[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005235978A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005235978A
JP2005235978A JP2004042452A JP2004042452A JP2005235978A JP 2005235978 A JP2005235978 A JP 2005235978A JP 2004042452 A JP2004042452 A JP 2004042452A JP 2004042452 A JP2004042452 A JP 2004042452A JP 2005235978 A JP2005235978 A JP 2005235978A
Authority
JP
Japan
Prior art keywords
insulating film
film
semiconductor device
manufacturing
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004042452A
Other languages
Japanese (ja)
Inventor
Shunichi Shibuki
俊一 澁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004042452A priority Critical patent/JP2005235978A/en
Publication of JP2005235978A publication Critical patent/JP2005235978A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a yield to be improved and to enable reliability to be improved by preventing a bonded insulating films from being separated by raising the adhesiveness between the insulating films used for a multilayer wiring structure. <P>SOLUTION: In a semiconductor device 1 having the multilayer wiring structure on a substrate 11, the insulating film for electrically insulating between the wiring layers of the multilayer wiring structure is made of a laminate of the first insulating film 21 and the second insulating film 22. Between the first insulating film 21 and the second insulating film 22, a chemical which raises the adhesiveness of the first insulating film 21 and the second insulating film 22 is applied on the periphery of the first insulating film 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、配線材料の銅を配線溝やビアホール内に埋め込むように形成する化学的機械研磨(以下、CMPという)時に絶縁膜の剥がれを発生しないようにした半導体装置の製造方法およびその製造方法により製造された半導体装置に関するものである。   The present invention relates to a method of manufacturing a semiconductor device and a method of manufacturing the same, in which peeling of an insulating film does not occur at the time of chemical mechanical polishing (hereinafter referred to as CMP) in which copper as a wiring material is embedded in a wiring groove or via hole. The present invention relates to a semiconductor device manufactured by:

多層配線構造の半導体装置の製造方法では、配線間を電気的に絶縁する絶縁膜を2種類以上の絶縁膜を積層した構造に形成している。特に、絶縁膜の誘電率(k)の値を小さくするために、従来から使用されていた酸化シリコン膜や窒化シリコン膜に比べ、密着性の弱い種々の絶縁膜が使われている。   In the manufacturing method of a semiconductor device having a multilayer wiring structure, an insulating film that electrically insulates between wirings is formed in a structure in which two or more kinds of insulating films are stacked. In particular, in order to reduce the value of dielectric constant (k) of the insulating film, various insulating films having weaker adhesion than those of conventionally used silicon oxide films and silicon nitride films are used.

上記多層配線構造を製造する技術としては、絶縁層に形成した溝および穴に導電材料となる銅を埋め込んで形成する、いわゆるデュアルダマシン方法について開示されている(例えば、特許文献1参照。)。この特許文献1に開示されている絶縁層は積層構造であり、特許文献1の図3および段落番号0032に「誘電絶縁層2、3および4を付着させて高導電率の相互接続を形成するプロセスを開始する。1対の絶縁層はECR、スパッタリング、プラズマCVD、CVD、スピンコーティング、またはこれらの方法の任意の組み合わせによって付着させることができる。たとえば、これらの絶縁層はポリイミド、窒化シリコン、アルミナ、二酸化シリコン、リンケイ酸ガラス、酸化イットリウム、酸化マグネシウム、エアロゲル、またはこれらの材料の任意の組み合わせで作ることができる。」ことが記載されている。   As a technique for manufacturing the multilayer wiring structure, there is disclosed a so-called dual damascene method in which copper serving as a conductive material is embedded in grooves and holes formed in an insulating layer (see, for example, Patent Document 1). The insulating layer disclosed in Patent Document 1 has a laminated structure, and in FIG. 3 and Paragraph No. 0032 of Patent Document 1, “dielectric insulating layers 2, 3 and 4 are attached to form a high conductivity interconnect. A pair of insulating layers can be deposited by ECR, sputtering, plasma CVD, CVD, spin coating, or any combination of these methods, for example, these insulating layers can be polyimide, silicon nitride, It can be made of alumina, silicon dioxide, phosphosilicate glass, yttrium oxide, magnesium oxide, airgel, or any combination of these materials. "

また、配線(ライン)層の絶縁膜とビア層の絶縁膜との積層構造を有し、ビア層の絶縁膜がTEOS酸化膜/有機ポリマー系スピンオン材料膜の積層膜であり、配線層の絶縁膜がTEOS酸化膜/有機ポリマー系スピンオン材料膜の積層膜である半導体装置が開示されている(例えば、非特許文献1参照。)。   Also, it has a laminated structure of an insulating film of a wiring (line) layer and an insulating film of a via layer, the insulating film of the via layer is a laminated film of a TEOS oxide film / organic polymer spin-on material film, and insulation of the wiring layer A semiconductor device in which the film is a laminated film of a TEOS oxide film / organic polymer spin-on material film is disclosed (for example, see Non-Patent Document 1).

また、配線(ライン)層の絶縁膜とビア層の絶縁膜との積層構造を有し、さらに配線層の絶縁膜が積層構造である半導体装置が開示されている(例えば、特許文献2参照。)。具体的には、ビア層の絶縁膜として、パッシベーション膜111を窒化シリコン膜で形成し、その上に第1の層間絶縁膜112を酸化シリコン膜で形成すること、および配線層の絶縁膜として、第2の層間絶縁膜114を有機ポリマーで形成することおよびマスク層115を酸化シリコン膜で形成することが開示されている。   Also disclosed is a semiconductor device having a laminated structure of an insulating film of a wiring (line) layer and an insulating film of a via layer, and further having an insulating film of a wiring layer having a laminated structure (see, for example, Patent Document 2). ). Specifically, as the insulating film for the via layer, the passivation film 111 is formed of a silicon nitride film, the first interlayer insulating film 112 is formed of a silicon oxide film thereon, and the insulating film of the wiring layer is It is disclosed that the second interlayer insulating film 114 is formed of an organic polymer and the mask layer 115 is formed of a silicon oxide film.

このような密着性の弱い膜を積層して用いた場合、半導体装置製造工程における機械的な力、または熱工程において、剥がれが発生する問題が生じていた。密着性が問題となる工程としては、具体的には、酸化膜を平坦化するためのCMP工程、配線を溝に埋め込んで形成する溝配線構造を形成するためのCMP工程、低誘電率膜(半導体プロセス技術の当業者間ではLow−k膜ともいう)を架橋するためのアニール工程、銅膜をアニールする工程、パッケージング工程などが上げられる。   When such thin films having low adhesion are used in a stacked manner, there has been a problem that peeling occurs in the mechanical force in the semiconductor device manufacturing process or the thermal process. Specifically, as a process in which adhesion is a problem, a CMP process for planarizing an oxide film, a CMP process for forming a trench wiring structure in which wiring is embedded in a trench, and a low dielectric constant film ( Among those skilled in the semiconductor process technology, there are an annealing step for crosslinking (also referred to as a low-k film), a copper film annealing step, a packaging step, and the like.

特許第3057054号公報Japanese Patent No. 3057054 特開2001−44189号公報JP 2001-44189 A 西岡康隆著「CD制御に基づいた有機Low−k/Cuインテグレーション技術」、グローバルネット株式会社主催“k<2.5に向けたLow−k膜ダマシンプロセスの基礎理論と配線応用技術”p.4−1−1〜4−1−8、2002年2月20日“Organic Low-k / Cu integration technology based on CD control” written by Yasutaka Nishioka, sponsored by Global Net Co., Ltd. “Basic theory and wiring application technology of Low-k film damascene process for k <2.5” p. 4-1-1 to 4-1-8, February 20, 2002

解決しようとする問題点は、CMP工程で絶縁膜が剥がれる点である。特に、CMP時に圧力が集中するウエハのエッジ近傍または絶縁膜のエッジ近傍での絶縁膜の剥がれを防止することができない点である。   The problem to be solved is that the insulating film is peeled off in the CMP process. In particular, it is impossible to prevent the peeling of the insulating film near the edge of the wafer or the edge of the insulating film where pressure is concentrated during CMP.

本発明の第1半導体装置は、基板上に多層配線構造を有する半導体装置であって、前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜を積層したものからなり、前記第1絶縁膜と前記第2絶縁膜との間で前記第1絶縁膜の周辺部上に前記第1絶縁膜と前記第2絶縁膜との密着性を高める薬液が塗布されている薬液処理領域が形成されていることを最も主要な特徴とする。   The first semiconductor device of the present invention is a semiconductor device having a multilayer wiring structure on a substrate, and the insulating film that electrically insulates the wiring layers of the multilayer wiring structure is formed by laminating a first insulating film and a second insulating film. A chemical solution for improving the adhesion between the first insulating film and the second insulating film is applied between the first insulating film and the second insulating film on the periphery of the first insulating film. The main feature is that the chemical treatment area is formed.

本発明の第2半導体装置は、基板上に多層配線構造を有する半導体装置であって、前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜と第3絶縁膜とを積層したものからなり、前記第2絶縁膜のエッジは前記第3絶縁膜のエッジより内側になるように形成され、前記第1絶縁膜と前記第3絶縁膜との間および前記第2絶縁膜と前記第3絶縁膜との間で前記第1絶縁膜の周辺部上および前記第2絶縁膜の周辺部上に前記第1絶縁膜と前記第3絶縁膜および前記第2絶縁膜と前記第3絶縁膜との密着性を高める薬液が塗布されている薬液処理領域が形成されていることを最も主要な特徴とする。   The second semiconductor device of the present invention is a semiconductor device having a multilayer wiring structure on a substrate, and the insulating films that electrically insulate the wiring layers of the multilayer wiring structure are a first insulating film, a second insulating film, and a second insulating film. And an edge of the second insulating film is formed so as to be inside the edge of the third insulating film, and between the first insulating film and the third insulating film, and Between the second insulating film and the third insulating film, the first insulating film, the third insulating film, and the second on the peripheral portion of the first insulating film and on the peripheral portion of the second insulating film. The main feature is that a chemical solution treatment region is formed in which a chemical solution for improving the adhesion between the insulating film and the third insulating film is applied.

本発明の半導体装置の第1製造方法は、基板上に多層配線構造を有する半導体装置の製造方法であって、前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜を積層したものからなり、前記第1絶縁膜を形成した後で前記第2絶縁膜を形成する前に、前記第1絶縁膜の周辺部上に前記第1絶縁膜と前記第2絶縁膜との密着性を高める薬液を塗布する工程を備えたことを最も主要な特徴とする。   A first manufacturing method of a semiconductor device of the present invention is a manufacturing method of a semiconductor device having a multilayer wiring structure on a substrate, and the insulating film that electrically insulates the wiring layers of the multilayer wiring structure is a first insulating film. The first insulating film and the first insulating film are formed on the periphery of the first insulating film after forming the first insulating film and before forming the second insulating film. 2 The main feature is that it includes a step of applying a chemical solution that enhances adhesion to the insulating film.

本発明の半導体装置の第2製造方法は、基板上に多層配線構造を有する半導体装置の製造方法であって、前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜と第3絶縁膜とを積層したものからなり、前記第2絶縁膜のエッジを前記第3絶縁膜のエッジより内側になるように形成し、前記第2絶縁膜を形成した後で前記第3絶縁膜を形成する前に、前記第1絶縁膜の周辺部上および前記第2絶縁膜の周辺部上に前記第1絶縁膜および前記第2絶縁膜と前記第3絶縁膜との密着性を高める薬液を塗布する工程を備えたことを最も主要な特徴とする。   A second manufacturing method of a semiconductor device of the present invention is a manufacturing method of a semiconductor device having a multilayer wiring structure on a substrate, and the insulating film that electrically insulates the wiring layers of the multilayer wiring structure is the same as the first insulating film. After the second insulating film and the third insulating film are laminated, the edge of the second insulating film is formed to be inside the edge of the third insulating film, and the second insulating film is formed. Before forming the third insulating film, the first insulating film, the second insulating film, and the third insulating film are formed on the peripheral portion of the first insulating film and on the peripheral portion of the second insulating film. The main feature is that it includes a step of applying a chemical solution for improving the adhesion of the material.

本発明の第1半導体装置は、配線層間の絶縁膜を構成する第1絶縁膜と第2絶縁膜との間で第1絶縁膜の周辺部上に前記第1絶縁膜と第2絶縁膜との密着性を高める薬液が塗布されているため、第1絶縁膜に対して第2絶縁膜の密着性が高められている。このため、第2絶縁膜が剥がれなくなるので、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れるという利点がある。   In the first semiconductor device of the present invention, the first insulating film and the second insulating film are formed on the periphery of the first insulating film between the first insulating film and the second insulating film constituting the insulating film between the wiring layers. Since the chemical | medical solution which improves adhesiveness of this is applied, the adhesiveness of the 2nd insulating film is improved with respect to the 1st insulating film. For this reason, since the second insulating film is not peeled off, there is an advantage that the yield can be improved and the reliability of the insulating film can be improved.

本発明の第2半導体装置は、配線層間の絶縁膜を構成する第1絶縁膜と第3絶縁膜との間および第2絶縁膜と第3絶縁膜との間で、第1絶縁膜の周辺部上および第2絶縁膜の周辺部上に第1絶縁膜と第3絶縁膜および第2絶縁膜と第3絶縁膜との密着性を高める薬液が塗布されていることから、第1、第2絶縁膜に対して第3絶縁膜の密着性が高められる。このため、第3絶縁膜が剥がれなくなるので、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れるという利点がある。   According to the second semiconductor device of the present invention, the periphery of the first insulating film is between the first insulating film and the third insulating film constituting the insulating film between the wiring layers and between the second insulating film and the third insulating film. Since the chemical solution for improving the adhesion between the first insulating film and the third insulating film and the second insulating film and the third insulating film is applied on the peripheral portion of the first insulating film and the second insulating film. The adhesion of the third insulating film to the two insulating films is improved. For this reason, since the third insulating film is not peeled off, there is an advantage that the yield can be improved and the reliability of the insulating film can be improved.

本発明の半導体装置の第1製造方法は、配線層間の絶縁膜を構成する第1絶縁膜を形成した後で第2絶縁膜を形成する前に、第1絶縁膜の周辺部上に第1絶縁膜と前記第2絶縁膜との密着性を高める薬液を塗布する工程を備えたことから、第1絶縁膜に対する第2絶縁膜の密着性を周辺部において高めることができるので、第2絶縁膜を形成した後に、例えばCMP工程を行って、第1、第2絶縁膜間に第1絶縁膜表面と略平行な方向の荷重がかかったとしても、第1絶縁膜より第2絶縁膜が剥がれるということが防止できるという利点がある。特に、膜剥がれが発生しやすい膜周辺部の密着性が高められているので、膜剥がれの防止には効果的である。したがって、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れる。   According to the first method of manufacturing a semiconductor device of the present invention, the first insulating film is formed on the periphery of the first insulating film after forming the first insulating film constituting the insulating film between the wiring layers and before forming the second insulating film. Since the step of applying a chemical solution for improving the adhesion between the insulating film and the second insulating film is provided, the adhesion of the second insulating film to the first insulating film can be enhanced at the peripheral portion. After the film is formed, even if, for example, a CMP process is performed and a load in a direction substantially parallel to the surface of the first insulating film is applied between the first and second insulating films, the second insulating film is formed from the first insulating film. There is an advantage that peeling can be prevented. In particular, the adhesion at the periphery of the film where film peeling is likely to occur is enhanced, which is effective in preventing film peeling. Therefore, the yield can be improved and the reliability of the insulating film can be improved.

本発明の半導体装置の第2製造方法は、配線層間の絶縁膜を構成する第2絶縁膜を形成した後で第3絶縁膜を形成する前に、第1絶縁膜の周辺部上および第2絶縁膜の周辺部上に第1絶縁膜および第2絶縁膜と第3絶縁膜との密着性を高める薬液が塗布されていることから、第1絶縁膜および第2絶縁膜に対する第3絶縁膜の密着性を周辺部において高めることができるので、第3絶縁膜を形成した後に、例えばCMP工程を行って、第1、第2絶縁膜と第2絶縁膜との間に第1絶縁膜表面と略平行な方向の荷重がかかったとしても、第1、第2絶縁膜より第3絶縁膜が剥がれるということが防止できるという利点がある。特に、膜剥がれが発生しやすい膜周辺部の密着性が高められているので、膜剥がれの防止には効果的である。したがって、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れる。   According to the second method of manufacturing a semiconductor device of the present invention, the second insulating film constituting the insulating film between the wiring layers is formed and then the second insulating film is formed on the peripheral portion of the first insulating film and before the second insulating film is formed. Since the chemical | medical solution which improves the adhesiveness of a 1st insulating film and a 2nd insulating film, and a 3rd insulating film is apply | coated on the peripheral part of an insulating film, the 3rd insulating film with respect to a 1st insulating film and a 2nd insulating film Therefore, after forming the third insulating film, for example, a CMP process is performed so that the surface of the first insulating film is between the first and second insulating films and the second insulating film. There is an advantage that the third insulating film can be prevented from peeling off from the first and second insulating films even when a load in a direction substantially parallel to the first and second insulating films is applied. In particular, the adhesion at the periphery of the film where film peeling is likely to occur is enhanced, which is effective in preventing film peeling. Therefore, the yield can be improved and the reliability of the insulating film can be improved.

CMP時に圧力が集中するウエハのエッジ近傍または絶縁膜のエッジ近傍での絶縁膜の剥がれを防止するという目的を、絶縁膜の周辺部に密着性を高める薬液を塗布することで、絶縁膜の密着性を改善して、CMP工程での膜はがれの防止を実現した。   By applying a chemical solution that improves adhesion to the periphery of the insulating film for the purpose of preventing the peeling of the insulating film near the edge of the wafer or the edge of the insulating film where pressure is concentrated during CMP, The film was improved to prevent film peeling during the CMP process.

本発明の半導体装置に係る一実施例を、図1の概略構成断面図によって説明する。   One embodiment of the semiconductor device of the present invention will be described with reference to the schematic sectional view of FIG.

図1に示すように、図示はしないトランジスタ、配線等が形成された基板(ウエハ)11上に絶縁膜12が形成されている。上記基板11には、例えばシリコン基板が用いられる。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。上記絶縁膜12上には配線層間の絶縁膜を構成する第1絶縁膜21が形成されている。ここでは第1絶縁膜21はSiC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜である。上記第1絶縁膜21は、例えばプラズマCVD法により200nmの厚さに成膜されているものである。   As shown in FIG. 1, an insulating film 12 is formed on a substrate (wafer) 11 on which transistors, wirings, etc. (not shown) are formed. For example, a silicon substrate is used as the substrate 11. The insulating film 12 is made of a silicon oxide film and has a thickness of, for example, 500 nm. On the insulating film 12, a first insulating film 21 constituting an insulating film between wiring layers is formed. Here, the first insulating film 21 is formed of a SiC-based film. For example, a SiOC film or a film containing nitrogen or hydrogen in the SiOC film. The first insulating film 21 is formed to a thickness of 200 nm by, for example, plasma CVD.

上記第1絶縁膜21の周辺部(例えばウエハ外周から4mm以内の範囲)上は薬液処理が施されている。この薬液処理は、上記第1絶縁膜21上に形成される第2絶縁膜22との密着性を高めるための処理であって、上記第1絶縁膜21の周辺部上に密着性を高める薬液を塗布する処理である。上記薬液は、第1絶縁膜21表面を酸化させる作用、言い換えれば、第1絶縁膜21表面の酸化をさらに促進させる作用を有する薬液であればよい。そのような薬液としては酸化剤があり、例えば過酸化水素水を用いることができる。したがって、上記第1絶縁膜21の周辺部には他の第1絶縁膜21表面より酸化されている薬液処理領域33が環状に形成されている。   A chemical treatment is performed on the peripheral portion of the first insulating film 21 (for example, a range within 4 mm from the outer periphery of the wafer). This chemical treatment is a treatment for improving the adhesion with the second insulating film 22 formed on the first insulating film 21, and is a chemical for enhancing the adhesion on the peripheral portion of the first insulating film 21. Is a process of coating. The chemical solution may be any chemical solution having an action of oxidizing the surface of the first insulating film 21, in other words, an action of further promoting the oxidation of the surface of the first insulating film 21. Such a chemical solution includes an oxidizing agent, and for example, hydrogen peroxide water can be used. Therefore, a chemical treatment region 33 that is oxidized from the surface of the other first insulating film 21 is formed in an annular shape around the first insulating film 21.

さらに、第1絶縁膜21上には配線層間の絶縁膜を構成する第2絶縁膜22が形成されている。この第2絶縁膜22は、例えば有機膜が用いられている。この有機膜としては、ポリアリールエーテル膜を用いることができる。上記ポリアリールエーテル膜は、例えばSiLK−J(ダウケミカル社)があり、その他には、例えば、ダウケミカル社製のp−SiLK、アライドシグナル社製のFLARE、シューマッカー社製のVE等を用いることができ、その他のポリアリールエーテル膜であってもよい。上記有機膜の膜厚は、例えば100nmとした。   Further, a second insulating film 22 constituting an insulating film between the wiring layers is formed on the first insulating film 21. For example, an organic film is used for the second insulating film 22. As this organic film, a polyaryl ether film can be used. Examples of the polyaryl ether film include SiLK-J (Dow Chemical Co.), and other examples include p-SiLK manufactured by Dow Chemical, FLARE manufactured by Allied Signal, VE manufactured by Schumacker, and the like. Other polyaryl ether films may be used. The film thickness of the organic film was set to 100 nm, for example.

上記第2絶縁膜22のエッジ部分は、図示されているように、除去されていてもよい。この第2絶縁膜22のエッジ除去は、基板11の外周についた第2絶縁膜22を除去するために成されたものである。また、上記第2絶縁膜22を被覆するように第3絶縁膜23が形成されていてもよい。この第3絶縁膜23は、例えば酸化シリコン(SiO2)膜で形成されている。上記第3絶縁膜23は、第3絶縁膜23も含めて上記第1、第2絶縁膜21、22に、溝配線や配線層間を接続する接続部(例えばビア)を形成する場合、有機膜のポリアリールエーテルで形成されている第2絶縁膜22を直接的に化学的機械研磨(CMP)することを避けるために成膜される。 The edge portion of the second insulating film 22 may be removed as illustrated. The edge removal of the second insulating film 22 is performed in order to remove the second insulating film 22 on the outer periphery of the substrate 11. Further, a third insulating film 23 may be formed so as to cover the second insulating film 22. The third insulating film 23 is formed of, for example, a silicon oxide (SiO 2 ) film. When the third insulating film 23 includes the third insulating film 23 and the first and second insulating films 21 and 22 are formed with connection portions (for example, vias) for connecting groove wirings and wiring layers, an organic film is used. The second insulating film 22 formed of the polyaryl ether is formed to avoid direct chemical mechanical polishing (CMP).

さらに、上記第1〜第3絶縁膜21〜23のエッジは、上記第1絶縁膜21の周辺部上に上記薬液処理部分が残るようにして除去されている。また、上記第1〜第3絶縁膜21〜23に溝配線および下層の導体部分(例えば、図示しない電極、配線、素子等)に接続される接続部(例えばビア)が形成されていてもよい。   Further, the edges of the first to third insulating films 21 to 23 are removed so that the chemical solution processing portion remains on the peripheral portion of the first insulating film 21. In addition, the first to third insulating films 21 to 23 may be formed with connection portions (for example, vias) connected to the trench wirings and lower conductor portions (for example, electrodes, wirings, elements, etc., not shown). .

上記半導体装置1は、配線層間の絶縁膜を構成する第1絶縁膜21を形成した後で第2絶縁膜22を形成する前に、第1絶縁膜21の周辺部上に第1絶縁膜21と第2絶縁膜22との密着性を高める薬液が塗布されることから、SiC系の膜では膜表面の水素のダングリングボンドをOH基に置換してシリコンに酸素を結合させることができるので、第1絶縁膜21表面の酸化が促進されることになる。このことから、第1絶縁膜21に対する第2絶縁膜22の密着性を周辺部において高めることができるので、第2絶縁膜22を形成した後に、例えばCMP工程を行って、第1、第2絶縁膜21、22間に第1絶縁膜21表面と略平行な方向の荷重がかかったとしても、第1絶縁膜21より第2絶縁膜22が剥がれるということが防止できるという利点がある。特に、膜剥がれが発生しやすい膜周辺部の密着性が高められているので、膜剥がれの防止には効果的である。したがって、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れる。   In the semiconductor device 1, the first insulating film 21 is formed on the periphery of the first insulating film 21 before the second insulating film 22 is formed after the first insulating film 21 constituting the insulating film between the wiring layers is formed. Since a chemical solution that improves the adhesion between the first insulating film 22 and the second insulating film 22 is applied, the dangling bonds of hydrogen on the film surface can be replaced with OH groups to bond oxygen to silicon in the SiC-based film. As a result, the oxidation of the surface of the first insulating film 21 is promoted. Accordingly, the adhesion of the second insulating film 22 to the first insulating film 21 can be enhanced in the peripheral portion. Therefore, after the second insulating film 22 is formed, for example, a CMP process is performed to perform the first and second processes. Even if a load in a direction substantially parallel to the surface of the first insulating film 21 is applied between the insulating films 21 and 22, there is an advantage that the second insulating film 22 can be prevented from being peeled off from the first insulating film 21. In particular, the adhesion at the periphery of the film where film peeling is likely to occur is enhanced, which is effective in preventing film peeling. Therefore, the yield can be improved and the reliability of the insulating film can be improved.

本発明の半導体装置の第1製造方法に係る一実施例を、図2〜図6の製造工程図によって説明する。各図2〜図6では、(1)に概略構成斜視図を示し、(2)に基板直径方向の概略構成断面図を示した。なお、概略構成断面図は分かり易くするため、厚さ方向に拡大されている。また、図中の基板上に描かれている矢印は基板の回転方向の一例を示すもので、この回転方向は逆方向であってもよい。   An embodiment according to the first method for manufacturing a semiconductor device of the present invention will be described with reference to manufacturing process diagrams of FIGS. 2 to 6, (1) shows a schematic configuration perspective view, and (2) shows a schematic configuration cross-sectional view in the substrate diameter direction. The schematic cross-sectional view is enlarged in the thickness direction for easy understanding. Moreover, the arrow drawn on the board | substrate in a figure shows an example of the rotation direction of a board | substrate, This rotation direction may be a reverse direction.

図2に示すように、基板11上に絶縁膜12を形成する。上記基板11には、例えばシリコン基板が用いられる。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。その成膜方法は、例えばプラズマCVD法による。次に、上記絶縁膜12上に第1絶縁膜21を形成する。ここでは第1絶縁膜21はSiC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜等である。上記第1絶縁膜21は、例えば200nmの厚さに成膜する。この成膜方法は、一例として、平行平板型プラズマCVD装置を用い、原料ガスのシリコン源としてメチルシランを用いた。また成膜条件としては基板温度を300℃〜400℃に設定し、プラズマパワーを150W〜350W、成膜雰囲気の圧力を100Pa〜1000Pa程度に設定する。以下、各種絶縁膜形成した基板11をウエハという。   As shown in FIG. 2, an insulating film 12 is formed on the substrate 11. For example, a silicon substrate is used as the substrate 11. The insulating film 12 is made of a silicon oxide film and has a thickness of, for example, 500 nm. The film forming method is based on, for example, a plasma CVD method. Next, a first insulating film 21 is formed on the insulating film 12. Here, the first insulating film 21 is formed of a SiC-based film. For example, a SiOC film, a film containing nitrogen or hydrogen in the SiOC film, and the like. The first insulating film 21 is formed to a thickness of 200 nm, for example. In this film forming method, for example, a parallel plate type plasma CVD apparatus is used, and methylsilane is used as a silicon source of the source gas. As film forming conditions, the substrate temperature is set to 300 ° C. to 400 ° C., the plasma power is set to 150 W to 350 W, and the pressure of the film forming atmosphere is set to about 100 Pa to 1000 Pa. Hereinafter, the substrate 11 on which various insulating films are formed is referred to as a wafer.

次に、上記第1絶縁膜21の周辺部(例えばウエハ外周から4mm以内の範囲)上に薬液処理を施す(斜視図の斜線領域が薬液処理領域となる。)。この薬液処理方法は、上記基板11を図面矢印ア方向に回転させながら、上記第1絶縁膜21の周辺部上に、後の工程で形成される第2絶縁膜との密着性を高める薬液31を供給するとともに、所望の幅wの薬液処理領域を確保するために、上記薬液31を供給するノズル41を、例えば図面矢印イ方向にスキャニングする。この時、図示しない純水を基板11の中心部上より第1絶縁膜21表面に滴下することにより、第1絶縁膜21の周辺部以外の第1絶縁膜21表面に薬液31がかからないように保護する。ここでは、薬液31として5wt%の過酸化水素水(H22)を用い、薬液処理時間を60秒とした。上記薬液処理を終了させるには、上記薬液31の供給を停止するとともに、第1絶縁膜21表面上に残存する薬液31を除去するために純水にて洗浄してもよい。この結果、上記第1絶縁膜21の周辺部には他の第1絶縁膜21表面より酸化されている薬液処理部33が環状に形成される。 Next, a chemical treatment is performed on the peripheral portion of the first insulating film 21 (for example, a range within 4 mm from the outer periphery of the wafer) (the hatched area in the perspective view is the chemical treatment region). In this chemical solution processing method, the chemical solution 31 improves the adhesion with the second insulating film formed in the subsequent step on the peripheral portion of the first insulating film 21 while rotating the substrate 11 in the direction of the arrow A in the drawing. In addition, the nozzle 41 for supplying the chemical solution 31 is scanned in the direction of the arrow A in the drawing, for example, in order to secure a chemical treatment region with a desired width w. At this time, pure water (not shown) is dropped onto the surface of the first insulating film 21 from the center of the substrate 11 so that the chemical solution 31 is not applied to the surface of the first insulating film 21 other than the peripheral portion of the first insulating film 21. Protect. Here, 5 wt% hydrogen peroxide (H 2 O 2 ) was used as the chemical solution 31, and the chemical treatment time was 60 seconds. In order to terminate the chemical treatment, the supply of the chemical solution 31 may be stopped, and the chemical solution 31 remaining on the surface of the first insulating film 21 may be washed with pure water. As a result, a chemical solution processing portion 33 that is oxidized from the surface of the other first insulating film 21 is formed in an annular shape around the first insulating film 21.

次に、図3に示すように、上記第1絶縁膜21上に第2絶縁膜22を成膜する。この第2絶縁膜22には、有機膜を用いた。例えば有機膜として、ポリアリールエーテル膜を、例えば100nmの厚さに形成した。上記ポリアリールエーテル膜は、例えばSiLK−J(ダウケミカル社)があり、その他には、例えばアライドシグナル社製のFLARE、シューマッカー社製のVE等が知られている。例えば、上記ポリアリールエーテル膜をSiLKで形成する場合には、前駆体をスピンコート法により堆積した後、400℃〜450℃のキュア処理を行って形成することができる。   Next, as shown in FIG. 3, a second insulating film 22 is formed on the first insulating film 21. An organic film was used for the second insulating film 22. For example, as an organic film, a polyaryl ether film is formed to a thickness of, for example, 100 nm. Examples of the polyaryl ether film include SiLK-J (Dow Chemical Co.), and other examples include FLARE manufactured by Allied Signal, VE manufactured by Schumacker, and the like. For example, when the polyaryl ether film is formed of SiLK, it can be formed by depositing the precursor by spin coating and then performing a curing process at 400 ° C. to 450 ° C.

次に、図4に示すように、上記第2絶縁膜22のエッジ部分を除去する。このエッジ部分の除去方法は、基板11を図面矢印ウ方向に回転させながら、ノズル43より第2絶縁膜22の溶剤35を第2絶縁膜22の除去領域上に供給するとともに、上記ノズル43をエッジ除去範囲(例えば図面矢印エ方向)内でスキャニングンすることによる。この時、図示しない純水を基板11中心部上方より第2絶縁膜22上に供給することにより、第2絶縁膜22の周辺部以外の第2絶縁膜22表面に薬液35がかからないように保護する。上記第2絶縁膜22がポリアリールエーテル膜である場合には、上記溶剤にはシクロヘキサノンを使用することができる。上記第2絶縁膜22の周辺部の除去幅wは、ノズル43のスキャニング幅を変更することにより容易に変更できる。今回、第2絶縁膜22のエッジ除去幅w2は2mmに設定した。第2絶縁膜22のエッジ除去は、基板11の外周についた第2絶縁膜22を除去するために行ったものである。   Next, as shown in FIG. 4, the edge portion of the second insulating film 22 is removed. In this edge portion removing method, the solvent 35 of the second insulating film 22 is supplied from the nozzle 43 onto the removal region of the second insulating film 22 while rotating the substrate 11 in the direction of the arrow C in the drawing, and the nozzle 43 is turned on. By scanning within an edge removal range (for example, in the direction of arrow D in the drawing). At this time, pure water (not shown) is supplied onto the second insulating film 22 from above the center of the substrate 11 to protect the chemical solution 35 from being applied to the surface of the second insulating film 22 other than the peripheral portion of the second insulating film 22. To do. When the second insulating film 22 is a polyaryl ether film, cyclohexanone can be used as the solvent. The removal width w of the peripheral portion of the second insulating film 22 can be easily changed by changing the scanning width of the nozzle 43. This time, the edge removal width w2 of the second insulating film 22 is set to 2 mm. The removal of the edge of the second insulating film 22 is performed in order to remove the second insulating film 22 on the outer periphery of the substrate 11.

次に、図5に示すように、第2絶縁膜22を被覆するように第3絶縁膜23を形成する。この第3絶縁膜23は、例えば酸化シリコン(SiO2)膜で形成され、その成膜方法としては、プラズマCVD法を採用することができる。本実施例では、有機膜のポリアリールエーテルで形成されている第2絶縁膜22を直接的に後の工程で化学的機械研磨(CMP)する必要が無いように、上記第3絶縁膜23が成膜されている。 Next, as shown in FIG. 5, a third insulating film 23 is formed so as to cover the second insulating film 22. The third insulating film 23 is formed of, for example, a silicon oxide (SiO 2 ) film, and a plasma CVD method can be employed as the film forming method. In the present embodiment, the third insulating film 23 is formed so that the second insulating film 22 formed of organic polyaryl ether does not need to be directly subjected to chemical mechanical polishing (CMP) in a later process. A film is formed.

次に塗布法によって、上記第3絶縁膜23上にフォトレジスト膜51を形成する。そして、フォトレジスト膜51のエッジ部分を除去する。フォトレジスト膜51のエッジ部分の除去方法は、上記フォトレジスト51にポジ型レジストを用いた場合には、基板11を図面矢印オ方向に回転させながら除去したいエッジ部分のみ光Lを照射してフォトレジスト膜51を感光させる(斜視図の斜線領域が感光領域となる。)。その後現像処理、リンス処理、ベーキング工程を経て、エッジ部分を除去したフォトレジスト膜51が得られる。上記フォトレジスト膜51をネガレジストで形成した場合には、除去しない領域のみ感光処理を行い、その後、現像、リンス処理、ベーキング工程を経れば、エッジ部分が除去されたフォトレジスト膜51が得られる。上記エッジ除去幅w3は、例えば3mmとした。   Next, a photoresist film 51 is formed on the third insulating film 23 by a coating method. Then, the edge portion of the photoresist film 51 is removed. As a method for removing the edge portion of the photoresist film 51, when a positive resist is used for the photoresist 51, only the edge portion to be removed is irradiated with the light L while rotating the substrate 11 in the direction of the arrow O. The resist film 51 is exposed (the shaded area in the perspective view is the photosensitive area). Thereafter, through a development process, a rinse process, and a baking process, the photoresist film 51 from which the edge portion has been removed is obtained. When the photoresist film 51 is formed of a negative resist, only a region that is not to be removed is subjected to a photosensitive process, and then a development, a rinsing process, and a baking process are performed to obtain a photoresist film 51 from which the edge portion has been removed. It is done. The edge removal width w3 is 3 mm, for example.

次に、図6に示すように、上記第3絶縁膜23、第2絶縁膜22、第1絶縁膜21の順でエッチングを行い、各第3〜第1絶縁膜23〜21のエッジ部分を除去した。その後、上記フォトレジスト膜51〔前記図5参照〕をアッシング処理もしくは剥離処理等により除去した。図面では、フォトレジスト膜51を除去した状態を示した。   Next, as shown in FIG. 6, the third insulating film 23, the second insulating film 22, and the first insulating film 21 are etched in this order, and the edge portions of the third to first insulating films 23 to 21 are formed. Removed. Thereafter, the photoresist film 51 [see FIG. 5] was removed by ashing or stripping. In the drawing, the state where the photoresist film 51 is removed is shown.

上記第1〜第3絶縁膜21〜23に溝配線およびビアを形成する場合には、上記第1〜第3絶縁膜21〜23のエッジ部分の除去を行う露光工程を行った後で現像工程前に、例えば配線溝、ビアホール等のパターニングを行えばよい。また、溝配線とビアとを同時形成する、いわゆるデュアルダマシン構造の絶縁膜についても、本発明の構成を用いることができる。例えば、第1絶縁膜21に配線間の接続を行う接続部(ビア)が形成され、第2、第3絶縁膜22、23に溝配線が形成される。溝配線とビアとを同時形成する技術については、多くの公知例があり、例えば特開2001−44189号公報などに詳細な記述がある。これらの公知技術の絶縁膜についても、本発明の如く、ビアが形成される第1絶縁膜21の周辺部に対する薬液処理を実施して、溝配線が形成される第2絶縁膜22を形成する構成を採用することができる。   In the case where trench wirings and vias are formed in the first to third insulating films 21 to 23, a developing process is performed after performing an exposure process for removing edge portions of the first to third insulating films 21 to 23. Before patterning, for example, wiring grooves, via holes, etc. may be performed. The structure of the present invention can also be used for an insulating film having a so-called dual damascene structure in which a trench wiring and a via are formed simultaneously. For example, connection portions (vias) that connect the wirings are formed in the first insulating film 21, and groove wirings are formed in the second and third insulating films 22 and 23. There are many known examples of the technology for simultaneously forming the trench wiring and the via. For example, JP 2001-44189A discloses a detailed description. Also for these known insulating films, as in the present invention, the second insulating film 22 in which the trench wiring is formed is formed by performing chemical treatment on the peripheral portion of the first insulating film 21 in which the via is formed. A configuration can be employed.

次に、本発明の効果を確認した。その方法は、前記図6に示したように、基板11上に上記第1〜第3絶縁膜21〜23を形成した発明サンプルを用意し、発明サンプルの第3絶縁膜23に対してCMPを行った。また、発明サンプルと比較するものとして、第1絶縁膜21に薬液処理を施さないで第1絶縁膜21上に第2、第3絶縁膜22、23を形成した比較サンプルを用意した。   Next, the effect of the present invention was confirmed. As shown in FIG. 6, the method is to prepare an inventive sample in which the first to third insulating films 21 to 23 are formed on the substrate 11, and perform CMP on the third insulating film 23 of the inventive sample. went. In addition, as a sample to be compared with the inventive sample, a comparative sample in which the second and third insulating films 22 and 23 were formed on the first insulating film 21 without performing chemical treatment on the first insulating film 21 was prepared.

次に、上記発明サンプルおよび比較サンプルのそれぞれの第3絶縁膜23をCMPした。このCMPでは、研磨パッドに、例えば上層が発泡ポリウレタン製で下層がPET(ポリエチレンテレフタレート)製のものを用いた。このような研磨パッドとしては、一例として、上層がロデール社製の厚さ1.2mmのIC1000で下層が同社製の厚さ1.2mmのSUBA400よりなる積層された研磨パッドがある。研磨液(研磨スラリー)には、アルカリ溶媒に分散したコロイダルシリカに酸化剤として過酸化水素水(H22)を添加したものを用いる。例えばJSR社製のCMS8301がある。上記研磨液の供給流量は例えば150ml/minとして、研磨パッドの回転数は例えば100rpm、ウエハ(基板)回転数は例えば:110rpm、研磨圧力は例えば300g/cm2,研磨時間は例えば60secとした。これにより、第3絶縁膜23のSiO2膜の表層およそ70nmの厚さが除去された。 Next, the third insulating film 23 of each of the inventive sample and the comparative sample was subjected to CMP. In this CMP, for example, a polishing pad having an upper layer made of foamed polyurethane and a lower layer made of PET (polyethylene terephthalate) was used. As an example of such a polishing pad, there is a laminated polishing pad in which the upper layer is made of Rodale IC1000 having a thickness of 1.2 mm and the lower layer is made of SUBA400 having a thickness of 1.2 mm made by the same company. A polishing liquid (polishing slurry) obtained by adding hydrogen peroxide (H 2 O 2 ) as an oxidizing agent to colloidal silica dispersed in an alkaline solvent is used. For example, there is CMS8301 manufactured by JSR. The polishing liquid supply flow rate is, for example, 150 ml / min, the polishing pad rotation speed is, for example, 100 rpm, the wafer (substrate) rotation speed is, for example, 110 rpm, the polishing pressure is, for example, 300 g / cm 2 , and the polishing time is, for example, 60 seconds. As a result, the thickness of the surface layer of the SiO 2 film of the third insulating film 23 of about 70 nm was removed.

上記研磨は、発明サンプルおよび比較サンプルの両方に対して同条件にて行った。研磨後、絶縁膜の周辺部を顕微鏡により観察し、第1絶縁膜21に対する第2絶縁膜の剥がれ状態を観察した。その結果、発明サンプルでは、全く膜剥がれを起こしていなかった。一方、比較サンプルでは、周辺部のほぼすべての領域(20%以上の領域)で膜剥がれを起こしていた。また、比較サンプルに関しては、ウエハ周辺部から4mmよりもさらに内側に剥がれが及んでいた。一方、発明サンプルでは、薬液処理を実施していないウエハ周辺部以外の領域においても膜剥がれは起こっていなかった。   The polishing was performed under the same conditions for both the inventive sample and the comparative sample. After polishing, the periphery of the insulating film was observed with a microscope, and the peeled state of the second insulating film with respect to the first insulating film 21 was observed. As a result, in the inventive sample, no film peeling occurred. On the other hand, in the comparative sample, film peeling occurred in almost all of the peripheral portion (region of 20% or more). Further, the comparative sample was peeled further inward than 4 mm from the peripheral portion of the wafer. On the other hand, in the inventive sample, film peeling did not occur in a region other than the peripheral portion of the wafer where no chemical treatment was performed.

よって、上記実施例1、2では、密着性を改善したウエハ周辺部(例えば薬液処理を施した範囲)だけでなく、密着性改善の薬液処理を行っていないウエハ周辺部より内側の領域に対しても、膜剥がれを防止する効果が得られた。これは、密着性が弱い第2絶縁膜22のポリアリールエーテル膜と第1絶縁膜21のSiC系の膜との界面において、ウエハ周辺部の第1絶縁膜21表面に対する密着性を高める薬液処理により、ウエハ周辺部の第1絶縁膜21表面の酸化が促進されたことによる。よって、CMP時に圧力が集中するウエハ周辺部が剥がれにくくなり、それによって、ウエハ面内が保護されたものといえる。   Therefore, in the first and second embodiments, not only the wafer peripheral portion with improved adhesion (for example, the range subjected to the chemical treatment) but also the region inside the wafer peripheral portion not subjected to the chemical treatment with improved adhesion. However, the effect of preventing film peeling was obtained. This is a chemical treatment that enhances the adhesion of the wafer peripheral portion to the surface of the first insulating film 21 at the interface between the polyaryl ether film of the second insulating film 22 and the SiC-based film of the first insulating film 21 with weak adhesion. This is because the oxidation of the surface of the first insulating film 21 around the wafer is promoted. Therefore, it can be said that the wafer peripheral portion where the pressure is concentrated at the time of CMP is not easily peeled off, thereby protecting the wafer surface.

次に、本発明の第2半導体装置に係る一実施例を、図7の概略構成断面図によって説明する。   Next, an embodiment of the second semiconductor device according to the present invention will be described with reference to the schematic sectional view of FIG.

図7に示すように、図示はしないトランジスタ、配線等が形成された基板(ウエハ)11上に絶縁膜12が形成されている。上記基板11には、例えばシリコン基板が用いられる。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。上記絶縁膜12上には配線層間の絶縁膜を構成する第1絶縁膜21が形成されている。ここでは第1絶縁膜21はSiC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜である。上記第1絶縁膜21は、例えばプラズマCVD法により200nmの厚さに成膜されているものである。この第1絶縁膜21は周辺部(例えばウエハエッジより2mmの幅)が除去されている。   As shown in FIG. 7, an insulating film 12 is formed on a substrate (wafer) 11 on which transistors, wirings, etc. (not shown) are formed. For example, a silicon substrate is used as the substrate 11. The insulating film 12 is made of a silicon oxide film and has a thickness of, for example, 500 nm. On the insulating film 12, a first insulating film 21 constituting an insulating film between wiring layers is formed. Here, the first insulating film 21 is formed of a SiC-based film. For example, a SiOC film or a film containing nitrogen or hydrogen in the SiOC film. The first insulating film 21 is formed to a thickness of 200 nm by, for example, plasma CVD. The first insulating film 21 has a peripheral portion (for example, a width of 2 mm from the wafer edge) removed.

さらに、第1絶縁膜21上には配線層間の絶縁膜を構成する第2絶縁膜22が形成されている。この第2絶縁膜22は、例えば有機膜が用いられている。この有機膜としては、ポリアリールエーテル膜を用いることができる。上記ポリアリールエーテル膜は、例えばSiLK−J(ダウケミカル社)があり、その他には、例えばアライドシグナル社製のFLARE、シューマッカー社製のVE等を用いることができる。上記有機膜の膜厚は、例えば100nmとした。この第2絶縁膜22は周辺部(例えばウエハエッジより4mmの幅)が除去されている。この第2絶縁膜22のエッジ除去は、基板11の外周についた第2絶縁膜22を除去するために成されたものである。   Further, a second insulating film 22 constituting an insulating film between the wiring layers is formed on the first insulating film 21. For example, an organic film is used for the second insulating film 22. As this organic film, a polyaryl ether film can be used. Examples of the polyaryl ether film include SiLK-J (Dow Chemical Co.). In addition, for example, FLARE manufactured by Allied Signal, VE manufactured by Schumacker, or the like can be used. The film thickness of the organic film was set to 100 nm, for example. The second insulating film 22 has a peripheral portion (for example, a width of 4 mm from the wafer edge) removed. The edge removal of the second insulating film 22 is performed in order to remove the second insulating film 22 on the outer periphery of the substrate 11.

上記第1絶縁膜21の周辺部および第2絶縁膜22の周辺部(例えばウエハ外周から4mm以内の範囲)上は薬液処理が施されている。この薬液処理は、上記第1絶縁膜21および第2絶縁膜22上に形成される第3絶縁膜23との密着性を高めるための処理であって、上記第1絶縁膜21の周辺部および第2絶縁膜22の周辺部上に密着性を高める薬液を塗布する処理である。上記薬液は、第1絶縁膜21表面を酸化させる作用、言い換えれば、第1絶縁膜21表面および第2絶縁膜22表面の酸化をさらに促進させる作用を有する薬液であればよい。そのような薬液としては酸化剤があり、例えば過酸化水素水を用いることができる。したがって、上記第1絶縁膜21の周辺部はその成膜直後より酸化され、第2絶縁膜22の周辺部はその他の第2絶縁膜22表面より酸化されている薬液処理部33、34が環状に形成される。   Chemical treatment is performed on the peripheral portion of the first insulating film 21 and the peripheral portion of the second insulating film 22 (for example, within a range of 4 mm from the outer periphery of the wafer). This chemical treatment is a treatment for improving adhesion with the third insulating film 23 formed on the first insulating film 21 and the second insulating film 22, and includes a peripheral portion of the first insulating film 21 and This is a process of applying a chemical solution for improving the adhesion on the periphery of the second insulating film 22. The chemical solution may be any chemical solution that has an action of oxidizing the surface of the first insulating film 21, in other words, an action of further promoting oxidation of the surfaces of the first insulating film 21 and the second insulating film 22. Such a chemical solution includes an oxidizing agent, and for example, hydrogen peroxide water can be used. Accordingly, the peripheral portions of the first insulating film 21 are oxidized immediately after the film formation, and the peripheral portions of the second insulating film 22 are oxidized from the surface of the other second insulating film 22. Formed.

また、上記第2絶縁膜22を被覆するように第3絶縁膜23が形成されていてもよい。この第3絶縁膜23は、例えば酸化シリコン(SiO2)膜で形成されている。上記第3絶縁膜23は、第3絶縁膜23も含めて上記第1、第2絶縁膜21、22に、溝配線や配線層間を接続する接続部(例えばビア)を形成する場合、有機膜のポリアリールエーテルで形成されている第2絶縁膜22を直接的に化学的機械研磨(CMP)することを避けるために成膜される。 Further, a third insulating film 23 may be formed so as to cover the second insulating film 22. The third insulating film 23 is formed of, for example, a silicon oxide (SiO 2 ) film. When the third insulating film 23 includes the third insulating film 23 and the first and second insulating films 21 and 22 are formed with connection portions (for example, vias) for connecting groove wirings and wiring layers, an organic film is used. The second insulating film 22 formed of the polyaryl ether is formed to avoid direct chemical mechanical polishing (CMP).

さらに、上記第1〜第3絶縁膜21〜23のエッジは、第1絶縁膜21の周辺部上および第2絶縁膜22の周辺部上に上記薬液処理部分が残るようにして除去されている。また、上記第1〜第3絶縁膜21〜23に溝配線および下層の導体部分(例えば、図示しない電極、配線、素子等)に接続される接続部(例えばビア)が形成されていてもよい。   Furthermore, the edges of the first to third insulating films 21 to 23 are removed so that the chemical treatment portion remains on the peripheral portion of the first insulating film 21 and the peripheral portion of the second insulating film 22. . In addition, the first to third insulating films 21 to 23 may be formed with connection portions (for example, vias) connected to the trench wirings and lower conductor portions (for example, electrodes, wirings, elements, etc., not shown). .

上記実施例3の半導体装置は、配線層間の絶縁膜を構成する第1絶縁膜21および第2絶縁膜22を形成した後で第3絶縁膜23を形成する前に、第1絶縁膜21の周辺部および第2絶縁膜22の周辺部上に第1絶縁膜21および第2絶縁膜22と第3絶縁膜23との密着性を高める薬液が塗布されることから、膜表面の水素のダングリングボンドをOH基に置換して酸素を結合させることができるので、第1絶縁膜21の周辺部表面および第2絶縁膜22の周辺部表面の酸化が促進されることになる。このことから、第1、第2絶縁膜21、22に対する第3絶縁膜23の密着性を周辺部において高めることができるので、第3絶縁膜23を形成した後に、例えばCMP工程を行って、第1、第3絶縁膜21、23間および第2、第3絶縁膜22、23間に、例えば第2絶縁膜22表面と略平行な方向の荷重がかかったとしても、第1、第2絶縁膜21、22より第3絶縁膜23が剥がれるということが防止できるという利点がある。特に、膜剥がれが発生しやすい膜周辺部の密着性が高められているので、膜剥がれの防止には効果的である。したがって、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れる。   In the semiconductor device according to the third embodiment, the first insulating film 21 is formed after the first insulating film 21 and the second insulating film 22 constituting the insulating film between the wiring layers are formed and before the third insulating film 23 is formed. Since the first insulating film 21 and the chemical solution for improving the adhesion between the second insulating film 22 and the third insulating film 23 are applied on the peripheral portion and the peripheral portion of the second insulating film 22, hydrogen dangling on the film surface is applied. Since oxygen can be bonded by substituting ring bonds with OH groups, oxidation of the peripheral surface of the first insulating film 21 and the peripheral surface of the second insulating film 22 is promoted. From this, the adhesion of the third insulating film 23 to the first and second insulating films 21 and 22 can be improved in the peripheral portion. Therefore, after the third insulating film 23 is formed, for example, a CMP process is performed. Even if a load in a direction substantially parallel to the surface of the second insulating film 22 is applied between the first and third insulating films 21 and 23 and between the second and third insulating films 22 and 23, for example, There is an advantage that it is possible to prevent the third insulating film 23 from being peeled off from the insulating films 21 and 22. In particular, the adhesion at the periphery of the film where film peeling is likely to occur is enhanced, which is effective in preventing film peeling. Therefore, the yield can be improved and the reliability of the insulating film can be improved.

本発明の半導体装置の第2製造方法に係る一実施例を、図8〜図11の製造工程図によって説明する。各図8〜図11では、(1)に概略構成斜視図を示し、(2)に基板直径方向の概略構成断面図を示した。なお、概略構成断面図は分かり易くするため、厚さ方向に拡大されている。また、図中の基板上に描かれている矢印は基板の回転方向の一例を示すもので、この回転方向は逆方向であってもよい。   An embodiment of the second method for manufacturing a semiconductor device according to the present invention will be described with reference to the manufacturing process diagrams of FIGS. 8 to 11, (1) shows a schematic configuration perspective view, and (2) shows a schematic configuration sectional view in the substrate diameter direction. The schematic cross-sectional view is enlarged in the thickness direction for easy understanding. Moreover, the arrow drawn on the board | substrate in a figure shows an example of the rotation direction of a board | substrate, This rotation direction may be a reverse direction.

図8に示すように、基板(ウエハ)11上に絶縁膜12を形成する。上記基板11には、例えばシリコン基板が用いられる。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。その成膜方法は、例えばプラズマCVD法による。次に、上記絶縁膜12上に第1絶縁膜21を形成する。ここでは第1絶縁膜21はSiC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜等である。上記第1絶縁膜21は、例えば200nmの厚さに成膜する。この成膜方法は、一例として、平行平板型プラズマCVD装置を用い、原料ガスのシリコン源としてメチルシランを用いた。また成膜条件としては基板温度を300℃〜400℃に設定し、プラズマパワーを150W〜350W、成膜雰囲気の圧力を100Pa〜1000Pa程度に設定する。   As shown in FIG. 8, an insulating film 12 is formed on a substrate (wafer) 11. For example, a silicon substrate is used as the substrate 11. The insulating film 12 is made of a silicon oxide film and has a thickness of, for example, 500 nm. The film forming method is based on, for example, a plasma CVD method. Next, a first insulating film 21 is formed on the insulating film 12. Here, the first insulating film 21 is formed of a SiC-based film. For example, a SiOC film, a film containing nitrogen or hydrogen in the SiOC film, and the like. The first insulating film 21 is formed to a thickness of 200 nm, for example. In this film forming method, for example, a parallel plate type plasma CVD apparatus is used, and methylsilane is used as a silicon source of the source gas. As film forming conditions, the substrate temperature is set to 300 ° C. to 400 ° C., the plasma power is set to 150 W to 350 W, and the pressure of the film forming atmosphere is set to about 100 Pa to 1000 Pa.

次に、上記第1絶縁膜21上に第2絶縁膜22を成膜する。この第2絶縁膜22には、有機膜を用いた。例えば有機膜として、ポリアリールエーテル膜を、例えば100nmの厚さに形成した。上記ポリアリールエーテル膜は、例えばSiLK−J(ダウケミカル社)があり、その他には、例えばアライドシグナル社製のFLARE、シューマッカー社製のVE等が知られている。例えば、上記ポリアリールエーテル膜をSiLKで形成する場合には、前駆体をスピンコート法により堆積した後、400℃〜450℃のキュア処理を行って形成することができる。   Next, a second insulating film 22 is formed on the first insulating film 21. An organic film was used for the second insulating film 22. For example, as an organic film, a polyaryl ether film is formed to a thickness of, for example, 100 nm. Examples of the polyaryl ether film include SiLK-J (Dow Chemical Co.), and other examples include FLARE manufactured by Allied Signal, VE manufactured by Schumacker, and the like. For example, when the polyaryl ether film is formed of SiLK, it can be formed by depositing the precursor by spin coating and then performing a curing process at 400 ° C. to 450 ° C.

次に、上記第2絶縁膜22のエッジ部分を除去する。このエッジ部分の除去方法は、基板11を例えば矢印カ方向に回転させながら、ノズル43より第2絶縁膜22の溶剤35を第2絶縁膜22の除去領域(図面斜線で示す領域)上に供給するとともに、上記ノズル43をエッジ除去範囲内で例えば矢印キ方向にスキャニングンすることによる。この時、図示しない純水を基板11中心部上方より第2絶縁膜22上に供給することにより、第2絶縁膜22の周辺部以外の第2絶縁膜22表面に溶剤35がかからないように保護する。上記第2絶縁膜22がポリアリールエーテル膜である場合には、上記溶剤にはシクロヘキサノンを使用することができる。上記第2絶縁膜22の周辺部の除去幅w4は、ノズル43のスキャニング幅を変更することにより容易に変更できる。今回、第2絶縁膜22のエッジ除去幅は3mmに設定した。第2絶縁膜22のエッジ除去は、基板11の外周についた第2絶縁膜22を除去するために行ったものである。   Next, the edge portion of the second insulating film 22 is removed. In this edge portion removal method, the solvent 35 of the second insulating film 22 is supplied from the nozzle 43 onto the removal region of the second insulating film 22 (the region indicated by hatching in the drawing) while rotating the substrate 11 in the direction of the arrow, for example. At the same time, the nozzle 43 is scanned in the direction of the arrow within the edge removal range. At this time, pure water (not shown) is supplied onto the second insulating film 22 from above the center of the substrate 11 to protect the surface of the second insulating film 22 other than the periphery of the second insulating film 22 from being exposed to the solvent 35. To do. When the second insulating film 22 is a polyaryl ether film, cyclohexanone can be used as the solvent. The removal width w4 of the peripheral portion of the second insulating film 22 can be easily changed by changing the scanning width of the nozzle 43. This time, the edge removal width of the second insulating film 22 is set to 3 mm. The removal of the edge of the second insulating film 22 is performed in order to remove the second insulating film 22 on the outer periphery of the substrate 11.

次に、図9に示すように、上記第1絶縁膜21の周辺部および第2絶縁膜22の周辺部上に薬液処理を施す。この薬液処理領域は例えばウエハ外周から4mm以内の範囲(図面斜線で示す領域)とした。この薬液処理方法は、上記基板11を例えば矢印ク方向に回転させながら、上記第1絶縁膜21の周辺部および第2絶縁膜22の周辺部上に、後の工程で形成される第3絶縁膜との密着性を高める薬液31を滴下するとともに、所望の幅w5の薬液処理領域を確保するために、上記薬液を供給するノズル41を、例えば図面矢印ケ方向にスキャニングする。この時、図示しない純水を基板11の中心部上より第2絶縁膜22表面に供給することにより、第2絶縁膜22の周辺部以外の第2絶縁膜22表面に薬液31がかからないように保護する。ここでは、薬液31として5wt%の過酸化水素水(H22)を用い、薬液処理時間を60秒とした。上記薬液処理を終了させるには、上記薬液31の供給を停止するとともに、第1絶縁膜21および第2絶縁膜22表面上に残存する薬液31を除去するために純水にて洗浄してもよい。この結果、上記第1絶縁膜21の周辺部には第1絶縁膜21成膜時の表面より酸化されている薬液処理部33が形成されるとともに、上記第2絶縁膜22の周辺部には第2絶縁膜22の周辺部以外の表面より酸化されている薬液処理部34が形成される。 Next, as shown in FIG. 9, chemical treatment is performed on the peripheral portion of the first insulating film 21 and the peripheral portion of the second insulating film 22. For example, the chemical treatment area is within a range of 4 mm from the outer periphery of the wafer (area shown by hatching in the drawing). In this chemical processing method, a third insulation formed in a later step on the peripheral portion of the first insulating film 21 and the peripheral portion of the second insulating film 22 while rotating the substrate 11 in the direction of an arrow, for example. While dropping the chemical solution 31 for improving the adhesion to the film, the nozzle 41 for supplying the chemical solution is scanned, for example, in the direction indicated by the arrow in the drawing in order to secure a chemical treatment region with a desired width w5. At this time, by supplying pure water (not shown) from the central portion of the substrate 11 to the surface of the second insulating film 22, the chemical solution 31 is not applied to the surface of the second insulating film 22 other than the peripheral portion of the second insulating film 22. Protect. Here, 5 wt% hydrogen peroxide (H 2 O 2 ) was used as the chemical solution 31, and the chemical treatment time was 60 seconds. In order to finish the chemical treatment, the supply of the chemical solution 31 is stopped, and cleaning with pure water is performed to remove the chemical solution 31 remaining on the surfaces of the first insulating film 21 and the second insulating film 22. Good. As a result, a chemical treatment unit 33 oxidized from the surface at the time of forming the first insulating film 21 is formed in the peripheral portion of the first insulating film 21, and in the peripheral portion of the second insulating film 22. A chemical processing unit 34 that is oxidized from the surface other than the peripheral portion of the second insulating film 22 is formed.

次に、図10に示すように、第2絶縁膜22を被覆するように第3絶縁膜23を形成する。この第3絶縁膜23は、例えば酸化シリコン(SiO2)膜で形成され、その成膜方法としては、プラズマCVD法を採用することができる。本実施例では、有機膜のポリアリールエーテルで形成されている第2絶縁膜22を直接的に後の工程で化学的機械研磨(CMP)する必要が無いように、上記第3絶縁膜23が成膜されている。 Next, as shown in FIG. 10, a third insulating film 23 is formed so as to cover the second insulating film 22. The third insulating film 23 is formed of, for example, a silicon oxide (SiO 2 ) film, and a plasma CVD method can be employed as the film forming method. In the present embodiment, the third insulating film 23 is formed so that the second insulating film 22 formed of organic polyaryl ether does not need to be directly subjected to chemical mechanical polishing (CMP) in a later process. A film is formed.

次に塗布法によって、上記第3絶縁膜23上にフォトレジスト膜51を形成する。そして、フォトレジスト膜51のエッジ部分を除去する。フォトレジスト膜51のエッジ部分の除去方法は、上記フォトレジスト51にポジ型レジストを用いた場合には、除去したいエッジ部分のみ光Lを図面斜線で示す領域に照射してフォトレジスト膜51を感光させる。その後現像処理、リンス処理、ベーキング工程を経て、エッジ部分を除去したフォトレジスト膜51が得られる。上記フォトレジスト膜51をネガレジストで形成した場合には、除去しない領域のみ感光処理を行い、その後、現像、リンス処理、ベーキング工程を経れば、エッジ部分が除去されたフォトレジスト膜51が得られる。上記エッジ除去幅w6は、例えば2mmとした。   Next, a photoresist film 51 is formed on the third insulating film 23 by a coating method. Then, the edge portion of the photoresist film 51 is removed. In the method of removing the edge portion of the photoresist film 51, when a positive resist is used as the photoresist 51, only the edge portion to be removed is irradiated with light L to the area indicated by the oblique lines in the drawing to expose the photoresist film 51. Let Thereafter, through a development process, a rinse process, and a baking process, the photoresist film 51 from which the edge portion has been removed is obtained. When the photoresist film 51 is formed of a negative resist, only a region that is not to be removed is subjected to a photosensitive process, and then a development, a rinsing process, and a baking process are performed to obtain a photoresist film 51 from which the edge portion has been removed. It is done. The edge removal width w6 is set to 2 mm, for example.

次に、図11に示すように、上記第3絶縁膜23、第2絶縁膜22、第1絶縁膜21の順でエッチングを行い、各第3〜第1絶縁膜23〜21のエッジ部分を除去した。その後、上記フォトレジスト膜51〔前記図10参照〕をアッシング処理もしくは剥離処理等により除去した。図面では、フォトレジスト膜51を除去した状態を示した。   Next, as shown in FIG. 11, the third insulating film 23, the second insulating film 22, and the first insulating film 21 are etched in this order, and the edge portions of the third to first insulating films 23 to 21 are formed. Removed. Thereafter, the photoresist film 51 [see FIG. 10] was removed by ashing or stripping. In the drawing, the state where the photoresist film 51 is removed is shown.

上記第1〜第3絶縁膜21〜23に溝配線およびビアを形成する場合には、上記第1〜第3絶縁膜21〜23のエッジ部分の除去を行う露光工程を行った後で現像工程前に、例えば配線溝、ビアホール等のパターニングを行えばよい。その後、図12に示すように、バリアメタル層(図示せず)、銅膜61を形成する。次いで、基板11を例えば矢印サ方向にサ方向に回転させるとともにノズル45より銅膜61の溶剤37を銅膜61の除去領域(概略構成斜視図における斜線で示す領域)上に供給するとともに、上記ノズル45をエッジ除去範囲内で例えば矢印シ方向にスキャニングンすることによる。この時、図示しない純水を基板11中心部上方より第2絶縁膜22上に供給することにより、銅膜61の周辺部以外の銅膜61表面に溶剤37がかからないように保護する。上記銅膜61の周辺部の除去幅w7は、ノズル43のスキャニング幅を変更することにより容易に変更できる。その後、図示はしないが、CMPによって、余剰な銅膜61、バリアメタル層を除去して、溝配線とビアとを形成する。   In the case where trench wirings and vias are formed in the first to third insulating films 21 to 23, a developing process is performed after performing an exposure process for removing edge portions of the first to third insulating films 21 to 23. Before patterning, for example, wiring grooves, via holes, etc. may be performed. Thereafter, as shown in FIG. 12, a barrier metal layer (not shown) and a copper film 61 are formed. Next, for example, the substrate 11 is rotated in the direction of the arrow S, and the solvent 37 of the copper film 61 is supplied from the nozzle 45 onto the removal region of the copper film 61 (the region indicated by the oblique lines in the schematic configuration perspective view). By scanning the nozzle 45 in the edge removal range, for example, in the direction of the arrow. At this time, pure water (not shown) is supplied onto the second insulating film 22 from above the center of the substrate 11 to protect the surface of the copper film 61 other than the periphery of the copper film 61 from being exposed to the solvent 37. The removal width w7 of the peripheral portion of the copper film 61 can be easily changed by changing the scanning width of the nozzle 43. Thereafter, although not shown, the excess copper film 61 and the barrier metal layer are removed by CMP to form trench wirings and vias.

本発明の製造方法においては、溝配線とビアとを同時形成する、いわゆるデュアルダマシン構造の絶縁膜についても、用いることができる。例えば、第1絶縁膜21に配線間の接続を行う接続部(ビア)が形成され、第2、第3絶縁膜22、23に溝配線が形成される。溝配線とビアとを同時形成する技術については、多くの公知例があり、例えば特開2001−44189号公報などに詳細な記述がある。これらの公知技術の絶縁膜についても、本発明の如く、ビアが形成される第1絶縁膜21の周辺部に対する薬液処理を実施して、溝配線が形成される第2絶縁膜22を形成する構成を採用することができる。   In the manufacturing method of the present invention, an insulating film having a so-called dual damascene structure in which a trench wiring and a via are simultaneously formed can also be used. For example, connection portions (vias) that connect the wirings are formed in the first insulating film 21, and groove wirings are formed in the second and third insulating films 22 and 23. There are many known examples of the technology for simultaneously forming the trench wiring and the via. For example, JP 2001-44189A discloses a detailed description. Also for these known insulating films, as in the present invention, the second insulating film 22 in which the trench wiring is formed is formed by performing chemical treatment on the peripheral portion of the first insulating film 21 in which the via is formed. A configuration can be employed.

次に、本発明の効果を確認した。その方法は、前記図11に示したように、基板11上に上記第1〜第3絶縁膜21〜23を形成した発明サンプルを用意し、発明サンプルの第3絶縁膜23に対してCMPを行った。また、発明サンプルと比較するものとして、第1、第2絶縁膜21、22に薬液処理を施さないで第1、第2絶縁膜21、22上に第3絶縁膜23を形成した比較サンプルを用意した。   Next, the effect of the present invention was confirmed. As shown in FIG. 11, the method is to prepare an inventive sample in which the first to third insulating films 21 to 23 are formed on the substrate 11, and perform CMP on the third insulating film 23 of the inventive sample. went. Further, as a comparison with the inventive sample, a comparative sample in which the first and second insulating films 21 and 22 are not subjected to the chemical treatment and the third insulating film 23 is formed on the first and second insulating films 21 and 22 is used. Prepared.

次に、上記発明サンプルおよび比較サンプルのそれぞれの第3絶縁膜23をCMPした。このCMPでは、研磨パッドに、例えば上層が発泡ポリウレタン製で下層がPET(ポリエチレンテレフタレート)製のものを用いた。このような研磨パッドとしては、一例として、上層がロデール社製の厚さ1.2mmのIC1000で下層が同社製の厚さ1.2mmのSUBA400よりなる積層された研磨パッドがある。研磨液には、アルカリ溶媒に分散したコロイダルシリカに酸化剤として過酸化水素水(H22)を添加したものを用いる。例えばJSR社製のCMS8301がある。上記研磨液の供給流量は例えば150ml/minとして、研磨パッドの回転数は例えば100rpm、ウエハ(基板)回転数は例えば:110rpm、研磨圧力は例えば300g/cm2,研磨時間は例えば60secとした。これにより、第3絶縁膜23のSiO2膜の表層およそ70nmの厚さが除去された。 Next, the third insulating film 23 of each of the inventive sample and the comparative sample was subjected to CMP. In this CMP, for example, a polishing pad having an upper layer made of foamed polyurethane and a lower layer made of PET (polyethylene terephthalate) was used. As an example of such a polishing pad, there is a laminated polishing pad in which the upper layer is made of Rodale IC1000 having a thickness of 1.2 mm and the lower layer is made of SUBA400 having a thickness of 1.2 mm made by the same company. As the polishing liquid, one obtained by adding hydrogen peroxide (H 2 O 2 ) as an oxidizing agent to colloidal silica dispersed in an alkaline solvent is used. For example, there is CMS8301 manufactured by JSR. The polishing liquid supply flow rate is, for example, 150 ml / min, the polishing pad rotation speed is, for example, 100 rpm, the wafer (substrate) rotation speed is, for example, 110 rpm, the polishing pressure is, for example, 300 g / cm 2 , and the polishing time is, for example, 60 seconds. As a result, the thickness of the surface layer of the SiO 2 film of the third insulating film 23 of about 70 nm was removed.

上記研磨は、発明サンプルおよび比較サンプルの両方に対して同条件にて行った。研磨後、絶縁膜の周辺部を顕微鏡により観察し、膜剥がれ状態を観察した。その結果、発明サンプルでは、全く膜剥がれを起こしていなかった。一方、比較サンプルでは、周辺部のほぼすべての領域(20%以上の領域)で膜剥がれを起こしていた。また、比較サンプルに関しては、ウエハ周辺部から4mmよりもさらに内側に剥がれが及んでいた。一方、発明サンプルでは、薬液処理を実施していないウエハ周辺部以外の領域においても膜剥がれは起こっていなかった。   The polishing was performed under the same conditions for both the inventive sample and the comparative sample. After polishing, the periphery of the insulating film was observed with a microscope, and the film peeling state was observed. As a result, in the inventive sample, no film peeling occurred. On the other hand, in the comparative sample, film peeling occurred in almost all of the peripheral portion (region of 20% or more). Further, the comparative sample was peeled further inward than 4 mm from the peripheral portion of the wafer. On the other hand, in the inventive sample, film peeling did not occur in a region other than the peripheral portion of the wafer where no chemical treatment was performed.

また、第2絶縁膜22をSiLK膜の他に、例えばp−SiLK膜で形成した場合も、また、第1絶縁膜21を種々のSiOC系の膜で形成した場合も上記同様の結果となった。したがって、本発明は、第1絶縁膜21にSiOC系の膜を用い、第2絶縁膜にポリアリールエーテル系の膜を用い、第3絶縁膜23に酸化シリコン系の膜を用いた場合全てに有効であるといえる。   Further, when the second insulating film 22 is formed of, for example, a p-SiLK film in addition to the SiLK film, and when the first insulating film 21 is formed of various SiOC-based films, the same result as described above is obtained. It was. Therefore, the present invention is applicable to all cases where a SiOC film is used for the first insulating film 21, a polyaryl ether film is used for the second insulating film, and a silicon oxide film is used for the third insulating film 23. It can be said that it is effective.

よって、上記実施例3、4では、密着性を改善したウエハ周辺部(例えば薬液処理を施した範囲)だけでなく、密着性改善の薬液処理を行っていないウエハ周辺部より内側の領域に対しても、膜剥がれを防止する効果が得られた。これは、密着性が弱い第2絶縁膜22のポリアリールエーテル膜と第1絶縁膜21のSiOC系の膜との界面において、ウエハ周辺部の第1絶縁膜21表面および第2絶縁膜22表面に対する密着性を高める薬液処理により、ウエハ周辺部の第1絶縁膜21表面および第2絶縁膜22表面の酸化が促進されたことによる。よって、CMP時に圧力が集中するウエハ周辺部が剥がれにくくなり、それによって、ウエハ面内が保護されたものといえる。   Therefore, in the third and fourth embodiments, not only the wafer peripheral portion (for example, a range where chemical treatment is performed) with improved adhesion, but also the region inside the wafer peripheral portion where chemical treatment for improving adhesion is not performed. However, the effect of preventing film peeling was obtained. This is because the surface of the first insulating film 21 and the surface of the second insulating film 22 at the periphery of the wafer at the interface between the polyaryl ether film of the second insulating film 22 having weak adhesion and the SiOC-based film of the first insulating film 21. This is because the surface of the first insulating film 21 and the surface of the second insulating film 22 in the peripheral portion of the wafer is promoted by the chemical treatment that improves the adhesion to the surface. Therefore, it can be said that the wafer peripheral portion where the pressure is concentrated at the time of CMP is not easily peeled off, thereby protecting the wafer surface.

また、上記実施例3、4は、上記実施例1、2よりも効果があることが判った。例えば、第1絶縁膜21にp−SiLK膜を用い、第2絶縁膜22にSiOC系の膜として、例えばCVD法により形成した誘電率k=3.0程度のSiOC膜(例えばAMAT社製のBD(ブラックダイヤモンド))を形成した場合、第1絶縁膜21にSiLK膜を用い、第2絶縁膜22にSiOC系の膜として、例えばCVD法により形成した誘電率k=2.5程度のSiOC膜(例えばAMAT社製のBD(ブラックダイヤモンド)2)を形成した場合は、上記実施例1、2では、2%以下の領域で剥がれが確認されたが、実施例3、4では剥がれは発生しなかった。一方、薬液処理を行わない従来の構成では、20%を超える領域で剥がれが確認できた。また、第1絶縁膜21にp−SiLK膜を用い、第2絶縁膜22にSiOC系のBD2膜を形成した場合は、上記実施例1、2では、2%を超えて20%以下の領域で剥がれが確認されたが、実施例3、4では剥がれは発生しなかった。一方、薬液処理を行わない従来の構成では、20%を超える領域で剥がれが確認できた。したがって、実施例1、2でも従来のように本発明の薬液処理工程を行わない場合より膜剥がれを改善することができるが、実施例3、4では膜剥がれを無くすことができるという、大幅なる改善効果が得られる。   In addition, it was found that Examples 3 and 4 were more effective than Examples 1 and 2. For example, a p-SiLK film is used for the first insulating film 21 and an SiOC film having a dielectric constant k = 3.0 formed by, for example, a CVD method (for example, manufactured by AMAT Corporation) is used as the SiOC-based film for the second insulating film 22. When a BD (black diamond) is formed, a SiLK film is used for the first insulating film 21, and a SiOC-based film is used for the second insulating film 22 as a SiOC film having a dielectric constant k = 2.5, for example, formed by CVD. When a film (for example, BD (Black Diamond) 2 manufactured by AMAT) was formed, peeling was confirmed in the region of 2% or less in Examples 1 and 2, but peeling occurred in Examples 3 and 4. I didn't. On the other hand, in the conventional configuration in which no chemical treatment is performed, peeling was confirmed in an area exceeding 20%. Further, when a p-SiLK film is used for the first insulating film 21 and a SiOC-based BD2 film is formed for the second insulating film 22, in the first and second embodiments, the region is more than 2% and not more than 20%. In Examples 3 and 4, no peeling occurred. On the other hand, in the conventional configuration in which no chemical treatment is performed, peeling was confirmed in an area exceeding 20%. Therefore, in Examples 1 and 2, the film peeling can be improved as compared with the conventional case where the chemical treatment process of the present invention is not performed, but in Examples 3 and 4, the film peeling can be eliminated significantly. Improvement effect is obtained.

次に、各種絶縁膜の密着性を調査した。下層の膜としては、酸化シリコン(SiO2)膜、窒化シリコン(SiN)膜、窒化炭化シリコン(SiCN)膜、炭化シリコン(SiC)膜、SiOC膜(BD)、SiOC膜(Coral:Novellus社製のSiOC膜でCVD法により形成したk=3.0程度のSiOC膜)、SiOC膜(BD2)、ポーラスシリカ(LKD5109:エルケーディー(JSR)社製のMSQ膜でスピンコート法により形成したMSQ膜)、ポーラスシリカ(例えば、ナノグラス社製のNanoglass)、ポーラスシリカ(例えば、ナノグラス社製のNanoglass−E)、ポリアリールエーテル(SiLK)、ポリアリールエーテル(FLARE)、ポリアリールエーテル(p−SiLK)を用いた。また、上層の膜としては、酸化シリコン(SiO2)膜、窒化シリコン(SiN)膜、窒化炭化シリコン(SiCN)膜、炭化シリコン(SiC)膜、SiOC膜(BD)、SiOC膜(Coral)、SiOC膜(BD2)、ポーラスシリカ(LKD5109)、ポーラスシリカ(Nanoglass)、ポーラスシリカ(Nanoglass−E)、ポリアリールエーテル(SiLK)、ポリアリールエーテル(FLARE)、ポリアリールエーテル(p−SiLK)を用いた。 Next, the adhesion of various insulating films was investigated. As a lower layer film, a silicon oxide (SiO 2 ) film, a silicon nitride (SiN) film, a silicon nitride carbide (SiCN) film, a silicon carbide (SiC) film, a SiOC film (BD), a SiOC film (Coral: manufactured by Novellus) MSC film formed by spin coating with an MSQ film made by SiOC film of SiOC film of about k = 3.0), SiOC film (BD2), porous silica (LKD5109: LKD (JSR)). ), Porous silica (for example, Nanoglass manufactured by Nanoglass), porous silica (for example, Nanoglass-E manufactured by Nanoglass), polyaryl ether (SiLK), polyaryl ether (FLARE), polyaryl ether (p-SiLK) Was used. Further, as an upper layer film, a silicon oxide (SiO 2 ) film, a silicon nitride (SiN) film, a silicon nitride carbide (SiCN) film, a silicon carbide (SiC) film, a SiOC film (BD), a SiOC film (Coral), Uses SiOC film (BD2), porous silica (LKD5109), porous silica (Nanoglass), porous silica (Nanoglass-E), polyaryl ether (SiLK), polyaryl ether (FLARE), polyaryl ether (p-SiLK) It was.

そして、上記下層の膜の1種と上記上層の膜の1種とを選択して、積層膜を形成し、下層の膜に対する上層の膜の密着性を調べた。   Then, one type of the lower layer film and one type of the upper layer film were selected to form a laminated film, and the adhesion of the upper layer film to the lower layer film was examined.

膜剥がれの検査は顕微鏡による目視検査により実施した。検査の結果を表1〜表4に示す。   The film peeling was inspected by visual inspection using a microscope. The results of the inspection are shown in Tables 1 to 4.

表1〜表4中、◎印は剥がれ無し、○印は2%以下の領域で剥がれあり、△印は2%を超え20%以下の領域で剥がれあり、×印は20%を超える領域で剥がれがあることを示している。上記評価において、20%を境界にした理由は、経験的に20%を超える領域での剥がれは、剥がれの再現性が良く、本質的なものであると考えられるためである。実際に剥がれ状態を観察すると、「剥がれ無し」、「ほぼ剥がれないが、1%程度の領域で剥がれる」、「5%〜10%程度の領域で剥がれる」、「ほぼ全ての領域で剥がれる」の4段階にはっきりと分かれて観察され、◎,○,△,×の差は、はっきりした違いとして認められた。   In Tables 1 to 4, ◎ indicates no peeling, ○ indicates peeling in an area of 2% or less, Δ indicates peeling in an area exceeding 2% and 20% or less, and X indicates an area exceeding 20%. It shows that there is peeling. In the above evaluation, the reason why 20% is used as the boundary is that empirical peeling in an area exceeding 20% is considered to be essential because of good reproducibility of peeling. When actually observing the peeling state, “no peeling”, “almost not peeled but peeled in about 1% area”, “peeled in about 5% to 10% area”, “peeled in almost all areas” Observed in four distinct stages, the difference between ◎, ○, △, and X was recognized as a clear difference.

Figure 2005235978
Figure 2005235978

Figure 2005235978
Figure 2005235978

Figure 2005235978
Figure 2005235978

Figure 2005235978
Figure 2005235978

表1〜表4に示すように、下層の絶縁膜が誘電率k≦3.0の絶縁膜の場合に、密着性が悪化することが解る。また、特に第1の絶縁膜が炭素(C)を含む絶縁膜である場合、密着性が悪化することが解る。誘電率k≦3.0の絶縁膜や炭素(C)を含む絶縁膜では、酸化シリコン(SiO2)などの通常の絶縁膜に比べて、表面におけるOH基が少ないので、上層の絶縁膜との密着性が悪化している。 As shown in Tables 1 to 4, it can be seen that the adhesion deteriorates when the underlying insulating film is an insulating film having a dielectric constant k ≦ 3.0. It can also be seen that the adhesion deteriorates particularly when the first insulating film is an insulating film containing carbon (C). An insulating film having a dielectric constant k ≦ 3.0 or an insulating film containing carbon (C) has fewer OH groups on the surface than an ordinary insulating film such as silicon oxide (SiO 2 ). The adhesion of is getting worse.

そこで、本発明のように、密着性を高めるために過酸化水素(H22)水などの酸化剤により処理することで、表面を酸化してOH基を増やすことで、下層の膜と上層の膜との密着性が改善される。上記説明では、酸化剤として過酸化水素水を用いたが、例えばオゾン水、その他の酸化性を有する薬液(例えば、過マンガン酸カリウム(KMnO4)、二酸化マンガン(MnO2)、二クロム酸カリウム(K2Cr27)、濃硫酸(H2SO4)、硝酸(HNO3)など)を用いることができる。 Therefore, as in the present invention, by treating with an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) water in order to improve adhesion, the surface is oxidized to increase OH groups, and the lower film and Adhesion with the upper film is improved. In the above description, hydrogen peroxide water was used as the oxidizing agent. For example, ozone water, other chemicals having oxidizing properties (for example, potassium permanganate (KMnO 4 ), manganese dioxide (MnO 2 ), potassium dichromate) (K 2 Cr 2 O 7 ), concentrated sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ) and the like can be used.

また、表1に示すように、有機絶縁膜と他の絶縁膜との密着性が特に弱いことが判った。すなわち、上記下層の絶縁膜として有機絶縁膜を用いた時に特に剥がれやすいと言える。したがって、本発明は、有機絶縁膜に対して薬液処理を施し、その上層の絶縁膜との密着性を高めるということに、特に効果的である。   Further, as shown in Table 1, it was found that the adhesion between the organic insulating film and other insulating films was particularly weak. That is, it can be said that the organic insulating film is particularly easily peeled off as the lower insulating film. Therefore, the present invention is particularly effective in performing chemical treatment on the organic insulating film and improving the adhesion with the upper insulating film.

次に、本発明の構成および製造方法を適用して、多層配線構造を形成した一例を、図13の概略構成断面図によって説明する。   Next, an example in which a multilayer wiring structure is formed by applying the configuration and manufacturing method of the present invention will be described with reference to the schematic configuration cross-sectional view of FIG.

図13に示すように、第1絶縁膜21となるビア層の絶縁膜としてSiOC膜(厚さが例えば200nm)/SiCN膜(厚さが例えば35nm)を用い、第2絶縁膜22として有機膜を用い、第3絶縁膜23として酸化シリコン(SiO2)膜(成膜時の厚さが例えば200nm、CMP後の厚さが約150nm)を用いる。上記有機膜としては、ポリアリールエーテル膜を用い、ポリアリールエーテル膜としてはここではSiLK膜(厚さが例えば100nm)を用いた。上記第2絶縁膜22(SiLK膜)のエッジ部分の除去幅は3mmに設定し、第3絶縁膜23(SiO2膜)および第1絶縁膜21のエッジ部分の除去幅は2mmに設定した。そして上記実施例4によって説明した製造方法を用いて、図示したような5層の溝配線71および接続部(ビア)72を有する半導体装置の形成を行った。この結果、エッジ剥がれを起こすこと無く半導体装置を製造することができた。 As shown in FIG. 13, a SiOC film (thickness is, for example, 200 nm) / SiCN film (thickness is, for example, 35 nm) is used as the insulating film of the via layer that becomes the first insulating film 21, and an organic film is used as the second insulating film 22. As the third insulating film 23, a silicon oxide (SiO 2 ) film (thickness at the time of film formation is, for example, 200 nm, and thickness after CMP is about 150 nm) is used. A polyaryl ether film was used as the organic film, and a SiLK film (with a thickness of, for example, 100 nm) was used here as the polyaryl ether film. The removal width of the edge portion of the second insulating film 22 (SiLK film) was set to 3 mm, and the removal width of the edge portion of the third insulating film 23 (SiO 2 film) and the first insulating film 21 was set to 2 mm. Then, using the manufacturing method described in Example 4, the semiconductor device having the five-layer groove wiring 71 and the connecting portion (via) 72 as illustrated was formed. As a result, the semiconductor device could be manufactured without causing edge peeling.

本発明の半導体装置の製造方法および半導体装置は、各種半導体装置の多層配線という用途に適用することが好適である。   The semiconductor device manufacturing method and the semiconductor device of the present invention are preferably applied to the use of multilayer wiring of various semiconductor devices.

本発明の第1半導体装置に係る一実施例を示した概略構成断面図である。1 is a schematic cross-sectional view showing an embodiment of the first semiconductor device of the present invention. 本発明の半導体装置の第1製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 1st manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第1製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 1st manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第1製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 1st manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第1製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 1st manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第1製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 1st manufacturing method of the semiconductor device of this invention. 本発明の第2半導体装置に係る一実施例を示した概略構成断面図である。FIG. 5 is a schematic cross-sectional view showing an embodiment of the second semiconductor device of the present invention. 本発明の半導体装置の第2製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 2nd manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第2製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 2nd manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第2製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 2nd manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第2製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 2nd manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の第2製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。It is the schematic structure perspective view and schematic structure sectional drawing which showed one Example which concerns on the 2nd manufacturing method of the semiconductor device of this invention. 本発明の半導体装置に係る一実施例を示した概略構成断面図である。1 is a schematic cross-sectional view showing an embodiment of a semiconductor device according to the present invention.

符号の説明Explanation of symbols

1…半導体装置、11…基板、21…第1絶縁膜、22…第2絶縁膜、33…薬液処理領域   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 11 ... Board | substrate, 21 ... 1st insulating film, 22 ... 2nd insulating film, 33 ... Chemical-solution processing area | region

Claims (19)

基板上に多層配線構造を有する半導体装置であって、
前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜を積層したものからなり、
前記第1絶縁膜と前記第2絶縁膜との間で前記第1絶縁膜の周辺部上に前記第1絶縁膜と前記第2絶縁膜との密着性を高める薬液が塗布されている薬液処理領域が形成されている
ことを特徴とする半導体装置。
A semiconductor device having a multilayer wiring structure on a substrate,
The insulating film that electrically insulates the wiring layers of the multilayer wiring structure is formed by laminating a first insulating film and a second insulating film,
A chemical solution treatment in which a chemical solution for improving the adhesion between the first insulating film and the second insulating film is applied between the first insulating film and the second insulating film on the periphery of the first insulating film. A semiconductor device characterized in that a region is formed.
前記薬液は酸化剤からなる
ことを特徴とする請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the chemical solution is made of an oxidizing agent.
基板上に多層配線構造を有する半導体装置であって、
前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜と第3絶縁膜とを積層したものからなり、
前記第2絶縁膜のエッジは前記第3絶縁膜のエッジより内側になるように形成され、
前記第1絶縁膜と前記第3絶縁膜との間および前記第2絶縁膜と前記第3絶縁膜との間で前記第1絶縁膜の周辺部上および前記第2絶縁膜の周辺部上に前記第1絶縁膜と前記第3絶縁膜および前記第2絶縁膜と前記第3絶縁膜との密着性を高める薬液が塗布されている薬液処理領域が形成されている
ことを特徴とする半導体装置。
A semiconductor device having a multilayer wiring structure on a substrate,
The insulating film that electrically insulates the wiring layers of the multilayer wiring structure is formed by laminating a first insulating film, a second insulating film, and a third insulating film,
The edge of the second insulating film is formed to be inside the edge of the third insulating film,
Between the first insulating film and the third insulating film and between the second insulating film and the third insulating film, on the peripheral portion of the first insulating film and on the peripheral portion of the second insulating film A chemical solution treatment region is formed in which a chemical solution for improving adhesion between the first insulating film, the third insulating film, and the second insulating film and the third insulating film is applied. .
前記薬液は酸化剤からなる
ことを特徴とする請求項3記載の半導体装置。
The semiconductor device according to claim 3, wherein the chemical solution is made of an oxidizing agent.
基板上に多層配線構造を有する半導体装置の製造方法であって、
前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜を積層したものからなり、
前記第1絶縁膜を形成した後で前記第2絶縁膜を形成する前に、前記第1絶縁膜の周辺部上に前記第1絶縁膜と前記第2絶縁膜との密着性を高める薬液を塗布する工程
を備えたことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a multilayer wiring structure on a substrate,
The insulating film that electrically insulates the wiring layers of the multilayer wiring structure is formed by laminating a first insulating film and a second insulating film,
Before forming the second insulating film after forming the first insulating film, a chemical solution for improving the adhesion between the first insulating film and the second insulating film is formed on the periphery of the first insulating film. A method for manufacturing a semiconductor device, comprising the step of applying.
前記第2絶縁膜上に第3絶縁膜を形成する工程を備え、
前記第3絶縁膜を形成する前に前記第2絶縁膜のエッジが前記第3絶縁膜のエッジより内側になるように前記第2絶縁膜の周辺部を除去しておく
ことを特徴とする請求項5記載の半導体装置の製造方法。
Forming a third insulating film on the second insulating film;
Before forming the third insulating film, the peripheral portion of the second insulating film is removed so that the edge of the second insulating film is inside the edge of the third insulating film. Item 6. A method for manufacturing a semiconductor device according to Item 5.
前記薬液は酸化剤からなる
ことを特徴とする請求項5記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 5, wherein the chemical solution is made of an oxidizing agent.
前記第1絶縁膜の周辺部を前記第1絶縁膜の外周部から内側に5mm以内の範囲である
ことを特徴とする請求項5記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 5, wherein a peripheral portion of the first insulating film is within 5 mm inward from an outer peripheral portion of the first insulating film.
前記第1絶縁膜は比誘電率が3.0以下の低誘電率絶縁膜である
ことを特徴とする請求項5記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 5, wherein the first insulating film is a low dielectric constant insulating film having a relative dielectric constant of 3.0 or less.
前記第1絶縁膜はシリコンと炭素とを含む材料からなる
ことを特徴とする請求項5記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein the first insulating film is made of a material containing silicon and carbon.
前記第2絶縁膜は有機膜である
ことを特徴とする請求項5記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 5, wherein the second insulating film is an organic film.
前記多層配線構造の配線は、前記配線層間を電気的に絶縁する絶縁膜に形成された凹部に銅を含む配線材料を埋め込むように形成した後、前記絶縁膜上の余剰な前記配線材料を化学的機械研磨により除去することにより形成される
ことを特徴とする請求項5記載の半導体装置の製造方法。
The wiring of the multilayer wiring structure is formed by embedding a wiring material containing copper in a recess formed in an insulating film that electrically insulates between the wiring layers, and then chemicals excess wiring material on the insulating film. The method of manufacturing a semiconductor device according to claim 5, wherein the semiconductor device is formed by removing by mechanical mechanical polishing.
基板上に多層配線構造を有する半導体装置の製造方法であって、
前記多層配線構造の配線層間を電気的に絶縁する絶縁膜は第1絶縁膜と第2絶縁膜と第3絶縁膜とを積層したものからなり、
前記第2絶縁膜のエッジを前記第3絶縁膜のエッジより内側になるように形成し、
前記第2絶縁膜を形成した後で前記第3絶縁膜を形成する前に、前記第1絶縁膜の周辺部上および前記第2絶縁膜の周辺部上に前記第1絶縁膜および前記第2絶縁膜と前記第3絶縁膜との密着性を高める薬液を塗布する工程
を備えたことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a multilayer wiring structure on a substrate,
The insulating film that electrically insulates the wiring layers of the multilayer wiring structure is formed by laminating a first insulating film, a second insulating film, and a third insulating film,
Forming an edge of the second insulating film so as to be inside the edge of the third insulating film;
After forming the second insulating film and before forming the third insulating film, the first insulating film and the second insulating film are formed on the peripheral portion of the first insulating film and on the peripheral portion of the second insulating film. A method of manufacturing a semiconductor device, comprising: applying a chemical solution that enhances adhesion between the insulating film and the third insulating film.
前記薬液は酸化剤からなる
ことを特徴とする請求項13記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 13, wherein the chemical solution is made of an oxidizing agent.
前記第1絶縁膜の周辺部および前記第2絶縁膜の周辺部は前記第1絶縁膜の外周部から内側に5mm以内の範囲である
ことを特徴とする請求項13記載の半導体装置の製造方法。
14. The method of manufacturing a semiconductor device according to claim 13, wherein the peripheral portion of the first insulating film and the peripheral portion of the second insulating film are within 5 mm inward from the outer peripheral portion of the first insulating film. .
前記第1絶縁膜は比誘電率が3.0以下の低誘電率絶縁膜である
ことを特徴とする請求項13記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 13, wherein the first insulating film is a low dielectric constant insulating film having a relative dielectric constant of 3.0 or less.
前記第1絶縁膜はシリコンと炭素とを含む材料からなる
ことを特徴とする請求項13記載の半導体装置の製造方法。
14. The method of manufacturing a semiconductor device according to claim 13, wherein the first insulating film is made of a material containing silicon and carbon.
前記第2絶縁膜は有機膜である
ことを特徴とする請求項13記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 13, wherein the second insulating film is an organic film.
前記多層配線構造の配線は、前記配線層間を電気的に絶縁する絶縁膜に形成された凹部に銅を含む配線材料を埋め込むように形成した後、前記絶縁膜上の余剰な前記配線材料を化学的機械研磨により除去することにより形成される
ことを特徴とする請求項13記載の半導体装置の製造方法。
The wiring of the multilayer wiring structure is formed by embedding a wiring material containing copper in a recess formed in an insulating film that electrically insulates between the wiring layers, and then chemicals excess wiring material on the insulating film. The method of manufacturing a semiconductor device according to claim 13, wherein the semiconductor device is formed by removing by mechanical mechanical polishing.
JP2004042452A 2004-02-19 2004-02-19 Semiconductor device and its manufacturing method Pending JP2005235978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042452A JP2005235978A (en) 2004-02-19 2004-02-19 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042452A JP2005235978A (en) 2004-02-19 2004-02-19 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005235978A true JP2005235978A (en) 2005-09-02

Family

ID=35018622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042452A Pending JP2005235978A (en) 2004-02-19 2004-02-19 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005235978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134424A (en) * 2005-11-09 2007-05-31 Sony Corp Semiconductor device and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2001077113A (en) * 1999-09-02 2001-03-23 Nec Corp Formation of copper wiring and semiconductor wafer herein copper wiring is formed
JP2001284454A (en) * 2000-02-29 2001-10-12 Internatl Business Mach Corp <Ibm> Multi-level coface interconnecting structure
JP2003282704A (en) * 2002-03-26 2003-10-03 Nec Electronics Corp Method of manufacturing semiconductor device with dual-damacene
JP2004014949A (en) * 2002-06-10 2004-01-15 Sony Corp Semiconductor device and its fabricating process
JP2004031586A (en) * 2002-06-25 2004-01-29 Sony Corp Method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2001077113A (en) * 1999-09-02 2001-03-23 Nec Corp Formation of copper wiring and semiconductor wafer herein copper wiring is formed
JP2001284454A (en) * 2000-02-29 2001-10-12 Internatl Business Mach Corp <Ibm> Multi-level coface interconnecting structure
JP2003282704A (en) * 2002-03-26 2003-10-03 Nec Electronics Corp Method of manufacturing semiconductor device with dual-damacene
JP2004014949A (en) * 2002-06-10 2004-01-15 Sony Corp Semiconductor device and its fabricating process
JP2004031586A (en) * 2002-06-25 2004-01-29 Sony Corp Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134424A (en) * 2005-11-09 2007-05-31 Sony Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4948715B2 (en) Semiconductor wafer device and manufacturing method thereof
KR100416596B1 (en) Method of manufacturing interconnection wire in semiconductor device
KR20030089474A (en) Method of manufacturing semiconductor device and semiconductor device
US8164196B2 (en) Semiconductor device and method for manufacturing the same
US6379782B2 (en) Semiconductor device formed with metal wiring on a wafer by chemical mechanical polishing, and method of manufacturing the same
JP4160569B2 (en) Manufacturing method of semiconductor device
CN110838464B (en) Metal interconnect structure and method for fabricating the same
JP2007305755A (en) Method of manufacturing semiconductor device
US7217663B2 (en) Via hole and trench structures and fabrication methods thereof and dual damascene structures and fabrication methods thereof
JP3657576B2 (en) Manufacturing method of semiconductor device
JP2007059434A (en) Method of manufacturing semiconductor device
JP2005217319A (en) Multilayer wiring structure, semiconductor device and semiconductor packaging equipment
JP2005235978A (en) Semiconductor device and its manufacturing method
JP2005294722A (en) Semiconductor device and method for manufacturing the same
JP2009026866A (en) Semiconductor device and method of manufacturing the same
JP2005235979A (en) Semiconductor device and its manufacturing method
JP2006294770A (en) Semiconductor device and method of manufacturing the same
JP2007134424A (en) Semiconductor device and method of manufacturing the same
WO2024062926A1 (en) Method for bonding substrates, and bonded substrate
JP2006147681A (en) Semiconductor device manufacturing method and semiconductor device
JP2006156519A (en) Method of manufacturing semiconductor device
US20060148244A1 (en) Method for cleaning a semiconductor substrate
JP2005217320A (en) Method for forming wiring, fabrication process of semiconductor device and process for manufacturing semiconductor packaging equipment
KR100476707B1 (en) Method of manufacturing a semiconductor device
JP2006344626A (en) Method of manufacturing semiconductor device, device forming substrate and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104