive-free steel, even if this rolling technique is applied, the particle size is only 11 μm or more.
本発明者らは、上述のような問題点を解決するために、種々検討を重ねた。その結果、粗圧延後にタンデム圧延機列を用いて仕上げ圧延を行ういわゆる「タンデム熱延」において、タンデム圧延機列の最終から1段前の圧延機においてAr3点以上の温度で圧延し、その後50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、最終圧延機で20%以下の圧下率で圧延を施した後0.4秒以内に720℃まで冷却することによって、平均粒径が5μm以下の微細なフェライト結晶粒を有する組織が得られることを知見した。 The present inventors have made various studies in order to solve the above problems. As a result, in the so-called “tandem hot rolling” in which finish rolling is performed using a tandem rolling mill row after rough rolling, rolling is performed at a temperature of 3 or more points in the rolling mill one stage before the end of the tandem rolling mill row, and thereafter Within 0.4 seconds after cooling at an average cooling rate of 50 ° C./second or more to a temperature range of “Ar 3 points−20 ° C.” or less and further rolling at a rolling reduction of 20% or less in the final rolling mill. It was found that by cooling to 720 ° C., a structure having fine ferrite crystal grains having an average particle diameter of 5 μm or less can be obtained.
このような「タンデム熱延」における仕上げ圧延によって、上記の微細なフェライトを有する組織が得られる理由は必ずしも明らかではないが、下記(1)〜(3)によるものと推測される。 The reason why the microstructure having the fine ferrite is obtained by finish rolling in such “tandem hot rolling” is not necessarily clear, but is presumed to be due to the following (1) to (3).
(1)最終圧延機による圧延の前の急冷によって、最終から1段前の圧延機における圧延でオーステナイトに付与された加工歪みの解放を抑制することが可能になること。 (1) The rapid cooling before rolling by the final rolling mill makes it possible to suppress the release of processing strain imparted to austenite by rolling in the rolling mill one stage before the final.
(2)加工歪みの解放が抑制された状態のままで、次の最終圧延機での圧延を受けるために歪みが大きく蓄積されること。 (2) A large amount of strain is accumulated in order to receive rolling in the next final rolling mill while the release of processing strain is suppressed.
(3)最終圧延機による圧延の極めて直後の急冷によって、オーステナイトの歪みを解放させることなくフェライト変態が活発に生じる温度域に到達するため、フェライトの核生成が格段に促進されること。 (3) The rapid cooling immediately after rolling by the final rolling mill reaches a temperature range in which ferrite transformation is actively generated without releasing the strain of austenite, so that nucleation of ferrite is promoted remarkably.
本発明は、上記の知見に基づいて完成されたものである。 The present invention has been completed based on the above findings.
本発明の要旨は、下記(1)〜(5)に示すフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法にある。 The gist of the present invention resides in a method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less shown in the following (1) to (5).
(1)粗圧延後にタンデム圧延機列を用いて仕上げ圧延を行う微細粒熱延鋼板の製造方法であって、前記タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延し、その後0.4秒以内に720℃まで冷却することを特徴とするフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法。 (1) A method for producing a fine-grained hot-rolled steel sheet that is subjected to finish rolling using a tandem rolling mill train after rough rolling, and a temperature of Ar 3 or higher in a rolling mill one stage before the final stage of the tandem rolling mill train And then cooled to a temperature range of “Ar 3 point−20 ° C.” or less at an average cooling rate of 50 ° C./second or more, and further at a rolling reduction of 20% or less in the final rolling mill of the tandem rolling mill row. A method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less, which is rolled and then cooled to 720 ° C. within 0.4 seconds.
(2)粗圧延後にタンデム圧延機列を用いて仕上げ圧延を行う微細粒熱延鋼板の製造方法であって、前記タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延した後、400℃/秒以上の平均冷却速度で、0.2秒以内に720℃まで冷却することを特徴とするフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法。 (2) A method for producing a fine-grain hot-rolled steel sheet, which is subjected to finish rolling using a tandem rolling mill train after rough rolling, and a temperature of Ar 3 or higher in the rolling mill one stage before the end of the tandem rolling mill train And then cooled to a temperature range of “Ar 3 point−20 ° C.” or less at an average cooling rate of 50 ° C./second or more, and further at a rolling reduction of 20% or less in the final rolling mill of the tandem rolling mill row. A method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less, characterized by cooling to 720 ° C. within 0.2 seconds at an average cooling rate of 400 ° C./second or more after rolling.
(3)鋼塊又は鋼片を粗圧延した後、タンデム圧延機列を用いて仕上げ圧延を行う前に、補助加熱装置によってシートバーを加熱することを特徴とする上記(1)又は(2)に記載のフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法。 (3) The above (1) or (2), wherein the sheet bar is heated by an auxiliary heating device after roughly rolling the steel ingot or steel slab and before performing finish rolling using a tandem rolling mill row A method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less.
(4)質量%で、C:0.02〜0.2%、Mn:0.05〜3.0%、Si:0.001〜3.0%、P:0.001〜0.2%及びAl:0.001〜3%を含み、残部はFe及び不純物からなる化学組成の鋼を対象とする上記(1)から(3)までのいずれかに記載のフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法。 (4) In mass%, C: 0.02-0.2%, Mn: 0.05-3.0%, Si: 0.001-3.0%, P: 0.001-0.2% And Al: 0.001 to 3%, with the balance having an average particle diameter of 5 μm or less of the ferrite according to any one of the above (1) to (3) for a steel having a chemical composition composed of Fe and impurities Method for producing fine-grain hot-rolled steel sheets.
(5)質量%で、C:0.02〜0.2%、Mn:0.05〜3.0%、Si:0.001〜3.0%、P:0.001〜0.2%及びAl:0.001〜3%を含み、更に、下記(a)群から(c)群のうちの1群以上から選ばれる少なくとも1種以上の成分を含み、残部は実質的にFe及び不純物からなる化学組成の鋼を対象とする上記(1)から(3)までのいずれかに記載のフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法。 (5) By mass%, C: 0.02-0.2%, Mn: 0.05-3.0%, Si: 0.001-3.0%, P: 0.001-0.2% And Al: 0.001 to 3%, and further includes at least one component selected from one or more of the following groups (a) to (c), the balance being substantially Fe and impurities The method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less according to any one of (1) to (3), wherein the steel has a chemical composition comprising
(a)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%、
(b)Nb:0.005〜0.10%、Ti:0.005〜0.20%及びV:0.005〜1.0%、
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%。
(A) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and REM (rare element): 0.002 to 0.10%,
(B) Nb: 0.005-0.10%, Ti: 0.005-0.20% and V: 0.005-1.0%,
(C) Cr: 0.05-1.0% and Mo: 0.05-1.0%.
本発明でいう温度は鋼板表面における温度をいい、「平均冷却速度」とは冷却前後の温度差を冷却時間で除したものをいう。 The temperature referred to in the present invention refers to the temperature on the steel sheet surface, and the “average cooling rate” refers to the temperature difference before and after cooling divided by the cooling time.
圧下率(%)とは、nパス目の圧延前の被圧延材厚みをtni、圧延後の被圧延材厚みをtn0としたとき{(tni−tn0)/tni}×100で求められるものをいう。 The rolling reduction (%), when the material to be rolled thickness before rolling n pass t ni, the material to be rolled thickness after rolling was t n0 {(t ni -t n0 ) / t ni} × 100 Means what is required in
フェライトの「平均粒径」とは、切断法により求めた平均切片長さを1.128倍した値を指す。 The “average particle diameter” of ferrite refers to a value obtained by multiplying the average intercept length obtained by the cutting method by 1.128.
「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。 “REM (rare earth element)” is a general term for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements.
なお、本発明でいう「鋼塊」には、連続鋳造で製造された鋳片を含む。 The “steel ingot” as used in the present invention includes a slab produced by continuous casting.
以下、上記(1)〜(5)のフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法に係る発明を、それぞれ、「本発明(1)」〜「本発明(5)」という。また、総称して「本発明」ということがある。 Hereinafter, the inventions relating to the method for producing a fine-grain hot-rolled steel sheet having the average grain size of ferrite of (1) to (5) of 5 μm or less are referred to as “present invention (1)” to “present invention (5)”, respectively. That's it. Also, it may be collectively referred to as “the present invention”.
本発明によれば、加工性に優れたフェライトの平均粒径が5μm以下の微細粒熱延鋼板を容易に得ることができる。本発明の方法で製造されたフェライトの平均粒径が5μm以下の微細粒熱延鋼板は、自動車の高強度部材の素材、なかでも自動車の足廻り部品の素材として、或いは各種の産業機械や建築用に用いられる高強度部材の素材として好適である。 According to the present invention, it is possible to easily obtain a fine-grain hot-rolled steel sheet having an excellent workability and an average particle diameter of ferrite of 5 μm or less. Fine-grained hot-rolled steel sheets with an average particle size of ferrite of 5 μm or less produced by the method of the present invention are used as materials for high-strength members of automobiles, especially as materials for automobile undercarriage parts, or for various industrial machines and buildings. It is suitable as a material for a high-strength member to be used for the purpose.
以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
(A)微細粒熱延鋼板の組織
本発明の微細粒熱延鋼板は、フェライトの平均粒径が5μm以下の微細組織を有するものである。
(A) Structure of fine-grain hot-rolled steel sheet The fine-grain hot-rolled steel sheet of the present invention has a fine structure in which the average particle diameter of ferrite is 5 μm or less.
ここで、組織の主相がフェライト以外の相、例えば、パーライト、セメンタイト、ベイナイト、マルテンサイト又は未変態のオーステナイト(いわゆる「残留オーステナイト」)で構成される場合、熱延のままで、優れた「強度−延性バランス」を確保することが困難となる。したがって、フェライトを主相とすることが好ましい。 Here, when the main phase of the structure is composed of a phase other than ferrite, for example, pearlite, cementite, bainite, martensite, or untransformed austenite (so-called “residual austenite”), it remains excellent in hot rolling. It becomes difficult to ensure the “strength-ductility balance”. Therefore, it is preferable to use ferrite as the main phase.
なお、ここでいう「主相」とは、組織に占める割合が体積率で50%を超える相を指す。なお、或る相の体積率は面積率に等しいことが一般的に知られており、したがって、フェライトの占める体積率は、例えば、2次元的な評価方法によって求めたフェライトの割合から決定することができる。 Here, the “main phase” refers to a phase whose proportion in the structure exceeds 50% by volume. In addition, it is generally known that the volume ratio of a certain phase is equal to the area ratio. Therefore, the volume ratio occupied by ferrite is determined from the ratio of ferrite obtained by a two-dimensional evaluation method, for example. Can do.
本発明においては、フェライトが組織に占める割合は60%以上であることが好ましい。一層好ましいのは70%以上で、100%に近い値であっても構わない。本発明の微細粒熱延鋼板の組織において、主相であるフェライト以外の相は、パーライト、セメンタイト、ベイナイト、マルテンサイト及び未変態のオーステナイトの1種以上からなるものである。 In the present invention, the proportion of ferrite in the structure is preferably 60% or more. More preferable is 70% or more, and a value close to 100% may be used. In the structure of the fine-grain hot-rolled steel sheet of the present invention, the phase other than ferrite as the main phase is composed of one or more of pearlite, cementite, bainite, martensite, and untransformed austenite.
また、フェライトの平均粒径が5μm以下の場合には、従来の鋼板に比べて少ない合金元素の添加量で目標とする強度を確保できる。更に、メッキ処理が施される場合のいわゆる「メッキ性」も良好となる。これに対して、フェライトの平均粒径が5μmを超える場合には、微細化による強度増加分が著しく少なくなるため合金元素の含有量を増やす必要が生じ、コストの上昇を招く。 Moreover, when the average particle diameter of ferrite is 5 μm or less, the target strength can be ensured with an addition amount of an alloy element which is smaller than that of a conventional steel plate. Furthermore, the so-called “plating property” when the plating process is performed is also good. On the other hand, when the average particle diameter of ferrite exceeds 5 μm, the increase in strength due to refinement is remarkably reduced, so that it is necessary to increase the content of the alloy element, resulting in an increase in cost.
したがって、本発明の微細粒熱延鋼板の組織は、フェライトの平均粒径が5μm以下と規定した。 Therefore, the microstructure of the fine-grain hot-rolled steel sheet of the present invention has been defined such that the average grain size of ferrite is 5 μm or less.
また、フェライトの平均粒径は、強度増加の観点からは,4μm以下とすることが好ましく、より好ましくは3μm以下で、サブミクロンであっても構わないが、加工性の観点からは、フェライトの平均粒径は1μm以上とすることが好ましく、より好ましくは1.5μm以上とするのがよい。 The average particle diameter of ferrite is preferably 4 μm or less from the viewpoint of increasing the strength, more preferably 3 μm or less, and may be submicron, but from the viewpoint of workability, The average particle size is preferably 1 μm or more, more preferably 1.5 μm or more.
既に述べたように、フェライトの「平均粒径」とは、切断法により求めた平均切片長さを1.128倍した値を指す。 As described above, the “average particle size” of ferrite refers to a value obtained by multiplying the average intercept length obtained by the cutting method by 1.128.
(B)微細粒熱延鋼板の製造条件
本発明に係るフェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法は、粗圧延後のタンデム圧延機列による仕上げ圧延における圧延と冷却の条件を必須の要件として下記のように規定する。
(B) Production conditions for fine-grain hot-rolled steel sheet
The method for producing a fine-grain hot-rolled steel sheet having an average grain size of ferrite of 5 μm or less according to the present invention is defined as follows with the rolling and cooling conditions in finish rolling by a tandem rolling mill train after rough rolling as essential requirements. To do.
すなわち、「タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延し、その後0.4秒以内に720℃まで冷却する」ものである。 That is, after “rolling at the temperature of Ar 3 point or higher by the rolling machine one stage before the end of the tandem rolling mill row, the temperature range of“ Ar 3 point −20 ° C. ”or lower at an average cooling rate of 50 ° C./second or higher. Is further cooled to 720 ° C. within 0.4 seconds after rolling at a rolling reduction of 20% or less in the final rolling mill of the tandem rolling mill row ”.
ここで、上記タンデム圧延機列による仕上げ圧延の前に施す粗圧延の圧延対象となる鋼塊や鋼片の製造方法に関しては、特に規定する必要はない。例えば、転炉、電気炉又は平炉等により溶製されたリムド鋼、キャップド鋼、セミキルド鋼或いはキルド鋼などいずれであってもよい。また、その対象鋼は、鋳型に注入する「造塊法」又は「連続鋳造法」のいずれの手段を用いて鋼塊とされたものであってもよい。換言すれば、上記タンデム圧延機列による仕上げ圧延の前に施す粗圧延は、例えば、次に述べるような鋼塊や鋼片を用いて、通常の方法で行えばよい。 Here, it is not necessary to specify in particular about the manufacturing method of the steel ingot or steel piece used as the rolling object of the rough rolling performed before the finish rolling by the said tandem rolling mill row. For example, it may be any of rimmed steel, capped steel, semi-killed steel, killed steel and the like melted by a converter, electric furnace, flat furnace, or the like. Further, the target steel may be a steel ingot using any means of “ingot forming method” or “continuous casting method” injected into a mold. In other words, the rough rolling performed before the finish rolling by the tandem rolling mill may be performed by a normal method using, for example, a steel ingot or steel slab as described below.
すなわち、粗圧延に供される鋼塊や鋼片は、一旦Ar3点以下の温度域まで冷却された後でAc3点以上の温度に再加熱されたもの、Ar3点を上回る温度域に冷却された後に再加熱されたもの、又は、鋳造後にAr3点以下の温度域まで温度低下していない鋼塊若しくは熱間加工後にAr3点以下の温度域まで温度低下していない鋼片のいずれであってもよい。なお、細粒化の観点からは一旦Ar3点以下の温度域まで冷却された後で、Ac3点以上の温度に再加熱されたものの方が好ましい。鋳造のままで粗圧延に供する場合、保熱又は加熱を目的として、補助加熱装置を通したり加熱炉に装入しても構わない。 That is, the steel ingot or steel slab subjected to rough rolling is once cooled to a temperature range of Ar 3 point or lower and then reheated to a temperature of Ac 3 point or higher, in a temperature range higher than Ar 3 point. Steel that has been cooled and reheated, or a steel ingot that has not been lowered to the temperature range of Ar 3 point or less after casting, or a steel slab that has not been lowered to the temperature range of Ar 3 point or less after hot working Either may be sufficient. From the viewpoint of fine graining, it is preferable that the material is once cooled to a temperature range of Ar 3 point or less and then reheated to a temperature of Ac 3 point or more. When it is subjected to rough rolling as cast, it may be passed through an auxiliary heating device or charged into a heating furnace for the purpose of heat retention or heating.
なお、鋼塊や鋼片を再加熱する場合の加熱温度は、オーステナイト結晶粒を粗大化させない1200℃以下とすることが好ましい。上記の加熱温度は、圧延温度の確保や圧延機の負荷を低減するために1000℃以上とすることが好ましい。より好ましくは1100℃以上である。 In addition, it is preferable that the heating temperature in reheating a steel ingot or a steel piece shall be 1200 degrees C or less which does not coarsen an austenite crystal grain. The heating temperature is preferably set to 1000 ° C. or higher in order to ensure the rolling temperature and reduce the load on the rolling mill. More preferably, it is 1100 degreeC or more.
また、鋳造後にAr3点以下の温度域まで温度低下していない鋼塊又は熱間加工後にAr3点以下の温度域まで温度低下していない鋼片のいずれについても、鋳造や熱間加工の後は鋼塊や鋼片を1200℃以下の温度域にまで冷却し、その後で粗圧延することが圧延中の結晶粒成長抑制のために望ましい。なお、この場合の粗圧延は圧延温度の確保や圧延機の負荷を低減するために1000℃以上の温度域から開始するのがよい。より好ましくは1100℃以上である。 Moreover, not lowered the temperature after temperature drop to between steel ingot or heat not processed until Ar 3 point or less of the temperature range to Ar 3 point or less of the temperature range after casting any regard to the steel slab, casting and hot working After that, it is desirable to cool the steel ingot and the steel slab to a temperature range of 1200 ° C. or lower and then perform rough rolling to suppress grain growth during rolling. In this case, the rough rolling is preferably started from a temperature range of 1000 ° C. or higher in order to ensure the rolling temperature and reduce the load on the rolling mill. More preferably, it is 1100 degreeC or more.
上記の粗圧延の後、上述した仕上げ圧延と冷却、つまり、「タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延し、その後0.4秒以内に720℃まで冷却」する処理を行うことによって、オーステナイトに蓄積された歪みの解放が抑制され、これを駆動力として、オーステナイトからのフェライトの核生成が促進されるため、フェライトの平均粒径が5μm以下という微細な組織が得られる。 After the above rough rolling, the above-described finish rolling and cooling, that is, “average cooling of 50 ° C./second or more after rolling at a temperature of Ar 3 point or higher in a rolling machine one stage before the end of the tandem rolling mill row. It is cooled to a temperature range of “Ar 3 point−20 ° C.” or less at a speed, and further rolled at a rolling reduction of 20% or less in the final rolling mill of the tandem rolling mill row, and then to 720 ° C. within 0.4 seconds. By performing the process of “cooling”, the release of strain accumulated in austenite is suppressed, and this is used as a driving force to promote nucleation of ferrite from austenite. Therefore, the average grain size of ferrite is as small as 5 μm or less. Organization is obtained.
タンデム圧延機列の最終から1段前の圧延機での圧延温度がAr3点未満の場合には、加工フェライトの生成を招くだけではなく、軟質なフェライトへの歪み集中によって未変態オーステナイトへの歪み蓄積が不十分となるため、所望のサイズへのフェライトの微細化を達成することができない。 When the rolling temperature in the rolling machine one stage before the end of the tandem rolling mill is less than the Ar 3 point, not only does it cause the formation of processed ferrite, but also the transformation to untransformed austenite due to strain concentration on soft ferrite. Since strain accumulation is insufficient, it is impossible to achieve finer ferrite to a desired size.
上記タンデム圧延機列の最終から1段前の圧延機で圧延した後の平均冷却速度が50℃/秒を下回る場合には、たとえ前記した圧延温度が確保された場合でも、所望のサイズへのフェライトの微細化が達成できない。 When the average cooling rate after rolling in the rolling machine one stage before the final stage of the tandem rolling mill is below 50 ° C./sec, even if the rolling temperature is ensured, the desired size can be achieved. Ferrite refinement cannot be achieved.
また、タンデム圧延機列の最終から1段前の圧延機で圧延した後の冷却温度が「Ar3点−20℃」を上回る場合にも、所望のサイズへのフェライトの微細化が達成できない。 更に、タンデム圧延機列の最終圧延機における圧延の圧下率が20%を上回ると、加工フェライトの生成を引き起こして加工性の低下を招くばかりか、圧下率過多のために板厚形状不良が生じやすくなる。 Further, even when the cooling temperature after rolling in the rolling machine one stage before the end of the tandem rolling mill row exceeds “Ar 3 point−20 ° C.”, the refinement of ferrite to a desired size cannot be achieved. Furthermore, if the rolling reduction ratio in the final rolling mill of the tandem rolling mill row exceeds 20%, not only will it cause the formation of processed ferrite, leading to a decrease in workability, but an excessive reduction ratio will result in poor plate thickness. It becomes easy.
上記タンデム圧延機列の最終圧延機における圧延を終了した後、720℃に至るまでの冷却時間が0.4秒を上回る場合にも所望のサイズへのフェライトの微細化が達成できない。ここで、720℃に冷却されるまでの時間を規定した理由は、720℃を超える温度で、冷却を一時停止又は鈍化させると、微細なフェライトが生成する前に、圧延によって導入された歪みが解放され或いは歪みの存在状態が変化して、フェライトの核生成に有効ではなくなり、フェライト粒が顕著に粗大化するためである。 Even when the cooling time until the temperature reaches 720 ° C. exceeds 0.4 seconds after the rolling in the final rolling mill of the tandem rolling mill row is finished, refinement of ferrite to a desired size cannot be achieved. Here, the reason for prescribing the time until cooling to 720 ° C. is that when the cooling is temporarily stopped or slowed down at a temperature exceeding 720 ° C., the strain introduced by rolling is reduced before the fine ferrite is formed. This is because it is released or the existence state of strain is changed and becomes ineffective for nucleation of ferrite, and the ferrite grains are remarkably coarsened.
したがって、本発明(1)においては、タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延し、その後0.4秒以内に720℃まで冷却することとした。 Therefore, in the present invention (1), after rolling at the temperature of Ar 3 point or higher with the rolling machine one stage before the end of the tandem rolling mill row, the “Ar 3 point − The temperature was reduced to a temperature range of “20 ° C.” or lower, and further, rolling was performed at a rolling reduction of 20% or lower with the final rolling mill in the tandem rolling mill row, and then cooled to 720 ° C. within 0.4 seconds.
本発明における温度が鋼板表面における温度をいい、「平均冷却速度」が冷却前後の温度差を冷却時間で除したものを指すこと、圧下率(%)がnパス目の圧延前の被圧延材厚みをtni、圧延後の被圧延材厚みをtn0としたとき{(tni−tn0)/tni}×100で求められるものを指すことは既に述べたとおりである。 The temperature in the present invention refers to the temperature on the steel sheet surface, “average cooling rate” refers to the difference between the temperature difference before and after cooling divided by the cooling time, and the reduction ratio (%) is the material to be rolled before rolling in the n-th pass. As described above, the thickness is determined by {(t ni −t n0 ) / t ni } × 100, where t ni is the thickness and t n 0 is the thickness of the rolled material after rolling.
なお、圧延歪みを蓄積させるという観点からは、前記のタンデム圧延機列の最終から1段前の圧延機での圧延温度はAr3点以上で、「Ar3点+100℃」以下とすることが好ましい。更に好ましくは、Ar3点以上で、「Ar3点+60℃」以下である。 From the viewpoint of accumulating rolling distortion, the rolling temperature in the rolling mill one stage before the end of the tandem rolling mill row should be Ar 3 point or higher and “Ar 3 point + 100 ° C.” or lower. preferable. More preferably, it is Ar3 point or higher and “Ar3 point + 60 ° C.” or lower.
タンデム圧延機列の最終から1段前の圧延機で圧延した後の平均冷却速度は70℃/秒以上とすることが好ましく、100℃/秒以上とすれば一層好ましい。この平均冷却速度の上限は、特に規定する必要はなく、設備能力面から被圧延材のサイズに対して可能な最大の平均冷却速度としてもよい。 The average cooling rate after rolling in the rolling machine one stage before the end of the tandem rolling mill row is preferably 70 ° C./second or more, and more preferably 100 ° C./second or more. The upper limit of the average cooling rate does not need to be specified in particular, and may be the maximum average cooling rate possible with respect to the size of the material to be rolled in terms of equipment capacity.
また、前記のタンデム圧延機列の最終から1段前の圧延機で圧延した後は「Ar3点−40℃」以下の温度域まで冷却することが好ましく、「Ar3点−60℃」以下の温度域まで冷却すれば一層好ましい。この冷却は、例えば740℃近傍の温度まで行ってもよい。 In addition, after rolling in the rolling machine one stage before the end of the tandem rolling mill row, it is preferable to cool to a temperature range of “Ar 3 point −40 ° C.” or lower, and “Ar 3 point −60 ° C.” or lower. It is more preferable to cool to a temperature range of. This cooling may be performed up to a temperature in the vicinity of 740 ° C., for example.
なお、タンデム圧延機列の最終圧延機における圧延は、最終圧延機の1段前の圧延機における圧延後の冷却水が、最終圧延機の出側(つまり、タンデム出側)に流れ出ないようにするとともに、最終圧延機の出側における圧延直後の急冷のための冷却水が最終圧延機の入側へ逆流しないようにする、いわゆる「水切り」の機能を併せ持つものであり、「水切り」は、被圧延材である鋼板の上下方向から注がれる冷却水同士の干渉を防いで精密な冷却制御と均一な冷却を行うために必要な処理である。そして、最終圧延機は、その1段前の圧延機との間で被圧延材である鋼板に張力を付与し、冷却による通板性及び板厚形状の劣化を防止する機能並びにロール抜熱による鋼板の冷却機能も有している。このため、上記の各機能が確保されるのであれば、タンデム圧延機列の最終圧延機においては、被圧延材とロールを接触させるだけとして、その圧下率を0%としても構わない。但し、歪み蓄積を十分に行って、フェライトの結晶粒を一層微細にするという観点からは、タンデム圧延機列の最終圧延機における圧延の圧下率は1%以上とすることが好ましく、更に好ましくは5%以上である。 Note that the rolling in the final rolling mill of the tandem rolling mill row is such that the cooling water after rolling in the rolling mill one stage before the final rolling mill does not flow out to the outlet side (that is, the tandem outlet side) of the final rolling mill. In addition, the cooling water for rapid cooling immediately after rolling on the exit side of the final rolling mill has a so-called “draining” function so that it does not flow backward to the entry side of the final rolling mill. This process is necessary to prevent interference between cooling waters poured from above and below the steel sheet, which is a material to be rolled, to perform precise cooling control and uniform cooling. And the last rolling mill gives tension to the steel plate which is a material to be rolled with the rolling mill of the previous stage, and prevents the deterioration of the sheet passing property and the plate thickness shape due to cooling and roll heat removal. It also has a cooling function for steel plates. For this reason, if each said function is ensured, in the final rolling mill of a tandem rolling mill row, it is possible to make the rolling reduction ratio 0% only by bringing the material to be rolled into contact with the roll. However, from the viewpoint of sufficiently performing strain accumulation and making the ferrite crystal grains finer, the rolling reduction in the final rolling mill of the tandem rolling mill row is preferably 1% or more, and more preferably 5% or more.
タンデム圧延機列の最終圧延機における圧延を終了した後の冷却は、圧延歪みの解放の抑制という観点から、最終圧延機における圧延を終了した後、400℃/秒以上の平均冷却速度で、0.2秒以内に720℃まで行うことが好ましい。 The cooling after the end of rolling in the final rolling mill of the tandem rolling mill row is 0 at an average cooling rate of 400 ° C./second or more after the end of rolling in the final rolling mill from the viewpoint of suppressing the release of rolling distortion. It is preferable to carry out to 720 ° C. within 2 seconds.
したがって、本発明(2)においては、タンデム圧延機列の最終から1段前の圧延機でAr3点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar3点−20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延した後、400℃/秒以上の平均冷却速度で、0.2秒以内に720℃まで冷却することと規定した。 Therefore, in the present invention (2), after rolling at a temperature of Ar 3 point or higher with a rolling mill one stage before the end of the tandem rolling mill row, “Ar 3 point − at an average cooling rate of 50 ° C./second or higher”. After cooling to a temperature range of “20 ° C.” or less and further rolling at a rolling reduction of 20% or less with the final rolling mill in the tandem rolling mill row, within 0.2 seconds at an average cooling rate of 400 ° C./sec or more. It was prescribed to cool to 720 ° C.
なお、上記の400℃/秒以上の平均冷却速度で、0.2秒以内に行う冷却は700℃まで行うことが一層好ましい。 It is more preferable that the cooling performed within 0.2 seconds at the above average cooling rate of 400 ° C./second or higher is performed up to 700 ° C.
なお、最終圧延機における圧延を終了した後、鋼板の温度が720℃になると、フェライト変態が開始し、720℃から580℃までの間の温度でフェライトへの変態が活発になる。したがって、本発明(1)において、タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延した後0.4秒以内に720℃まで冷却する場合の下限の温度は640℃とするのがよい。また、本発明(2)において、タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延した後400℃/秒以上の平均冷却速度で、0.2秒以内に720℃まで冷却する場合の下限の温度も640℃とするのがよい。 When the temperature of the steel sheet reaches 720 ° C. after finishing rolling in the final rolling mill, ferrite transformation starts and transformation to ferrite becomes active at a temperature between 720 ° C. and 580 ° C. Therefore, in the present invention (1), the lower limit temperature when cooling to 720 ° C. within 0.4 seconds after rolling at a rolling reduction of 20% or less in the final rolling mill of the tandem rolling mill row is 640 ° C. Is good. Further, in the present invention (2), after rolling at a rolling reduction of 20% or less with a final rolling mill in a tandem rolling mill row, the sheet is cooled to 720 ° C. within 0.2 seconds at an average cooling rate of 400 ° C./second or more. The lower limit temperature in this case is also preferably 640 ° C.
或いは、本発明(1)と本発明(2)のいずれの場合も、720℃に達した後,冷却を一時停止するか冷却の速度を鈍化させて、720〜580℃の温度域で1秒以上滞留させることが好ましい。上記温度域での滞留時間は2秒以上あることが好ましく、4秒以上であれば一層好ましい。 Alternatively, in both cases of the present invention (1) and the present invention (2), after reaching 720 ° C., the cooling is temporarily stopped or the cooling rate is slowed down for 1 second in the temperature range of 720 to 580 ° C. It is preferable to stay above. The residence time in the temperature range is preferably 2 seconds or longer, and more preferably 4 seconds or longer.
仕上げ圧延中の結晶粒の成長を抑制するという観点からは、タンデム圧延機列における仕上げ圧延の開始温度を低くすることが好ましい。このためには、温度が1200℃以下の鋼塊又は鋼片を粗圧延し、次いで、タンデム圧延機列を用いて仕上げ圧延を行うのが好ましい。しかし、被圧延材の圧延側先端部がタンデム圧延機列に入る前の温度を低くすれば、後端部やエッジ部での温度低下が大きくなる。したがって、粗圧延した後、タンデム圧延機列を用いて仕上げ圧延を行う前に、被圧延材の後端部やエッジ部での温度低下を防止するために、補助加熱装置によって被圧延材であるシートバーを加熱するのがよい。 From the viewpoint of suppressing the growth of crystal grains during finish rolling, it is preferable to lower the start temperature of finish rolling in the tandem rolling mill row. For this purpose, it is preferable to roughly roll a steel ingot or steel slab having a temperature of 1200 ° C. or less, and then perform finish rolling using a tandem rolling mill. However, if the temperature before the rolling-side front end portion of the material to be rolled enters the tandem rolling mill row is lowered, the temperature drop at the rear end portion and the edge portion increases. Therefore, after rough rolling and before finish rolling using a tandem rolling mill row, it is a material to be rolled by an auxiliary heating device in order to prevent a temperature drop at the rear end portion or edge portion of the material to be rolled. The seat bar should be heated.
上述の理由で、本発明(3)においては、鋼塊又は鋼片を粗圧延した後、タンデム圧延機列を用いて仕上げ圧延を行う前に、補助加熱装置によってシートバーを加熱することとした。 For the reasons described above, in the present invention (3), after roughly rolling a steel ingot or steel slab, the sheet bar is heated by an auxiliary heating device before finishing rolling using a tandem rolling mill row. .
フェライトの微細化のためには、補助加熱装置による加熱温度は1100〜950℃とすることが好ましい。加熱温度の上限は、より好ましくは1050℃、更に好ましくは1000℃である。 In order to refine the ferrite, the heating temperature by the auxiliary heating device is preferably 1100 to 950 ° C. The upper limit of the heating temperature is more preferably 1050 ° C, still more preferably 1000 ° C.
なお、タンデム圧延機列の最終圧延機で圧延した後に施す前述の冷却に続く巻き取りまでの冷却条件、巻き取り温度及び巻き取り後の冷却条件は特に限定するものではなく、製造しようとする熱延鋼板の組織に応じて適宜定めればよい。 The cooling conditions until winding, the winding temperature, and the cooling conditions after winding after the above-described cooling performed after rolling in the final rolling mill of the tandem rolling mill row are not particularly limited, and the heat to be manufactured What is necessary is just to determine suitably according to the structure | tissue of a rolled steel plate.
例えば、フェライトを主相とし、主相であるフェライト以外の組織をまとめて第2相というとき、第2相としてパーライトやセメンタイトを含む組織にしたい場合には、ベイナイトやマルテンサイトといった低温変態相の形成を回避するような条件で冷却及び巻き取りを行えばよい。また、第2相としていわゆる「DP鋼(二相鋼)」や「TRIP鋼」のような複合組織を得たい場合には、冷却曲線上のフェライト領域のノーズを通過するような冷却を行ってフェライト変態を促進した後、パーライト変態を避けてベイナイトやマルテンサイトの領域に急冷した後、巻き取りを行えばよい。 For example, when ferrite is the main phase and the structure other than ferrite, which is the main phase, is collectively referred to as the second phase, and a structure containing pearlite or cementite as the second phase is desired, a low-temperature transformation phase such as bainite or martensite What is necessary is just to perform cooling and winding-up on the conditions which avoid formation. In addition, when it is desired to obtain a composite structure such as “DP steel (duplex steel)” or “TRIP steel” as the second phase, cooling is performed so as to pass through the nose of the ferrite region on the cooling curve. After the ferrite transformation is promoted, the pearlite transformation is avoided and the bainite or martensite region is quenched, and then winding is performed.
第2相としてマルテンサイトを体積率で3〜30%含む複合組織にしたい場合には、仕上げ圧延の最終圧延機で圧延した後に行う冷却の後、圧延終了から30秒以内に350℃まで冷却し、巻き取るのがよい。なお、マルテンサイトの生成を促進して加工性を一層向上させる観点からは、仕上げ圧延終了から20秒以内に250℃まで冷却することがより好ましい。マルテンサイトの体積率は、5〜30%がより好ましく、更に好ましくは7〜30%である。 If you want to make a composite structure containing 3-30% of martensite by volume as the second phase, after cooling with the final rolling mill of finish rolling, cool to 350 ° C within 30 seconds from the end of rolling. It is good to wind up. In addition, it is more preferable to cool to 250 ° C. within 20 seconds from the end of finish rolling from the viewpoint of further improving the workability by promoting the formation of martensite. The volume ratio of martensite is more preferably 5 to 30%, and further preferably 7 to 30%.
更に、第2相として未変態オーステナイト(いわゆる「残留オーステナイト」)を体積率で3〜30%含む複合組織にしたい場合には、仕上げ圧延の最終圧延機で圧延した後に行う冷却の後、圧延終了から30秒以内に500℃まで冷却し、500〜350℃で巻き取るのがよい。残留オーステナイトの割合を増やして加工性をより一層向上させる観点からは、仕上げ圧延終了から20秒以内に480〜370℃の温度域まで冷却することがより好ましい。また、冷却速度は50℃/秒以上とすることがより好ましい。残留オーステナイトの体積率は、5〜30%がより好ましく、更に好ましくは7〜30%である。 Furthermore, when it is desired to form a composite structure containing 3 to 30% of untransformed austenite (so-called “residual austenite”) as the second phase, after completion of rolling after finishing rolling in the final rolling mill of finish rolling, rolling is completed. It is good to cool to 500 degreeC within 30 second and to wind up at 500-350 degreeC. From the viewpoint of further improving the workability by increasing the proportion of retained austenite, it is more preferable to cool to a temperature range of 480 to 370 ° C. within 20 seconds from the end of finish rolling. The cooling rate is more preferably 50 ° C./second or more. The volume ratio of retained austenite is more preferably 5 to 30%, and still more preferably 7 to 30%.
なお、熱間圧延は、圧延荷重低減などを目的に潤滑剤を用いて行うのが好ましい。また、「タンデム熱延」のタンデム圧延機列の最終から2段前の圧延機までの圧延機の間で、圧下による被圧延材の温度上昇を抑えるために冷却を行っても構わない。潤滑圧延は、最終から1段前までの圧延機で行うことが通板性の観点から好ましい。 The hot rolling is preferably performed using a lubricant for the purpose of reducing rolling load. Further, cooling may be performed between the rolling mills from the final tandem rolling mill row of “tandem hot rolling” to the rolling mill two stages before to suppress the temperature rise of the material to be rolled due to the rolling. Lubricating rolling is preferably performed from the last to the first rolling mill from the viewpoint of sheet feeding.
本発明の方法で製造した熱延鋼板に溶融亜鉛メッキ、合金化溶融亜鉛メッキ、電気メッキなどの表面処理を施した場合には、優れた表面性状及び延性を備えたも表面処理鋼板を得ることができる。 When the hot-rolled steel sheet manufactured by the method of the present invention is subjected to surface treatment such as hot-dip galvanizing, alloying hot-dip galvanizing, and electroplating, a surface-treated steel sheet having excellent surface properties and ductility is obtained. Can do.
(C)対象とする鋼の化学組成
前記の本発明(1)〜本発明(3)は、その製造対象となる鋼の化学組成に関して特に規定するものではない。しかし、優れた「強度−延性バランス」を有する加工性に優れた、フェライトの平均粒径が5μm以下という微細粒熱延鋼板を得るためには、製造対象となる鋼の化学組成を本発明(4)及び本発明(5)で規定するものとするのがよい。なお、以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。
(C) Chemical composition of target steel The present invention (1) to present invention (3) are not particularly defined with respect to the chemical composition of steel to be manufactured. However, in order to obtain a fine-grained hot-rolled steel sheet having an excellent “strength-ductility balance” and excellent workability and having an average grain size of ferrite of 5 μm or less, the chemical composition of the steel to be manufactured is defined by 4) and the present invention (5). In the following description, “%” of the content of each element means “mass%”.
C:
Cは、鋼板の強度を高める好ましい成分であり、0.02%以上の含有量とすることが好ましい。しかし、その含有量が0.20%を超えると加工性の低下や溶接性の劣化を招くことがある。したがって、Cの含有量は0.02〜0.20%とするのがよい。
C:
C is a preferable component for increasing the strength of the steel sheet, and the content is preferably 0.02% or more. However, if its content exceeds 0.20%, workability and weldability may be deteriorated. Therefore, the C content is preferably 0.02 to 0.20%.
Mn:
Mnは、鋼板の強度を確保するとともに、鋼中に不純物として存在するSをMnSとして固定して、連続鋳造又は熱間圧延をはじめとする熱間での加工中に生じる割れを抑制する作用を有する。しかし、Mnの含有量が0.05%未満の場合には前述の効果が得難く、一方、3.0%を超えて含有させてもその作用が飽和するばかりか、加工性の低下を招くことがある。このため、Mnの含有量は0.05〜3.0%とするのがよい。より好ましいMnの含有量は0.1〜2.5%である。なお、第2相としてオーステナイトを未変態のまま残したい場合、つまり、いわゆる「残留オーステナイト」を含む組織にしたい場合には、Mnの含有量の下限は0.5%とするのが好ましく、より好ましくは0.8%である。また、第2相として、マルテンサイトを生成させたい場合は、次に述べるSiの含有量との和である「Mn+Si」の値で1%以上とするのが好ましく、より好ましくは1.5%以上である。
Mn:
Mn secures the strength of the steel sheet and fixes S present as an impurity in the steel as MnS to suppress cracks that occur during hot working such as continuous casting or hot rolling. Have. However, when the content of Mn is less than 0.05%, the above-mentioned effect is difficult to obtain. On the other hand, the content exceeding 3.0% not only saturates the action but also causes a decrease in workability. Sometimes. For this reason, the content of Mn is preferably 0.05 to 3.0%. A more preferable Mn content is 0.1 to 2.5%. When it is desired to leave the austenite as the second phase as it is, that is, when it is desired to have a structure containing so-called “residual austenite”, the lower limit of the Mn content is preferably 0.5%. Preferably it is 0.8%. When martensite is to be generated as the second phase, the value of “Mn + Si”, which is the sum of the Si content described below, is preferably 1% or more, more preferably 1.5%. That's it.
Si:
Siは、固溶強化を通じて鋼板の強度と延性を向上させる好ましい成分である。更に、フェライト量の増加や、いわゆる「TRIP鋼」において未変態で残るオーステナイト(いわゆる「残留オーステナイト」)の量を増やす作用も有する。しかし、Siを3.0%を超えて含有させても上記作用による効果が飽和する上に、溶接性の低下を招くことがある。一方、下限は0%でもよいが、低減に要するコストの観点から0.001%を下限とするのがよい。したがって、Siの含有量は0.001〜3.0%とするのがよい。なお、Siの含有量は0.03〜2.0%であれば一層好ましい。なお、第2相としてオーステナイトを未変態のまま残したい場合、つまり、いわゆる「残留オーステナイト」を含む組織にしたい場合には、後述するAlの含有量との和である「Si+Al」の値で1%以上とするのが好ましい。また、第2相として、マルテンサイトを生成させたい場合は、前記Mnの含有量との和である「Mn+Si」の値で1%以上とするのが好ましく、より好ましくは1.5%以上である。
Si:
Si is a preferred component that improves the strength and ductility of the steel sheet through solid solution strengthening. Further, it has an effect of increasing the amount of ferrite and increasing the amount of austenite remaining untransformed in so-called “TRIP steel” (so-called “residual austenite”). However, even if Si is contained in an amount exceeding 3.0%, the effect of the above action is saturated and weldability may be deteriorated. On the other hand, the lower limit may be 0%, but 0.001% is preferably the lower limit from the viewpoint of cost required for reduction. Therefore, the Si content is preferably 0.001 to 3.0%. The Si content is more preferably 0.03 to 2.0%. When it is desired to leave the austenite untransformed as the second phase, that is, when a structure containing so-called “residual austenite” is desired, the value of “Si + Al”, which is the sum of the Al content described later, is 1 % Or more is preferable. Moreover, when it is desired to generate martensite as the second phase, the value of “Mn + Si” which is the sum of the Mn content is preferably 1% or more, more preferably 1.5% or more. is there.
P:
Pは、鋼板の強度を高める作用を有する。しかし、Pを0.2%を超えて含有させると粒界偏析による脆化や溶接性の低下をきたすことがある。一方、下限は0%でもよいが、低減に要するコストの観点から0.001%を下限とするのがよい。したがって、Pの含有量は0.001〜0.2%とするのがよい。なお、脆化や溶接性の低下をより確実に防ぐために、Pの含有量の上限値は0.1%とすることが一層好ましい。加工性をより一層向上させるためには、Pの上限値は0.05%とすることが更に好ましく、0.02%とすれば極めて好ましい。
P:
P has the effect | action which raises the intensity | strength of a steel plate. However, if P is contained in excess of 0.2%, embrittlement or weldability may be deteriorated due to grain boundary segregation. On the other hand, the lower limit may be 0%, but 0.001% is preferably the lower limit from the viewpoint of cost required for reduction. Therefore, the P content is preferably 0.001 to 0.2%. In order to more reliably prevent embrittlement and weldability deterioration, the upper limit of the P content is more preferably 0.1%. In order to further improve the workability, the upper limit value of P is more preferably 0.05%, and extremely preferably 0.02%.
Al:
Alは、脱酸作用、主相となるフェライトが組織に占める割合の増加、更には、いわゆる「TRIP鋼」における「残留オーステナイト」の量を増やす作用を有する。こうした効果を確実に得るには、Alは0.001%以上の含有量とするのがよい。しかし、Alを3%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Alの含有量は0.001〜3%とするのがよい。なお、脱酸のみを目的としてAlを添加する場合は、Alの含有量の上限は0.10%とするのがよく、経済性の観点からはその上限は0.05%とするのがより好ましい。
Al:
Al has a deoxidizing action, an increase in the proportion of ferrite as a main phase in the structure, and an action of increasing the amount of “residual austenite” in so-called “TRIP steel”. In order to obtain such an effect reliably, the Al content is preferably 0.001% or more. However, even if Al is contained in excess of 3%, the above effect is saturated and the cost is increased. Therefore, the Al content is preferably 0.001 to 3%. In addition, when adding Al only for the purpose of deoxidation, the upper limit of the Al content is preferably 0.10%, and from the economical viewpoint, the upper limit is more preferably 0.05%. preferable.
前記の本発明(1)〜本発明(3)がその製造対象とする本発明(4)に記載の鋼の化学組成は、上記のCからAlまでの元素と、残部がFe及び不純物からなるものである。 The chemical composition of the steel according to the present invention (4), which is the production object of the present invention (1) to the present invention (3), is composed of the above elements from C to Al, with the balance being Fe and impurities. Is.
前記の本発明(1)〜本発明(3)がその製造対象とする本発明(5)に記載の鋼の化学組成は、前記本発明(4)に記載の鋼のFeの一部に代えて、下記(a)群から(c)群のうちの1群以上から選ばれる少なくとも1種以上の成分を含むものである。 The chemical composition of the steel according to the present invention (5) to be produced by the present invention (1) to the present invention (3) is replaced with a part of Fe of the steel according to the present invention (4). And at least one component selected from one or more of the following groups (a) to (c).
(a)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%、
(b)Nb:0.005〜0.10%、Ti:0.005〜0.20%及びV:0.005〜1.0%、
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%。
(A) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and REM (rare element): 0.002 to 0.10%,
(B) Nb: 0.005-0.10%, Ti: 0.005-0.20% and V: 0.005-1.0%,
(C) Cr: 0.05-1.0% and Mo: 0.05-1.0%.
ここで上記(a)群に記載のCaからREM(希土類元素)までのいずれの元素も介在物の形状を調整して冷間加工性を改善する作用を有するので、CaからREMまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。 Here, since any element from Ca to REM (rare earth element) described in the group (a) has an effect of improving the cold workability by adjusting the shape of inclusions, the elements from Ca to REM are In the range described below, each of them may be contained alone or in combination of two or more.
なお、REMが、Sc、Y及びランタノイドの合計17元素を指し、REMの含有量が上記元素の合計含有量を指すことは既に述べたとおりである。 As described above, REM indicates a total of 17 elements of Sc, Y and lanthanoid, and the content of REM indicates the total content of the above elements.
上記(b)群に記載のNbからVまでのいずれの元素もフェライト地に炭窒化物として析出し、析出強化によって強度を一層高める作用を有するので、NbからVまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。 Since any element from Nb to V described in the group (b) is precipitated as a carbonitride on the ferrite ground and has the effect of further increasing the strength by precipitation strengthening, the elements from Nb to V are described below. Each may be contained alone within the range, or two or more of them may be combined and contained.
また、上記(c)群に記載のCrとMoは、いずれも焼入れ性を向上させていわゆる「残留オーステナイト」の割合を高める作用を有するので、CrとMoは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。 In addition, since Cr and Mo described in the group (c) have the effect of improving the hardenability and increasing the ratio of so-called “residual austenite”, Cr and Mo are within the ranges described below. It may be contained alone or in combination.
(a)群(Ca、Zr及びREM):
Ca、Zr及びREMは、いずれも介在物の形状を調整して冷間加工性を改善する作用を有する元素である。この効果を確実に得るには、Caは0.0002%以上、Zrは0.01%以上、REMは0.002%以上の含有量とすることが好ましい。しかし、Ca、Zr、REMの含有量が、それぞれ0.010%、0.10%、0.10%を超えると、鋼中の介在物が多くなりすぎて加工性が劣化することがある。したがって、Ca、Zr及びREMを添加する場合には、その含有量はそれぞれ0.0002〜0.010%、0.01〜0.10%、0.002〜0.10%とするのがよい。
(A) Group (Ca, Zr and REM):
Ca, Zr, and REM are all elements that have an effect of improving the cold workability by adjusting the shape of inclusions. In order to reliably obtain this effect, it is preferable that Ca is 0.0002% or more, Zr is 0.01% or more, and REM is 0.002% or more. However, when the contents of Ca, Zr, and REM exceed 0.010%, 0.10%, and 0.10%, respectively, the inclusions in the steel increase so that the workability may deteriorate. Therefore, when adding Ca, Zr, and REM, the content should be 0.0002 to 0.010%, 0.01 to 0.10%, and 0.002 to 0.10%, respectively. .
(b)群(Nb、Ti及びV):
Nb、Ti及びVは、いずれもフェライト地に炭窒化物として析出し、析出強化によって強度を一層高める作用を有する元素である。この効果を確実に得るには、Nb、Ti及びVのいずれも0.005%以上の含有量とすることが好ましい。しかし、Nb、Ti、Vを、それぞれ0.10%、0.20%、1.0%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。したがって、Nb、Ti及びVを添加する場合には、その含有量はそれぞれ0.005〜0.10%、0.005〜0.20%、0.005〜1.0%とするのがよい。
(B) Group (Nb, Ti and V):
Nb, Ti, and V are all elements that have the effect of precipitating as a carbonitride on ferrite ground and further increasing the strength by precipitation strengthening. In order to obtain this effect with certainty, it is preferable that the content of Nb, Ti and V is 0.005% or more. However, even if Nb, Ti, and V are contained in amounts exceeding 0.10%, 0.20%, and 1.0%, the above effects are saturated and the cost is increased. Therefore, when Nb, Ti and V are added, their contents should be 0.005 to 0.10%, 0.005 to 0.20% and 0.005 to 1.0%, respectively. .
(c)群(Cr及びMo):
Cr及びMoは、いずれも変態強化によって鋼板の強度を高める作用を有する元素である。この効果を確実に得るには、Cr及びMoいずれも0.05%以上の含有量とすることが好ましい。しかし、Cr、Moをいずれも1.0%を超えて含有させても上記の効果は飽和し、コストが嵩むばかりである。したがって、Cr及びMoを添加する場合には、その含有量はいずれも0.05〜1.0%とするのがよい。
(C) Group (Cr and Mo):
Cr and Mo are both elements that have an effect of increasing the strength of the steel sheet by transformation strengthening. In order to reliably obtain this effect, it is preferable that both Cr and Mo have a content of 0.05% or more. However, even if both Cr and Mo are contained in excess of 1.0%, the above effects are saturated and the cost is increased. Therefore, when adding Cr and Mo, the content is preferably 0.05 to 1.0%.
上記の(a)群から(c)群の元素については、複数の群から選ばれる元素を複合して含有させてもよい。 About the element of said (a) group to (c) group, you may contain the element chosen from a some group in combination.
なお、鋼中に混入する不純物としては、S、N及びSnなどが挙げられるが、例えばS及びNについては、できればその含有量を以下のように規制するのが望ましい。 Examples of impurities mixed in steel include S, N, and Sn. For example, the content of S and N is preferably regulated as follows.
S:
Sは硫化物系介在物を形成して加工性を低下させるため、その含有量は0.05%以下に抑えるのが望ましい。なお、一段と優れた加工性を確保するために、Sの含有量は0.008%以下とすることが一層好ましく、0.003%以下とすれば極めて好ましい。
S:
Since S forms sulfide inclusions and degrades workability, the content is preferably suppressed to 0.05% or less. In order to secure further excellent workability, the S content is more preferably 0.008% or less, and very preferably 0.003% or less.
N:
Nは加工性を低下させるため、その含有量は0.01%以下に抑えることが望ましい。なお、Nの含有量は0.006%以下とすることが好ましい。
N:
Since N deteriorates workability, the content is desirably suppressed to 0.01% or less. The N content is preferably 0.006% or less.
また、Cu及びNiは変態強化又は耐食性向上の観点からいずれも0.05〜1.0%含有させてもよい。 Moreover, you may make Cu and Ni contain 0.05-1.0% of all from a viewpoint of transformation strengthening or a corrosion-resistant improvement.
以下、実施例により本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
表1〜3に示す化学組成の鋼を、実験圧延機を使用して、表4〜6に示す条件で加熱、粗圧延、仕上げ圧延、冷却及び巻き取りして、板厚が2.3mmの鋼板を得た。 Steels having chemical compositions shown in Tables 1 to 3 were heated, rough-rolled, finish-rolled, cooled and wound up under the conditions shown in Tables 4 to 6 using an experimental rolling mill, and the plate thickness was 2.3 mm. A steel plate was obtained.
得られた鋼板から試験片を採取し、組織及び常温での引張特性を調査した。 Test pieces were collected from the obtained steel plates, and the microstructure and tensile properties at room temperature were investigated.
組織は、光学顕微鏡又は電子顕微鏡を用いて相の判定をするとともに、フェライトの平均粒径と面積率(したがって、体積率)を求めた。ここで、フェライトの「平均粒径」は、前述のように、切断法によって得られた平均切片長さを1.128倍することによって求めた。 The structure was determined using an optical microscope or an electron microscope, and the average particle diameter and area ratio (hence, volume ratio) of ferrite were determined. Here, the “average particle diameter” of the ferrite was obtained by multiplying the average intercept length obtained by the cutting method by 1.128 as described above.
常温での引張特性はJIS5号試験片を用いて調査した。 Tensile properties at room temperature were investigated using JIS No. 5 test pieces.
表7〜9に、前記の各調査結果をまとめて示す。 Tables 7 to 9 collectively show the results of the above investigations.
表7〜9から明らかなように、試験番号1〜11(表7参照)、試験番号15〜17(表8参照)及び試験番号18〜20(表9参照)の本発明の方法で製造された熱延鋼板は、いずれもフェライトを主相とし、フェライトの平均粒径が5μm以下という微細な組織を有し、しかも、引張強度(TS)と全伸び(El)の積である「TS×EL」の値が14000MPa・%以上という優れた「強度−延性バランス」を有する熱延鋼板となっている。 As apparent from Tables 7 to 9, the test numbers 1 to 11 (see Table 7), test numbers 15 to 17 (see Table 8), and test numbers 18 to 20 (see Table 9) were produced by the method of the present invention. Each of the hot-rolled steel sheets has a fine structure with ferrite as the main phase and an average grain size of ferrite of 5 μm or less, and is the product of “TS ×” which is the product of tensile strength (TS) and total elongation (El). This is a hot-rolled steel sheet having an excellent “strength-ductility balance” with a value of “EL” of 14000 MPa ·% or more.
これに対して、製造条件が本発明で規定する条件から外れた試験番号12〜14の熱延鋼板は、フェライトの平均粒径が5μmを超えるため、本発明例の熱延鋼板に比較して強度が低下している。 On the other hand, since the hot rolled steel sheets having test numbers 12 to 14 whose manufacturing conditions deviate from the conditions specified in the present invention have an average grain size of ferrite exceeding 5 μm, compared with the hot rolled steel sheets of the present invention examples. The strength has decreased.
すなわち、試験番号12は、最終から1段前の圧延機での圧延後の平均冷却速度と冷却後の温度が本発明の規定条件から外れるため、フェライトの平均粒径が6.1μmと大きく、本発明例である試験番号1〜4に比較して鋼板の強度が低下している。 That is, in test number 12, since the average cooling rate after rolling in the rolling mill one stage before the last and the temperature after cooling deviate from the specified conditions of the present invention, the average grain size of ferrite is as large as 6.1 μm, The strength of the steel sheet is reduced as compared with test numbers 1 to 4 which are examples of the present invention.
試験番号13は、最終圧延機での圧下量が本発明の規定条件を上回るので加工フェライトが生成し、また、フェライトの平均粒径も6.71μmと大きく、このため本発明例の試験番号5及び試験番号6に比較して鋼板の強度が低下するとともに、所望の「TS×EL」が得られておらず、「強度−延性バランス」も劣っている。 In Test No. 13, since the reduction amount in the final rolling mill exceeded the specified condition of the present invention, processed ferrite was generated, and the average grain size of the ferrite was as large as 6.71 μm. And compared with the test number 6, while the intensity | strength of a steel plate falls, desired "TS * EL" is not obtained and "strength-ductility balance" is also inferior.
また、試験番号14は、最終圧延機での圧延後、720℃までの時間が本発明の規定条件から外れるので、フェライトの平均粒径が5.4μmと大きく、このため本発明例の試験番号1〜4に比較して鋼板の強度が低下している。 In Test No. 14, the time up to 720 ° C. after rolling in the final rolling mill deviates from the prescribed conditions of the present invention, so the average grain size of ferrite is as large as 5.4 μm. Compared to 1-4, the strength of the steel sheet is reduced.
本発明によれば、熱延のままで加工性に優れた微細粒熱延鋼板を安定して提供することができ、自動車の足廻り部品、各種の産業機械や建築用の部材に適用してそれら製品の性能や寿命を一段と改善することが可能となるなど、産業上極めて有用な効果がもたらされる。
According to the present invention, it is possible to stably provide a fine-grained hot-rolled steel sheet that is excellent in workability while being hot-rolled, and is applied to automobile undercarriage parts, various industrial machines and architectural members. The performance and life of these products can be further improved, resulting in extremely useful effects in the industry.
Claims (5)
(a)Ca:0.0002〜0.010%、Zr:0.01〜0.10%及びREM(希士類元素):0.002〜0.10%
(b)Nb:0.005〜0.10%、Ti:0.005〜0.20%及びV:0.005〜1.0%
(c)Cr:0.05〜1.0%及びMo:0.05〜1.0%
In mass%, C: 0.02-0.2%, Mn: 0.05-3.0%, Si: 0.001-3.0%, P: 0.001-0.2% and Al: A chemical composition containing 0.001 to 3%, further including at least one component selected from one or more of the following groups (a) to (c), the balance being substantially composed of Fe and impurities: The manufacturing method of the fine grain hot rolled sheet steel whose average particle diameter of the ferrite in any one of Claim 1 to 3 which makes object the steel of a composition is 5 micrometers or less.
(A) Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and REM (rare element): 0.002 to 0.10%
(B) Nb: 0.005-0.10%, Ti: 0.005-0.20% and V: 0.005-1.0%
(C) Cr: 0.05-1.0% and Mo: 0.05-1.0%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004122069A JP4158737B2 (en) | 2004-04-16 | 2004-04-16 | Manufacturing method of fine grain hot rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004122069A JP4158737B2 (en) | 2004-04-16 | 2004-04-16 | Manufacturing method of fine grain hot rolled steel sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008135345A Division JP4803210B2 (en) | 2008-05-23 | 2008-05-23 | Manufacturing method of fine grain hot rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005305454A true JP2005305454A (en) | 2005-11-04 |
JP4158737B2 JP4158737B2 (en) | 2008-10-01 |
Family
ID=35434812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004122069A Expired - Fee Related JP4158737B2 (en) | 2004-04-16 | 2004-04-16 | Manufacturing method of fine grain hot rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4158737B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008274355A (en) * | 2007-04-27 | 2008-11-13 | Jfe Steel Kk | Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance |
JP2009114473A (en) * | 2007-11-01 | 2009-05-28 | Nippon Steel Corp | Method for manufacturing cold-rolled steel sheet having extremely small variation of material and superior deep drawability |
JP2009241113A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Corp | Method of manufacturing hot-rolled steel plate |
WO2011135997A1 (en) * | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same |
JP2012012656A (en) * | 2010-06-30 | 2012-01-19 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet and method for manufacturing the same |
WO2012053044A1 (en) * | 2010-10-18 | 2012-04-26 | 住友金属工業株式会社 | Hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet each having exellent uniform ductility and local ductility in high-speed deformation |
US8404060B2 (en) | 2007-02-02 | 2013-03-26 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet |
JP5240407B2 (en) * | 2010-04-28 | 2013-07-17 | 新日鐵住金株式会社 | Double phase hot rolled steel sheet with excellent dynamic strength and method for producing the same |
US9994942B2 (en) | 2012-08-21 | 2018-06-12 | Nippon Steel & Sumitomo Metal Corporation | Steel material |
CN116837296A (en) * | 2023-08-22 | 2023-10-03 | 北京理工大学重庆创新中心 | Preparation method and application of anti-oxidation hot forming steel suitable for thick specification |
-
2004
- 2004-04-16 JP JP2004122069A patent/JP4158737B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9034118B2 (en) | 2005-08-04 | 2015-05-19 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet |
US8404060B2 (en) | 2007-02-02 | 2013-03-26 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet |
JP2008274355A (en) * | 2007-04-27 | 2008-11-13 | Jfe Steel Kk | Method for manufacturing hot-rolled steel plate superior in surface quality, fracture toughness and sour corrosion resistance |
JP2009114473A (en) * | 2007-11-01 | 2009-05-28 | Nippon Steel Corp | Method for manufacturing cold-rolled steel sheet having extremely small variation of material and superior deep drawability |
JP2009241113A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Corp | Method of manufacturing hot-rolled steel plate |
KR101449228B1 (en) | 2010-04-28 | 2014-10-08 | 신닛테츠스미킨 카부시키카이샤 | Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same |
JP5240407B2 (en) * | 2010-04-28 | 2013-07-17 | 新日鐵住金株式会社 | Double phase hot rolled steel sheet with excellent dynamic strength and method for producing the same |
WO2011135700A1 (en) * | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same |
WO2011135997A1 (en) * | 2010-04-28 | 2011-11-03 | 住友金属工業株式会社 | Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same |
US10041158B2 (en) | 2010-04-28 | 2018-08-07 | Nippon Steel & Sumitomo Metal Corporation | Multi-phase hot-rolled steel sheet having improved dynamic strength and a method for its manufacture |
JP2012012656A (en) * | 2010-06-30 | 2012-01-19 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet and method for manufacturing the same |
WO2012053044A1 (en) * | 2010-10-18 | 2012-04-26 | 住友金属工業株式会社 | Hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet each having exellent uniform ductility and local ductility in high-speed deformation |
US9970073B2 (en) | 2010-10-18 | 2018-05-15 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled, cold rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate |
US9994942B2 (en) | 2012-08-21 | 2018-06-12 | Nippon Steel & Sumitomo Metal Corporation | Steel material |
CN116837296A (en) * | 2023-08-22 | 2023-10-03 | 北京理工大学重庆创新中心 | Preparation method and application of anti-oxidation hot forming steel suitable for thick specification |
Also Published As
Publication number | Publication date |
---|---|
JP4158737B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4304421B2 (en) | Hot rolled steel sheet | |
US10435762B2 (en) | High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same | |
JP5967319B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5463685B2 (en) | High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same | |
JP5983896B2 (en) | High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate | |
JP4062118B2 (en) | High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof | |
JP6252710B2 (en) | High-strength steel sheet for warm working and manufacturing method thereof | |
JP4304473B2 (en) | Manufacturing method of ultra fine grain hot rolled steel sheet | |
WO2012020511A1 (en) | High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same | |
US20160369369A1 (en) | High-strength cold-rolled steel sheet and method for manufacturing the same (as amended) | |
WO2016021194A1 (en) | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet | |
JPWO2011148490A1 (en) | Steel sheet and manufacturing method thereof | |
WO2016021195A1 (en) | High-strength steel sheet and method for manufacturing same | |
KR102375340B1 (en) | High-strength steel sheet and its manufacturing method | |
WO2019103121A1 (en) | Hot-rolled steel sheet and manufacturing method therefor | |
JP3433687B2 (en) | High-strength hot-rolled steel sheet excellent in workability and method for producing the same | |
JP5821810B2 (en) | Manufacturing method of fine-grained steel sheet | |
WO2019103120A1 (en) | Hot-rolled steel sheet and manufacturing method therefor | |
JP4158737B2 (en) | Manufacturing method of fine grain hot rolled steel sheet | |
KR102497571B1 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP6443555B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4539484B2 (en) | High strength hot-rolled steel sheet and manufacturing method thereof | |
JP2011214070A (en) | Cold-rolled steel sheet, and method for producing same | |
JP4803210B2 (en) | Manufacturing method of fine grain hot rolled steel sheet | |
JP5499956B2 (en) | Hot-rolled steel sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080523 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080707 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4158737 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |