JP2005344149A - High strength steel for large-sized steel forging, and crankshaft - Google Patents
High strength steel for large-sized steel forging, and crankshaft Download PDFInfo
- Publication number
- JP2005344149A JP2005344149A JP2004163638A JP2004163638A JP2005344149A JP 2005344149 A JP2005344149 A JP 2005344149A JP 2004163638 A JP2004163638 A JP 2004163638A JP 2004163638 A JP2004163638 A JP 2004163638A JP 2005344149 A JP2005344149 A JP 2005344149A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- strength
- crankshaft
- forging
- sized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/30—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Forging (AREA)
Abstract
Description
本発明は、船舶用や発電機に使用されるディーゼル機関等に用いられる、一体型、鍛鋼製組立型の大型クランク軸の製造用の大型鍛鋼品用高強度鋼およびクランク軸に関し、殊に高価な合金元素であるNi含有量が少なく、低コストで高強度を有する大型鍛鋼品用高強度鋼およびこうした特性発揮する大型クランク軸に関するものである。 The present invention relates to high-strength steel and crankshafts for large forged steel products for manufacturing large-sized crankshafts for one-piece and forged steel assemblies, which are used in marine engines and diesel engines used in generators, and the like. The present invention relates to a high-strength steel for large forged steel products having a low Ni content, which is a small alloy element, and having a high strength at a low cost, and a large crankshaft that exhibits these characteristics.
船舶用ディーゼルエンジンや発電用ディーゼルエンジンの出力向上、コンパクト化を実現するために、これらの部品に使用する鋼材の高強度化が必要となっている。こうした部品は鍛造用鋼を鍛造して製造されるのが一般的であるが、こうした鍛造用鋼の引張強さの上限は950N/mm2程度であり、上記要求に応えるためには、1000N/mm2以上の強度を有する鍛造用鋼が要求されている。 In order to improve the output and compactness of marine diesel engines and power generation diesel engines, it is necessary to increase the strength of steel materials used for these parts. Such parts are generally manufactured by forging steel, but the upper limit of the tensile strength of such forging steel is about 950 N / mm 2. In order to meet the above requirements, 1000 N / There is a demand for forging steel having a strength of mm 2 or more.
1000N/mm2以上の強度を有する大型鍛鋼品用鋼としては、ロータで使用されている3.5NiCrMo鋼などが知られている(例えば、非特許文献1)。この鋼材は、強度や靭性などにおいては最も優れていることから、高負荷を受ける発電機用ローター(回転軸)として使用されている。 As a steel for large forgings having a strength of 1000 N / mm 2 or more, 3.5NiCrMo steel used in a rotor is known (for example, Non-Patent Document 1). Since this steel material is most excellent in strength and toughness, it is used as a rotor (rotating shaft) for a generator that receives a high load.
しかしながら上記鋼種は、強化用の合金元素として高価なNiが多量に含有されると共に、靭性確保のために二段焼き戻し処理を行ったり、粒径微細化のための特殊な焼入れ前処理を行うことが好ましいとされ、コストが高くなるという問題がある。 However, the above steel types contain a large amount of expensive Ni as an alloying element for strengthening, and also perform a two-stage tempering process to ensure toughness or a special pre-quenching process for grain size refinement. It is preferable that there is a problem that the cost becomes high.
一方、船舶などの駆動力伝達に使用される大型クランク軸用の鋼としては、従来よりDIN規格の34CrNiMo6、同32CrMo12、ISO規格42CrMo4などに代表されるCr−Mo鋼が使用されてきた。これらの鋼種は、上記3.5NiCrMo鋼と比べてNi含有量が少ないものであり、比較的低コストであるという利点を有しているものの、上記鋼種と比べて強度や靭性などにおいては近年の要求に応え得るものとなっていないのが実情である。
本発明は上記の様な事情に着目してなされたものであって、その目的は、高強度Ni−Cr−Mo鍛鋼品用鋼として提案されている3.5NiCrMo鋼に比べて低コストであり、しかも実用化されているDIN規格34CrNiMo6などに比べて優れた強度や靭性を有する大型鍛鋼品用高強度鋼を提供し、或は更に大型鍛鋼品用高強度鋼を用いた安価で強度、靭性に優れた大型クランク軸を提供することにある。 The present invention has been made by paying attention to the above-described circumstances, and its purpose is lower in cost than 3.5NiCrMo steel proposed as steel for high-strength Ni—Cr—Mo forged steel. In addition, it provides high-strength steel for large forgings that has superior strength and toughness compared to DIN standard 34CrNiMo6, etc. that have been put to practical use. Is to provide a large crankshaft excellent in
上記課題を解決することのできた本発明に係る大型鍛鋼品用高強度鋼とは、C:0.30〜0.50%(質量%を意味する、以下同じ)、Si:0.15超〜0.40%、Mn:0.80〜1.20%、Ni:0.80〜2.5%、Cr:1.0〜3.0%、Mo:0.35〜0.70%、V:0.10〜0.25%を夫々含し、残部がFeおよび不可避不純物からなる点に要旨を有するものである。 The high-strength steel for large forged steel products according to the present invention that has solved the above problems is C: 0.30 to 0.50% (meaning mass%, the same shall apply hereinafter), Si: more than 0.15 to 0.40%, Mn: 0.80 to 1.20%, Ni: 0.80 to 2.5%, Cr: 1.0 to 3.0%, Mo: 0.35 to 0.70%, V : 0.10 to 0.25%, respectively, with the remainder being composed of Fe and inevitable impurities.
本発明の大型鍛鋼品用高強度鋼においては、金属組織の結晶粒度がASTMによる粒度番号で2〜6であることが好ましい。また、本発明の大型鍛鋼品用高強度鋼は、オーステナイト化した鋼材を、200℃以下まで焼入れした後、焼戻し処理したものであることが好ましい。 In the high-strength steel for large-sized forged steel products of the present invention, the crystal grain size of the metal structure is preferably 2 to 6 in terms of the particle size number according to ASTM. Moreover, it is preferable that the high-strength steel for large forged steel products of the present invention is obtained by quenching austenitic steel materials to 200 ° C. or less and then tempering them.
上記のような大型鍛鋼品用高強度鋼を鍛造することによって、希望する特性を有する大型クランク軸が得られる。こうしたクランク軸は、船舶用または発電機に使用されるディーゼル機関用クランク軸として有用である。 By forging the high-strength steel for large forged steel as described above, a large crankshaft having desired characteristics can be obtained. Such a crankshaft is useful as a crankshaft for a diesel engine used for ships or generators.
本発明の鍛鋼品用高強度鋼では、高強度Ni−Cr−Mo鍛鋼品用鋼として提案されている3.5NiCrMo鋼に対し、Ni含有量を抑えてコスト低減を図ると共に、Si,Mn,Cr等を所定量含有させることによって高強度化を図ることができ、低コストで高性能の鍛鋼品用鋼を提供し得ることになった。しかもこの鍛鋼品用鋼は焼入れ性においても非常に優れたものであり、その優れた焼入れ性を活かして、大型鍛鋼品の素材として有効に活用することができ、特に船舶や発電機に使用されるディーゼル機関用のクランク軸などの大型クランク軸用の素材として極めて有用である。 In the high-strength steel for forged steel of the present invention, the Ni content is reduced with respect to the 3.5NiCrMo steel proposed as a high-strength Ni—Cr—Mo forged steel, and the cost is reduced by reducing the Ni content. By containing a predetermined amount of Cr or the like, it is possible to increase the strength, and it is possible to provide low-cost and high-performance steel for forged products. Moreover, this steel for forgings is very excellent in hardenability, and it can be effectively used as a material for large forgings by taking advantage of its excellent hardenability, and is especially used for ships and generators. It is extremely useful as a material for large crankshafts such as those for diesel engines.
本発明者らは前述した様な課題の下で、Ni−Cr−Mo系の高強度鍛鋼品用鋼として知られている特に3.5NiCrMo鋼を対象とし、合金元素として含まれるNi量を低減して低コスト化を図りつつ、これに匹敵する強度や靭性を有し、更には高強度の大型鍛鋼製品を製造する際に重要となる焼入れ性ついても優れた特性を発揮し得る様な鍛鋼品用鋼の開発を期して鋭意研究を進めてきた。 Under the problems as described above, the present inventors have targeted 3.5NiCrMo steel, which is known as a steel for high strength forged steel of Ni-Cr-Mo system, and reduced the amount of Ni contained as an alloy element. Forging steel that has the strength and toughness comparable to these while reducing costs, and that can also exhibit excellent properties in terms of hardenability, which is important when manufacturing high-strength large-forged steel products. We have been diligently working on the development of steel for commercial use.
その結果、前述した様なNi―Cr−Mo系の鍛鋼品用鋼において、強化元素としてのNi量をできるだけ抑えると共に、Si,Mn,Cr等の元素を適正量含有させたものは、Ni量低減による強度不足を補って余りある強度および靭性の向上が図られると共に、焼入れ性においても著しく優れた鍛鋼品用鋼が得られることを知り、上記本発明に想到したものである。 As a result, in the Ni-Cr-Mo steel forgings as described above, the amount of Ni as a strengthening element is suppressed as much as possible, and an appropriate amount of elements such as Si, Mn, and Cr is contained. It has been conceived that the present invention has been realized because it has been found that steel for forgings can be obtained that can sufficiently improve strength and toughness to compensate for insufficient strength due to the reduction, and that is extremely excellent in hardenability.
即ち、Niは、前述した如く鍛鋼品用鋼として汎用されているCr−Mo系鋼の強度や靭性を高めると共に、焼入れ性の向上にも極めて有効な元素であり、高級Cr−Mo系鍛造用鋼にとっては有用な元素である。しかしNiは高価な元素であるため、その含有率を過度に高めることは鍛鋼品用鋼のコストアップを招き、需要者の価格上の要求を満たし得なくなる。そこで本発明では、Ni量をできるだけ低減しつつ、従来のNi−Cr−Mo系鍛鋼品用鋼に匹敵する強度特性と焼入れ性を確保可能にすることを最大の課題として開発されたものであり、Ni量低減によるコストダウンの目的を果たすには、Ni含有量を多くとも2.5%以下に抑えることが望まれる。 That is, Ni is an element that is extremely effective for improving the strength and toughness of Cr-Mo steels that are widely used as steels for forgings as described above, and also for improving hardenability. For high-grade Cr-Mo forgings It is a useful element for steel. However, since Ni is an expensive element, excessively increasing its content causes an increase in the cost of steel for forgings, making it impossible to satisfy the customer's price requirements. Therefore, the present invention has been developed with the greatest challenge to ensure strength characteristics and hardenability comparable to conventional Ni-Cr-Mo steel forgings while reducing the amount of Ni as much as possible. In order to achieve the purpose of reducing the cost by reducing the Ni content, it is desirable to keep the Ni content to 2.5% or less.
本発明の鍛鋼品用鋼は、上記の様にNi含有量が制限され、それに代わってSi,Mn,Cr等の合金元素を適正量含有させたところに特徴を有するものであるが、これらの成分も含めて本発明で規定する化学成分組成の限定理由は次の通りである。 The steel for forgings according to the present invention is characterized in that the Ni content is limited as described above, and an appropriate amount of alloy elements such as Si, Mn, and Cr is contained instead. The reasons for limiting the chemical component composition defined in the present invention including the components are as follows.
C:0.30〜0.50%
Cは焼入れ性を高めると共に強度向上に寄与する元素であり、十分な強度と焼入れ性を確保するには0.30%以上含有させる必要がある。しかしながら、C含有量が過剰になると靭性を極端に低下させると共に、大型鋳塊では逆V偏析を助長するので、0.50%以下に抑えるのがよい。
C: 0.30 to 0.50%
C is an element that enhances hardenability and contributes to improvement in strength. To ensure sufficient strength and hardenability, it is necessary to contain 0.30% or more. However, when the C content is excessive, the toughness is extremely lowered and, in a large ingot, reverse V segregation is promoted.
Si:0.15超〜0.40%
Siは強度向上元素として作用し、十分な強度を確保するには0.15%を超えて含有させる必要がある。しかしながら、多過ぎると逆V偏析が著しくなって清浄な鋼塊が得られ難くなるので、0.40%以下にする必要がある。
Si: more than 0.15 to 0.40%
Si acts as a strength-enhancing element and needs to be contained in an amount exceeding 0.15% in order to ensure sufficient strength. However, if the amount is too large, reverse V segregation becomes remarkable and it becomes difficult to obtain a clean steel ingot. Therefore, it is necessary to make it 0.40% or less.
Mn:0.80〜1.20%
Mnも焼入れ性を高めると共に強度向上に寄与する元素であり、十分な強度と焼入れ性を確保するには0.80%以上含有させる必要がある。しかしながら、Mn含有量が過剰になると逆V偏析を助長するので、1.20%以下にする必要がある。
Mn: 0.80 to 1.20%
Mn is also an element that enhances hardenability and contributes to strength improvement, and it is necessary to contain 0.80% or more to ensure sufficient strength and hardenability. However, if the Mn content is excessive, reverse V segregation is promoted, so it is necessary to make it 1.20% or less.
Cr:1.0〜3.0%
Crは焼入れ性を高めると共に靭性を向上させる有効な元素であり、それらの効果を有効に発揮させるためには1.0%以上含有させる必要がある。しかしながら、過剰に含有されると、逆V偏析を助長して高清浄鋼の製造を困難にするので、3.0%以下とする必要がある。
Cr: 1.0-3.0%
Cr is an effective element that enhances hardenability and improves toughness, and in order to exhibit these effects effectively, it is necessary to contain 1.0% or more. However, if contained excessively, reverse V segregation is promoted and it becomes difficult to produce highly clean steel, so it is necessary to make it 3.0% or less.
Mo:0.35〜0.70%
Moは、焼入れ性、強度、靭性の全ての向上に有効に作用する元素であり、それらの作用を有効に発揮させるには0.35%以上含有させる必要があり、これより少なくなると逆V偏析を助長することにもなるので望ましくない。しかしながら、Mo含有量が過剰になると、鋼塊中のミクロ偏析を助長することになり、またMoは重い元素であり、重量偏析が発生しやすくなるので、0.70%以下とする必要がある。
Mo: 0.35-0.70%
Mo is an element that effectively works to improve all of the hardenability, strength, and toughness, and it is necessary to contain 0.35% or more in order to exhibit these functions effectively. It is also undesirable because it will promote However, when the Mo content is excessive, micro segregation in the steel ingot is promoted, and Mo is a heavy element and weight segregation is likely to occur. Therefore, it is necessary to set the content to 0.70% or less. .
V:0.10〜0.25%
Vは少量で焼入れ性、強度を向上させるのに有効に作用する元素であり、こうした効果を発揮させるためには0.10%以上含有させる必要がある。しかしながら、Vは平衡分配係数が低いので、過剰に含有されるとミクロ偏析(正常偏析)が発生しやすくなるので、0.25%以下とする必要がある。
V: 0.10 to 0.25%
V is an element that effectively acts to improve hardenability and strength in a small amount, and in order to exert such effects, it is necessary to contain 0.10% or more. However, since V has a low equilibrium partition coefficient, microsegregation (normal segregation) is likely to occur if it is excessively contained. Therefore, V needs to be 0.25% or less.
本発明で使用される鍛鋼品用鋼の好ましい基本成分は上記の通りであり、残部成分は実質的にFeであるが、該鍛鋼品用鋼中には微量の不可避不純物(例えば、P,O,N,Al等)の含有が許容されることは勿論のこと、前記本発明の作用に悪影響を与えない範囲で更に他の元素を積極的に含有させた鍛造用鋼を使用することも可能である。積極添加が許容される他の元素の例としては、Ti,Ca,Mg,S等が挙げられるが、粗大介在物の生成抑制という観点からして合計で0.5%程度以下に抑えることが望ましい。 The preferred basic components of the steel for forging used in the present invention are as described above, and the remaining component is substantially Fe, but a small amount of inevitable impurities (for example, P, O, etc.) are present in the steel for forging. , N, Al, etc.) are allowed to be included, and forging steel containing other elements can be used as long as it does not adversely affect the operation of the present invention. It is. Examples of other elements that are allowed to be positively added include Ti, Ca, Mg, S, etc., but in terms of suppressing the formation of coarse inclusions, the total should be suppressed to about 0.5% or less. desirable.
ところで、結晶粒径を微細化すれば鋼材の靭性が改善されることは良く知られている。結晶粒径を微細化するためには、その前提としてオーステナイト化処理が必要であるが、大型鍛鋼品のオーステナイト化処理では、内部までオーステナイト変態させるためには、保持時間が長時間となる。そのため、大型になればなるほど内部での粒径差が生じやすくなり、粒径微細化のために二段以上の多段オーステナイト化等の特殊な処理が施される場合がある。 By the way, it is well known that the toughness of a steel material is improved by reducing the crystal grain size. In order to refine the crystal grain size, an austenitizing treatment is necessary as a precondition. However, in the austenitizing treatment of a large forged steel product, a long holding time is required for austenite transformation to the inside. For this reason, the larger the size, the more easily the difference in particle size occurs inside, and there are cases where special treatments such as multi-stage austenitization of two or more stages are performed in order to refine the particle size.
一方、鋼材の靭性を改善する手段としてはNiを含有させることが有用であることも知られているが、Ni含有量が多くなり過ぎると結晶粒が粗大化する傾向があると共に、焼入れ時にオーステナイトが残留しやすくなる。焼入れ時に残留オーステナイトが多量に存在する、その後の焼戻し時にマルテンサイト変態し、硬くて脆い組織が混在することになって、靭性を劣化させることがある。こうしたことから、厳しい靭性が要求される場合には、焼戻し時に生成したマルテンサイトを再度焼戻す必要が生じ、二段の焼戻し処理が行われることもある。 On the other hand, it is also known that it is useful to contain Ni as a means for improving the toughness of the steel material. However, when the Ni content is too high, the crystal grains tend to become coarse and austenite during quenching. Tends to remain. There is a case where a large amount of retained austenite is present during quenching, martensitic transformation occurs during subsequent tempering, and a hard and brittle structure is mixed, resulting in deterioration of toughness. For these reasons, when severe toughness is required, the martensite generated during tempering needs to be tempered again, and a two-stage tempering process may be performed.
本発明者らは、こうした観点から、結晶粒が粗大であっても十分な靭性が確保でき、しかも焼入れ時の残留オーステナイトを抑制し、靭性確保のための二段焼入れなどの特殊な処理が不要となるような鋼材の開発を目指して検討を重ねた。その結果、上記のような化学成分組成を有する鍛鋼品用高強度鋼では、金属組織の結晶粒度がASTMで6番以下であっても十分な靭性が確保され、しかも1回の焼戻し処理でも十分であることが明らかになったのである。但し、ASTMの結晶粒度番号で2未満となると、結晶粒の粗大化が顕著になって鍛鋼品材の靭性が劣化することになるので、少なくとも結晶粒度は2以上であることが好ましい。 From these viewpoints, the present inventors can ensure sufficient toughness even if the crystal grains are coarse, and suppress the retained austenite during quenching, and do not require special treatment such as two-stage quenching to ensure toughness. The study was repeated with the aim of developing a steel material that would As a result, in the high strength steel for forgings having the chemical composition as described above, sufficient toughness is ensured even if the crystal grain size of the metal structure is No. 6 or less in ASTM, and a single tempering treatment is sufficient. It became clear that. However, when the grain size number of ASTM is less than 2, coarsening of the crystal grains becomes remarkable and the toughness of the forged steel product is deteriorated. Therefore, it is preferable that the crystal grain size is at least 2 or more.
船舶用または発電機に使用されるディーゼル機関用クランク軸は、そのジャーナル径が小さいものでも約150mmあり、自動車用のクランク軸(例えば、15mm程度)と比べて極めて大きいものとなる。また、大型鍛鋼品では、水焼入れを行うと割れる危険性があることから、大型クランク軸の焼入れは油冷、ポリマー焼入れ、空冷等が一般的である。本発明で対象とする大型クランク軸では、焼入れの際の冷却速度はクランク軸の直径によっても異なるが、油焼入れの場合には50℃/分以下であり、直径500mmクラスのものでは約20℃/分程度となり、それより更に大きい直径(例えば、1000mm)になると冷却速度は更に小さなものとなる。 A crankshaft for a diesel engine used for a ship or a generator has a journal diameter of about 150 mm, which is very large compared to a crankshaft for an automobile (for example, about 15 mm). Further, in large forged steel products, there is a risk of cracking when water quenching is performed. Therefore, quenching of a large crankshaft is generally performed by oil cooling, polymer quenching, air cooling, or the like. In the large crankshaft targeted by the present invention, the cooling rate at the time of quenching varies depending on the diameter of the crankshaft, but in the case of oil quenching, it is 50 ° C./min or less, and about 20 ° C. in the 500 mm diameter class. When the diameter becomes larger (for example, 1000 mm), the cooling rate becomes even smaller.
大型鍛鋼品用高強度鋼における強度および靭性を両立させるためには、ベイナイトとマルテンサイトからなる組織に制御することが好ましく、直径150mm以上の大型クランク軸に適用するために焼入れ冷却速度が20℃/分程度であっても(油焼入れの場合)こうした組織を実現するための条件について検討した結果、上記のような化学成分組成に到達したのである。 In order to achieve both strength and toughness in high-strength steel for large forged steel products, it is preferable to control to a structure composed of bainite and martensite, and a quenching cooling rate of 20 ° C. for application to a large crankshaft having a diameter of 150 mm or more. As a result of studying the conditions for realizing such a structure even in the case of oil quenching (in the case of oil quenching), the chemical component composition as described above was reached.
尚、より大型のクランク軸となると、油焼入れでは希望する焼入れ冷却速度(20℃/分)が達成されないことがあるので、こうした場合には上記「ポリマー焼入れ」を実施することが推奨される。このポリマー焼入れは、グリコール類(例えば、ジエチレングリコールやポリエチレングリコール等)等の有機溶媒を水に溶解させたものを冷却媒体として使用して冷却するものであるが、こうしたポリマー焼入れでは、油焼入れよりも高い冷却速度を実現できることになる。従って、ポリマー焼入れは、水焼入れによる割れ発生を防止しつつ、大きな冷却速度を実現して比較的大型の大型鍛鋼品に対して20℃/分よりも大きい冷却速度を実現するために有用な冷却方式である。 In the case of a larger crankshaft, the desired quenching cooling rate (20 ° C./min) may not be achieved by oil quenching. In such a case, it is recommended to perform the above “polymer quenching”. In this polymer quenching, an organic solvent such as glycols (for example, diethylene glycol, polyethylene glycol, etc.) dissolved in water is used as a cooling medium for cooling. In such polymer quenching, rather than oil quenching. A high cooling rate can be realized. Therefore, polymer quenching is useful cooling to achieve a large cooling rate and a cooling rate greater than 20 ° C./min for a relatively large large steel product while preventing cracking due to water quenching. It is a method.
また、焼入れに際しては、完全に変態を完了させるという観点からして、オーステナイト化した鋼材を、200℃以下まで焼入れした後、焼戻しすることが好ましい。この焼入れ温度(即ち、焼戻し開始温度)が200℃を超えると、未変態の残留オーステナイトが残存し、特性ばらつきの原因となる。 Further, in quenching, from the viewpoint of complete transformation, it is preferable that the austenitic steel is quenched to 200 ° C. or lower and then tempered. When this quenching temperature (that is, tempering start temperature) exceeds 200 ° C., untransformed retained austenite remains, which causes variation in characteristics.
本発明に係る鍛鋼品用鋼の製法は特に制限がなく、常法に従って高周波溶解炉や電気炉、転炉などを用いて所定化学成分に調整してから鋳造すればよい。また、成分調整後に真空処理を施すことも有効である。鋳造は、大型鍛造用鋼の場合は主としてインゴット鋳造が採用されるが、比較的小型の鍛鋼品の場合は連続鋳造法を採用することも可能である。 The method for producing steel for forgings according to the present invention is not particularly limited, and may be cast after adjusting to a predetermined chemical component using a high-frequency melting furnace, electric furnace, converter, or the like according to a conventional method. It is also effective to perform a vacuum treatment after adjusting the components. As for casting, ingot casting is mainly adopted in the case of large-sized forging steel, but in the case of relatively small forged steel products, it is also possible to adopt a continuous casting method.
また鍛鋼品用鋼を用いて例えばクランク軸などを製造する方法も特に制限されず、例えば、電気炉などで所定成分組成の鋼を溶製する工程→真空精錬などによりSなどの不純元素やOなどのガス成分を除去する工程→造塊する工程→鋼塊を加熱してから素材鍛造を行なう工程→中間検査の後加熱してクランク軸形状に鍛造する工程→熱処理により均質化すると共に焼入れ処理して硬質化する工程→仕上げ機械加工を行なう工程等、を順次実施すればよい。 Also, for example, a method of manufacturing a crankshaft using steel for forged products is not particularly limited. For example, a process of melting steel having a predetermined component composition in an electric furnace or the like → vacuum refinement or the like such as S or the like The process of removing gas components such as → The process of ingot making → The process of forging the material after heating the steel ingot → The process of heating after intermediate inspection and forging into the crankshaft shape → Homogenizing and quenching by heat treatment Then, the step of hardening and then the step of finishing machining, etc. may be carried out sequentially.
尚クランク軸への鍛造加工法としては、自由鍛造法(クランクアームとクランクピンを一体としたブロックとして鍛造し、ガス切断および機械加工によってクランク軸形状に仕上る方法)と、R.R.およびT.R.鍛造法(鋼塊の軸心がクランク軸の軸心部となる様に鍛造加工し、中心偏析により特性の劣化を起こし易い部分をクランク軸の全ての軸心部となる様に一体に鍛造加工する方法)が例示されるが、特に後者の鍛造法を採用すれば、シャフト表層側を清浄度の高い部分で占めさせることができ、強度や疲労特性に優れたクランク軸が得られ易いので好ましい。こうして得られたクランク軸は、船舶用または発電機に使用されるディーゼル機関用クランク軸として有用である。 The forging method for the crankshaft includes a free forging method (a method in which a crank arm and a crankpin are forged as a single block and finished into a crankshaft shape by gas cutting and machining), and R.I. R. And T. R. Forging method (forging so that the axis of the steel ingot is the center of the crankshaft, and forging so that the parts that tend to deteriorate characteristics due to center segregation become all the axes of the crankshaft In particular, if the latter forging method is employed, the shaft surface layer side can be occupied by a portion with a high degree of cleanliness, and a crankshaft excellent in strength and fatigue characteristics is easily obtained, which is preferable. . The crankshaft thus obtained is useful as a crankshaft for a diesel engine used for ships or generators.
以下実施例によって本発明の作用効果をより具体的に示すが、下記実施例は本発明を制限するものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the effects of the present invention will be described more specifically by way of examples. However, the following examples are not intended to limit the present invention, and should be implemented with appropriate modifications within a range that can meet the purpose described above and below. Are all possible and are within the scope of the present invention.
実施例1
下記表1に示す化学成分組成を有する鍛鋼品用鋼を、高周波炉を用いて溶製し、直径158〜132×長さ323mmの鋼塊(40kg)を鋳造した。得られた各鋼塊の押湯部分を切除し、1230℃で5〜10時間加熱した後、自由鍛造プレス機を用いて高さ比で1/2まで圧縮し、鋼塊中心線を90°回転させて鍛造して90mm×90mm×600mmにまで鍛伸した後、大気中で放冷した。
Example 1
Steel for forgings having the chemical composition shown in Table 1 below was melted using a high frequency furnace, and a steel ingot (40 kg) having a diameter of 158 to 132 × length of 323 mm was cast. After cutting the hot metal part of each steel ingot obtained and heating it at 1230 ° C. for 5 to 10 hours, it was compressed to 1/2 in height ratio using a free forging press machine, and the steel ingot center line was 90 ° After rotating and forging to 90 mm × 90 mm × 600 mm, it was allowed to cool in the atmosphere.
素材が室温になった後、直径500mmのクランク軸の表面下50mm(直径の1/10)位置に相当する加熱・冷却速度を模擬した焼入れ処理を施した。具体的には、小型シミュレート炉を用いて、昇温速度40℃/時で870℃まで昇温し、その温度で1時間保持後、870〜500℃の温度範囲の平均冷却速度が20℃/分となる冷却で、オーステナイト化処理を実施した。また、焼戻し処理として、580〜630℃の温度で13時間保持し、炉冷した後各鍛鋼品用鋼の機械的性質を下記の方法によって測定した。また金属組織における結晶の大きさをASTMに基づいて求めた(結晶粒度番号)。
After the temperature of the material reached room temperature, a quenching process was performed that simulated a heating / cooling rate corresponding to a
[機械的性質の測定方法]
(A)各鋼材についてJIS Z2241に基づいて引張試験を実施した。このとき試験片形状は、JIS Z2201の14号試験片でφ6×G.30とし、機械的性質[降伏応力(YS)、引張強さ(TS)、伸び(EL)、絞り(RA)]を測定した。
[Measuring method of mechanical properties]
(A) The tensile test was implemented about each steel material based on JISZ2241. At this time, the shape of the test piece was a JIS Z2201 No. 14 test piece of φ6 × G. The mechanical properties [yield stress (YS), tensile strength (TS), elongation (EL), drawing (RA)] were measured.
(B)また1000N/mm2以上の引張強さTSが得られた鋼種について、シャルピー衝撃試験を実施した。シャルピー衝撃試験はJIS Z2242に基づいて実施し、吸収エネルギーvEを測定した。このときの試験片形状は、JIS Z2202の2mmVノッチを採用した。また同一強度における靭性を評価するために、下記に示す計算方法によって1000N/mm2での吸収エネルギーvEat(1000N/mm2)を求め、靭性の評価を行った。 (B) In addition, a Charpy impact test was performed on the steel types having a tensile strength TS of 1000 N / mm 2 or more. The Charpy impact test was performed based on JIS Z2242, and the absorbed energy vE was measured. The test piece shape at this time was a 2 mmV notch of JIS Z2202. In order to evaluate the toughness at the same strength, determined absorbed energy vEat (1000N / mm 2) at 1000 N / mm 2 by the calculation method described below was evaluated for toughness.
1000N/mm2前後となる焼戻し温度における吸収エネルギーをEu,Edとし、夫々の引張強さをSu、Sdとする。
Eu:1000N/mm2以上の強度が得られる焼戻し温度(Td)での吸収エネルギー
Su:上記における引張強さ
Ed:1000N/mm2以下の強度となる焼戻し温度(Td)での吸収エネルギー
Sd:上記における引張強さ
vEat(1000N/mm2)
=Eu+(Ed−Eu)/(Su−Sd)×(Su−1000)
これらの結果を、焼入れ温度および焼戻し温度と共に、下記表2に示すが、この結果から次のように考察できる。まず試験No.1〜3、13、14のものでは、本発明で規定する化学成分のいずれかが規定範囲を外れるものであり、いずれも引張強さTSが1000N/mm2に達していない(強度未達)ことが分かる。
The absorbed energy at a tempering temperature of about 1000 N / mm 2 is Eu and Ed, and the tensile strengths are Su and Sd.
Eu: Absorbed energy at a tempering temperature (Td) at which a strength of 1000 N / mm 2 or more is obtained Su: Tensile strength Ed: Absorbed energy at a tempering temperature (Td) at which the strength is 1000 N / mm 2 or less Sd: Tensile strength vEat (1000 N / mm 2 )
= Eu + (Ed-Eu) / (Su-Sd) * (Su-1000)
These results are shown in the following Table 2 together with the quenching temperature and the tempering temperature, and can be considered as follows from these results. First, test no. In the cases of 1 to 3, 13, and 14, any of the chemical components defined in the present invention is out of the specified range, and none of the tensile strength TS has reached 1000 N / mm 2 (strength not achieved). I understand that.
これに対して、本発明で規定する範囲を満足する試験N.4〜12のものでは、1000N/mm2以上の引張強さが得られていることが分かる。またこれらのものでは、シャルピー吸収エネルギーvEは、Ni含有量に依存する傾向があることが確認された。 On the other hand, the test N.1 satisfying the range specified in the present invention. It can be seen that the tensile strength of 1000 N / mm 2 or more was obtained with the materials of 4 to 12. Moreover, in these things, it was confirmed that the Charpy absorbed energy vE tends to depend on the Ni content.
尚、オーステナイト化処理および焼戻し処理後に、各供試材の断面をナイタールでエッチングしてから100倍の光学顕微鏡により2視野以上を撮影し、該写真からフェライトおよびパーライトに分類される領域の面積分率を求めることによって金属組織を調べたところ、いずれもフェライト・パーライトの面積分率は実質的にゼロであり、ベイナイトおよびマルテンサイトからなる組織であることを確認した。 After the austenitizing treatment and tempering treatment, the cross section of each test material was etched with nital, and then two or more fields of view were taken with a 100 × optical microscope, and the area of the region classified as ferrite and pearlite from the photograph. When the metal structure was examined by determining the ratio, the area fraction of ferrite and pearlite was substantially zero, and it was confirmed that the structure was composed of bainite and martensite.
この結果に基づいて、1000N/mm2での吸収エネルギーに換算した値とNi含有量の関係を図1に示す。また、Ni含有量と結晶粒度番号の関係を図2に示す。図1から明らかなように、Ni含有量が0.80%以上2.5%以下で良好な衝撃特性が得られていることが分かる。一般にNi含有量が多くなると共に靭性が向上することが知られており、Ni含有量が0.8%以上でNiによる効果が顕著に現れたものと考えられる。一方、Ni含有量が2.5%よりも多くなると、靭性が却って低下していることが分かる。これは、図2に示すように、Ni含有量の増大に伴って結晶粒径が大きくなり、こうした結晶粒粗大化によって靭性が低下したものと考えられた。また、図1、2から明らかなように、結晶粒度番号が2以上であれば良好な靭性が確保できることが分かる。 Based on this result, the relationship between the value converted into the absorbed energy at 1000 N / mm 2 and the Ni content is shown in FIG. The relationship between the Ni content and the crystal grain size number is shown in FIG. As can be seen from FIG. 1, good impact characteristics are obtained when the Ni content is 0.80% to 2.5%. In general, it is known that the Ni content increases and the toughness is improved, and it is considered that the effect of Ni is remarkably exhibited when the Ni content is 0.8% or more. On the other hand, when the Ni content is more than 2.5%, it can be seen that the toughness is decreased. As shown in FIG. 2, the crystal grain size was increased as the Ni content was increased, and it was considered that the toughness was lowered by such coarsening of the crystal grains. As is apparent from FIGS. 1 and 2, it can be seen that good toughness can be secured if the crystal grain size number is 2 or more.
実施例2
大型鍛鋼品では、焼入れ・焼戻しの工程で変形能力や熱応力による割れ防止の観点から、室温まで降温させずに200〜300℃まで冷却した後、連続的に焼戻し処理を実施するのが一般的である。
Example 2
For large forged steel products, from the viewpoint of preventing cracking due to deformation capability and thermal stress in the quenching and tempering process, it is common to continuously temper after cooling to 200-300 ° C without lowering to room temperature. It is.
こうした観点から、表2の試験No.1,9のものについて(表1の鋼種A,I)、焼戻し開始温度(焼入れ終了温度)が機械的性質[引張強さ(TS)、0.2%耐力(0.2PS)、伸び(EL)、絞り(RA)、吸収エネルギー(vE)]に与える影響について調査した(他の条件は実施例と同じ)。その結果を、下記表3に示す。また、この結果に基づいて、焼戻し開始温度と引張強さTSの関係を図3に、焼戻し開始温度と衝撃値(吸収エネルギー)の関係を図4に夫々示す。 From this point of view, the test Nos. 1 and 9 (steel types A and I in Table 1), tempering start temperature (quenching end temperature) is mechanical properties [tensile strength (TS), 0.2% proof stress (0.2 PS), elongation (EL ), Aperture (RA), absorbed energy (vE)] were investigated (other conditions are the same as in the example). The results are shown in Table 3 below. Based on this result, the relationship between the tempering start temperature and the tensile strength TS is shown in FIG. 3, and the relationship between the tempering start temperature and the impact value (absorbed energy) is shown in FIG.
これらの結果から、次のように考察できる。試験No.1のものでは、焼戻し開始温度の影響がそれほど認められないが、試験No.9のものでは焼戻し開始温度の影響が明瞭に認められる。こうした結果によって、焼戻し開始温度(焼入れ終了温度)を200℃以下とすることによって、靭性を劣化させずに強度を安定して確保できることが確認できた。 From these results, it can be considered as follows. Test No. In the case of No. 1, the effect of the tempering start temperature is not so much observed, but the test No. In the case of No. 9, the influence of the tempering start temperature is clearly recognized. From these results, it was confirmed that by setting the tempering start temperature (quenching end temperature) to 200 ° C. or less, the strength can be stably secured without deteriorating toughness.
また、本発明で規定する化学成分において、引張強さが焼戻し開始温度の影響を受ける要因は明らかでないが、本発明で規定する成分範囲では完全なベイナイト組織とはならず、部分的にマルテンサイト組織となり、焼戻し開始温度がこのような変態組織の生成に影響をしているものと考えられる。 Further, in the chemical component defined in the present invention, the factor that the tensile strength is affected by the tempering start temperature is not clear, but in the component range defined in the present invention, a complete bainite structure is not achieved, and partly martensite. It is considered that the tempering start temperature affects the formation of such a transformed structure.
Claims (5)
The crankshaft according to claim 4 which is a crankshaft for a diesel engine used for ships or generators.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004163638A JP4332070B2 (en) | 2004-06-01 | 2004-06-01 | High strength steel and crankshaft for large steel products |
ES05011252T ES2328365T3 (en) | 2004-06-01 | 2005-05-24 | HIGH STRENGTH STEEL FOR A LARGE SCALE FORGE SPECIALLY FOR CRANKSHAFT. |
EP05011252A EP1602742B1 (en) | 2004-06-01 | 2005-05-24 | High-strength steel for large-scaled forging, and crankshaft |
DE602005015383T DE602005015383D1 (en) | 2004-06-01 | 2005-05-24 | High strength steel for the production of large forgings, especially crankshafts |
KR1020050044894A KR100721645B1 (en) | 2004-06-01 | 2005-05-27 | High-strength steel for large-scaled forging, and crankshaft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004163638A JP4332070B2 (en) | 2004-06-01 | 2004-06-01 | High strength steel and crankshaft for large steel products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005344149A true JP2005344149A (en) | 2005-12-15 |
JP4332070B2 JP4332070B2 (en) | 2009-09-16 |
Family
ID=34936892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004163638A Expired - Fee Related JP4332070B2 (en) | 2004-06-01 | 2004-06-01 | High strength steel and crankshaft for large steel products |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1602742B1 (en) |
JP (1) | JP4332070B2 (en) |
KR (1) | KR100721645B1 (en) |
DE (1) | DE602005015383D1 (en) |
ES (1) | ES2328365T3 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010070813A (en) * | 2008-09-19 | 2010-04-02 | Hitachi Ltd | Shaft material of rotor in electric generator |
JP2010248540A (en) * | 2009-04-10 | 2010-11-04 | Kobe Steel Ltd | Integrated crankshaft and method for manufacturing the same |
JP2010270390A (en) * | 2009-04-23 | 2010-12-02 | Kobe Steel Ltd | Steel forging and crankshaft |
EP2671963A1 (en) | 2012-06-06 | 2013-12-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength large steel forging |
JP2014227608A (en) * | 2013-05-21 | 2014-12-08 | ゼネラル・エレクトリック・カンパニイ | Martensitic alloy component and process of forming martensitic alloy component |
JP2014227573A (en) * | 2013-05-22 | 2014-12-08 | 株式会社日本製鋼所 | High strength steel having excellent high-pressure hydrogen environment embrittlement resistance properties and production method therefor |
JP2015190040A (en) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | Low alloy steel for steel forging and crank shaft |
CN105755236A (en) * | 2016-03-07 | 2016-07-13 | 江苏大学 | Method for improving low temperature impact toughness of 35CrNi3MoV steel forgings |
WO2017126239A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社神戸製鋼所 | High strength forged steel and large forged component |
KR101775816B1 (en) | 2015-02-06 | 2017-09-06 | 가부시키가이샤 고베 세이코쇼 | Large-sized forging steel and large-sized forged part |
KR20180099865A (en) | 2016-01-08 | 2018-09-05 | 가부시키가이샤 고베 세이코쇼 | Large crankshaft |
KR20180102166A (en) | 2016-01-18 | 2018-09-14 | 가부시키가이샤 고베 세이코쇼 | Forged steel and forged steel |
JP2020015927A (en) * | 2018-07-23 | 2020-01-30 | 山陽特殊製鋼株式会社 | Alloy steel for mechanical structure excellent in impact resistance |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4150054B2 (en) * | 2006-06-21 | 2008-09-17 | 株式会社神戸製鋼所 | FORGING STEEL, PROCESS FOR PRODUCING THE SAME AND FORGED PRODUCT |
CN102722762B (en) * | 2011-12-29 | 2015-08-26 | 昆明理工大学 | Blast furnace/converter sector queuing system resolves emulation mode |
CN102728772B (en) * | 2012-06-26 | 2015-11-11 | 江苏金源锻造股份有限公司 | A kind of forging method of crankshaft used for large boat |
CN103233111B (en) * | 2013-04-02 | 2014-12-17 | 浙江来源机械有限公司 | Preparation process for special high-wear-resistance high-strength transmission shaft for major-diameter port machinery |
CN103352113A (en) * | 2013-06-30 | 2013-10-16 | 贵州安大航空锻造有限责任公司 | Heat-treatment method for 48MnV non quenched and tempered steel crankshaft forging |
JP6100129B2 (en) | 2013-08-27 | 2017-03-22 | 株式会社神戸製鋼所 | High-strength steel and crankshaft for marine or generator diesel engines |
JP6100156B2 (en) | 2013-12-19 | 2017-03-22 | 株式会社神戸製鋼所 | High strength steel and forged steel products for forged steel products |
CN104889295A (en) * | 2015-05-21 | 2015-09-09 | 江苏金源锻造股份有限公司 | Forging process of six-throw crankshaft |
CN105603169B (en) * | 2016-03-07 | 2017-12-15 | 江苏大学 | The short route manufacture method of large-scale 30CrNi2MoV steel parts |
CN112658180B (en) * | 2020-12-08 | 2023-11-10 | 南京迪威尔高端制造股份有限公司 | Manufacturing and detecting method of 4330 cylinder forging |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4673433A (en) * | 1986-05-28 | 1987-06-16 | Uddeholm Tooling Aktiebolag | Low-alloy steel material, die blocks and other heavy forgings made thereof and a method to manufacture the material |
JP2687225B2 (en) * | 1988-08-10 | 1997-12-08 | 農工建設 株式会社 | Automatic irrigation method for paddy field irrigation water |
US5496516A (en) * | 1994-04-04 | 1996-03-05 | A. Finkl & Sons Co. | Dual purpose steel and products produced therefrom |
US5888450A (en) * | 1994-04-04 | 1999-03-30 | A. Finkl & Sons Co. | Fine grained ductile plastic injection molds forging tools and machine components and alloy steel therefor having a titanium nitride pinned austenitic grain structure |
GB2302334B (en) * | 1995-06-15 | 1999-10-06 | Finkl & Sons Co | Dual purpose steel and products produced therefrom |
US6478898B1 (en) * | 1999-09-22 | 2002-11-12 | Sumitomo Metal Industries, Ltd. | Method of producing tool steels |
DE10111304C2 (en) * | 2001-03-09 | 2003-03-20 | Buderus Edelstahlwerke Ag | Process for the production of tubes for heavy guns |
-
2004
- 2004-06-01 JP JP2004163638A patent/JP4332070B2/en not_active Expired - Fee Related
-
2005
- 2005-05-24 DE DE602005015383T patent/DE602005015383D1/en active Active
- 2005-05-24 EP EP05011252A patent/EP1602742B1/en not_active Not-in-force
- 2005-05-24 ES ES05011252T patent/ES2328365T3/en active Active
- 2005-05-27 KR KR1020050044894A patent/KR100721645B1/en active IP Right Grant
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4597233B2 (en) * | 2008-09-19 | 2010-12-15 | 株式会社日立製作所 | Generator rotor shaft material |
JP2010070813A (en) * | 2008-09-19 | 2010-04-02 | Hitachi Ltd | Shaft material of rotor in electric generator |
JP2010248540A (en) * | 2009-04-10 | 2010-11-04 | Kobe Steel Ltd | Integrated crankshaft and method for manufacturing the same |
JP2010270390A (en) * | 2009-04-23 | 2010-12-02 | Kobe Steel Ltd | Steel forging and crankshaft |
EP2671963A1 (en) | 2012-06-06 | 2013-12-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength large steel forging |
JP2014227608A (en) * | 2013-05-21 | 2014-12-08 | ゼネラル・エレクトリック・カンパニイ | Martensitic alloy component and process of forming martensitic alloy component |
EP2806040B1 (en) * | 2013-05-21 | 2018-04-18 | General Electric Company | A martensitic alloy component and process of forming a martensitic alloy component |
JP2014227573A (en) * | 2013-05-22 | 2014-12-08 | 株式会社日本製鋼所 | High strength steel having excellent high-pressure hydrogen environment embrittlement resistance properties and production method therefor |
JP2015190040A (en) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | Low alloy steel for steel forging and crank shaft |
KR101775816B1 (en) | 2015-02-06 | 2017-09-06 | 가부시키가이샤 고베 세이코쇼 | Large-sized forging steel and large-sized forged part |
KR20180099865A (en) | 2016-01-08 | 2018-09-05 | 가부시키가이샤 고베 세이코쇼 | Large crankshaft |
KR20180102166A (en) | 2016-01-18 | 2018-09-14 | 가부시키가이샤 고베 세이코쇼 | Forged steel and forged steel |
KR102113459B1 (en) | 2016-01-18 | 2020-05-21 | 가부시키가이샤 고베 세이코쇼 | Forging steel and large forged products |
WO2017126239A1 (en) * | 2016-01-19 | 2017-07-27 | 株式会社神戸製鋼所 | High strength forged steel and large forged component |
KR20180102167A (en) | 2016-01-19 | 2018-09-14 | 가부시키가이샤 고베 세이코쇼 | High strength forgings and large forged parts |
CN105755236A (en) * | 2016-03-07 | 2016-07-13 | 江苏大学 | Method for improving low temperature impact toughness of 35CrNi3MoV steel forgings |
JP2020015927A (en) * | 2018-07-23 | 2020-01-30 | 山陽特殊製鋼株式会社 | Alloy steel for mechanical structure excellent in impact resistance |
JP7176877B2 (en) | 2018-07-23 | 2022-11-22 | 山陽特殊製鋼株式会社 | Alloy steel for machine structural use with excellent impact resistance |
Also Published As
Publication number | Publication date |
---|---|
JP4332070B2 (en) | 2009-09-16 |
KR100721645B1 (en) | 2007-05-23 |
EP1602742A1 (en) | 2005-12-07 |
EP1602742B1 (en) | 2009-07-15 |
DE602005015383D1 (en) | 2009-08-27 |
KR20060046214A (en) | 2006-05-17 |
ES2328365T3 (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4332070B2 (en) | High strength steel and crankshaft for large steel products | |
JP5064060B2 (en) | Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof | |
JP5331698B2 (en) | Steel wire for spring with high strength and toughness excellent in cold workability, method for producing the steel wire, and method for producing a spring with the steel wire | |
JP2007177317A (en) | Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same | |
JP5563926B2 (en) | Mechanical structural steel suitable for friction welding and friction welding parts with excellent impact and bending fatigue properties | |
JP4957325B2 (en) | Non-tempered steel | |
JP5859384B2 (en) | Large high strength forged steel | |
JP5319374B2 (en) | Integrated crankshaft and manufacturing method thereof | |
JPH08283910A (en) | Steel material for induction hardened shaft parts, combining cold workability with torsional fatigue strength characteristic | |
KR101639166B1 (en) | Non-heat treated steel and manufacturing method thereof | |
JP4752800B2 (en) | Non-tempered steel | |
JP3896365B2 (en) | High strength forging steel and large crankshaft using the same | |
JP4773118B2 (en) | Crankshaft with excellent bending fatigue strength | |
JPH1129842A (en) | Ferrite-pearlite type non-heat treated steel | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP4773106B2 (en) | Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts | |
JP3663170B2 (en) | High-strength forging steel and large crankshaft for ships using the same | |
KR20180067252A (en) | High strength steel wire rod having excellent corrosion resistance for spring, and method for manufacturing the same | |
WO2008075889A1 (en) | Ultra high strength carburizing steel with high fatigue resistance | |
WO2005100626A1 (en) | Crankshaft excellent in flexural fatigue strength | |
JP3687275B2 (en) | Non-tempered steel for induction hardening | |
JP4319940B2 (en) | High carbon steel plate with excellent workability, hardenability and toughness after heat treatment | |
KR101412243B1 (en) | Non-heat treated steel and method of manufacturing the non-heat treated steel | |
JP6939835B2 (en) | Carburizing member | |
JP2004197213A (en) | Steel sheet to be hot-formed superior in hardenability after high-temperature forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4332070 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |