JP2005353971A - Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it - Google Patents
Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it Download PDFInfo
- Publication number
- JP2005353971A JP2005353971A JP2004175329A JP2004175329A JP2005353971A JP 2005353971 A JP2005353971 A JP 2005353971A JP 2004175329 A JP2004175329 A JP 2004175329A JP 2004175329 A JP2004175329 A JP 2004175329A JP 2005353971 A JP2005353971 A JP 2005353971A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- photosensitive substrate
- exposure apparatus
- surface position
- position detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
走査型露光装置において、基板面位置検出機構の構造に関するものである。 The present invention relates to a structure of a substrate surface position detection mechanism in a scanning exposure apparatus.
半導体露光装置は、回路パターンを有する原版(レチクル)を感光基板(シリコンウエハ)に転写することにより半導体集積回路の製造を行う装置である。この半導体露光装置は、光源からの露光光を任意の場所へ、決められた露光量を照射する照明光学系、照明光学系からの露光光を用いて、原版のパターンを所定の倍率で基板上に露光転写する投影光学系等が用いられる。近年では、回路の集積度をより高めるため、回路パターンのより一層の微細化が要求され、半導体露光装置への要求精度も従来の構造のままでは対応できなくなってきている。 The semiconductor exposure apparatus is an apparatus for manufacturing a semiconductor integrated circuit by transferring an original (reticle) having a circuit pattern onto a photosensitive substrate (silicon wafer). This semiconductor exposure apparatus uses an illumination optical system that irradiates a predetermined amount of exposure light from a light source to an arbitrary location, and uses the exposure light from the illumination optical system to form an original pattern on a substrate at a predetermined magnification. For example, a projection optical system that performs exposure and transfer is used. In recent years, in order to further increase the degree of circuit integration, further miniaturization of circuit patterns is required, and the required accuracy for a semiconductor exposure apparatus cannot be handled with the conventional structure.
半導体露光装置の解像力を向上させる手段としては、露光波長をより短波長に変えてゆく方法と、投影光学系の開口数(NA)を大きくしてゆく方法とがある。 As means for improving the resolving power of the semiconductor exposure apparatus, there are a method of changing the exposure wavelength to a shorter wavelength and a method of increasing the numerical aperture (NA) of the projection optical system.
露光波長については、365nmのi線から最近では248nm付近の発振波長を有するKrFエキシマレーザ、193nm付近の発振波長を有するArFエキシマレーザの開発が行われている。更に、157nm付近の発振波長を有するF2エキシマレーザの開発が行われている。 With regard to the exposure wavelength, development of an KrF excimer laser having an oscillation wavelength around 248 nm from an i-line at 365 nm and an ArF excimer laser having an oscillation wavelength around 193 nm has been carried out recently. Furthermore, an F2 excimer laser having an oscillation wavelength near 157 nm has been developed.
このArFエキシマレーザ、F2エキシマレーザ等の露光光では、その発光スペクトルが酸素の吸収帯と重なるため、露光光の透過率が酸素の吸収により低下する。また、酸素が露光光を吸収することにより、オゾンが生成され、このオゾンが光の吸収をより増加させ、透過率を著しく低下させることに加え、オゾンに起因する各種生成物が光学素子表面に付着し、光学系の効率低下を招く。 In exposure light such as this ArF excimer laser and F2 excimer laser, the emission spectrum overlaps with the absorption band of oxygen, so that the transmittance of the exposure light decreases due to the absorption of oxygen. In addition, oxygen absorbs exposure light to generate ozone. This ozone further increases the absorption of light and significantly decreases the transmittance, and various products resulting from ozone are formed on the optical element surface. It adheres and causes the efficiency of the optical system to decrease.
また、F2エキシマレーザの露光光に関しては、水分の吸収帯とも重なり、酸素と同様に水分が露光光を吸収し、透過率の低下、光学系の効率低下と半導体露光装置の性能低下につながる。 Further, the exposure light of the F2 excimer laser overlaps with the moisture absorption band, and moisture absorbs the exposure light in the same manner as oxygen, leading to a decrease in transmittance, a decrease in optical system efficiency, and a decrease in performance of the semiconductor exposure apparatus.
以上のような酸素等に吸収を示すArFエキシマレーザ、F2エキシマレーザ等の露光光を用いる場合の半導体露光装置では、照明光学系、投影光学系等を含む露光光の光路の雰囲気に光化学反応に対して不活性なガス(窒素ガス、ヘリウムガス、アルゴンガス等)を供給し、酸素、水分等をパージする技術が必要である。 In a semiconductor exposure apparatus using exposure light such as ArF excimer laser and F2 excimer laser that absorbs oxygen as described above, photochemical reaction occurs in the optical path atmosphere of exposure light including illumination optical system and projection optical system. On the other hand, a technique for supplying an inert gas (nitrogen gas, helium gas, argon gas, etc.) and purging oxygen, moisture, etc. is required.
特開平8−279458号公報によると、半導体露光装置において照明光学系、投影光学系の光路内に不活性ガスを供給するガス供給系と投影光学系の感光基板側端部から感光基板の近傍までの空間に、空間内の露光光の光路中に存在する大気を不活性ガスで置換するための密閉部材を配置する。また、ガス供給系からの不活性ガスを照明光学系、投影光学系、密閉空間へ各々、独立したラインで供給しパージする構成としている。 According to Japanese Patent Application Laid-Open No. 8-279458, in a semiconductor exposure apparatus, a gas supply system that supplies an inert gas into the optical path of an illumination optical system and a projection optical system, and a photosensitive substrate side end of the projection optical system to the vicinity of the photosensitive substrate. In this space, a sealing member for replacing the air present in the optical path of the exposure light in the space with an inert gas is disposed. In addition, an inert gas from the gas supply system is supplied to the illumination optical system, the projection optical system, and the sealed space through independent lines and purged.
また、特開平2001−118783号公報にあるように投影光学系感光基板側端部から感光基板の近傍までの空間に、カバー状の空間遮蔽物を配置し、前記カバーの内側に不活性ガスを流すことで露光領域のパージをする構成も開示されている。 Further, as disclosed in Japanese Patent Application Laid-Open No. 2001-118783, a cover-like space shielding object is disposed in a space from the projection optical system photosensitive substrate side end to the vicinity of the photosensitive substrate, and an inert gas is placed inside the cover. A configuration in which the exposure area is purged by flowing is also disclosed.
さらに、最近では、最も効率よく酸素、水分等に吸収特性を持つ露光光を用いる走査型露光装置において、特に、投影光学系と感光基板間の露光光の光路中における酸素、水分等を効率良くパージするパージ手段と、投影光学系の最も感光基板に近い光学素子がレジストから発生するガス等により汚染されることに対しての汚染対策手段として、投影光学系と該感光基板間の光路空間をほぼ包囲する包囲部材を備え、包囲部材は、光学素子を保持する保持部と走査方向の包囲部材内に不活性ガスを対向して吹き付けるガス供給口と、さらに包囲部材の感光基板側端面と感光基板とが隙間を有して配置され、隙間から不活性ガスを排気することを特徴とする露光装置が提案されている。 Furthermore, recently, in a scanning exposure apparatus that uses exposure light that has the most efficient absorption characteristics for oxygen, moisture, etc., in particular, oxygen, moisture, etc. in the optical path of exposure light between the projection optical system and the photosensitive substrate are efficiently removed. Purging means for purging and optical path space between the projection optical system and the photosensitive substrate as a contamination countermeasure against the contamination of the optical element closest to the photosensitive substrate of the projection optical system by gas generated from the resist. The surrounding member includes an enclosing member, and the enclosing member includes a holding unit that holds the optical element, a gas supply port that sprays an inert gas in the enclosing member in the scanning direction, and a photosensitive substrate side end surface of the enclosing member. There has been proposed an exposure apparatus that is arranged with a gap between the substrate and exhausts inert gas from the gap.
一方、これらの露光装置では解像力の向上に伴い、投影光学系の許容深度(焦点深度)が減少し、ウエハー面を投影光学系の合焦位置に設定する際の精度に対して厳しい精度が要求されている。 On the other hand, with these exposure systems, as the resolution improves, the allowable depth (focus depth) of the projection optical system decreases, and strict accuracy is required for the accuracy when setting the wafer surface to the in-focus position of the projection optical system. Has been.
従来より半導体素子製造用の縮小投影型の露光装置では、第1物体としてのレチクルの回路パターンを投影レンズ系により第2物体としてのウエハー上に投影露光するのに先立って、面位置検出装置(オートフォーカス装置、AF装置)を用いてウエハー面の光軸方向の位置を検出して、該ウエハー面を投影レンズの最良結像面に位置するようにしている。 2. Description of the Related Art Conventionally, in a reduction projection type exposure apparatus for manufacturing semiconductor elements, a surface position detection device (prior to projection exposure of a reticle circuit pattern as a first object onto a wafer as a second object by a projection lens system ( The position of the wafer surface in the optical axis direction is detected using an autofocus device or an AF device, and the wafer surface is positioned on the best image plane of the projection lens.
投影露光装置に用いられるウエハー面の面位置検出機構の1つとしてウエハー面に対して光束を斜入射に入射させて構成される検出機構がある。 As one of the surface position detection mechanisms for the wafer surface used in the projection exposure apparatus, there is a detection mechanism configured by causing a light beam to be incident obliquely on the wafer surface.
この検出機構では被検査面であるウエハー面上に複数の光束を照射し、ウエハー面から反射された複数の光束をそれぞれ光電変換素子にて受光し、光電変換素子上での光束の入射位置情報から、ウエハー面のZ方向の位置情報(フォーカス)を検出したり、さらに複数の計測点のフォーカス情報から、ウエハー面の傾き情報(チルト)を検出するといった総合的なウエハー面の面位置情報を計測している。 In this detection mechanism, a plurality of light beams are irradiated onto the wafer surface, which is the surface to be inspected, and the plurality of light beams reflected from the wafer surface are received by the photoelectric conversion elements, respectively, and the incident position information of the light beams on the photoelectric conversion elements To detect the wafer surface position information (focus) in the Z direction, and further detect the wafer surface tilt information (tilt) from the focus information of multiple measurement points. Measuring.
ここにおいて、ウエハーの面位置情報を検出する面位置検出機構は露光装置内の空調機構による微妙な温度差に起因する空気の屈折率の空間的な乱れのために、ウエハー面の面位置検出用光束は屈折率の異なる層あるいは塊によって光路に変動を起こし、検出器上への光束の入射位置が異なってしまうという現象が生じる。そのために、ウエハー表面位置の検出精度が劣化してしまうという問題点があった。 Here, the surface position detection mechanism for detecting the surface position information of the wafer is used for detecting the surface position of the wafer surface due to the spatial disturbance of the refractive index of air caused by a subtle temperature difference due to the air conditioning mechanism in the exposure apparatus. The light flux varies in the optical path due to layers or lumps having different refractive indexes, and a phenomenon occurs in which the incident position of the light flux on the detector is different. Therefore, there is a problem that the detection accuracy of the wafer surface position is deteriorated.
このため、特開2000−082654号公報にもあるように物体面近傍の外的要因を計測する参照計測部を面位置検出部に配置し、面位置検出部の面計測値の外的要因に対する変化率に応じて該参照計測部の計測条件を変化可能な構成とし、該面計測値と該参照計測値とを用いて該物体面の面位置情報を求めている。 For this reason, as disclosed in Japanese Patent Application Laid-Open No. 2000-082654, a reference measurement unit that measures an external factor in the vicinity of the object plane is arranged in the plane position detection unit, and the external measurement factor for the plane measurement value of the plane position detection unit is The measurement condition of the reference measurement unit can be changed according to the rate of change, and the surface position information of the object surface is obtained using the surface measurement value and the reference measurement value.
また、特開平8−279458号公報では、投影光学系下端部から感光基板近傍の空間の全体を密閉部材で覆うことで面位置検出系の光路における空気の揺らぎを低減する方法が開示されている。 Japanese Patent Application Laid-Open No. 8-279458 discloses a method of reducing air fluctuation in the optical path of the surface position detection system by covering the entire space near the photosensitive substrate from the lower end of the projection optical system with a sealing member. .
しかしながら、投影光学系と該感光基板間の光路空間をほぼ包囲する包囲部材を備え、包囲部材は、光学素子を保持する保持部と走査方向に沿って包囲部材内に不活性ガスを対向して吹き付けるガス供給口と、さらに包囲部材の感光基板側端面と感光基板とが隙間を有して配置され、隙間から不活性ガスを排気することを特徴する露光装置においては、面位置検出系の光路における雰囲気の揺らぎについての考慮がなされていなかった。
特開平8−279458号公報による先行技術では、透明部材と感光基板間をガスでパージしていないため、面位置検出系の光路が露光領域においてパージ領域内およびパージ領域外を出入りするため、光路におけるパージ領域外の変動の影響を受け、計測誤差の原因となる。また、パージ領域の透過の度に透過ガラスを光路が通るため、透過ガラスの変形、振動、および面精度の変化が計測誤差を招く。 In the prior art disclosed in Japanese Patent Application Laid-Open No. 8-279458, since the gas between the transparent member and the photosensitive substrate is not purged with gas, the optical path of the surface position detection system enters and exits the purge area and the purge area in the exposure area. This is affected by fluctuations outside the purge region at, and causes measurement errors. Further, since the optical path passes through the transmissive glass every time the purge region is transmitted, deformation, vibration, and change in surface accuracy of the transmissive glass cause measurement errors.
特開2001−118783号公報による先行技術では、投影光学系と感光基板の空間を大まかに分離する送風板をおいて、投影光学系と送風板間にガス給気口と排気口を設けて、ガスを一定方向から流す構成としているが、この空間に排気口を設けると周囲の雰囲気ガス中に含まれる酸素、水分等を巻き込みやすくパージ領域の雰囲気が不安定となり、面検出系の光路における雰囲気の揺らぎの原因となる。 In the prior art disclosed in Japanese Patent Application Laid-Open No. 2001-118783, a blower plate that roughly separates the space between the projection optical system and the photosensitive substrate is provided, and a gas supply port and an exhaust port are provided between the projection optical system and the blower plate. Although the gas is configured to flow from a certain direction, if an exhaust port is provided in this space, the atmosphere in the purge region becomes unstable due to the oxygen and moisture contained in the surrounding atmospheric gas being easily trapped, and the atmosphere in the optical path of the surface detection system Cause fluctuations.
また、近年の露光装置においては投影光学系の開口数(NA)を大きくし、投影光学系を大型化することなく大面積のレチクルのパターンを高精度に転写するために、レチクルおよびウエハーを投影光学系に対して同期走査して露光を行うステップ・アンド・スキャン方式が主流となってきている。 Also, in recent exposure apparatuses, the reticle and wafer are projected in order to increase the numerical aperture (NA) of the projection optical system and to transfer a large area reticle pattern with high accuracy without increasing the size of the projection optical system. A step-and-scan method in which exposure is performed by synchronously scanning an optical system has become mainstream.
露光領域はレチクルのスキャン方向に対して直行方向に長手方向のある長方形もしくは、円弧状のスリット形状となっている。よってパージ領域を効率良くパージするために、前記包囲部材の形状を露光領域の長手方向に長手方向が一致している直方体形状とすることで、パージガス流量を低減した効果的なパージ領域を形成することができる。 The exposure area has a rectangular or arcuate slit shape having a longitudinal direction perpendicular to the scanning direction of the reticle. Therefore, in order to efficiently purge the purge region, the shape of the surrounding member is a rectangular parallelepiped shape whose longitudinal direction coincides with the longitudinal direction of the exposure region, thereby forming an effective purge region with a reduced purge gas flow rate. be able to.
本出願に係る発明の目的は、酸素、水分等に吸収特性を持つ露光光を用い、投影光学系と該感光基板間の光路空間をほぼ包囲する包囲部材を備え、包囲部材は投影光学系露光領域の長手方向と長手方向が一致して配置された直方体形状をし、光学素子を保持する保持部と走査方向に沿って包囲部材内に不活性ガスを対向して吹き付けるガス供給口と、さらに包囲部材の感光基板側端面と感光基板とが隙間を有して配置され、隙間から不活性ガスを排気することを特徴とする露光装置において、特に面位置検出系の光路を投影光学系をパージする領域と効率よく一致させることで面位置検出機構の光路における雰囲気の揺らぎによる計測誤差を低減する面位置検出系を構成した露光装置を提供することである。 An object of the invention according to the present application is to use an exposure light having absorption characteristics for oxygen, moisture, etc., and to include an encircling member that substantially encloses an optical path space between the projection optical system and the photosensitive substrate. A rectangular parallelepiped shape in which the longitudinal direction of the region coincides with the longitudinal direction, a holding portion that holds the optical element, and a gas supply port that blows an inert gas into the enclosing member along the scanning direction; and In the exposure apparatus characterized in that the photosensitive substrate side end surface of the surrounding member and the photosensitive substrate are arranged with a gap and exhaust the inert gas from the gap, particularly in the optical path of the surface position detection system, the projection optical system is purged It is an object of the present invention to provide an exposure apparatus having a surface position detection system that efficiently reduces the measurement error caused by the fluctuation of the atmosphere in the optical path of the surface position detection mechanism.
上記の目的を達成するため、光源からの照明光を用いて、マスクに形成されたパターンを投影光学系を介して感光基板上に露光する走査型露光装置は、該投影光学系と該感光基板間の光路空間をほぼ包囲する包囲部材を備え、該包囲部材は、光学素子を保持する保持部と走査方向の該包囲部材内に不活性ガスを対向して吹き付けるガス供給口と、さらに該包囲部材の該感光基板側端面と該感光基板とが隙間を有して配置され、該隙間から不活性ガスを排気することを特徴とする露光装置において、前記包囲部材の長手方向であり、かつパージ領域の長手方向と平行に面位置検出機構の光路を配置したことを特徴とする。 In order to achieve the above object, a scanning type exposure apparatus that exposes a pattern formed on a mask onto a photosensitive substrate through a projection optical system using illumination light from a light source, the projection optical system and the photosensitive substrate An encircling member that substantially encloses the optical path space between the enclosing member, the enclosing member holding the optical element, a gas supply port for spraying an inert gas oppositely into the enclosing member in the scanning direction, and the encircling member In the exposure apparatus, wherein the photosensitive substrate side end surface of the member and the photosensitive substrate are arranged with a gap, and the inert gas is exhausted from the gap, the longitudinal direction of the surrounding member and the purge The optical path of the surface position detection mechanism is arranged in parallel with the longitudinal direction of the region.
光源からの照明光を用いて、マスクに形成されたパターンを投影光学系を介して感光基板上に露光する走査型露光装置における露光領域は、スキャン方向に対して、直行成分に長手方向の長方形もしくは円弧状のスリット形状をしている。 An exposure area in a scanning type exposure apparatus that uses illumination light from a light source to expose a pattern formed on a mask onto a photosensitive substrate via a projection optical system has a rectangular shape in a longitudinal direction with respect to the scanning direction. Alternatively, it has an arcuate slit shape.
そして、酸素、水分等の濃度分布により生じる照度ムラの影響を最小限に留め、スループットの維持、向上を図るために、不活性ガスは走査方向へ対向して吹き付ける。 Then, in order to minimize the influence of illuminance unevenness caused by the concentration distribution of oxygen, moisture, etc., and maintain and improve the throughput, the inert gas is sprayed in the scanning direction.
前記包囲部材は、前記露光領域の長手方向に包囲部材の長手方向を一致させた直方体形状とすることで、パージ領域に供給する不活性ガスの流量を低減することができる。よって、走査方向に対して直交方向に長手方向が形成されている露光領域の長手方向にパージ領域の長手方向および包囲部材の長手方向がそれぞれ一致した構成が形成される。 Since the surrounding member has a rectangular parallelepiped shape in which the longitudinal direction of the surrounding member coincides with the longitudinal direction of the exposure region, the flow rate of the inert gas supplied to the purge region can be reduced. Therefore, a configuration is formed in which the longitudinal direction of the purge region and the longitudinal direction of the surrounding member coincide with the longitudinal direction of the exposure region in which the longitudinal direction is formed in a direction orthogonal to the scanning direction.
上記構成において、投影光学系と感光基板間の光路空間をほぼ包囲する包囲部材を備え、包囲部材は投影光学系露光領域の長手方向と長手方向が一致して配置された直方体形状をし、走査方向の包囲部材内に不活性ガスを対向して吹き付け、包囲部材の感光基板側端面と感光基板の隙間から不活性ガスを排気することにより、投影光学系と感光基板間における酸素、水分等の吸収ガスを最も効率良く排出する露光装置においては、包囲部材の構成のため、面位置検出機構をパージ領域内部に配置することが困難である。 In the above-described configuration, an encircling member that substantially encloses the optical path space between the projection optical system and the photosensitive substrate is provided. An inert gas is sprayed oppositely into the surrounding enclosure in the direction, and the inert gas is exhausted from the gap between the photosensitive substrate side end surface of the enclosure member and the photosensitive substrate, so that oxygen, moisture, etc. between the projection optical system and the photosensitive substrate are exhausted. In an exposure apparatus that discharges absorbed gas most efficiently, it is difficult to dispose the surface position detection mechanism inside the purge region because of the structure of the surrounding member.
従って、本発明においては、前記面位置検出系の投光系出射端および検出系入射端を前記方位部材の長手方向、従って、前記パージ領域の長手方向と一致させ、面位置検出系の光路が投影光学系のパージ領域を通過する距離を最大にし、すなわち、パージ領域外を通る距離を最小になるよう配置する。上記構成において、パージガスは圧力、流量、温度が管理された不活性ガスとすることで、投影光学系のパージエリア内において面位置検出系光路空間における雰囲気の揺らぎがパージ領域外と比べて低減されるので、面位置検出系の光路が、パージ領域外を通る距離を最小にすることで、面位置検出機構の光路における雰囲気の揺らぎに起因する計測誤差を最小に抑えることができることを特徴としている。 Accordingly, in the present invention, the light projection system emission end and the detection system incident end of the surface position detection system are made to coincide with the longitudinal direction of the azimuth member, and thus the longitudinal direction of the purge region, and the optical path of the surface position detection system is The distance through the purge area of the projection optical system is maximized, that is, the distance through the purge area is minimized. In the above configuration, the purge gas is an inert gas whose pressure, flow rate, and temperature are controlled, so that the fluctuation of the atmosphere in the optical path space in the surface position detection system is reduced in the purge area of the projection optical system compared to the outside of the purge area. Therefore, by minimizing the distance that the optical path of the surface position detection system passes outside the purge region, it is possible to minimize measurement errors caused by atmospheric fluctuations in the optical path of the surface position detection mechanism. .
本発明の走査型露光装置における投影光学系感光基板側端部構造の包囲部材は、投影光学系と感光基板間における酸素、水分等を効率良くパージした露光装置において、面位置検出機構の光路のパージ領域外を通過する距離を最小にすることで、面位置検出機構がパージ領域外の雰囲気の揺らぎから受ける計測誤差を最小にすることが可能となる。これにより、面位置検出機構の誤計測成分を低減させ、信頼性の高い走査型露光装置を提供することができる。 The surrounding member of the projection optical system photosensitive substrate side end structure in the scanning exposure apparatus of the present invention is an exposure apparatus that efficiently purges oxygen, moisture, etc. between the projection optical system and the photosensitive substrate. By minimizing the distance that passes outside the purge region, it is possible to minimize the measurement error that the surface position detection mechanism receives from fluctuations in the atmosphere outside the purge region. Thereby, the erroneous measurement component of the surface position detection mechanism can be reduced, and a highly reliable scanning exposure apparatus can be provided.
本発明の露光装置は制限されず、露光光として紫外光を用い、マスクのパターンを投影光学系を介して感光基板に照射する露光装置であれば公知のものに起用される。 The exposure apparatus of the present invention is not limited, and any exposure apparatus that uses ultraviolet light as exposure light and irradiates a photosensitive substrate with a mask pattern via a projection optical system can be used.
本発明の露光装置に用いる露光光としての紫外光は制限されないが、従来技術で述べたように遠赤外線とりわけ193nm付近の波長を有するArFエキシマレーザや157nm付近の波長を有するフッ素(F2)エキシマレーザ光に対して有効である。 Although ultraviolet light as exposure light used in the exposure apparatus of the present invention is not limited, as described in the prior art, far-infrared, especially ArF excimer laser having a wavelength near 193 nm and fluorine (F2) excimer laser having a wavelength near 157 nm It is effective against light.
(第1の実施例)
図1は、本発明の第1の実施例に係る概略図である。図1において、重力方向は−Z方向、走査方向は±Y方向である。1は投影光学系、2は感光基板、3は投影光学系1と感光基板2の間の光路空間をほぼ包囲する包囲部材であり、露光領域長手方向に包囲部材の長手方向が一致した直方体形状をしている。4は空間S1に不活性ガスを供給する吹き出し口で対向して設けている、5は感光基板2を支持する感光基板ステージ、6は照明光学系、7は転写される原版であるレチクル、8はレチクル7を支持するレチクルステージである。また、不活性ガスはヘリウム、窒素、アルゴンを用いることが望ましい。
(First embodiment)
FIG. 1 is a schematic diagram according to a first embodiment of the present invention. In FIG. 1, the gravity direction is the -Z direction, and the scanning direction is the ± Y direction. 1 is a projection optical system, 2 is a photosensitive substrate, 3 is a surrounding member that substantially surrounds the optical path space between the projection
上記構成において、空間S1では、包囲部材3に設けた走査方向へ不活性ガスを吹き付ける吹き出し口4より、不図示の不活性ガス供給設備と不活性ガス供給ラインから圧力、流量、温度が管理された不活性ガスを対向して光路空間に吹き付け、供給された不活性ガスが隙間gより排気されることにより、空間S2に残存していた酸素、水分が効率良く排出される。
In the configuration described above, in the space S1, the pressure, flow rate, and temperature are managed from an unillustrated inert gas supply facility and an inert gas supply line from the
露光領域における、酸素、水分等の濃度分布により生じる照度ムラの影響を最小限に留め、スループットの維持、向上を図るために、不活性ガスは走査方向へ対向して吹き付ける。 In order to minimize the influence of illuminance unevenness caused by the concentration distribution of oxygen, moisture, etc. in the exposure region, and maintain and improve the throughput, the inert gas is sprayed in the scanning direction.
このため、効率良くパージ領域を形成するため、パージ領域は走査方向に直行する成分を長手成分とする長方形領域とする。 For this reason, in order to efficiently form a purge region, the purge region is a rectangular region whose longitudinal component is a component perpendicular to the scanning direction.
図2(a)、(b)は、投影光学系1と感光基板2間に構成された面位置検出機構の構成である。12(a)は、投光部側の感光基板2位置検出装置、12(b)は受光部側の感光基板2位置検出装置、13は計測光、14は計測光13が通過するための包囲部材3に設けた開口部、15は計測光を透過させる透過部材である。投光部側の感光基板2位置検出装置12(a)からの計測光13を感光基板2に入射させ、その反射光を受光部側の感光基板2位置検出装置12(b)に取り込むことにより、感光基板2の表面を投影光学系1の焦点に合わせるため、包囲部材3には計測光13が通過する開口部14を設けているが、この開口部14より酸素、水分等が混入し、空間S1におけるパージ効率を低下させる。そのため、計測光13を透過する透過部材15を空間S1の内部における開口部口に設置する構成としている。また、計測光13の通過する空間における圧力変化、温度変化は計測誤差を招き、感光基板位置調整が狂い、結像性能の劣化の原因となる。そのため、包囲部材3内と周囲とのガスの温度差がフォーカス計測精度に影響しない所定の値以下になる様、不図示のガス温度制御装置にて制御する。
2A and 2B show the configuration of the surface position detection mechanism formed between the projection
また、パージ領域においては、圧力が変動すると、光学性能の変動を招くため、所定の値以下になる様、不図示の圧力制御装置にて計測光13の通過する空間の圧力を一定となるように制御する。 In the purge region, if the pressure fluctuates, the optical performance will fluctuate, so that the pressure in the space through which the measuring light 13 passes is made constant by a pressure control device (not shown) so that it will be below a predetermined value. To control.
包囲領域及び、投影光学系鏡筒が構成されているため、面位置検出機構は投影光学系の光軸中心を中心とした、一定の半径の円外にのみ配置構成が可能である。従って、面位置検出機構の投光系、受光系共にパージ領域外に構成され、面位置検出機構の投光系出射端より出射された計測光はパージ領域外から包囲領域に構成された透過光学部材を透過してパージ領域内で基板上にて反射し、同じく、入射側に対向して配置構成された透過光学部材を透過してパージ領域外に達し、面位置検出機構の受光系に入射する。 Since the surrounding region and the projection optical system barrel are configured, the surface position detection mechanism can be arranged only outside the circle with a certain radius centered on the optical axis center of the projection optical system. Therefore, both the light projecting system and the light receiving system of the surface position detecting mechanism are configured outside the purge area, and the measurement light emitted from the light projecting system exit end of the surface position detecting mechanism is transmitted from the outside of the purge area to the surrounding area. The light passes through the member and is reflected on the substrate within the purge area. Similarly, the light passes through a transmission optical member arranged opposite to the incident side, reaches the outside of the purge area, and enters the light receiving system of the surface position detection mechanism. To do.
面位置検出系の光路はパージ領域外においては雰囲気の揺らぎによって計測誤差を招く。つまり、面位置検出機構の投光系出射端とパージ領域までの距離d1及びパージ領域から面位置検出機構の受光系入射端までの距離d1において面位置検出機構は雰囲気の揺らぎによって計測誤差の影響を受ける。 The optical path of the surface position detection system causes a measurement error due to the fluctuation of the atmosphere outside the purge region. That is, at the distance d1 from the light projecting system emitting end of the surface position detecting mechanism to the purge area and the distance d1 from the purge area to the light receiving system incident end of the surface position detecting mechanism, the surface position detecting mechanism is affected by the measurement error due to the fluctuation of the atmosphere. Receive.
このため、パージ領域外の光路長を最小にとる必要がある。そこで、本発明においては、パージ領域の長手方向と平行に、面位置検出機構の光路を配置することによって面位置検出機構の光路がパージ領域外を通過する距離を最小とし、パージ領域外の雰囲気の揺らぎの影響を最小限に留めることができるため、パージ領域外の雰囲気の揺らぎに起因する計測誤差の影響を最小限に抑えることができる。 For this reason, it is necessary to minimize the optical path length outside the purge region. Therefore, in the present invention, the optical path of the surface position detection mechanism is arranged in parallel with the longitudinal direction of the purge area, thereby minimizing the distance that the optical path of the surface position detection mechanism passes outside the purge area, and the atmosphere outside the purge area. Therefore, the influence of the measurement error due to the fluctuation of the atmosphere outside the purge region can be minimized.
図3において、比較のために、面位置検出機構の光路をパージ領域の長手方向と直行する方向に配置した場合の構成を示す。この場合においても、包囲領域及び、投影光学系鏡筒が構成されているため、面位置検出機構は投影光学系の光軸中心を中心とした、一定の半径の円外にのみ配置構成が可能であるため、面位置検出機構の投光系出射端とパージ領域までの距離d2及びパージ領域から面位置検出機構の受光系入射端までの距離d2は面位置検出機構の光路をパージ領域の長手方向と平行に配置した場合と比較して、d1<d2となる。したがって、面位置検出機構の光路がパージ領域外を通過する距離が本発明における面位置検出機構の構成と比較して、面位置検出機構の計測光がうける雰囲気の揺らぎの影響は大きくなる。 For comparison, FIG. 3 shows a configuration when the optical path of the surface position detection mechanism is arranged in a direction perpendicular to the longitudinal direction of the purge region. Even in this case, since the surrounding area and the projection optical system barrel are configured, the surface position detection mechanism can be arranged only outside the circle with a certain radius centered on the optical axis center of the projection optical system. Therefore, the distance d2 from the light projecting system emitting end of the surface position detecting mechanism to the purge region and the distance d2 from the purge region to the light receiving system incident end of the surface position detecting mechanism depend on the optical path of the surface position detecting mechanism along the length of the purge region. Compared with the case of arranging in parallel with the direction, d1 <d2. Accordingly, the distance that the optical path of the surface position detection mechanism passes outside the purge region is more affected by the fluctuation of the atmosphere that the measurement light of the surface position detection mechanism receives than the configuration of the surface position detection mechanism in the present invention.
以上のように、面位置検出機構の光路を前記包囲部材の長手方向およびパージ領域の長手方向と平行に構成することで面位置検出機構の光路がパージ領域を通過する距離を最小にすることができ、面位置検出機構がパージ領域外で受ける雰囲気の揺らぎによる影響を最小とすることができる。 As described above, by configuring the optical path of the surface position detection mechanism in parallel with the longitudinal direction of the surrounding member and the longitudinal direction of the purge region, the distance that the optical path of the surface position detection mechanism passes through the purge region can be minimized. In addition, the influence of the fluctuation of the atmosphere that the surface position detection mechanism receives outside the purge region can be minimized.
また、次に本発明における露光方法を説明する。照明光学系6における光源には、波長193[nm]のArFエキシマレーザ、波長157[nm]のF2エキシマレーザ等を用いる。レチクル7に描かれたパターン領域は照明光学系6により照射され、投影光学系1により所定の倍率(例えば1/4、または1/5)で縮小し、感光基板ステージ5に保持された感光基板2に転写される。投影光学系1に対して、レチクル7と感光基板2を走査することにより、レチクル7のパターン領域を感光基板2に転写する。この走査露光が感光基板2上の複数の転写領域に対して繰り返し行われる。
Next, the exposure method in the present invention will be described. As a light source in the illumination
(第2の実施例)
次に第2の実施例を図4を用いて説明する。図4は本発明の第2の実施例に係る概略図である。図4において先の実施例と同一の符号は同一の部材である。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. FIG. 4 is a schematic view according to a second embodiment of the present invention. In FIG. 4, the same reference numerals as in the previous embodiment are the same members.
図4に示された構成において、空間S1では、包囲部材3に設けた走査方向へ不活性ガスを吹き付ける吹き出し口4より、不図示の不活性ガス供給設備と不活性ガス供給ラインから圧力、流量、温度が管理された不活性ガスが光路空間に吹き付けられ、供給された不活性ガスが吹き出し口4に対向して配置された不活性ガス回収口17より排気されることにより、空間S1に残存していた酸素、水分が効率良く排出される。
In the configuration shown in FIG. 4, in the space S <b> 1, pressure and flow rate from an inert gas supply facility (not shown) and an inert gas supply line from an
酸素、水分等の濃度分布により生じる照度ムラの影響を最小限に留め、スループットの維持、向上を図るために、不活性ガスは走査方向へ供給口より対向して吹き付けられ、対向して配置された回収口より排気される。 In order to minimize the influence of illuminance unevenness caused by the concentration distribution of oxygen, moisture, etc., and to maintain and improve throughput, the inert gas is sprayed from the supply port in the scanning direction and is placed facing it. It is exhausted from the recovery port.
このため、効率良くパージ領域を形成するため、パージ領域は走査方向に直行する成分を長手成分とする長方形領域となる。 For this reason, in order to efficiently form a purge region, the purge region is a rectangular region whose longitudinal component is a component perpendicular to the scanning direction.
本実施例の構成においても、包囲部材の長手方向およびパージ領域の長手方向に平行に面位置検出機構の光路を構成する。このことによって、本実施例の構成においても面位置検出機構の光路におけるパージ領域外を透過する距離が最小となるため、面位置検出機構が雰囲気の揺らぎによって受ける計測誤差の影響を最小にすることができる。 Also in the configuration of the present embodiment, the optical path of the surface position detection mechanism is configured in parallel with the longitudinal direction of the surrounding member and the longitudinal direction of the purge region. As a result, even in the configuration of the present embodiment, the distance that passes outside the purge region in the optical path of the surface position detection mechanism is minimized, so that the influence of the measurement error that the surface position detection mechanism receives due to the fluctuation of the atmosphere is minimized. Can do.
これまで説明した実施例においては、投影光学系は屈折型光学系であったが、これに限定するものではなく、一部に反射素子を用いた反射屈折型光学系であっても良い。 In the embodiments described so far, the projection optical system is a refractive optical system. However, the present invention is not limited to this, and may be a catadioptric optical system partially using a reflective element.
また、光軸上に露光範囲を説明したが、これに限定するものではなく、光軸から偏芯した露光範囲を有する光学系であっても良い。 Moreover, although the exposure range was demonstrated on the optical axis, it is not limited to this, The optical system which has the exposure range eccentric from the optical axis may be used.
さらに、ArFエキシマレーザ、F2エキシマレーザに限定するものではなく、i線、KrFエキシマレーザであっても良く、レジストからのガスによるコンタミ排出を効果的に行う。 Furthermore, the present invention is not limited to the ArF excimer laser and the F2 excimer laser, and may be an i-line or KrF excimer laser, which effectively discharges contamination from the resist gas.
1 投影光学系
2 感光基板
3 包囲部材
4 パージガス吹き出し口
5 感光基板ステー
6 照明光学系
7 レチクル
8 レチクルステージ
9 露光領域
10 投影光学系パージ領域
11 パージガスの流れ
12(a) 投光部側の感光基板2位置検出装置
12(b) 受光部側の感光基板2位置検出装置
13 計測光
14 開口部
15 透過部材
17 パージガス回収口
18 スキャン方向
S1 投影光学系基板側下端におけるパージ領
d1 面位置検出系と投影光学系パージ領域の間隙
d2 面位置検出系と投影光学系パージ領域の間隙
g 包囲部材3の感光基板2側端面と感光基板2との間隙
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175329A JP2005353971A (en) | 2004-06-14 | 2004-06-14 | Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004175329A JP2005353971A (en) | 2004-06-14 | 2004-06-14 | Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005353971A true JP2005353971A (en) | 2005-12-22 |
Family
ID=35588157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004175329A Withdrawn JP2005353971A (en) | 2004-06-14 | 2004-06-14 | Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005353971A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7512131B2 (en) | 2020-08-27 | 2024-07-08 | キヤノン株式会社 | Exposure apparatus and method for manufacturing article |
-
2004
- 2004-06-14 JP JP2004175329A patent/JP2005353971A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7512131B2 (en) | 2020-08-27 | 2024-07-08 | キヤノン株式会社 | Exposure apparatus and method for manufacturing article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7423724B2 (en) | Exposure apparatus and device manufacturing method | |
US7061573B2 (en) | Contamination prevention in optical system | |
US6833903B2 (en) | Inert gas purge method and apparatus, exposure apparatus, reticle stocker, reticle inspection apparatus, reticle transfer box, and device manufacturing method | |
JP4026943B2 (en) | Exposure apparatus and device manufacturing method | |
JP4035510B2 (en) | Lithographic apparatus including a gas cleaning system | |
JP3473649B2 (en) | Projection exposure equipment | |
US7924398B2 (en) | Optical apparatus and method of manufacturing device | |
KR100583506B1 (en) | Exposure apparatus and method | |
JP2004214552A (en) | Exposure method, aligner, and method of manufacturing device | |
JP2005129898A (en) | Aligner and device manufacturing method | |
JP2004259786A (en) | Aligner | |
JP4965829B2 (en) | Vacuum exposure equipment | |
EP1536458A1 (en) | Exposure system and exposure method | |
US6798495B2 (en) | Exposure apparatus, exposure method and device production method | |
US7119952B2 (en) | Optical instrument, exposure apparatus, and device manufacturing method | |
JP3677837B2 (en) | Projection exposure equipment | |
JP2005353971A (en) | Structure of projection optical system photosensitive substrate surface position detection mechanism and scanning exposure device using it | |
US7251014B2 (en) | Exposing method, exposing apparatus and device manufacturing method utilizing them | |
JP4174239B2 (en) | Gas supply apparatus, exposure system, and device manufacturing method | |
US7692762B2 (en) | Exposure apparatus | |
JPH11154636A (en) | Projecting aligner | |
JP2005079555A (en) | Diaphragm device and exposure device | |
JPH11354409A (en) | Illuminator, projection aligner provided there with, and manufacture of semiconductor device | |
JP2002050558A (en) | Projection aligner and method for manufacturing device | |
JP7385421B2 (en) | Exposure device and article manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070904 |