[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005238060A - Organic compound oxidizing catalyst and method of oxidizing organic compound - Google Patents

Organic compound oxidizing catalyst and method of oxidizing organic compound Download PDF

Info

Publication number
JP2005238060A
JP2005238060A JP2004049486A JP2004049486A JP2005238060A JP 2005238060 A JP2005238060 A JP 2005238060A JP 2004049486 A JP2004049486 A JP 2004049486A JP 2004049486 A JP2004049486 A JP 2004049486A JP 2005238060 A JP2005238060 A JP 2005238060A
Authority
JP
Japan
Prior art keywords
organic compound
complex
fsm16
oxidizing
hexapyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049486A
Other languages
Japanese (ja)
Inventor
Masato Kodera
政人 小寺
Motoaki Ito
元陽 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2004049486A priority Critical patent/JP2005238060A/en
Publication of JP2005238060A publication Critical patent/JP2005238060A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic compound oxidizing catalyst with which an aromatic compound such as benzene can be selectively and efficiently oxidized, and a method of oxidizing an organic compound. <P>SOLUTION: A phenol or the like is made to be obtained by fixing a hexapyridine binuclear iron complex in the micropores of an inorganic porous body which has micropores, such as a mesoporous silica, or by oxidizing an aromatic compound such as benzene by using the organic compound oxidizing catalyst held in the micropores in the presence of an oxidizing agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機化合物酸化触媒および有機化合物の酸化方法に関する。   The present invention relates to an organic compound oxidation catalyst and an organic compound oxidation method.

生体内には様々な金属タンパク質が存在しており、たとえば、このような金属タンパク質としてのメタン資化菌の可溶型メタンモノオキシゲナーゼ(以下、「sMMO」と記す)は、メタンからメタノールへの酸化反応の触媒として作用することが知られている。
そこで、アルカンを酸化してアルコールを合成する触媒として、このメタン資化菌のsMMOの活性中心とそれを含む周辺構造を模した(μ―オキソ)鉄二核錯体、(μ―ヒドロキシ)鉄二核錯体、Fe=O部位を有する鉄二核錯体等の鉄オキソ錯体の配位子の少なくとも1種が担体に結合された構成の触媒が既に提案されている(たとえば、特許文献1参照)。
Various metalloproteins exist in the living body. For example, a soluble methane monooxygenase (hereinafter referred to as “sMMO”) of methane-utilizing bacteria as such metalloprotein is from methane to methanol. It is known to act as a catalyst for oxidation reactions.
Therefore, as a catalyst for the synthesis of alcohol by oxidizing alkanes, (μ-oxo) iron binuclear complex and (μ-hydroxy) iron binuclear complex simulating the active center of methane-utilizing sMMO and its surrounding structure A catalyst having a structure in which at least one of ligands of an iron oxo complex such as an iron dinuclear complex having a Fe═O site is bonded to a carrier has been proposed (for example, see Patent Document 1).

特開2002−363188号公報JP 2002-363188 A

しかしながら、上記の先に提案された触媒では、アルカンからアルコールを合成は可能であるが、ベンゼンからフェノールを合成するなど芳香族化合物を効率よく酸化させることができなかった。   However, although the above-mentioned catalyst can synthesize alcohol from alkane, aromatic compounds such as synthesis of phenol from benzene cannot be oxidized efficiently.

本発明は、上記事情に鑑みて、ベンゼン等の芳香族化合物を選択的かつ効率よく酸化させることができる有機化合物酸化触媒および有機化合物の酸化方法を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide an organic compound oxidation catalyst and an organic compound oxidation method capable of selectively and efficiently oxidizing an aromatic compound such as benzene.

上記目的を達成するために、本発明にかかる有機化合物酸化触媒は、無機多孔質体の細孔内にヘキサピリジン二核鉄錯体を保持してなることを特徴としている。   In order to achieve the above object, the organic compound oxidation catalyst according to the present invention is characterized in that a hexapyridine binuclear iron complex is held in the pores of an inorganic porous material.

また、本発明の有機化合物酸化触媒において、無機多孔質体としては、細孔内にヘキサピリジン二核鉄錯体を保持できれば、特に限定されないが、たとえば、シリカ、メソポーラスシリカ、シリカゲル、ゼオライト等が挙げられ、中でもメソポーラスシリカが好適である。
メソポーラスシリカとしては、特に限定されないが、たとえば、FMS(folded sheets mesoporous materials)16およびFMS16相当品が好適に用いられる。
なお、FMSとは、層状構造を有するカネマイトを出発物質として合成される二次元六方構造を有する物質であって、16は、はじめて合成されたときの界面活性剤の炭素鎖が16であったことに由来する。
ヘキサピリジン二核鉄錯体としては、特に限定されないが、たとえば、
[Fe2(1,2-bis[2-di(2-pyridyl)-methyl-6-(pyridyl)ethane](O)(OCOCH3)2)](ClO42、(以下、「[Fe2(O)(AcO)2hexpy](ClO42」と記す)、
[Fe2(1,2-bis[2-di(2-pyridyl)-methyl-6-(pyridyl)ethane](O)(OCOCH3)2)](CF3SO32
[Fe2(1,2-bis[2-di(2-pyridyl)-methyl-6-(pyridyl)ethane](O)(OCOCH3)2)](PF62、等が挙げられる。
Further, in the organic compound oxidation catalyst of the present invention, the inorganic porous material is not particularly limited as long as the hexapyridine dinuclear iron complex can be held in the pores. Examples thereof include silica, mesoporous silica, silica gel, zeolite and the like. Of these, mesoporous silica is preferred.
Although it does not specifically limit as mesoporous silica, For example, FMS (folded sheets mesoporous materials) 16 and FMS16 equivalent goods are used suitably.
Note that FMS is a substance having a two-dimensional hexagonal structure synthesized using kanemite having a layered structure as a starting material, and that 16 was the number of carbon chains of the surfactant when synthesized for the first time. Derived from.
The hexapyridine dinuclear iron complex is not particularly limited.
[Fe 2 (1,2-bis [2-di (2-pyridyl) -methyl-6- (pyridyl) ethane] (O) (OCOCH 3 ) 2 )] (ClO 4 ) 2 , (hereinafter “[Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 ”),
[Fe 2 (1,2-bis [2-di (2-pyridyl) -methyl-6- (pyridyl) ethane] (O) (OCOCH 3 ) 2 )] (CF 3 SO 3 ) 2 ,
[Fe 2 (1,2-bis [2-di (2-pyridyl) -methyl-6- (pyridyl) ethane] (O) (OCOCH 3 ) 2 )] (PF 6 ) 2 and the like.

さらに、ヘキサピリジン二核鉄錯体を無機多孔質体の細孔内に保持する方法としては、特に限定されないが、無機多孔質体の細孔内で固定化する方法だけでなく、ヘキサピリジン二核鉄錯体溶液中に無機多孔質体を分散混合させて、多孔質体の細孔内に溶液とともに含浸させる方法等が挙げられる。   Furthermore, the method for retaining the hexapyridine dinuclear iron complex in the pores of the inorganic porous body is not particularly limited, but not only the method for fixing in the pores of the inorganic porous body, but also the hexapyridine dinuclear core. Examples thereof include a method in which an inorganic porous material is dispersed and mixed in an iron complex solution and impregnated with the solution in the pores of the porous material.

本発明の有機化合物酸化触媒を用いて効率よく酸化可能な芳香族化合物としては、特に限定されないが、たとえば、ベンゼン、トルエン、エチルベンゼン、メトキシベンゼン等が挙げられる。   The aromatic compound that can be efficiently oxidized using the organic compound oxidation catalyst of the present invention is not particularly limited, and examples thereof include benzene, toluene, ethylbenzene, and methoxybenzene.

一方、本発明にかかる有機化合物の酸化方法は、上記本発明の有機化合物酸化触媒の存在下、有機化合物を酸化させることを特徴としている。   On the other hand, the organic compound oxidation method according to the present invention is characterized in that the organic compound is oxidized in the presence of the organic compound oxidation catalyst of the present invention.

酸化反応に用いる酸化剤としては、特に限定されないが、たとえば、過酢酸やm-CPBA(メタクロロ過安息香酸)等が挙げられる。
また、酸化反応は、特に限定されないが、たとえば、アルゴンガス等の不活性ガス雰囲気で行うことが好ましい。
The oxidizing agent used for the oxidation reaction is not particularly limited, and examples thereof include peracetic acid and m-CPBA (metachloroperbenzoic acid).
Further, the oxidation reaction is not particularly limited, but it is preferably performed in an inert gas atmosphere such as argon gas.

本発明にかかる有機化合物酸化触媒は、以上のように、無機多孔質体の細孔内にヘキサピリジン二核鉄錯体が保持されているので、有機化合物を効率よく酸化することができ、アルカンからアルケノールだけでなく、たとえば、ベンゼンからフェノールというように、芳香族化合物からその酸化物を容易に合成できるようになる。   As described above, since the hexapyridine dinuclear iron complex is held in the pores of the inorganic porous body, the organic compound oxidation catalyst according to the present invention can efficiently oxidize the organic compound, and from the alkane. In addition to alkenol, the oxide can be easily synthesized from an aromatic compound such as benzene to phenol.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる有機化合物酸化触媒の1つの実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows one embodiment of an organic compound oxidation catalyst according to the present invention.

図1に示すように、この有機化合物酸化触媒1は、ヘキサピリジン二核鉄錯体3が、メソポーラスシリカ(たとえば、FSM16)2の細孔21内に固定化されている。   As shown in FIG. 1, in this organic compound oxidation catalyst 1, hexapyridine dinuclear iron complex 3 is immobilized in pores 21 of mesoporous silica (for example, FSM16) 2.

この有機化合物酸化触媒1は、以下のようにして得ることができる。
すなわち、図2に示すように、まず、メソポーラスシリカ2に、Cl3Si(CH2)2CNを作用させてCyano functionalized(シアノ機能化)メソポーラスシリカ21を得たのち、このCyano functionalizedメソポーラスシリカ21を硫酸で処理してメソポーラスシリカのアモルファス表面にアルキル鎖を伸ばし末端にカルボン酸を付けたCarboxylic acid functionalized(カルボン酸機能化)メソポーラスシリカ22を得る。
つぎに、図3に示すように、Carboxylic acid functionalizedメソポーラスシリカ22にヘキサピリジン二核鉄錯体3を配位結合させて固定化することによって有機化合物酸化触媒1を得る。
This organic compound oxidation catalyst 1 can be obtained as follows.
That is, as shown in FIG. 2, first, Cl 3 Si (CH 2 ) 2 CN is allowed to act on mesoporous silica 2 to obtain Cyano functionalized mesoporous silica 21, and then this Cyano functionalized mesoporous silica 21. Is treated with sulfuric acid to obtain Carboxylic acid functionalized mesoporous silica 22 in which an alkyl chain is extended on the amorphous surface of mesoporous silica and a carboxylic acid is attached to the terminal.
Next, as shown in FIG. 3, the organic compound oxidation catalyst 1 is obtained by coordinating and fixing the hexapyridine dinuclear iron complex 3 to the Carboxylic acid functionalized mesoporous silica 22.

図4は、本発明にかかる有機化合物酸化触媒の他の実施の形態をあらわしている。
図4に示すように、この有機化合物酸化触媒4は、メソポーラスシリカ(たとえば、FSM16)2の細孔21内に非固定化状態でヘキサピリジン二核鉄錯体3が保持されている。
FIG. 4 shows another embodiment of the organic compound oxidation catalyst according to the present invention.
As shown in FIG. 4, in this organic compound oxidation catalyst 4, the hexapyridine dinuclear iron complex 3 is held in a non-immobilized state in the pores 21 of mesoporous silica (for example, FSM16) 2.

メソポーラスシリカとしてのFSM16にヘキサピリジン二核鉄錯体を以下のようにして固定化して、ヘキサピリジン二核鉄錯体固定化FSM16(以下、「Complex−FSM16」と記す)を有機化合物酸化触媒として得た。   Hexapyridine dinuclear iron complex was immobilized on FSM16 as mesoporous silica as follows to obtain hexapyridine dinuclear iron complex-immobilized FSM16 (hereinafter referred to as “Complex-FSM16”) as an organic compound oxidation catalyst. .

〔Cyano functionalized FSM16の合成〕
100mlの反応容器にメソポーラスシリカとしてのFSM16を0.5g加え、3時間減圧下、120℃で真空乾燥した。反応容器を20℃のエタノール浴に浸し、Cl3Si(CH2)2CN 3.7g(0.02mol)を溶かしたドライトルエン50mlをゆっくり滴下した。滴下が終わったら、加熱還流を一晩行った。次の日に、反応容器内の内容物を室温に戻し、ヌッチェでろ過し、ろ物をトルエンで洗浄後、減圧乾燥した。そして、FT-IR(フーリエ変換赤外分光法)およびDTA(示差熱分析)により得られた生成物が、Cyano functionalized FSM16であることを確認した。
(Synthesis of Cyano functionalized FSM16)
To a 100 ml reaction vessel, 0.5 g of FSM16 as mesoporous silica was added and dried in vacuo at 120 ° C. under reduced pressure for 3 hours. The reaction vessel was immersed in an ethanol bath at 20 ° C., and 50 ml of dry toluene in which 3.7 g (0.02 mol) of Cl 3 Si (CH 2 ) 2 CN was dissolved was slowly added dropwise. When the dropping was completed, heating under reflux was performed overnight. On the next day, the contents in the reaction vessel were returned to room temperature, filtered with Nutsche, and the filtrate was washed with toluene and dried under reduced pressure. The product obtained by FT-IR (Fourier transform infrared spectroscopy) and DTA (differential thermal analysis) was confirmed to be Cyano functionalized FSM16.

〔Carboxylic acid functionalized FSM16の合成〕
100mlの反応容器に上記で得られたCyano functionalized FSM16を0.4gと、50%H2SO4aq 60mlとを加え、加熱還流を5時間行った後、反応容器内の内容物をガラスフィルタでろ過した。そして、ろ物を水およびメタノールで中性になるまで洗浄後、減圧乾燥し、FT-IR、DTAおよび窒素吸着等温線により得られた生成物が、Carboxylic acid functionalized FSM16であることを確認した。
(Synthesis of Carboxylic acid functionalized FSM16)
After adding 0.4 g of Cyano functionalized FSM16 obtained above and 60 ml of 50% H 2 SO 4 aq to a 100 ml reaction vessel, heating and refluxing for 5 hours, the contents in the reaction vessel were filtered with a glass filter. Filtered. The filtrate was washed with water and methanol until neutral, then dried under reduced pressure, and the product obtained by FT-IR, DTA and nitrogen adsorption isotherm was confirmed to be Carboxylic acid functionalized FSM16.

〔Complex−FSM16の作製〕
上記で得られたCyano functionalized FSM16(1g)と、ヘキサピリジン二核鉄錯体[Fe2(O)(AcO)2hexpy](ClO42(0.1g)と、アセトニトリル2mlとを三角フラスコに加え、2時間撹拌した。紫外可視吸収スペクトルにより吸着量を定量した。反応溶液をろ過し、ろ物をアセトニトリルで洗い、減圧乾燥することによりComplex−FSM16を得た。
(Production of Complex-FSM16)
Add Cyano functionalized FSM16 (1 g) obtained above, hexapyridine dinuclear iron complex [Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 (0.1 g), and 2 ml of acetonitrile to an Erlenmeyer flask. Stir for 2 hours. The amount of adsorption was quantified by UV-visible absorption spectrum. The reaction solution was filtered, and the filtrate was washed with acetonitrile and dried under reduced pressure to obtain Complex-FSM16.

以下のようにしてメソポーラスシリカとしてのFSM16のメソ孔内にヘキサピリジン二核鉄錯体を非固定化状態で保持した有機化合物酸化触媒(以下、「Complex/FSM16」と記す)を作製した。
〔Complex/FSM16の作製〕
FSM16(34.6mg)と、ヘキサピリジン二核鉄錯体[Fe2(O)(AcO)2hexpy](ClO42 (2.9mg)と,アセトニトリル1mlとを三角フラスコに加え、2時間撹拌した。その反応溶液を濃縮し、減圧乾燥することによりComplex/FSM16を得た。
An organic compound oxidation catalyst (hereinafter referred to as “Complex / FSM16”) in which a hexapyridine dinuclear iron complex was held in a non-immobilized state in the mesopores of FSM16 as mesoporous silica was prepared as follows.
[Production of Complex / FSM16]
FSM16 (34.6 mg), hexapyridine dinuclear iron complex [Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 (2.9 mg) and 1 ml of acetonitrile were added to an Erlenmeyer flask and stirred for 2 hours. did. The reaction solution was concentrated and dried under reduced pressure to obtain Complex / FSM16.

上記実施例1および実施例2で得られたComplex−FSM16およびComplex/FSM16と、参考のためのsMMO、およびヘキサピリジン二核鉄錯体をそれぞれ触媒として用いて以下のようにしてエチルベンゼンを酸化させ、合成される化合物のターンオーバー数、選択反応性(selectivity)、収率(yield)を求め、その結果を表1に示した。   Using Complex-FSM16 and Complex / FSM16 obtained in Example 1 and Example 2 above, sMMO for reference, and hexapyridine dinuclear iron complex as catalysts, respectively, ethylbenzene was oxidized as follows. The turnover number, selectivity (selectivity), and yield (yield) of the synthesized compound were determined, and the results are shown in Table 1.

〔エチルベンゼンの酸化反応〕
30mlの二口フラスコにCH3CN-CH2Cl2混合溶媒(v/v=1:1)を2.0ml加えた。基質としてのエチルベンゼンを7.5M(15mmol)、酸化剤としてのm-CPBAを75mM(0.15mmol)になるように調製し、アルゴンガス雰囲気下に保った。触媒を1.5mM(0.003mmol)になるように加えた。また、GLCの内部基準としてニトロベンゼン2μlを加えた。2時間後の生成物の確認および定量は、GLCによる標品との比較により行った。
なお、Complex−FSM16およびComplex/FSM16の触媒量については、Complexのみの量としてあらわした。また、収率は、酸化剤を基準にして求め、選択反応性は、以下の式によって求めた。
selectivity=[aromatic oxidation]/[benzyl oxidation]
[Oxidation reaction of ethylbenzene]
To a 30 ml two-necked flask, 2.0 ml of a CH 3 CN—CH 2 Cl 2 mixed solvent (v / v = 1: 1) was added. Ethylbenzene as a substrate was prepared to 7.5 M (15 mmol) and m-CPBA as an oxidizing agent to 75 mM (0.15 mmol), and kept in an argon gas atmosphere. The catalyst was added to 1.5 mM (0.003 mmol). In addition, 2 μl of nitrobenzene was added as an internal standard for GLC. The confirmation and quantification of the product after 2 hours were performed by comparison with a standard by GLC.
The amount of catalyst for Complex-FSM16 and Complex / FSM16 was expressed as the amount of Complex only. Moreover, the yield was calculated | required on the basis of the oxidizing agent, and the selective reactivity was calculated | required by the following formula | equation.
selectivity = [aromatic oxidation] / [benzyl oxidation]

Figure 2005238060
Figure 2005238060

上記表1から本発明にかかる有機化合物酸化触媒を用いれば、ベンゼン環に直接水酸基が付いた、パラエチルフェノールおよびオルトエチルフェノールが選択的にかつ高収率で得られることがわかる。また、上記方法を用いてヘキサピリジン二核鉄錯体で固定化したComplex−FSM16の場合、固定化していないComplex/FSM16とほとんど反応性が変わらない、すなわち、メソポーラスシリカの細孔内にヘキサピリジン二核鉄錯体が保持されていれば、選択的に芳香族化合物のベンゼン環部分を酸化できることがわかる。   From Table 1 above, it can be seen that paraethylphenol and orthoethylphenol having a hydroxyl group directly attached to the benzene ring can be obtained selectively and in high yield by using the organic compound oxidation catalyst according to the present invention. In addition, in the case of Complex-FSM16 immobilized with a hexapyridine binuclear iron complex using the above method, the reactivity is almost the same as that of Complex / FSM16 which is not immobilized, that is, hexapyridine disulfide in the pores of mesoporous silica. It can be seen that if the nuclear iron complex is retained, the benzene ring portion of the aromatic compound can be selectively oxidized.

以下のベンゼンの酸化反応1〜6の条件でそれぞれベンゼンを酸化し、ターンオーバー数および得られたフェノールの収率を調べ、その結果を表2に示した。  The following benzene oxidation reactions 1 to 6 were used to oxidize benzene, and the turnover number and the yield of the phenol obtained were examined.

〔ベンゼンの酸化反応1〕
30mlの二口フラスコにCH3CN-CH2Cl2混合溶媒(v/v=1:1)を2.0ml加えた。基質としてのベンゼンを7.5M(15mmol)、酸化剤としてのm-CPBAを75mM(0.15mmol)になるように調製し、アルゴンガス雰囲気下に保った。そして、[Fe2(O)(AcO)2hexpy](ClO42が1.5mM(0.003mmol)とFSM16が34.6mgの割合で混合されたComplex−FSM16を触媒としてアルゴンガス雰囲気下で二口フラスコ内に加え、ベンゼンを酸化させた。また、GLCの内部基準としてニトロベンゼン2μlを加えた。2時間後の生成物の確認および定量は、GLCによる標品との比較により行った。
[Benzene oxidation reaction 1]
To a 30 ml two-necked flask, 2.0 ml of a CH 3 CN—CH 2 Cl 2 mixed solvent (v / v = 1: 1) was added. Benzene as a substrate was adjusted to 7.5 M (15 mmol) and m-CPBA as an oxidizing agent was adjusted to 75 mM (0.15 mmol), and kept in an argon gas atmosphere. Then, [Fe 2 (O) ( AcO) 2 hexpy] (ClO 4) 2 is an argon gas atmosphere to Complex-FSM16 to 1.5 mM (0.003 mmol) and FSM16 are mixed at a ratio of 34.6mg as a catalyst Was added to the two-necked flask to oxidize benzene. In addition, 2 μl of nitrobenzene was added as an internal standard for GLC. The confirmation and quantification of the product after 2 hours were performed by comparison with a standard by GLC.

〔ベンゼンの酸化反応2〕
CH3CN-CH2Cl2混合溶媒に代えてCH3CN2.0mlのみを用いた以外は、上記ベンゼンの酸化反応1と同様にしてベンゼンを酸化させた。
〔ベンゼンの酸化反応3〕
CH3CN-CH2Cl2混合溶媒に代えてCH2Cl22.0mlのみを用いた以外は、上記ベンゼンの酸化反応1と同様にしてベンゼンを酸化させた。
[Benzene oxidation reaction 2]
Except using only CH 3 CN2.0ml instead CH 3 CN-CH 2 Cl 2 solvent mixture was oxidized benzene in the same manner as the oxidation reaction 1 above benzene.
[Benzene oxidation reaction 3]
Benzene was oxidized in the same manner as in the above benzene oxidation reaction 1 except that only 2.0 ml of CH 2 Cl 2 was used instead of the CH 3 CN—CH 2 Cl 2 mixed solvent.

〔ベンゼンの酸化反応4〕
[Fe2(O)(AcO)2hexpy](ClO42が1.5mM(0.003mmol)とFSM16が17.3mgの割合で混合されたComplex−FSM16を触媒としてアルゴンガス雰囲気下で二口フラスコ内に加えるようにした以外は、上記ベンゼンの酸化反応1と同様にしてベンゼンを酸化させた。
〔ベンゼンの酸化反応5〕
[Fe2(O)(AcO)2hexpy](ClO42が1.5mM(0.003mmol)とFSM16が8.7mgの割合で混合されたComplex−FSM16を触媒としてアルゴンガス雰囲気下で二口フラスコ内に加えるようにした以外は、上記ベンゼンの酸化反応1と同様にしてベンゼンを酸化させた。
[Benzene oxidation reaction 4]
Complex-FSM16 in which [Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 was mixed at a ratio of 1.5 mM (0.003 mmol) and FSM16 at 17.3 mg was used as a catalyst under argon gas atmosphere. Benzene was oxidized in the same manner as in the above benzene oxidation reaction 1 except that it was added to the mouth flask.
[Benzene oxidation reaction 5]
Complex-FSM16 in which [Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 was mixed at a ratio of 1.5 mM (0.003 mmol) and FSM 16 at 8.7 mg was used as a catalyst under argon gas atmosphere. Benzene was oxidized in the same manner as in the above benzene oxidation reaction 1 except that it was added to the mouth flask.

〔ベンゼンの酸化反応6〕
[Fe2(O)(AcO)2hexpy](ClO421.5mM(0.003mmol)のみをアルゴンガス雰囲気下で二口フラスコ内に触媒として加えるようにした以外は、上記ベンゼンの酸化反応1と同様にしてベンゼンを酸化させた。
[Benzene oxidation reaction 6]
Oxidation of benzene except that only [Fe 2 (O) (AcO) 2 hexpy] (ClO 4 ) 2 1.5 mM (0.003 mmol) was added as a catalyst in a two-necked flask under an argon gas atmosphere. Benzene was oxidized in the same manner as in Reaction 1.

Figure 2005238060
Figure 2005238060

上記表2から混合溶媒の配合割合が変われば、反応性が変わること、メソポーラスシリカが十分に存在していれば、収率が向上することがわかる。   From Table 2 above, it can be seen that if the mixing ratio of the mixed solvent is changed, the reactivity is changed, and if the mesoporous silica is sufficiently present, the yield is improved.

上記実施例1および実施例2で得られたComplex−FSM16と、Complex/FSM16と、ヘキサピリジン二核鉄錯体をそれぞれ触媒として用いて以下のようにしてシクロヘキサンを酸化させ、合成されるシクロヘキサノールおよびシクロへキサノンの生成量、アルコールとケトンの生成比(A/K)および収率(yield)を求め、その結果を表3に示した。なお、生成比は酸化剤基準(based on oxidants)で求めた。   Cyclohexanol synthesized by oxidizing cyclohexane as follows using Complex-FSM16 obtained in Example 1 and Example 2, Complex / FSM16, and hexapyridine dinuclear iron complex as catalysts, respectively, and The amount of cyclohexanone produced, the ratio of alcohol to ketone (A / K), and the yield were determined, and the results are shown in Table 3. The production ratio was determined on the basis of oxidants.

〔シクロヘキサンの酸化反応〕
30mlの二口フラスコにCH3CN-CH2Cl2混合溶媒(v/v=1:1)を2.0ml加えた。基質としてのシクロヘキサンを7.5M(15mmol)、酸化剤としてのm-CPBAを75mM(0.15mmol)になるように調製し、アルゴンガス雰囲気下に保った。触媒をヘキサピリジン二核鉄錯体が1.5mM(0.003mmol)になるように加えた。また、GLC(気―液クロマトグラフィ)の内部基準としてニトロベンゼン2μlを加えた。2時間後の生成物の確認および定量は、GLCによる標品との比較により行った。
[Oxidation reaction of cyclohexane]
To a 30 ml two-necked flask, 2.0 ml of CH 3 CN—CH 2 Cl 2 mixed solvent (v / v = 1: 1) was added. Cyclohexane as a substrate was adjusted to 7.5 M (15 mmol) and m-CPBA as an oxidizing agent was adjusted to 75 mM (0.15 mmol), and kept in an argon gas atmosphere. The catalyst was added so that the hexapyridine dinuclear iron complex was 1.5 mM (0.003 mmol). In addition, 2 μl of nitrobenzene was added as an internal standard for GLC (gas-liquid chromatography). The confirmation and quantification of the product after 2 hours were performed by comparison with a standard by GLC.

Figure 2005238060
Figure 2005238060

上記実施例1および実施例2で得られたComplex−FSM16と、Complex/FSM16と、ヘキサピリジン二核鉄錯体をそれぞれ触媒として用いて以下のようにしてアダマンタンを酸化させ、合成される1−アダマンタノール、2−アダマンタノール、2−アダマンタノンの生成量、生成比(30/20)および収率(yield)を求め、その結果を表4に示した。なお、生成比(30/20)は、3×(1−アダマンタノール)/(2−アダマンタノール+2−アダマンタノン)で求めた。 1-adaman synthesized by oxidizing adamantane as follows using Complex-FSM16, Complex / FSM16 obtained in Example 1 and Example 2 and hexapyridine dinuclear iron complex as catalysts. pentanol, 2-adamantanol, the amount of 2-adamantanone, generation ratio (3 0/2 0) and determine the yield (yield), and the results are shown in Table 4. The generation ratio (3 0/2 0) was determined by 3 × (1-adamantanol) / (2-adamantanol + 2 adamantanone).

〔アダマンタン(admantane)の酸化反応〕
30mlの二口フラスコにCH3CN-CH2Cl2混合溶媒(v/v=1:1)を2.0ml加えた。基質としてのアダマンタンを7.5M(15mmol)、酸化剤としてのm-CPBAを75mM(0.15mmol)になるように調製し、アルゴンガス雰囲気下に保った。触媒をヘキサピリジン二核鉄錯体が1.5mM(0.003mmol)になるように加えた。また、GLCの内部基準としてニトロベンゼン2μlを加えた。2時間後の生成物の確認および定量は、GLCによる標品との比較により行った。
(Oxidation reaction of adamantane)
To a 30 ml two-necked flask, 2.0 ml of CH 3 CN—CH 2 Cl 2 mixed solvent (v / v = 1: 1) was added. Adamantane as a substrate was adjusted to 7.5 M (15 mmol) and m-CPBA as an oxidizing agent was adjusted to 75 mM (0.15 mmol), and kept under an argon gas atmosphere. The catalyst was added so that the hexapyridine dinuclear iron complex was 1.5 mM (0.003 mmol). Moreover, 2 μl of nitrobenzene was added as an internal standard of GLC. The confirmation and quantification of the product after 2 hours were performed by comparison with a standard by GLC.

Figure 2005238060
Figure 2005238060

上記表3、4から、Complex−FSM16と、Complex/FSM16が、ヘキサピリジン二核鉄錯体を単独で触媒として用いた場合に比べ、シクロパラフィン系化合物の酸化には反応性が乏しいことがわかる。   From Tables 3 and 4, it can be seen that Complex-FSM16 and Complex / FSM16 are less reactive to oxidize cycloparaffinic compounds than when hexapyridine dinuclear iron complex is used alone as a catalyst.

本発明にかかる有機化合物酸化触媒の1つの実施の形態を説明する図である。It is a figure explaining one embodiment of the organic compound oxidation catalyst concerning the present invention. Carboxylic acid functionalizedメソポーラスシリカの合成方法を説明する反応式である。It is a reaction formula explaining the synthesis method of Carboxylic acid functionalized mesoporous silica. Carboxylic acid functionalizedメソポーラスシリカにヘキサピリジン二核鉄錯体を反応させてヘキサピリジン二核鉄錯体をメソポーラスシリカ固定化する反応式である。This is a reaction formula in which a hexapyridine dinuclear iron complex is reacted with a carboxylic acid functionalized mesoporous silica to immobilize the hexapyridine dinuclear iron complex with mesoporous silica. 本発明にかかる有機化合物酸化触媒の他の実施の形態を説明する図である。It is a figure explaining other embodiment of the organic compound oxidation catalyst concerning this invention.

符号の説明Explanation of symbols

1,4 有機化合物酸化触媒
2 メソポーラスシリカ
21 細孔
3 ヘキサピリジン二核鉄錯体
1,4 Organic compound oxidation catalyst 2 Mesoporous silica 21 Pore 3 Hexapyridine dinuclear iron complex

Claims (5)

無機多孔質体の細孔内にヘキサピリジン二核鉄錯体を保持してなることを特徴とする有機化合物酸化触媒。   An organic compound oxidation catalyst comprising a hexapyridine dinuclear iron complex held in pores of an inorganic porous material. 無機多孔質体がメソポーラスシリカである請求項1に記載の有機化合物酸化触媒。   2. The organic compound oxidation catalyst according to claim 1, wherein the inorganic porous material is mesoporous silica. ヘキサピリジン二核鉄錯体が、
[Fe2(1,2-bis[2-di(2-pyridyl)-methyl-6-(pyridyl)ethane](O)(OCOCH3)2)[ClO4]2である請求項1または請求項2に記載の有機化合物酸化触媒。
Hexapyridine dinuclear iron complex
[Fe 2 (1,2-bis [2-di (2-pyridyl) -methyl-6- (pyridyl) ethane] (O) (OCOCH 3 ) 2 ) [ClO 4 ] 2 2. The organic compound oxidation catalyst according to 2.
ヘキサピリジン二核鉄錯体が無機多孔質体に固定化されている請求項1〜請求項3のいずれかに記載の有機化合物酸化触媒。   The organic compound oxidation catalyst according to any one of claims 1 to 3, wherein the hexapyridine dinuclear iron complex is immobilized on the inorganic porous material. 請求項1〜請求項4のいずれかに記載の有機化合物酸化触媒の存在下、有機化合物を酸化させる有機化合物の酸化方法。   The oxidation method of the organic compound which oxidizes an organic compound in presence of the organic compound oxidation catalyst in any one of Claims 1-4.
JP2004049486A 2004-02-25 2004-02-25 Organic compound oxidizing catalyst and method of oxidizing organic compound Pending JP2005238060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049486A JP2005238060A (en) 2004-02-25 2004-02-25 Organic compound oxidizing catalyst and method of oxidizing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049486A JP2005238060A (en) 2004-02-25 2004-02-25 Organic compound oxidizing catalyst and method of oxidizing organic compound

Publications (1)

Publication Number Publication Date
JP2005238060A true JP2005238060A (en) 2005-09-08

Family

ID=35020359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049486A Pending JP2005238060A (en) 2004-02-25 2004-02-25 Organic compound oxidizing catalyst and method of oxidizing organic compound

Country Status (1)

Country Link
JP (1) JP2005238060A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255581A (en) * 2004-03-10 2005-09-22 Toyota Central Res & Dev Lab Inc Complex composite material and method for producing the same
JP2009215205A (en) * 2008-03-10 2009-09-24 Japan Science & Technology Agency Method for producing heteroatom-containing linear alkyl compound
JP2009215203A (en) * 2008-03-10 2009-09-24 Japan Science & Technology Agency Method for producing carbonyl compound
US8758713B2 (en) 2007-05-07 2014-06-24 The Honjo Chemical Corporation Method for photooxidation of carbon monoxide in gas phase to carbon dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255581A (en) * 2004-03-10 2005-09-22 Toyota Central Res & Dev Lab Inc Complex composite material and method for producing the same
JP4518242B2 (en) * 2004-03-10 2010-08-04 株式会社豊田中央研究所 Complex composite material and method for producing the same
US8758713B2 (en) 2007-05-07 2014-06-24 The Honjo Chemical Corporation Method for photooxidation of carbon monoxide in gas phase to carbon dioxide
JP2009215205A (en) * 2008-03-10 2009-09-24 Japan Science & Technology Agency Method for producing heteroatom-containing linear alkyl compound
JP2009215203A (en) * 2008-03-10 2009-09-24 Japan Science & Technology Agency Method for producing carbonyl compound

Similar Documents

Publication Publication Date Title
US6028025A (en) Metalloporphyrin oxidation catalyst covalently coupled to an inorganic surface and method making same
Karandikar et al. Cu2+-perchlorophthalocyanine immobilized MCM-41: catalyst for oxidation of alkenes
Xu et al. Glycol assisted synthesis of MIL-100 (Fe) nanospheres for photocatalytic oxidation of benzene to phenol
Biswas et al. AgNPs immobilized over functionalized 2D Hexagonal SBA-15 for Catalytic C–H oxidation of hydrocarbons with molecular oxygen under solvent-free conditions
WO1998017389A9 (en) Metalloporphyrin oxidation catalyst indirectly covalenty coupled to an inorganic surface and methods of making same
Rosa et al. Biomimetical catalytic activity of iron (III) porphyrins encapsulated in the zeolite X
Pires et al. Effects of oxidant and solvent on the liquid-phase cyclohexane oxidation catalyzed by Ce-exchanged zeolite Y
Habibi et al. Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide
Habibi et al. Manganese nanocatalyst and N-hydroxyphthalimide as an efficient catalytic system for selective oxidation of ethylbenzene, cyclohexene and oximes under aerobic condition
Kerdi et al. Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles
Xu et al. Vanadyl acetylacetonate grafted on ordered mesoporous silica KIT-6 and its enhanced catalytic performance for direct hydroxylation of benzene to phenol
Lee et al. 2+ ions immobilized on functionalized surface of mesoporous silica and their activity toward the hydroxylation of benzene
Połtowicz et al. The oxyfunctionalization of cycloalkanes with dioxygen catalyzed by soluble and supported metalloporphyrins
Tang et al. Co2+-exchanged SAPO-5 and SAPO-34 as efficient heterogeneous catalysts for aerobic epoxidation of alkenes
Zhang et al. Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves (MCM-41 and MCM-48) as catalysts for asymmetric alkene epoxidation and cyclopropanation
Hamdy et al. Fe, Co and Cu-incorporated TUD-1: Synthesis, characterization and catalytic performance in N2O decomposition and cyclohexane oxidation
Sui et al. Bioinspired microenvironment modulation of metal–organic framework-based catalysts for selective methane oxidation
Wang et al. An efficient and scalable room temperature aerobic alcohol oxidation catalyzed by iron chloride hexahydrate/mesoporous silica supported TEMPO
Ferreira et al. Manganese porphyrin in solution and heterogenized in different materials mediates oxidation of hydrocarbons by iodosylbenzene
Kholdeeva et al. H2O2-based selective epoxidations: Nb-silicates versus Ti-silicates
Biradar et al. Nanosized gold-catalyzed selective oxidation of alkyl-substituted benzenes and n-alkanes
Berijani et al. Collaborative effect of Mn-porphyrin and mesoporous SBA-15 in the enantioselective epoxidation of olefins with oxygen
Cruz et al. Selective oxidation of thioanisole by titanium complexes immobilized on mesoporous silica nanoparticles: elucidating the environment of titanium (iv) species
Rahman et al. Aerobic Baeyer–Villiger oxidation of cyclic ketones over periodic mesoporous silica Cu/Fe/Ni/Co-HMS-X
Niño et al. Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated in α-zirconium phosphate