[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005341301A - Double eye imaging device - Google Patents

Double eye imaging device Download PDF

Info

Publication number
JP2005341301A
JP2005341301A JP2004158160A JP2004158160A JP2005341301A JP 2005341301 A JP2005341301 A JP 2005341301A JP 2004158160 A JP2004158160 A JP 2004158160A JP 2004158160 A JP2004158160 A JP 2004158160A JP 2005341301 A JP2005341301 A JP 2005341301A
Authority
JP
Japan
Prior art keywords
eye
group
lens
imaging
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004158160A
Other languages
Japanese (ja)
Inventor
Satoru Hirose
悟 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004158160A priority Critical patent/JP2005341301A/en
Publication of JP2005341301A publication Critical patent/JP2005341301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double eye imaging device capable of ensuring a visual field for each eye without making an imaging element large in size or reduced in the degree of freedom of imaging. <P>SOLUTION: Respective eyes are composed of a front group 3 and a rear group 4, any one of the front group 3 and the rear group 4 is defined as a lens group having a positive refraction power and the other group is defined as a lens group having a negative refraction power. For each telescope eye P1 and each middle telescope eye P2, the lens group having the positive refraction power is disposed in the front group and the lens group having the negative refraction power is disposed in the rear group so that a length of each eye is shortened. For each wide angle eye P3, the lens group having the negative refraction power is disposed in the front group and the lens group having the positive refraction power is disposed in the rear group, so that a length of each eye is extended. Thus, the eyes are positioned closer to each other in the direction of optical axis on a first plane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の個眼を相互に並列に配置してなる複眼撮像装置に関する。   The present invention relates to a compound eye imaging apparatus in which a plurality of individual eyes are arranged in parallel with each other.

従来、複数の個眼を相互に並列に配置してなる複眼撮像装置が知られており、かかる装置に関する技術文献として例えば下記特許文献1がある。   2. Description of the Related Art Conventionally, a compound-eye imaging device in which a plurality of individual eyes are arranged in parallel with each other is known.

下記特許文献1には、監視カメラなどで、広い範囲を撮像し、且つ中心部の解像度をあげることを目的として、焦点距離の異なる複数のレンズを並列に配置し、中心部より周辺部の撮影領域を大きくする技術が開示されている。
特開2002−171447号公報
In Patent Document 1 below, a plurality of lenses having different focal lengths are arranged in parallel to capture a wide range with a monitoring camera or the like and increase the resolution of the central portion, and photographing the peripheral portion from the central portion. A technique for increasing the area is disclosed.
JP 2002-171447 A

ところで、一般的に、レンズは、焦点距離が大きくなるほど光軸方向の長さが大きくなる。したがって、複眼撮像装置において、各個眼をそれぞれ焦点距離の異なる単体のレンズで構成する場合、焦点距離が比較的大きく異なるレンズを隣接させたときに、焦点距離が大きい方のレンズの存在が、焦点距離が小さい方のレンズの視野を遮ることがある。   By the way, in general, the length of the lens increases in the optical axis direction as the focal length increases. Therefore, in a compound eye imaging device, when each eye is composed of a single lens having a different focal length, the presence of a lens having a larger focal length is caused by the presence of a lens having a larger focal length. It may block the field of view of the lens with the smaller distance.

このような不具合の発生を防止する方法として、例えば、隣接するレンズ(個眼)間の距離を大きくとる方法や、焦点距離が小さい方のレンズの視野を予め制限したり、光束が該レンズを透過するときの透過口径(開口径)を小さくしたりする方法が考えられる。   As a method for preventing the occurrence of such a problem, for example, a method of increasing the distance between adjacent lenses (single eyes), a field of view of a lens having a smaller focal length, or a light flux that passes through the lens. A method of reducing the transmission aperture diameter (opening diameter) when transmitting is conceivable.

しかしながら、隣接するレンズ(個眼)間の距離を大きくとる前者の方法では、撮像素子の大型化を招来することとなり、また、焦点距離が小さい方のレンズの視野を予め制限する等の後者の方法では、撮像面での光量が少なくなるため、特に暗い環境下における撮影の自由度(撮影可能な暗さの限度)が低下することとなる。   However, the former method that increases the distance between adjacent lenses (single eyes) leads to an increase in the size of the image sensor, and the latter method such as limiting the field of view of the lens with the smaller focal length in advance. In the method, since the amount of light on the imaging surface is reduced, the degree of freedom of photographing (the limit of darkness that can be photographed) is reduced particularly in a dark environment.

本発明は、上記事情に鑑みてなされたもので、撮像素子の大型化や撮影自由度の低下等を招来することなく、各個眼の視野を確保することのできる複眼撮像装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a compound-eye imaging device that can secure the field of view of each individual eye without causing an increase in the size of the imaging element, a reduction in the degree of freedom of imaging, or the like. Objective.

請求項1に記載の発明は、被写体の光像を撮像する撮像部を備えるとともに、前記撮像部の撮像領域を複数に分割してなる分割領域にそれぞれ被写体の光像を結像すべく個眼が相互に並列に配置された複眼撮像装置であって、前記複数の個眼のうち少なくとも一の個眼は、正の屈折力を有する第1の光学系と、負の屈折力を有する第2の光学系とを有して構成されていることを特徴とするものである。   The invention according to claim 1 includes an imaging unit that captures an optical image of a subject, and a single eye to form an optical image of the subject in each of divided areas obtained by dividing the imaging region of the imaging unit into a plurality of areas. Are arranged in parallel with each other, and at least one of the plurality of eyes has a first optical system having a positive refractive power and a second having a negative refractive power. And an optical system.

請求項2に記載の発明は、請求項1に記載の複眼撮像装置において、焦点距離の異なる2の隣接する個眼に着目した場合において、焦点距離が小さい方の個眼における最も対物側に位置するレンズの対物側の面から撮像面までの距離をDa、焦点距離が大きい方の個眼における最も対物側に位置するレンズの対物側の面から撮像面までの距離をDbと表すとき、距離Da,Dbは下記式(1)を満たすことを特徴とするものである。
Db<Da+(Yc−Ha1)×(fa/Yc) ・・・(1)
ただし、Ycは、焦点距離が小さい方の個眼に対応する分割領域の中央から該領域に隣接する分割領域との境界までの最短距離、Ha1は、焦点距離が小さい方の個眼に隣接する個眼が無いと仮定した場合に、当該個眼を通過する光線のうち最も外側の光線が当該個眼における前記最も対物側に位置するレンズに入射する位置と当該個眼の光軸との最短距離、θは、前記最も外側の光線と当該個眼の光軸となす角度
請求項3に記載の発明は、請求項2に記載の複眼撮像装置において、被写体が無限遠にあるとき、前記式(1)は、次式(2)に置換することができることを特徴とするものである。
Db<Da+(Yc−Ha1)×(fa/Yc) ・・・(2)
ただし、faは、焦点距離が小さい方の個眼の焦点距離
The invention according to claim 2 is the compound-eye imaging apparatus according to claim 1, wherein when focusing on two adjacent single eyes having different focal lengths, the position of the single eye with the smaller focal length is located closest to the object side. When the distance from the objective side surface of the lens to the imaging surface to the imaging surface is Da, and the distance from the objective side surface of the lens located closest to the objective side to the imaging surface in the single eye with the larger focal length is represented as Db, the distance Da and Db satisfy the following formula (1).
Db <Da + (Yc−Ha1) × (fa / Yc) (1)
However, Yc is the shortest distance from the center of the divided area corresponding to the individual eye with the smaller focal distance to the boundary with the divided area adjacent to the area, and Ha1 is adjacent to the individual eye with the smaller focal distance. Assuming that there is no single eye, the shortest distance between the position at which the outermost light ray that passes through the single eye enters the lens located on the most objective side of the single eye and the optical axis of the single eye The distance, θ is an angle formed by the outermost light beam and the optical axis of the individual eye. The invention according to claim 3, wherein the subject is at infinity when the subject is at infinity. (1) is characterized in that it can be replaced by the following formula (2).
Db <Da + (Yc−Ha1) × (fa / Yc) (2)
Where fa is the focal length of the individual eye with the smaller focal length.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の複眼撮像装置において、前記第1、第2の光学系の焦点距離f1,f2及びこの第1、第2の光学系の主点間距離dとの関係は、前記第1、第2の光学系に対し光軸に沿う一方向を正としたとき、下記式(3)を満たすことを特徴とするものである。
−2<(f1+f2)/d<2 ・・・(3)
According to a fourth aspect of the present invention, in the compound eye imaging device according to any one of the first to third aspects, the focal lengths f1 and f2 of the first and second optical systems and the first and second optical systems. The relationship between the principal point distance d and the first optical system satisfies the following formula (3) when one direction along the optical axis is positive with respect to the first and second optical systems.
-2 <(f1 + f2) / d <2 (3)

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の複眼撮像装置において、前記第1、第2の光学系は、それぞれ1のレンズで構成されていることを特徴とする。   According to a fifth aspect of the present invention, in the compound-eye imaging device according to any one of the first to fourth aspects, the first and second optical systems are each composed of one lens. .

請求項1に記載の発明によれば、複数の個眼のうち少なくとも一の個眼は、正の屈折力を有する第1の光学系と、負の屈折力を有する第2の光学系とを有して構成するので、従来では全長が比較的長かった個眼についてはその全長を短くしたり、逆に、従来では全長が比較的短かった個眼についてはその全長を長くしたりして、各個眼の最も対物側のレンズの位置を光軸方向に近くすることが可能となる。その結果、撮像素子の大型化や撮影自由度の低下等を招来することなく、隣接する個眼の視野を遮るのを防止又は抑制することが可能となる。   According to the first aspect of the present invention, at least one of the plurality of eyes includes a first optical system having a positive refractive power and a second optical system having a negative refractive power. Since it is configured, it has been shortened for a single eye that has been relatively long in the past, or conversely, it has been lengthened for a single eye that has been relatively short in the past, The position of the lens on the most objective side of each individual eye can be made closer to the optical axis direction. As a result, it is possible to prevent or suppress blocking of the field of view of adjacent single eyes without causing an increase in the size of the image sensor or a reduction in the degree of freedom in photographing.

請求項2に記載の発明によれば、前記式(2)を満たすように、距離Da,Dbを設定することにより、焦点距離が大きい方の個眼が焦点距離が小さい方の個眼の視野を確実に遮るのを防止することができる。   According to the second aspect of the present invention, by setting the distances Da and Db so as to satisfy the formula (2), the visual field of the single eye having the larger focal length is smaller than that of the individual eye having the smaller focal length. Can be reliably prevented.

その際、請求項3に記載の発明のように、被写体が無限遠にあるときには、前記式(1)は、Db<Da+(Yc−Ha1)×(fa/Yc)に置換することができる。   At that time, as in the third aspect of the invention, when the subject is at infinity, the equation (1) can be replaced with Db <Da + (Yc−Ha1) × (fa / Yc).

また、請求項4に記載の発明のように、第1、第2の光学系の焦点距離f1,f2及びこの第1、第2の光学系の主点間距離dとの関係は、第1、第2の光学系に対し光軸に沿う一方向を正としたとき、−2<(f1+f2)/d<2を満たすように各光学系を設計すればよい。   As in the fourth aspect of the invention, the relationship between the focal lengths f1 and f2 of the first and second optical systems and the distance d between the principal points of the first and second optical systems is as follows. Each optical system may be designed to satisfy −2 <(f1 + f2) / d <2 when one direction along the optical axis is positive with respect to the second optical system.

請求項5に記載の発明によれば、第1、第2の光学系をそれぞれ1のレンズで構成するので、複眼撮像装置の構成が比較的簡単なものとなり、複眼撮像装置の大型化やコストアップが抑制される。   According to the fifth aspect of the present invention, each of the first and second optical systems is composed of one lens, so that the configuration of the compound-eye imaging device is relatively simple, and the size and cost of the compound-eye imaging device are increased. Up is suppressed.

図1は、本発明に係る複眼撮像装置の一実施形態の構成を示す図である。   FIG. 1 is a diagram showing a configuration of an embodiment of a compound eye imaging apparatus according to the present invention.

図1に示すように、複眼撮像装置1は、撮像素子2と、前群3と、後群4と、隔壁5と、分光フィルタ6と、画像処理部7とを有してなる。   As shown in FIG. 1, the compound-eye imaging device 1 includes an imaging device 2, a front group 3, a rear group 4, a partition wall 5, a spectral filter 6, and an image processing unit 7.

撮像素子2は、撮像部2a(画素)が2次元的に配置されてなるCCDやCMOS等であり、得られた画像信号を画素ごとに外部に出力するものである。図2は、撮像素子2の撮像領域(撮像面)を示す図である。撮像素子2は、図2に示すように、撮像領域が仮想的にマトリックス状に等分割(本実施形態では、縦横3×3)されている。以下、分割されてなる各撮像領域を分割撮像領域S1〜S9という。   The image pickup device 2 is a CCD, CMOS, or the like in which the image pickup unit 2a (pixel) is two-dimensionally arranged, and outputs the obtained image signal to the outside for each pixel. FIG. 2 is a diagram illustrating an imaging region (imaging surface) of the imaging device 2. As shown in FIG. 2, the imaging device 2 has an imaging region virtually divided equally in a matrix (in this embodiment, vertical and horizontal 3 × 3). Hereinafter, the divided imaging regions are referred to as divided imaging regions S1 to S9.

後述するように、本実施形態では、各分割撮像領域S1〜S9に対して、それぞれ1組の前群3及び後群4が対応付けられており、各分割撮像領域S1〜S9には、それぞれ対応する前群3及び後群4により被写体の光像が結像される。   As will be described later, in the present embodiment, one set of the front group 3 and the rear group 4 is associated with each of the divided imaging areas S1 to S9, and each of the divided imaging areas S1 to S9 is associated with each of the divided imaging areas S1 to S9. The corresponding front group 3 and rear group 4 form an optical image of the subject.

前群3及び後群4は、例えば、ガラスレンズ、樹脂レンズ、回折格子、液晶レンズ等の複数の光学素子からなり、各分割撮像領域S1〜S9に対応して、前群3の1の光学素子(レンズ)と、後群4の1の光学素子(レンズ)とが対向関係になるように構成(光学系が構成)されている。以下、各分割撮像領域S1〜S9に被写体の光像を結像するための、1組の前群3及び後群4を含んでなる構成をそれぞれ個眼という。本実施形態では、各個眼がいずれも複数枚のレンズを備えている場合を例示しており、また、前群3及び後群4を一体成型タイプのレンズとする(図6参照)ことで、全ての個眼が同一の材質で構成されている場合を例示している。なお、本実施形態では、各個眼の前群3及び後群4は、複眼撮像装置1の構成を簡素化するため、それぞれ1枚のレンズで構成されているが、複数枚のレンズで構成してもよい。   The front group 3 and the rear group 4 are composed of, for example, a plurality of optical elements such as a glass lens, a resin lens, a diffraction grating, and a liquid crystal lens, and one optical element of the front group 3 corresponds to each divided imaging region S1 to S9. The element (lens) and one optical element (lens) of the rear group 4 are configured to face each other (optical system is configured). Hereinafter, a configuration including a set of the front group 3 and the rear group 4 for forming an optical image of a subject in each of the divided imaging regions S1 to S9 is referred to as a single eye. In the present embodiment, the case where each individual eye is provided with a plurality of lenses is illustrated, and the front group 3 and the rear group 4 are integrally molded lenses (see FIG. 6). The case where all the single eyes are comprised with the same material is illustrated. In the present embodiment, the front group 3 and the rear group 4 of each individual eye are each configured with one lens in order to simplify the configuration of the compound-eye imaging device 1, but are configured with a plurality of lenses. May be.

図2に示すように、各個眼は、分割撮像領域S1〜S9の各中心を通る法線をそれぞれ考えた場合に、光軸が前記法線と略一致するように配置されている。本実施形態においては、倍率の異なる複数種類の画像(広角の画像や高解像度の画像)を得るため、各個眼の焦点距離はすべて同一とされておらず、数個単位で異なるものとされている。   As shown in FIG. 2, each individual eye is arranged so that the optical axis substantially coincides with the normal line when considering normal lines passing through the centers of the divided imaging regions S <b> 1 to S <b> 9. In this embodiment, in order to obtain a plurality of types of images with different magnifications (wide-angle images and high-resolution images), the focal lengths of the individual eyes are not all the same, but are different in units of several. Yes.

例えば図2に示すように、横方向に並ぶ複数の個眼は、焦点距離が全て同一とされている。また、縦方向に並ぶ複数の個眼は、焦点距離が互いに異なっており、最上列に位置する個眼は焦点距離が最も大きく(以下、望遠用の個眼という)、最下列に位置する個眼は焦点距離が最も小さく(以下、広角用の個眼という)、中央列に位置する個眼は、望遠用の個眼と広角用の個眼との中間の焦点距離を有している。図2では、これを、望遠「Tele」を示す「T」、中望遠「Middle」を示す「M」、広角「Wide」を示す「W」で表している。なお、本実施形態においては、各個眼の前群3及び後群4は、前群3が隔壁5の端部に位置するように、隔壁5に支持されている。   For example, as shown in FIG. 2, the plurality of single eyes arranged in the horizontal direction have the same focal length. In addition, the plurality of single eyes arranged in the vertical direction have different focal lengths, and the single eye located in the uppermost row has the largest focal length (hereinafter referred to as a telephoto single eye) and is located in the lowermost row. The eye has the shortest focal length (hereinafter referred to as a wide-angle single eye), and the single eye located in the center row has an intermediate focal length between the telephoto single eye and the wide-angle single eye. In FIG. 2, this is represented by “T” for telephoto “Tele”, “M” for medium telephoto “Middle”, and “W” for wide-angle “Wide”. In the present embodiment, the front group 3 and the rear group 4 of each individual eye are supported by the partition wall 5 so that the front group 3 is located at the end of the partition wall 5.

隔壁5は、各個眼を透過した光が1つの撮像領域にのみ到達し、他の個眼を通過した光の入射を遮断すべくフードとして機能するものである。   The partition wall 5 functions as a hood so that the light transmitted through each individual eye reaches only one imaging region and blocks the incidence of light passing through the other individual eyes.

隔壁5は、格子状に形成されており、撮像素子2と個眼との間に配置されている。隔壁5は、例えば200μmの板厚を有する金属板(例えばステンレス板)に対し各個眼を透過した光を通過させるための穴をレーザ加工により開けたり、あるいは光硬化樹脂を用いて成型したりすることによって構成される。隔壁5の厚さは例えば20μmに形成されるとともに、隔壁5の格子の4つの内周面は、光を反射しないように平滑でない黒色に塗装されている。   The partition walls 5 are formed in a lattice shape, and are disposed between the image sensor 2 and the individual eyes. The partition wall 5 is formed by, for example, forming a hole for allowing light transmitted through each eye to pass through a metal plate (for example, a stainless steel plate) having a thickness of 200 μm by laser processing or molding it using a photo-curing resin. Consists of. The partition wall 5 is formed to have a thickness of 20 μm, for example, and the four inner peripheral surfaces of the lattice of the partition wall 5 are painted in black so as not to reflect light.

分光フィルタ6は、被写体からの光を異なる波長の光(本実施形態では、R(赤)、G(緑)、B(青))に分光するものであり、図2に示すように、縦方向に並ぶ複数の分割撮像領域に対しては同一の光透過特性を有する分光フィルタが挿入され、横方向に並ぶ複数の分割撮像領域に対しては異なる波長の光(R(赤)、G(緑)、B(青))を導くように光透過特性の異なる分光フィルタが挿入されている。   The spectral filter 6 separates light from the subject into light of different wavelengths (in this embodiment, R (red), G (green), and B (blue)). As shown in FIG. Spectral filters having the same light transmission characteristics are inserted into a plurality of divided imaging regions arranged in the direction, and light of different wavelengths (R (red), G ( Spectral filters having different light transmission characteristics are inserted so as to guide green) and B (blue)).

なお、この分光フィルタは、色素を用いたものでも、干渉原理を用いたものでも採用可能である。また、分光フィルタ6の透過色は、統合してカラー画像を合成できるものであれば、R(赤)、G(緑)、B(青)の原色に限定されるものではなく、例えばC(シアン)、M(マゼンタ)、Y(イエロー)の補色でもよい。   This spectral filter can be either a dye using a dye or an interference principle. Further, the transmission color of the spectral filter 6 is not limited to primary colors of R (red), G (green), and B (blue) as long as it can combine and synthesize a color image. Cyan), M (magenta), and Y (yellow) complementary colors may be used.

画像処理部7は、中央演算装置としてのCPU(Central Processing Unit)を有してなり、撮像素子2の光電変換作用により得られた画素信号に基づき、所定の画像処理を行うものである。   The image processing unit 7 has a central processing unit (CPU) as a central processing unit, and performs predetermined image processing based on pixel signals obtained by the photoelectric conversion action of the image sensor 2.

次に、本実施形態の複眼撮像装置1における特徴部分を説明する。   Next, the characteristic part in the compound eye imaging device 1 of this embodiment is demonstrated.

本実施形態では、各個眼を前群3と後群4とで構成している旨前述したが、仮に、この個眼を1のレンズ(単体)で構成しようとすると、焦点距離の大きい個眼ほど光軸方向に長くなる。そのため、焦点距離の大きい個眼の存在が、焦点距離の小さい個眼の視野に入り、その視野を阻害する虞がある。   In the present embodiment, it has been described above that each individual eye is configured by the front group 3 and the rear group 4. However, if this individual eye is configured by one lens (single unit), a single eye having a large focal length. It becomes longer in the optical axis direction. For this reason, the presence of a single eye with a large focal length may enter the field of view of a single eye with a small focal length and hinder the visual field.

図3は、焦点距離の大きい個眼の存在が焦点距離の小さい個眼の視野を阻害している状態を示す図であり、前記望遠用の個眼P1、中望遠用の個眼P2及び広角用の個眼P3を仮に1のレンズで構成した場合の各レンズの配置状態を示している。望遠用の個眼の前端が例えば図3に示す位置R1に位置するものとすると、中望遠用の個眼の前端位置R2は、望遠用の個眼の前端位置R1より撮像素子2側に位置し、広角用の個眼の前端位置R3は、中望遠用の個眼の前端位置R2より撮像素子2側に位置する。   FIG. 3 is a diagram illustrating a state in which the presence of a single eye with a large focal length obstructs the visual field of a single eye with a small focal length, and the single eye P1 for telephoto, the single eye P2 for medium telephoto, and the wide angle. The arrangement | positioning state of each lens at the time of comprising the individual eye P3 for 1 temporarily with one lens is shown. If the front end of the telephoto eye is located at, for example, the position R1 shown in FIG. 3, the front end position R2 of the medium telephoto eye is located closer to the image sensor 2 than the front end position R1 of the telephoto eye. The wide-angle single-eye front end position R3 is positioned closer to the image sensor 2 than the front-end position R2 of the medium telephoto single-eye.

そして、各個眼P1〜P3の視野をφ1〜φ3で表すと、望遠用の個眼P1の長さが中望遠用の個眼P2に比して長いために、中望遠用の個眼P2の視野φ2内に望遠用の個眼P1の存在が入り、また、中望遠用の個眼P2の長さが広角用の個眼P3に比して長いために、広角用の個眼P3の視野φ3内に中望遠用の個眼P2の存在が入り、中望遠用及び広角用の個眼P2,P3の視野が、焦点距離のより大きな隣接する個眼によって阻害されることとなる。   When the visual field of each individual eye P1 to P3 is represented by φ1 to φ3, the length of the telephoto individual eye P1 is longer than that of the medium telephoto individual eye P2. The presence of the telephoto individual eye P1 enters the field of view φ2, and the length of the medium telephoto individual eye P2 is longer than that of the wide-angle individual eye P3. The presence of the medium telephoto eye P2 enters φ3, and the visual fields of the medium telephoto and wide-angle eye P2 and P3 are obstructed by the adjacent eyes having a larger focal length.

そこで、本実施形態では、このような不具合を解消又は抑制するため、正の屈折力を有するレンズ群と負の屈折力を有するレンズ群とを適切に組み合わせて配置することで個眼の長さ(被写体側の面(以下、第1面という)から撮像面までの距離)を変えることができることから、図4に示すように、各個眼を、前群3と後群4とで構成し、且つ前群3及び後群4のうちいずれか一方を正の屈折力を有するレンズ群とし、他方を負の屈折力を有するレンズ群としている。   Therefore, in this embodiment, in order to eliminate or suppress such a problem, the length of the individual eye is obtained by appropriately combining a lens group having a positive refractive power and a lens group having a negative refractive power. Since the distance from the subject side surface (hereinafter referred to as the first surface) to the imaging surface can be changed, each individual eye is composed of a front group 3 and a rear group 4, as shown in FIG. One of the front group 3 and the rear group 4 is a lens group having a positive refractive power, and the other is a lens group having a negative refractive power.

本実施形態では、図4に示すように、望遠用の個眼P1及び中望遠用の個眼P2については、前群に正の屈折力を有するレンズ群を、後群に負の屈折力を有するレンズ群を配置する。具体的には、望遠用の個眼P1には、前群に平凹レンズP11を、後群に両凹レンズP12を配置し、中望遠用の個眼P2には、前群に正メニスカスレンズP21を、後群に負メニスカスレンズP22を配置する。   In the present embodiment, as shown in FIG. 4, for the telephoto single eye P1 and the medium telephoto single eye P2, a lens group having a positive refractive power is provided in the front group, and a negative refractive power is provided in the rear group. The lens group which has is arrange | positioned. Specifically, the telephoto single eye P1 includes a plano-concave lens P11 in the front group and a biconcave lens P12 in the rear group, and the middle telephoto eye P2 has a positive meniscus lens P21 in the front group. The negative meniscus lens P22 is disposed in the rear group.

これにより、望遠用の個眼P1及び中望遠用の個眼P2については、個眼の長さを短くすることができる。例えば望遠用の個眼P1について、該個眼P1を1のレンズで構成した場合に、説明の簡単化のため個眼の長さを撮像面から前記第1面までの距離と近似すると、図4(b)に示すように個眼P1の長さをLと表したとき、前述のように前群に正の屈折力を有するレンズ群を、後群に負の屈折力を有するレンズ群を配置することで、図4(c)に示すように個眼P1の長さをL’(<L)にすることができる。   As a result, the length of the single eye can be shortened for the single eye P1 for telephoto and the single eye P2 for medium telephoto. For example, when the individual eye P1 is configured with one lens for the telephoto individual eye P1, the length of the individual eye is approximated to the distance from the imaging surface to the first surface for simplicity of explanation. When the length of the individual eye P1 is expressed as L as shown in FIG. 4B, a lens group having a positive refractive power in the front group and a lens group having a negative refractive power in the rear group as described above. By arranging, the length of the individual eye P1 can be set to L ′ (<L) as shown in FIG.

一方、広角用の個眼P3については、前群に負の屈折力を有するレンズ群を、後群に正の屈折力を有するレンズ群を配置する。具体的には、広角用の個眼P3には、前群に負メニスカスレンズP31を、後群に両凸レンズP32を配置する。   On the other hand, for the wide-angle individual eye P3, a lens group having negative refractive power is arranged in the front group, and a lens group having positive refractive power is arranged in the rear group. Specifically, a negative meniscus lens P31 is disposed in the front group and a biconvex lens P32 is disposed in the rear group in the wide-angle individual eye P3.

これにより、広角用の個眼P3においては、個眼の長さを長くすることができる。   Thereby, in the single eye P3 for wide angles, the length of a single eye can be lengthened.

以上の結果、各個眼における前記第1面の光軸方向における位置が互いに近くなり、中望遠用の個眼P2については、望遠用の個眼P1の存在によって視野が遮られるのを防止又は抑制することができるとともに、広角用の個眼P3については、中望遠用の個眼P2の存在によって視野が遮られるのを防止又は抑制することができる。   As a result, the positions in the optical axis direction of the first surface in each individual eye are close to each other, and the middle telephoto individual eye P2 is prevented or suppressed from being obstructed by the presence of the telephoto individual eye P1. In addition, the wide-angle single eye P3 can be prevented or suppressed from being blocked by the presence of the medium telephoto single eye P2.

次に、図2において上下方向に隣接する個眼の存在によって視野が遮られない条件を求める。図5は、この条件の導出方法を説明するための説明図である。   Next, in FIG. 2, a condition is obtained in which the field of view is not obstructed by the presence of individual eyes adjacent in the vertical direction. FIG. 5 is an explanatory diagram for explaining a method for deriving this condition.

図5に示すように、レンズa,b(レンズbは、焦点距離が大きい方の個眼のレンズである)を、隣接する各個眼における最も被写体側に位置するレンズとし、各レンズa,bの第1面の位置から撮像面までの距離をDa,Dbと、レンズaを含んで構成される個眼(以下、注目個眼という)とレンズbを含んで構成される個眼(以下、隣接個眼という)との境界面をMと表す。また、点Aは、焦点距離が小さい方の個眼に隣接する個眼が無いと仮定した場合に、当該個眼を通過する光線のうち最も外側の光線(以下、注目光線という)が当該個眼における前記最も対物側に位置するレンズaに入射する位置であり、レンズaに入射する前のその注目光線と前記境界面Mとが交差する点をB(交点Bという)、それらの交差角をθ1(レンズaに入射する前の注目光線と光軸Lbとの成す角度に等しい)と表す。 As shown in FIG. 5, the lenses a and b (the lens b is a single-lens lens having a larger focal length) are the lenses positioned closest to the subject in each adjacent eye, and each lens a and b The distance from the position of the first surface to the imaging surface is Da, Db, a single eye configured to include the lens a (hereinafter referred to as a focused single eye), and a single eye configured to include the lens b (hereinafter referred to as the single eye). The boundary surface with the adjacent single eye is denoted by M. Further, when it is assumed that there is no single eye adjacent to the single eye having a smaller focal length, the point A is the outermost light ray (hereinafter referred to as a noticed light ray) among the light rays passing through the single eye. B is a position that is incident on the lens a located closest to the objective side in the eye, and the target ray before entering the lens a intersects the boundary surface M (referred to as an intersection B), and their intersection angle. Is represented by θ 1 (equal to the angle formed between the light beam of interest before entering the lens a and the optical axis Lb).

レンズaに入射する前におけるその注目光線と前記境界面Mとの交点Bが、隣接個眼におけるレンズbの第1面の位置より前に位置していれば、隣接個眼の存在によって注目個眼の視野が遮られないと考えられる。   If the intersection B between the target ray and the boundary surface M before entering the lens a is located before the position of the first surface of the lens b in the adjacent single eye, the target individual is present due to the presence of the adjacent single eye. It is thought that the visual field of the eye is not obstructed.

そこで、注目個眼の焦点距離をfa、像高をYc、点Bと注目個眼の光軸Lbとの最短距離をHa1と表すと、図5から、交点Bから境界面Mへの垂線の長さは(Yc−Ha1)となるから、その垂線と境界面Mとの交点Hから交点Bまでの距離xは、
(Yc−Ha1)=x・tanθ1より
x=(Yc−Ha1)×(1/tanθ1) ・・・(4)
となる。
Therefore, if the focal distance of the focused individual eye is represented by fa, the image height is represented by Yc, and the shortest distance between the point B and the optical axis Lb of the focused individual eye is represented by Ha1, a perpendicular line from the intersection B to the boundary surface M is obtained from FIG. Since the length is (Yc−Ha1), the distance x from the intersection H of the perpendicular and the boundary surface M to the intersection B is
From (Yc−Ha1) = x · tan θ 1
x = (Yc−Ha1) × (1 / tan θ 1 ) (4)
It becomes.

一方、像高Ycは、前記注目光線と同一の点から出射される光線のうち注目個眼の光軸Lbとレンズaの前面との交点を通る光線と光軸Lbとのなす角度θ2と焦点距離faとを用いて、Yc=fa・tanθ2と表すことができることから、
tanθ2=Yc/fa ・・・(5)
そして、被写体が無限遠にあるとき、入射角度θ1≒θ2となるから、前記式(4)は、前記式(5)を用いて
x=(Yc−Ha1)×(fa/Yc) ・・・(4’)
と置換することができる。
On the other hand, the image height Yc is an angle θ 2 formed by a light beam passing through the intersection of the optical axis Lb of the target individual eye and the front surface of the lens a among the light beams emitted from the same point as the target light beam. Since it can be expressed as Yc = fa · tan θ 2 using the focal length fa,
tan θ 2 = Yc / fa (5)
Then, when the subject is at infinity, the incident angle θ 1 ≈θ 2 , so that the equation (4) is expressed by the equation (5).
x = (Yc−Ha1) × (fa / Yc) (4 ′)
Can be substituted.

したがって、撮像面から交点Bまでの距離Zは、
Z=Da+(Yc−Ha1)×(fa/Yc) ・・・(6)
と表すことができ、交点Bが、隣接個眼のレンズbの前面の位置より前に位置すればよいことから、
Db<Da+(Yc−Ha1)×(fa/Yc) ・・・(7)
となる。
Therefore, the distance Z from the imaging surface to the intersection B is
Z = Da + (Yc−Ha1) × (fa / Yc) (6)
Since the intersection point B only needs to be positioned before the position of the front surface of the lens b of the adjacent single eye,
Db <Da + (Yc−Ha1) × (fa / Yc) (7)
It becomes.

また、絞りをレンズa,bに対して光軸方向の被写体側に配置した場合、その注目個眼のFナンバーをFNoaと表すものとすると、前記式(7)は下記式(8)により式(9)に置換できる。   Further, when the diaphragm is disposed on the subject side in the optical axis direction with respect to the lenses a and b, the expression (7) is expressed by the following expression (8) when the F number of the focused individual eye is expressed as FNoa. (9) can be substituted.

FNoa=fa/2Ha1 ・・・(8)
Db<Da+(Yc−fa/2FNoa)×(fa/Yc) ・・・(9)
したがって、前記式(7)又は(9)を満たすようにレンズの設計等を行うことにより、隣接個眼が注目個眼の視野を遮るのを防止することができる。
FNoa = fa / 2Ha1 (8)
Db <Da + (Yc−fa / 2FNoa) × (fa / Yc) (9)
Therefore, by designing the lens so as to satisfy the formula (7) or (9), it is possible to prevent the adjacent single eye from blocking the visual field of the target single eye.

以上のように、各個眼を、前群3と後群4とで構成し、且つ前群3及び後群4のうちいずれか一方を正の屈折力を有するレンズ群とし、他方を負の屈折力を有するレンズ群として、各個眼の少なくとも前群のレンズについて光軸方向の位置を近づけるようにすることにより、撮像素子の大型化や撮影自由度の低下等を招来することなく、隣接個眼によって視野が遮られるのを防止又は抑制することができる。   As described above, each eye is composed of the front group 3 and the rear group 4, and one of the front group 3 and the rear group 4 is a lens group having a positive refractive power, and the other is a negative refraction. As a lens group having power, by making the position in the optical axis direction closer to the lens of at least the front group of each individual eye, the adjacent single eye without causing an increase in the size of the image pickup device or a decrease in the degree of freedom in photographing. Can prevent or suppress the obstruction of the visual field.

また、着目個眼と隣接個眼との関係が前記式(7)又は式(9)を満たすようにレンズの設計等を行うことにより、隣接個眼が注目個眼の視野を遮るのを確実に防止することができる。   Further, by designing the lens so that the relationship between the target single eye and the adjacent single eye satisfies the above formula (7) or formula (9), it is ensured that the adjacent single eye blocks the visual field of the target single eye. Can be prevented.

さらに、各個眼の少なくとも前群のレンズについて光軸方向の位置を近づけるように構成することにより、次のような利点がある。   Furthermore, by configuring at least the front lens group of each individual eye so that the positions in the optical axis direction are close to each other, there are the following advantages.

すなわち、各個眼の各前群を同一の材質で構成したり、各後群を同一の材質で構成したりして、各前群又は各後群を一体成型することを想定する。このとき、図3に示す構成にあっては、1のレンズで構成された各個眼P1〜P3について、隣接する個眼同士が位置的に光軸方向に重なっておらず、また、焦点距離の大きな個眼は光軸方向の突出量が大きく異なるため、これらレンズを一体成型することが困難であるが、本実施形態のように、各個眼の前群及び後群を光軸方向に隣接させることで、図6に示すように、各前群3や各後群4を一体成型することが比較的容易となる。その結果、成形性の向上、部品点数の低減及びコストダウンを図ることができる。   That is, it is assumed that each front group or each rear group is integrally formed by configuring each front group of each individual eye with the same material or configuring each rear group with the same material. At this time, in the configuration shown in FIG. 3, for each individual eye P <b> 1 to P <b> 3 configured by one lens, the adjacent individual eyes are not overlapped in the optical axis direction, and the focal length is Since the projection amount in the optical axis direction of a large individual eye is greatly different, it is difficult to integrally mold these lenses. However, as in this embodiment, the front group and the rear group of each individual eye are adjacent to each other in the optical axis direction. Thus, as shown in FIG. 6, it is relatively easy to integrally mold each front group 3 and each rear group 4. As a result, it is possible to improve moldability, reduce the number of parts, and reduce costs.

なお、本発明は、前記実施形態に加えて、あるいは前記実施形態に代えて次の形態(1)〜(6)に説明する変形形態も採用可能である。   In addition to the said embodiment, it can replace with the said embodiment and the deformation | transformation form demonstrated to the following form (1)-(6) is also employable for this invention.

(1)前記実施形態では、望遠用の個眼P1及び中望遠用の個眼P2については、前群に正の屈折力を有するレンズ群を、後群に負の屈折力を有するレンズ群を配置し、広角用の個眼P3においては、前群に負の屈折力を有するレンズ群を、後群に正の屈折力を有するレンズ群を配置するようにしたが、図7に示すように、例えば望遠用の個眼P1と中望遠用の個眼P2との関係に着目した場合に、望遠用の個眼P1について、前述のように前群に正の屈折力を有するレンズ群を、後群に負の屈折力を有するレンズ群を配置するだけで、各個眼における被写体側の面の光軸方向における位置が互いに近くなり、中望遠用の個眼P2の視野を確保することができるならば、中望遠用の個眼P2を異なる屈折力を有するレンズで構成しなくてもよい。なお、図7は、望遠用の個眼P1の前群と中望遠用の個眼P2とが光軸方向における位置が互いに近くなった結果、これらを一体成型することが容易となり、その一体成型したものを示している。   (1) In the above-described embodiment, for the telephoto single eye P1 and the medium telephoto single eye P2, the front lens group has a positive refractive power, and the rear lens group has a negative refractive power. In the wide-angle individual eye P3, a lens group having a negative refractive power is arranged in the front group, and a lens group having a positive refractive power is arranged in the rear group, but as shown in FIG. For example, when focusing on the relationship between the telephoto individual eye P1 and the medium telephoto individual eye P2, with respect to the telephoto individual eye P1, a lens group having a positive refractive power in the front group as described above is used. By simply disposing a lens group having negative refractive power in the rear group, the positions of the subject-side surfaces in the optical axis direction of each individual eye are close to each other, and the field of view of the middle telephoto individual eye P2 can be secured. If so, the middle telephoto eye P2 need not be composed of lenses having different refractive powers. . FIG. 7 shows that the front group of the telephoto eye P1 and the middle telephoto eye P2 are close to each other in the optical axis direction, so that it becomes easy to integrally mold them. Shows what you did.

(2)各個眼P1〜P3の前群及び後群の焦点距離f1,f2(光軸方向の一方向を正とする)及び前群及び後群の主点間距離dとの関係を、下記式(10)を満たすようにするとよい。
−2<(f1+f2)/d<2 ・・・(10)
(2) The relationship between the focal lengths f1 and f2 of the front group and the rear group of each individual eye P1 to P3 (one direction in the optical axis direction is positive) and the distance d between principal points of the front group and the rear group are as follows. It is preferable to satisfy Expression (10).
-2 <(f1 + f2) / d <2 (10)

(3)前記実施形態では、各個眼の前群3及び後群4を隔壁5に支持させるように構成したが、これに限らず、前群3や後群4を一体成型した場合、図8に示すような構成を採用することができる。   (3) In the above-described embodiment, the front group 3 and the rear group 4 of each eye are configured to be supported by the partition wall 5. However, the present invention is not limited to this, and when the front group 3 and the rear group 4 are integrally molded, FIG. A configuration as shown in FIG.

図8(a)は、一体成型された前群3及び後群4の支持構造を示す断面図であり、図8(b)は、図8(a)の矢印Bの方向から見たときの隔壁5の形状を示す図である。   FIG. 8A is a cross-sectional view showing the support structure of the front group 3 and the rear group 4 that are integrally molded, and FIG. 8B is a view when viewed from the direction of arrow B in FIG. It is a figure which shows the shape of the partition 5. FIG.

図8(a)に示すように、本実施形態では、一体成型された前群3及び後群4を支持すべく保持部材8が別途備えられており、該保持部材8は、例えばアルミニウム等の材料を加工し、矢印Bの方向から見たとき四角形の断面を有する筒状に形成された部材である。保持部材8の一方の端部における内周面は、端部に向かって段階的に開口が広くなるように形成されており、当接面8aに前群3を、当接面8bに後群4を当接させた状態で前群3及び後群4が保持部材8の内周面に、紫外線硬化樹脂等の接着剤により接着されている。これにより、前群3と後群4と撮像素子2の撮像面との間隔を適切に設定することができる。また、図8(b)に示すように、隔壁5は「井」の字型に形成されており、前群3と後群4との間、及び後群4と撮像素子2との間に配設される。   As shown in FIG. 8A, in the present embodiment, a holding member 8 is separately provided to support the integrally formed front group 3 and rear group 4, and the holding member 8 is made of, for example, aluminum. It is a member formed into a cylindrical shape having a square cross section when processed from the direction of arrow B after processing the material. The inner peripheral surface at one end of the holding member 8 is formed so that the opening gradually increases toward the end, and the front group 3 is formed on the contact surface 8a and the rear group is formed on the contact surface 8b. The front group 3 and the rear group 4 are bonded to the inner peripheral surface of the holding member 8 with an adhesive such as an ultraviolet curable resin in a state where the 4 is in contact. Thereby, the space | interval of the front group 3, the rear group 4, and the image pick-up surface of the image pick-up element 2 can be set appropriately. Further, as shown in FIG. 8B, the partition wall 5 is formed in a “well” shape, and is between the front group 3 and the rear group 4 and between the rear group 4 and the image sensor 2. Arranged.

このような構成により、前群3及び後群4を確実に適切な位置に保持することができる。   With such a configuration, the front group 3 and the rear group 4 can be reliably held at appropriate positions.

(4)各個眼の前群3を樹脂で一体成型する場合、図9に示すように、前記変形形態(3)で説明した保持部材8をこの前群3と一体成型することができる。このように、保持部材8と前群3とを一体成型することで、さらに部品点数の低減等を図ることができる。   (4) When the front group 3 of each individual eye is integrally molded with resin, the holding member 8 described in the modified embodiment (3) can be integrally molded with the front group 3 as shown in FIG. In this manner, by integrally molding the holding member 8 and the front group 3, it is possible to further reduce the number of parts.

(5)前記実施形態では、全ての前群3及び全ての後群4を一体成型するようにしたが、前群3又は後群4のいずれか一方について全てを一体成型するようにしてもよい。また、各個眼の前群3の中で、光軸方向に近傍に配置される少なくとも1組の隣接する前群のみを一体成型するようにしてもよいし、各個眼の後群4の中で、光軸方向に近傍に配置される少なくとも1組の隣接する後群のみを一体成型するようにしてもよい。   (5) In the above embodiment, all the front groups 3 and all the rear groups 4 are integrally molded. However, all of the front group 3 or the rear group 4 may be integrally molded. . Further, in the front group 3 of each individual eye, only at least one set of adjacent front groups arranged in the vicinity in the optical axis direction may be integrally formed, or in the rear group 4 of each individual eye. Only at least one set of adjacent rear groups arranged in the vicinity in the optical axis direction may be integrally formed.

(6)前記実施形態では、撮像素子2の撮像領域を縦横3×3のマトリックス状に等分割し、各分割撮像領域S1〜S9に対してそれぞれ1組の前群3及び後群4を対応付けるとともに、横方向に並ぶ複数の個眼については、焦点距離を全て同一とし、縦方向に並ぶ複数の個眼については互いに焦点距離を異ならせ、且つ、縦方向に並ぶ複数の分割撮像領域に対しては同一の光透過特性を有する分光フィルタを挿入し、横方向に並ぶ複数の分割撮像領域に対しては異なる波長の光(R(赤)、G(緑)、B(青))を導くように光透過特性の異なる分光フィルタを挿入するようにしたが、これに限らず、前記実施形態と同様に、各個眼の少なくとも前群のレンズについて光軸方向の位置を近づける技術を用いることで、撮像素子2を大型化することなく、以下のような構成を実現することができる。   (6) In the above-described embodiment, the imaging area of the imaging device 2 is equally divided into a 3 × 3 matrix, and one set of the front group 3 and the rear group 4 is associated with each of the divided imaging areas S1 to S9. In addition, for a plurality of single eyes arranged in the horizontal direction, the focal lengths are all the same, for a plurality of single eyes arranged in the vertical direction, the focal lengths are different from each other, and for a plurality of divided imaging regions arranged in the vertical direction. In this case, spectral filters having the same light transmission characteristics are inserted, and light of different wavelengths (R (red), G (green), B (blue)) is guided to a plurality of divided imaging regions arranged in the horizontal direction. As described above, the spectral filters having different light transmission characteristics are inserted. However, the present invention is not limited to this, and as in the above-described embodiment, by using a technique for bringing the position of at least the front lens group of each individual eye closer to the optical axis direction , Enlarge the image sensor 2 It can be achieved without the following configuration can.

図10は、撮像領域の他の分割形態を示す図である。   FIG. 10 is a diagram illustrating another division form of the imaging region.

図10においては、撮像素子2の撮像領域を縦横2×2の4つのブロックB1〜B4に分割し、さらに各ブロックB1〜B4の撮像領域を縦横2×2のマトリックス状に等分割する。そして、各撮像領域に対して、それぞれ1組の前群3及び後群4を対応付けるとともに、個眼の焦点距離についてはブロックに固有の値に設定する。すなわち、ブロック同士では個眼の焦点距離を異ならせ、同一ブロック内の分割撮像領域間では焦点距離を同一とする(例えばブロックB1に属する分割撮像領域に対応する個眼の焦点距離をすべてf1とし、ブロックB2に属する分割撮像領域に対応する個眼の焦点距離をすべてf2とする)。   In FIG. 10, the imaging area of the imaging device 2 is divided into four blocks B1 to B4 of 2 × 2 in the vertical and horizontal directions, and the imaging area of each block B1 to B4 is further equally divided into a matrix of 2 × 2 in the vertical and horizontal directions. Then, a set of front group 3 and rear group 4 is associated with each imaging region, and the focal length of a single eye is set to a value specific to the block. That is, the focal lengths of the individual eyes are made different between the blocks, and the focal lengths are made the same between the divided imaging regions in the same block (for example, the focal lengths of the individual eyes corresponding to the divided imaging regions belonging to the block B1 are all f1. The focal lengths of the single eyes corresponding to the divided imaging regions belonging to the block B2 are all f2).

さらに、各ブロックにおいて、異なる波長の光(例えばR(赤)、G(緑)、B(青))を導く光透過特性の異なる分光フィルタがベイヤー配列されている。図中の例えば「f1 G」は、当該分割撮像領域に対して備えられた個眼の焦点距離がf1であり、また、当該分割撮像領域に対してG(緑)の分光フィルタが設けられていることを示す。そして、各ブロックの撮像領域で撮像された画像データを用いて、各ブロックに対応する焦点距離のカラー画像が生成可能とされている。   Further, in each block, spectral filters having different light transmission characteristics for guiding light of different wavelengths (for example, R (red), G (green), and B (blue)) are arranged in a Bayer array. For example, “f1 G” in the drawing indicates that the focal length of the single eye provided for the divided imaging region is f1, and a G (green) spectral filter is provided for the divided imaging region. Indicates that A color image having a focal length corresponding to each block can be generated using image data captured in the imaging area of each block.

本発明に係る複眼撮像装置の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of the compound-eye imaging device which concerns on this invention. 各個眼の構成を説明するための図である。It is a figure for demonstrating the structure of each individual eye. 焦点距離の大きい個眼の存在が焦点距離の小さい個眼の視野を阻害している状態を示す図である。It is a figure which shows the state which presence of the single eye with a large focal distance has inhibited the visual field of the single eye with a small focal distance. 各個眼を構成する光学系の構成を示す図である。It is a figure which shows the structure of the optical system which comprises each individual eye. 図2において上下方向に隣接する個眼の存在によって視野が遮られない条件の導出方法を説明するための説明図である。It is explanatory drawing for demonstrating the derivation | leading-out method of the conditions in which a visual field is not obstruct | occluded by presence of the single eye | texture | solid adjoining in the up-down direction in FIG. 前群や後群を一体成型した場合の構成を示す図である。It is a figure which shows the structure at the time of integrally molding a front group and a rear group. 光学系(レンズ)の一体成型パターンの他の例を示す図である。It is a figure which shows the other example of the integral molding pattern of an optical system (lens). (a)は、一体成型された前群及び後群の支持構造を示す断面図であり、(b)は、(a)の矢印Bの方向から見たときの隔壁等の形状を示す図である。(A) is sectional drawing which shows the support structure of the front group and rear group which were integrally molded, (b) is a figure which shows shapes, such as a partition when it sees from the direction of arrow B of (a). is there. 光学系(レンズ)の一体成型パターンの他の例を示す図である。It is a figure which shows the other example of the integral molding pattern of an optical system (lens). 撮像領域の他の分割形態を示す図である。It is a figure which shows the other division form of an imaging region.

符号の説明Explanation of symbols

1 複眼撮像装置
2 撮像素子
3 前群
4 後群
5 隔壁
8 保持部材
S1〜S9 分割撮像領域
P1〜P3 望遠用、中望遠用、広角用の個眼
B1〜B4 ブロック
DESCRIPTION OF SYMBOLS 1 Compound eye imaging device 2 Imaging element 3 Front group 4 Rear group 5 Bulkhead 8 Holding member S1-S9 Division | segmentation imaging region P1-P3 Individual eye B1-B4 block for telephoto use, medium telephoto use, and wide angle

Claims (5)

被写体の光像を撮像する撮像部を備えるとともに、前記撮像部の撮像領域を複数に分割してなる分割領域にそれぞれ被写体の光像を結像すべく個眼が相互に並列に配置された複眼撮像装置であって、
前記複数の個眼のうち少なくとも一の個眼は、正の屈折力を有する第1の光学系と、負の屈折力を有する第2の光学系とを有して構成されていることを特徴とする複眼撮像装置。
A compound eye that includes an imaging unit that captures an optical image of a subject, and in which individual eyes are arranged in parallel to form an optical image of the subject in each of divided areas obtained by dividing the imaging region of the imaging unit into a plurality of areas An imaging device,
At least one eye among the plurality of eyes has a first optical system having a positive refractive power and a second optical system having a negative refractive power. A compound eye imaging device.
焦点距離の異なる2の隣接する個眼に着目した場合において、焦点距離が小さい方の個眼における最も対物側に位置するレンズの対物側の面から撮像面までの距離をDa、焦点距離が大きい方の個眼における最も対物側に位置するレンズの対物側の面から撮像面までの距離をDbと表すとき、距離Da,Dbは下記式(1)を満たすことを特徴とする請求項1に記載の複眼撮像装置。
Db<Da+(Yc−Ha1)×(1/tanθ) ・・・(1)
ただし、Ycは、焦点距離が小さい方の個眼に対応する分割領域の中央から該領域に隣接する分割領域との境界までの最短距離、Ha1は、焦点距離が小さい方の個眼に隣接する個眼が無いと仮定した場合に、当該個眼を通過する光線のうち最も外側の光線が当該個眼における前記最も対物側に位置するレンズに入射する位置と当該個眼の光軸との最短距離、θは、前記最も外側の光線と当該個眼の光軸となす角度
When focusing on two adjacent single eyes having different focal lengths, Da is the distance from the objective side surface of the lens located closest to the objective side to the imaging surface in the single eye with the smaller focal length, and the focal length is large. The distance Da, Db satisfies the following formula (1) when the distance from the objective side surface of the lens located closest to the objective side to the imaging surface in one eye is expressed as Db. The compound eye imaging device described.
Db <Da + (Yc−Ha1) × (1 / tan θ) (1)
However, Yc is the shortest distance from the center of the divided area corresponding to the individual eye with the smaller focal distance to the boundary with the divided area adjacent to the area, and Ha1 is adjacent to the individual eye with the smaller focal distance. Assuming that there is no single eye, the shortest distance between the position at which the outermost light ray that passes through the single eye enters the lens located on the most objective side of the single eye and the optical axis of the single eye The distance, θ, is the angle between the outermost ray and the optical axis of the individual eye
被写体が無限遠にあるとき、前記式(1)は、次式(2)に置換することができることを特徴とする請求項2に記載の複眼撮像装置。
Db<Da+(Yc−Ha1)×(fa/Yc) ・・・(2)
ただし、faは、焦点距離が小さい方の個眼の焦点距離
The compound eye imaging apparatus according to claim 2, wherein when the subject is at infinity, the expression (1) can be replaced with the following expression (2).
Db <Da + (Yc−Ha1) × (fa / Yc) (2)
Where fa is the focal length of the individual eye with the smaller focal length.
前記第1、第2の光学系の焦点距離f1,f2及びこの第1、第2の光学系の主点間距離dとの関係は、前記第1、第2の光学系に対し光軸に沿う一方向を正としたとき、下記式(3)を満たすことを特徴とする請求項1ないし3のいずれかに記載の複眼撮像装置。
−2<(f1+f2)/d<2 ・・・(3)
The relationship between the focal lengths f1 and f2 of the first and second optical systems and the distance d between principal points of the first and second optical systems is on the optical axis with respect to the first and second optical systems. The compound eye imaging device according to claim 1, wherein the following formula (3) is satisfied when one direction along the direction is positive.
-2 <(f1 + f2) / d <2 (3)
前記第1、第2の光学系は、それぞれ1のレンズで構成されていることを特徴とする請求項1ないし4のいずれかに記載の複眼撮像装置。   5. The compound eye imaging apparatus according to claim 1, wherein each of the first and second optical systems includes one lens.
JP2004158160A 2004-05-27 2004-05-27 Double eye imaging device Pending JP2005341301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158160A JP2005341301A (en) 2004-05-27 2004-05-27 Double eye imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158160A JP2005341301A (en) 2004-05-27 2004-05-27 Double eye imaging device

Publications (1)

Publication Number Publication Date
JP2005341301A true JP2005341301A (en) 2005-12-08

Family

ID=35494340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158160A Pending JP2005341301A (en) 2004-05-27 2004-05-27 Double eye imaging device

Country Status (1)

Country Link
JP (1) JP2005341301A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206922A (en) * 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus
JP2013109067A (en) * 2011-11-18 2013-06-06 Kiyohara Optics Inc Imaging device, lens thereof, telescope, and video camera
EP2683154A2 (en) 2012-07-02 2014-01-08 Canon Kabushiki Kaisha Image pickup apparatus and lens apparatus
JP2014010400A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
JP2014010401A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
JP2014010399A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
WO2014181643A1 (en) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 Compound-eye imaging system and imaging device
JP2015181214A (en) * 2014-03-07 2015-10-15 キヤノン株式会社 Compound-eye imaging device
JP2016031476A (en) * 2014-07-29 2016-03-07 リコー光学株式会社 Multiple view point imaging optical system, multiple view point imaging device, and multiple view point image display device
JP2016054487A (en) * 2015-10-13 2016-04-14 株式会社 清原光学 Imaging device and imaging lens
US10225444B2 (en) 2014-03-17 2019-03-05 Canon Kabushiki Kaisha Multi-lens optical apparatus
EP4009091A3 (en) * 2020-12-03 2022-07-20 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206922A (en) * 2008-02-28 2009-09-10 Funai Electric Co Ltd Compound-eye imaging apparatus
US8237841B2 (en) 2008-02-28 2012-08-07 Funai Electric Co., Ltd. Compound-eye imaging device
JP2013109067A (en) * 2011-11-18 2013-06-06 Kiyohara Optics Inc Imaging device, lens thereof, telescope, and video camera
JP2014010399A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
JP2014010400A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
JP2014010401A (en) * 2012-07-02 2014-01-20 Canon Inc Imaging device and lens device
EP2683154A2 (en) 2012-07-02 2014-01-08 Canon Kabushiki Kaisha Image pickup apparatus and lens apparatus
US8988538B2 (en) 2012-07-02 2015-03-24 Canon Kabushiki Kaisha Image pickup apparatus and lens apparatus
WO2014181643A1 (en) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 Compound-eye imaging system and imaging device
JP2015181214A (en) * 2014-03-07 2015-10-15 キヤノン株式会社 Compound-eye imaging device
US10225444B2 (en) 2014-03-17 2019-03-05 Canon Kabushiki Kaisha Multi-lens optical apparatus
JP2016031476A (en) * 2014-07-29 2016-03-07 リコー光学株式会社 Multiple view point imaging optical system, multiple view point imaging device, and multiple view point image display device
JP2016054487A (en) * 2015-10-13 2016-04-14 株式会社 清原光学 Imaging device and imaging lens
EP4009091A3 (en) * 2020-12-03 2022-07-20 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same
US11899169B2 (en) 2020-12-03 2024-02-13 Samsung Electronics Co., Ltd. Lens assembly and electronic device including the same

Similar Documents

Publication Publication Date Title
JP4961993B2 (en) Imaging device, focus detection device, and imaging device
US8823838B2 (en) Image pickup system with auto focus mode
US8498063B2 (en) Telephoto lens system
WO2012143983A1 (en) Image capture device, imgae capture system, and image capture method
JP5001471B1 (en) Imaging apparatus, imaging system, and imaging method
US8947791B2 (en) Large aperture zoom optical system and image pickup apparatus
KR100475282B1 (en) Lens system and image pickup device having the same
JP6818981B2 (en) Wide-angle lens, imaging device and unmanned aerial vehicle
US10429624B2 (en) Optical image capturing system
JPWO2007088917A1 (en) Wide angle lens, optical device using the same, and method for manufacturing wide angle lens
KR20200084181A (en) Image Capturing Lens System
JP2007086485A (en) Imaging lens
JP2005341301A (en) Double eye imaging device
JP2007271724A (en) Autofocus adapter
JP2017228832A (en) Imaging apparatus
US10911654B2 (en) Optical image capturing module and system with multi-lens frame and manufacturing method thereof
US20200174225A1 (en) Optical system and image pickup apparatus including the same
US20220239850A1 (en) Imaging device, imaging optical system, and imaging method
EP3514597A1 (en) Optical system for image capturing and image capturing device
JP7379236B2 (en) Imaging optical system, imaging device, and vehicle
JP2018174542A (en) Image pickup device and image pickup apparatus
WO2017221947A1 (en) Image-capturing optical system and image-capturing device
US11221459B2 (en) Imaging optical system and imaging apparatus
JPH02137812A (en) Photographic lens
JP2005338505A (en) Compound eye imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201