JP2005232513A - High-strength steel sheet and its manufacturing method - Google Patents
High-strength steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP2005232513A JP2005232513A JP2004041624A JP2004041624A JP2005232513A JP 2005232513 A JP2005232513 A JP 2005232513A JP 2004041624 A JP2004041624 A JP 2004041624A JP 2004041624 A JP2004041624 A JP 2004041624A JP 2005232513 A JP2005232513 A JP 2005232513A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- strength
- mass
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
本発明は、極低温靭性に優れ、引張強さ750MPa以上で、天然ガスや原油を輸送するラインパイプや各種圧力容器等に利用して好適な高強度鋼板とその製造方法に関する。 The present invention relates to a high-strength steel sheet excellent in cryogenic toughness and having a tensile strength of 750 MPa or more, and suitable for use in line pipes and various pressure vessels for transporting natural gas and crude oil, and a method for producing the same.
天然ガスや原油を長距離輸送するパイプラインにおいては、敷設費や輸送費の低減を目指し、パイプ素材そのものを高強度化して肉厚の増大を制限することに対するニーズが高まっている。現在、米国石油協会(API)においては、X80グレード(引張強さ620MPa以上)鋼が規格化され、実用に供されており、さらに強度の高いX100(引張強さ750MPa以上)およびX100超(例えば、引張強さ900MPa以上)の高強度グレード鋼の適用も検討されている。 In pipelines for transporting natural gas and crude oil over long distances, there is an increasing need to increase the strength of the pipe material itself and limit the increase in wall thickness, with the aim of reducing laying costs and transportation costs. At present, in the American Petroleum Institute (API), X80 grade (tensile strength 620 MPa or more) steel is standardized and put into practical use, and has higher strength X100 (tensile strength 750 MPa or more) and more than X100 (for example, The application of high-strength grade steel having a tensile strength of 900 MPa or more is also being studied.
一方、ラインパイプでは、構造材料として具備すべき要求特性のうちでも、強度特性と母材低温靭性の両方を兼ね備えることが重要である。特に、極寒冷地に敷設する場合は、母材の低温靭性が極めて重要であり、この低温靭性が十分でなければパイプラインが破壊する恐れがある。しかし一般的には、強度特性を上げると靭性が悪化し、逆に靭性を上げようとすると強度が不足するというように、これら両特性を満足させるには困難が伴い、鋼材が微細結晶粒を有するものであることが必要とされている。 On the other hand, in a line pipe, it is important to combine both strength characteristics and base metal low temperature toughness among the required characteristics to be provided as a structural material. In particular, when laying in an extremely cold region, the low temperature toughness of the base material is extremely important. If this low temperature toughness is not sufficient, the pipeline may be destroyed. However, in general, increasing the strength characteristics deteriorates the toughness, and conversely, increasing the toughness results in a lack of strength. It is necessary to have.
このような高強度ならびに優れた低温靱性に対する要請に応えるべく、例えば、特許文献1および特許文献2には、Mn含有量を高めに設定したX100超グレードの低温靱性に優れた高強度鋼および高強度ラインパイプとその製造方法が提案されている。
In order to meet the demand for such high strength and excellent low-temperature toughness, for example,
また、特許文献3には耐歪時効特性に優れた引張強さが600MPa以上の、しかも所望の低温靱性が確保された高強度鋼材とその製造方法が、さらに、特許文献4には、X100グレード以上の高強度ラインパイプでは特に鋼管全厚の試験片を用いた破壊試験による評価が必要であるという認識の下に、APIで規定されるDWTT試験による実管での破壊特性の評価に基づく不安定破壊抵抗特性に優れた高強度鋼が開示されている。 Patent Document 3 discloses a high-strength steel material having a tensile strength excellent in strain aging resistance of 600 MPa or more and a desired low-temperature toughness and a manufacturing method thereof, and Patent Document 4 further describes an X100 grade. With the recognition that the above-mentioned high-strength line pipes need to be evaluated by a destructive test using a test piece with a full thickness of steel pipe in particular, there is a problem based on the evaluation of the fracture characteristics in actual pipes by the DWTT test specified by the API. A high-strength steel excellent in stable fracture resistance characteristics is disclosed.
しかし、前記の特許文献1〜3に示された技術においては、低温靱性はシャルピー衝撃試験でしか評価されていない。また、特許文献4に記載されるDWTT試験についても、−30℃でしか実施されておらず、極寒冷地で予想される−40℃〜−50℃のような極低温環境での靭性ついては検討されていない。
However, in the techniques disclosed in
本発明は上記のような実情に鑑みてなされたもので、その目的は、引張強さが750MPa以上で、−46℃(−50F)の極低温環境下でも優れた低温靱性を有し、しかも、溶接継手部の吸収エネルギーが同環境下で80J以上という、溶接部低温靭性にも優れた高強度鋼板およびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to have a tensile strength of 750 MPa or more, excellent low temperature toughness even in a cryogenic environment of −46 ° C. (−50 F), and An object of the present invention is to provide a high-strength steel sheet having a weld joint with an absorbed energy of 80 J or more under the same environment and excellent in low-temperature toughness at the weld and a method for producing the same.
具体的には、下記の性能をすべて備える高強度鋼板とその製造方法を提供することを目的としている。 Specifically, it aims at providing the high strength steel plate provided with all the following performances, and its manufacturing method.
母材強度:引張強さ(TS)≧750MPa
母材靭性:衝撃吸収エネルギー(vE-46℃)≧200J
母材靭性:DWTT試験による延性面破面率(SA-46℃)≧75%
溶接継手部靭性:衝撃吸収エネルギー(vE-46℃)≧80J
Base material strength: Tensile strength (TS) ≧ 750 MPa
Base material toughness: Shock absorption energy ( v E -46 ° C ) ≥200J
Base material toughness: Ductile surface fracture ratio (SA- 46 ° C ) ≧ 75% by DWTT test
Welded joint toughness: shock absorption energy ( v E -46 ° C ) ≧ 80J
本発明者は、上記の課題を達成するために、実験検討を重ねた結果、以下のことを知見した。 As a result of repeated experiments to achieve the above-mentioned problems, the present inventor has found the following.
一般に、高強度と高靭性を両立させるために、鋼材の組織をベイナイト、マルテンサイトあるいはそれらの混合組織とすることが有効であることはよく知られているが、低温での使用に際しては、これらの組織自身が有する微細組織では十分でない。しかしながら、熱間加工中に形成される発達した転位下部組織を微細化し、かつ、これらをベイナイト、マルテンサイト組織に受け継がせることによって、低温における破壊発生を抑制し、破壊伝播を停止させる性能(これらの性能を、ここでは特に「破壊発生抑制特性」、「破壊伝播停止特性」という)が格段に向上することが判明した。 In general, in order to achieve both high strength and high toughness, it is well known that the structure of a steel material is bainite, martensite or a mixed structure thereof. The microstructure of its own structure is not sufficient. However, by miniaturizing the developed dislocation substructures formed during hot working and passing them on to the bainite and martensite structures, the ability to suppress fracture generation at low temperatures and stop fracture propagation (these Here, it has been found that the performance of "breakage suppression characteristics" and "destructive propagation stop characteristics" are particularly improved.
さらに、転位下部組織の微細化には、母材中のP、S、NおよびO(酸素)の総量を制限することが極めて効果的で、適切な熱間圧延と圧延後の処理(冷却条件等)の組み合わせによって微細な発達した転位下部組織を有するベイナイト、マルテンサイトあるいはそれらの混合組織が得られること、高強度と低温靭性を両立させるには、後述する本発明の高強度鋼板が有する化学組成の鋼で、(110)面からのX線回折強度の半価幅を制御することにより可能になることが判明した。また、P、S、NおよびOの総量の制限は、当該高強度鋼の溶接熱影響部の微細化にも有効であることが確認された。 Furthermore, it is extremely effective to limit the total amount of P, S, N and O (oxygen) in the base material for the refinement of the dislocation substructure, and appropriate hot rolling and post-rolling treatment (cooling conditions) In order to achieve both high strength and low temperature toughness, it is possible to obtain bainite, martensite, or a mixed structure thereof having a finely developed dislocation substructure by a combination of It was found that this is made possible by controlling the half-value width of the X-ray diffraction intensity from the (110) plane in a steel having a composition. Moreover, it was confirmed that the restriction on the total amount of P, S, N and O is also effective for miniaturization of the weld heat affected zone of the high strength steel.
ここでいう「転位下部組織」とは、熱間加工などで組織中に導入された転位などによる組織をいい、「微細な発達した転位下部組織」とは、微細なサブグレインまたはセル状組織で、隣り合うサブグレインの角度が0.5度以上ある組織をいう。すなわち、熱間加工によってオーステナイト中に多量の転位が導入されるが、適切な母材成分と熱間加工および圧延後の処理により、導入された多量の転位は微細なサブグレインなどを形成し、このサブグレインなどが冷却による変態後も組織に残存し、鋼材の靭性向上に寄与する。 The “dislocation substructure” as used herein refers to a structure formed by dislocations introduced into the structure by hot working or the like, and the “finely developed dislocation substructure” refers to a fine subgrain or cellular structure. , Refers to a structure in which the angle between adjacent subgrains is 0.5 degrees or more. That is, a large amount of dislocations are introduced into austenite by hot working, but the introduced large amounts of dislocations form fine subgrains, etc., by appropriate base material components and processing after hot working and rolling, Subgrains and the like remain in the structure after transformation due to cooling, and contribute to improving the toughness of the steel material.
このように高強度鋼の靭性の向上に寄与する微細な発達した転位下部組織は、通常の材料を通常の方法で製造するだけでは得られない。この組織を得るためには、下記(a)、(b)および(c)の条件を同時に満たす必要がある。 Thus, a finely developed dislocation substructure that contributes to the improvement of toughness of high-strength steel cannot be obtained only by manufacturing a normal material by a normal method. In order to obtain this structure, it is necessary to satisfy the following conditions (a), (b) and (c) at the same time.
(a)表層部と肉厚中心部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合を、それぞれ、95体積%以上および80体積%以上にする。 (A) The total ratio of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the thickness center portion is 95% by volume or more and 80% by volume or more, respectively.
(b)母材中のP、S、NおよびOの総量を制限する。すなわち、下記(1)式のA値を0.5%以下に制限する。なお、(1)式中の元素記号はいずれも鋼中に含まれる各元素の含有量(質量%)を意味する。 (B) The total amount of P, S, N, and O in the base material is limited. That is, the A value in the following formula (1) is limited to 0.5% or less. Note that each element symbol in the formula (1) means the content (% by mass) of each element contained in the steel.
A=12P+45S+67(N+O) ・・・(1)
(c)さらに、(110)面からのX線回折強度の半価幅を0.18度以上、望ましくは0.22度以上、さらに望ましくは0.25度以上とする。
A = 12P + 45S + 67 (N + O) (1)
(C) Furthermore, the half width of the X-ray diffraction intensity from the (110) plane is set to 0.18 degrees or more, desirably 0.22 degrees or more, and more desirably 0.25 degrees or more.
これらの条件を満たすことにより、母材において、750MPa以上の高強度と、−46℃における優れたシャルピー衝撃特性およびDWTT特性とを両立させることができる。 By satisfying these conditions, the base material can have both high strength of 750 MPa or more and excellent Charpy impact characteristics and DWTT characteristics at −46 ° C.
本発明は、上記の知見に基づいてなされたもので、その要旨は、下記(1)、(2)の高強度鋼板、(3)の高強度溶接鋼管、および(4)の高強度鋼の製造方法にある。 The present invention has been made on the basis of the above findings, and the gist of the present invention is the following (1) and (2) high-strength steel plates, (3) high-strength welded steel pipes, and (4) high-strength steels. In the manufacturing method.
(1)質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.20〜2.50%、P:0.010%以下、S:0.002%以下、Ni:0.2〜1.5%、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.05%以下、N:0.0050%以下およびO(酸素):0.003%以下を含み、または、さらに、下記第1群または/および第2群の成分を含み、
第1群の成分・・Cr:1.0%以下、Cu:0.1〜1.5%、V:0.1%以下 およびB:0.0030%以下のうちの1種以上
第2群の成分・・Ca:0.01%以下、Mg:0.01%以下、Zr:0.01% 以下およびREM:0.05%以下のうちの1種以上
残部がFeおよび不純物で、下記の(1)式で表されるA値が0.5%以下の鋼からなり、かつ(110)面からのX線回折強度の半価幅が0.18度以上で、引張強さが750MPa以上である高強度鋼板。
(1) By mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.20 to 2.50%, P: 0.010% or less, S: 0.002 %: Ni: 0.2-1.5%, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: not more than 0.05%, N: not more than 0.0050% and O (oxygen): not more than 0.003%, or further comprising components of the following first group or / and second group,
Components of the first group ··· Cr: 1.0% or less, Cu: 0.1 to 1.5%, V: 0.1% or less and B: one or more of 0.0030% or less Second group Components: ··· Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.01% or less and REM: 0.05% or less, the balance being Fe and impurities, It is made of a steel having an A value of 0.5% or less represented by the formula (1), the half width of the X-ray diffraction intensity from the (110) plane is 0.18 degrees or more, and the tensile strength is 750 MPa or more. Is a high strength steel plate.
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
(2)表層部と肉厚中央部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が、それぞれ、95体積%以上、80体積%以上である前記(1)に記載の高強度鋼板。 (2) The high-strength steel sheet according to (1), wherein a total ratio of the martensite phase and the bainite phase in the metal structure of the surface layer portion and the central thickness portion is 95% by volume or more and 80% by volume or more, respectively. .
(3)前記(1)または(2)に記載の高強度鋼板を加工して得られる高強度溶接鋼管。 (3) A high-strength welded steel pipe obtained by processing the high-strength steel plate according to (1) or (2).
(4)質量%で、C:0.01〜0.10%、Si:0.30%以下、Mn:1.20〜2.50%、P:0.010%以下、S:0.002%以下、Ni:0.2〜1.5%、Mo:0.1〜0.8%、Nb:0.005〜0.06%、Ti:0.004〜0.025%、sol.Al:0.05%以下、N:0.0050%以下およびO(酸素):0.003%以下を含み、または、前記の成分に加えて、さらに、下記第1群または/および第2群の成分を含み、
第1群の成分・・質量%で、Cr:1.0%以下、Cu:0.1〜1.5%、V:0 .1%以下およびB:0.0030%以下のうちの1種以上
第2群の成分・・Ca:0.01%以下、Mg:0.01%以下、Zr:0.01% 以下およびREM:0.05%以下のうちの1種以上
残部がFeおよび不純物で、下記(1)式で表されるA値が0.5%以下の鋼を、950〜1200℃に加熱後、熱間圧延を行って仕上温度900〜600℃で圧延を終了し、600℃を下回らない温度域から550℃以下の温度にまで4℃/秒以上の冷却速度で加速冷却した後、復熱温度幅が70℃以下となるようにして冷却を終了することを特徴とする高強度鋼の製造方法。
(4) By mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.20 to 2.50%, P: 0.010% or less, S: 0.002 %: Ni: 0.2-1.5%, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: 0.05% or less, N: 0.0050% or less, and O (oxygen): 0.003% or less, or in addition to the above-described components, the following first group or / and second group Containing the ingredients of
Components of the first group: mass%, Cr: 1.0% or less, Cu: 0.1 to 1.5%, V: 0. 1% or less and B: one or more of 0.0030% or less, second group components, Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.01% or less, and REM: One or more of 0.05% or less of the balance is Fe and impurities, and a steel having an A value of 0.5% or less represented by the following formula (1) is heated to 950 to 1200 ° C., and then hot rolled. The rolling is finished at a finishing temperature of 900 to 600 ° C., and accelerated cooling is performed at a cooling rate of 4 ° C./second or more from a temperature range not lower than 600 ° C. to a temperature of 550 ° C. or less. A method for producing high-strength steel, characterized in that the cooling is terminated so that the temperature is not higher than ° C.
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
前記の「X線回折強度の半価幅」とは、X線回折強度のデータ(「回折強度−角度」データ)において、回折強度が最も高い強度値の1/2のところでの分布の幅を角度で表したものである。なお、「半価幅」については、後に詳述する。 The above-mentioned “half-value width of X-ray diffraction intensity” is the distribution width at the half of the intensity value where the diffraction intensity is the highest in the X-ray diffraction intensity data (“diffraction intensity-angle” data). It is an angle. The “half width” will be described in detail later.
また、「REM」とは、希土類元素で、スカンジウム(Sc)、イットリウム(Y)およびランタノイド(15元素)を指す。REMの含有量は、含まれている希土類元素の合計の含有量である。 “REM” is a rare earth element and refers to scandium (Sc), yttrium (Y), and lanthanoid (15 elements). The content of REM is the total content of the contained rare earth elements.
本発明の高強度鋼板およびこの鋼板を加工して得られる溶接鋼管は、高強度で、しかも、溶接部を含め、極低温での靱性にも優れている。DWTT試験による評価に基づく不安定破壊抵抗特性に優れているので、例えば、本発明の鋼管を極低温環境下でラインパイプとして使用したときの安全性が飛躍的に向上する等の効果が得られる。
この鋼板は、本発明の方法で確実にかつ安定して製造することができる。
The high-strength steel plate of the present invention and the welded steel pipe obtained by processing this steel plate have high strength and are excellent in toughness at cryogenic temperatures including the welded portion. Since the unstable fracture resistance characteristics based on the evaluation by the DWTT test are excellent, for example, the effect of dramatically improving the safety when the steel pipe of the present invention is used as a line pipe in a cryogenic environment can be obtained. .
This steel plate can be reliably and stably manufactured by the method of the present invention.
以下、本発明の高張力鋼板とその製造方法および溶接鋼管を上記のように規定した理由について詳細に説明する。なお、以下において、合金元素の「%」は、「質量%」を意味する。 Hereinafter, the reason why the high-tensile steel plate of the present invention, the manufacturing method thereof, and the welded steel pipe are specified as described above will be described in detail. In the following, “%” of the alloy element means “mass%”.
まず、鋼の化学組成について述べる。 First, the chemical composition of steel will be described.
C:0.01〜0.10%
Cは、強度を確保する目的で含有させるが、0.01%未満の含有量では焼入性が不足で750MPa以上の引張強さを確保することが難しく、また靭性も十分ではない。逆に、0.10%を超えて含有させると、鋼(母材)および溶接部、特に溶接熱影響部(HAZ)の靭性が低下する。また、溶接施工時における溶接性も低下する。このため、C含有量は0.01〜0.10%とした。好ましい範囲は0.02〜0.08%、より好ましい範囲は0.03〜0.08%である。
C: 0.01 to 0.10%
C is contained for the purpose of securing the strength. However, if the content is less than 0.01%, the hardenability is insufficient and it is difficult to secure a tensile strength of 750 MPa or more, and the toughness is not sufficient. On the other hand, if the content exceeds 0.10%, the toughness of the steel (base material) and the welded portion, particularly the weld heat affected zone (HAZ) is lowered. Moreover, the weldability at the time of welding construction also falls. For this reason, C content was made into 0.01 to 0.10%. A preferable range is 0.02 to 0.08%, and a more preferable range is 0.03 to 0.08%.
Si:0.30%以下
Siは、脱酸剤として通常添加されるが、その含有量が0.30%を超えると、鋼およびその溶接部の靭性が低下する。このため、Si含有量は0.30以下とした。好ましい上限は0.20%、より好ましい上限は0.15%である。なお、下限は特に定めないが、十分な脱酸効果を得るためはSi含有量を0.01%以上とするのが好ましい。
Si: 0.30% or less Si is usually added as a deoxidizing agent, but when its content exceeds 0.30%, the toughness of the steel and its welded portion decreases. For this reason, Si content was 0.30 or less. A preferable upper limit is 0.20%, and a more preferable upper limit is 0.15%. The lower limit is not particularly defined, but the Si content is preferably 0.01% or more in order to obtain a sufficient deoxidation effect.
Mn:1.20〜2.50%
Mnは、焼入性を向上させて強度を高めるために含有させるが、1.20%未満の含有量では750MPa以上の引張強さを確保することが困難である。逆に2.50%を超えて含有させると、鋼およびその溶接部の靭性が低下する。このため、Mn含有量は1.20〜2.50%とした。好ましい範囲は1.2〜2.2%、より好ましい範囲は1.2〜1.7%である。
Mn: 1.20 to 2.50%
Mn is contained in order to improve hardenability and increase strength, but if the content is less than 1.20%, it is difficult to ensure a tensile strength of 750 MPa or more. On the other hand, if the content exceeds 2.50%, the toughness of the steel and the welded portion thereof decreases. For this reason, Mn content was made into 1.20-2.50%. A preferable range is 1.2 to 2.2%, and a more preferable range is 1.2 to 1.7%.
P:0.010%以下
Pは、不純物元素で、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を低下させるだけでなく、溶接性も低下させる。したがって、P含有量は低ければ低いほど好ましいが、不可避的な混入は避けられず、過度な低減はコスト上昇を招くので、実害を生じさせない限度として、その上限を0.010%とした。好ましい上限は0.008%、より好ましい上限は0.005%である。なお、P含有量は後述する(1)式を満たす必要がある。
P: 0.010% or less P is an impurity element, and not only lowers the low temperature toughness of the steel and its welded portion, particularly the weld heat affected zone, but also lowers the weldability. Therefore, the lower the P content, the better. However, inevitable mixing is inevitable, and excessive reduction leads to an increase in cost. Therefore, the upper limit is set to 0.010% as a limit that does not cause actual harm. A preferable upper limit is 0.008%, and a more preferable upper limit is 0.005%. In addition, P content needs to satisfy | fill (1) Formula mentioned later.
S:0.002%以下
Sは、前記のPと同様の不純物元素で、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を低下させるだけでなく、溶接性をも低下させる。本発明においてはその含有量の低減が必須の元素である。すなわち、引張強さ750MPa以上の高強度鋼板に十分な極低温靭性を確保するためにはS含有量をできるだけ低くするのが好ましいが、不可避的な混入は避けられず、過度な低減はコスト上昇を招くので、実害を生じさせない限度として、0.002%以下とした。好ましい上限は0.0008%、より好ましい上限は0.0005%である。なお、S含有量は後述する(1)式を満たす必要がある。
S: 0.002% or less S is an impurity element similar to P described above, and not only lowers the low temperature toughness of the steel and its welded portion, particularly the weld heat affected zone, but also lowers the weldability. In the present invention, reduction of the content is an essential element. That is, in order to ensure sufficient cryogenic toughness for a high strength steel sheet having a tensile strength of 750 MPa or more, it is preferable to reduce the S content as much as possible, but inevitable mixing is inevitable, and excessive reduction increases costs. Therefore, the upper limit is set to 0.002% or less as a limit that does not cause actual harm. A preferable upper limit is 0.0008%, and a more preferable upper limit is 0.0005%. In addition, S content needs to satisfy | fill (1) Formula mentioned later.
Ni:0.2〜1.5%
Niは、鋼の低温靭性、脆性亀裂伝播停止性能を改善させる他、溶接性をも向上させる作用を有する。これらの効果は不純物量レベルでも得られるが、0.2%以上の含有量で顕著になる。しかし、1.5%を超えて含有させても、コスト上昇の割に前記の効果の向上代が小さくなるだけでなく、焼入れ−焼戻し処理によって過度の残留オーステナイトが生成し、降伏強度が低下してしまう場合がある。このため、積極的に添加含有させる場合のNi含有量は0.2〜1.5%とするのがよい。
Ni: 0.2 to 1.5%
Ni has the effect of improving weldability as well as improving the low temperature toughness and brittle crack propagation stopping performance of steel. These effects can be obtained even at the impurity level, but become significant when the content is 0.2% or more. However, even if the content exceeds 1.5%, not only the cost for improving the effect becomes small for the cost increase, but also excessive retained austenite is generated by quenching and tempering treatment, and the yield strength decreases. May end up. For this reason, the Ni content in the case of positively adding and containing is preferably 0.2 to 1.5%.
Mo:0.1〜0.8%
Moは、焼入性を向上させるとともに、固溶強化によって鋼の強度および靭性を向上させる。また、Nbとの複合添加時には組織の微細化を促進すると同時に、適度な残留オーステナイトを鋼中に分散させて母材および溶接部靭性を向上させる作用を有する。これらの効果は0.1%以上の含有量で顕著になる。しかし、0.8%を超えて含有させると、強度を過度に高め、母材およびその溶接部の靭性を損なう。このため、Mo含有量は0.1〜0.8%とした。
Mo: 0.1 to 0.8%
Mo improves hardenability and improves the strength and toughness of steel by solid solution strengthening. Further, at the time of compound addition with Nb, it has the effect of promoting refinement of the structure and at the same time dispersing moderate retained austenite in the steel and improving the toughness of the base metal and the welded portion. These effects become significant when the content is 0.1% or more. However, if the content exceeds 0.8%, the strength is excessively increased and the toughness of the base material and its welded portion is impaired. For this reason, Mo content was made into 0.1 to 0.8%.
Nb:0.005〜0.06%
Nbは、鋼の組織を微細化させ、高強度鋼の靭性を大幅に向上させる元素であるが、0.005%未満の含有量では前記の効果が得られない。一方、0.06%を超えて含有させると、溶接性が損なわれる。このため、Nb含有量は0.005〜0.06%とした。好ましい範囲は0.005〜0.03%、より好ましい範囲は0.005〜0.02%である。
Nb: 0.005 to 0.06%
Nb is an element that refines the structure of the steel and greatly improves the toughness of the high-strength steel, but the above effect cannot be obtained with a content of less than 0.005%. On the other hand, if the content exceeds 0.06%, weldability is impaired. For this reason, Nb content was made into 0.005 to 0.06%. A preferable range is 0.005 to 0.03%, and a more preferable range is 0.005 to 0.02%.
Ti:0.004〜0.025%
Tiは、鋼およびその溶接熱影響部の組織を微細化し、母材およびその溶接熱影響部の低温靭性を向上させる元素であるが、0.004%未満の含有量では前記の効果が得られない。一方、0.025%を超えて含有させると、鋼およびその溶接部、なかでも溶接熱影響部の低温靭性を損うだけでなく、溶接性をも低下させる。このため、Ti含有量は0.004〜0.025%とした。好ましい範囲は0.004〜0.015%、より好ましい範囲は0.004〜0.010%である。
Ti: 0.004 to 0.025%
Ti is an element that refines the structure of steel and its heat-affected zone and improves the low-temperature toughness of the base metal and its heat-affected zone, but the above effect can be obtained with a content of less than 0.004%. Absent. On the other hand, if the content exceeds 0.025%, not only the low temperature toughness of the steel and its welded portion, particularly the weld heat affected zone, is impaired, but also the weldability is lowered. For this reason, Ti content was made into 0.004-0.025%. A preferable range is 0.004 to 0.015%, and a more preferable range is 0.004 to 0.010%.
sol.Al:0.05%以下
Alは、脱酸剤として通常添加される元素で、鋼中に不純物として含まれるNをAlNとして固定する作用を有するが、その含有量がsol.Al含有量で0.05%を超えると、溶接部の特性が劣化するだけでなく、溶接性もかえって低下するとともに、M−A比率 (島状マルテンサイト組織の存在比率) が増加し、靱性が劣化する。このため、Alの含有量はsol.Al含有量で0.05%以下とした。好ましい上限は0.035%、より好ましい上限は0.025%である。なお、下限は特に定める必要はないが、前記の効果を十分に得るためにはsol.Al含有量を0.0005%以上とするのが好ましい。
sol. Al: 0.05% or less Al is an element usually added as a deoxidizer, and has an effect of fixing N contained as an impurity in steel as AlN. If the Al content exceeds 0.05%, not only will the weld properties deteriorate, but weldability will also decrease, and the MA ratio (existence ratio of island martensite structure) will increase, and toughness will increase. Deteriorates. For this reason, the content of Al is sol. Al content was 0.05% or less. A preferable upper limit is 0.035%, and a more preferable upper limit is 0.025%. The lower limit is not particularly required, but sol. The Al content is preferably 0.0005% or more.
N:0.0050%以下
Nは、不純物元素で、鋼の靭性を低下させる有害な元素であり、その含有量が0.0050%を超えると、所望の低温靭性が確保できなくなる。このため、N含有量は0.0050%以下とした。好ましい上限は0.0025%、より好ましい上限は0.0020%であるが、N含有量は低ければ低いほどよい。なお、N含有量は後述する(1)式を満たす必要がある。
N: 0.0050% or less N is an impurity element that is a harmful element that lowers the toughness of steel. If the content exceeds 0.0050%, the desired low-temperature toughness cannot be secured. For this reason, N content was made into 0.0050% or less. The preferable upper limit is 0.0025%, and the more preferable upper limit is 0.0020%, but the lower the N content, the better. In addition, N content needs to satisfy | fill (1) Formula mentioned later.
O(酸素):0.003%以下
Oは、上記のNと同様の不純物元素で、鋼の靭性を低下させる極めて有害な元素であり、その含有量が0.003%を超えると、所望の低温靭性が確保できなくなる。このため、O含有量は0.003%以下とした。好ましい上限は0.0018%、より好ましい上限は0.0012%であるが、O含有量は低ければ低いほどよい。なお、O含有量は次に述べる(1)式を満たす必要がある。
O (oxygen): 0.003% or less O is an impurity element similar to N described above, and is an extremely harmful element that lowers the toughness of steel. If the content exceeds 0.003%, the desired content is Low temperature toughness cannot be secured. Therefore, the O content is set to 0.003% or less. The preferable upper limit is 0.0018%, and the more preferable upper limit is 0.0012%, but the lower the O content, the better. The O content must satisfy the following formula (1).
A値:0.5%以下
P、S、NおよびOの各元素は、それぞれ前述した範囲内の含有量に抑えるとともに、下記(1)式(式中の元素記号は鋼中に含まれる各元素の含有量(%)を意味する)で表されるA値が0.5%以下であることが必要である。
A value: 0.5% or less Each element of P, S, N, and O is suppressed to a content within the above-described range, and the following formula (1) (element symbols in the formula are each included in steel) The A value expressed by the element content (%) is required to be 0.5% or less.
A=12P+45S+67(N+O) ・・・(1)
すなわち、A値が0.5%を超える鋼材においては、適切な熱間圧延および圧延後の処理(後述する加速冷却)を施しても鋼組織中に微細な転位下部組織が十分に導入されず、また溶接部も十分に微細化せず、目的とする高強度、高靭性を得ることができない。このため、A値は0.5%以下とした。A値の好ましい上限は0.4%である。
A = 12P + 45S + 67 (N + O) (1)
That is, in a steel material having an A value exceeding 0.5%, a fine dislocation substructure is not sufficiently introduced into the steel structure even if appropriate hot rolling and post-rolling treatment (accelerated cooling described later) are performed. Also, the welded portion is not sufficiently miniaturized, and the intended high strength and high toughness cannot be obtained. For this reason, A value was made into 0.5% or less. A preferable upper limit of the A value is 0.4%.
本発明の高強度鋼板は、鋼の化学組成については、以上に述べた成分と残部Feおよび不純物からなるものであれば十分であるが、必要に応じてCr、Cu、V、B、Ca、Mg、ZrおよびREMのうちのいずれか1種以上を積極的に添加含有させてもよい。この場合は、鋼およびその溶接部、なかでも溶接熱影響部の低温靱性、溶接性を損なうことなく高強度が得られ、より厚肉の鋼板や鋼管等を得ることができる。 The high-strength steel sheet of the present invention is sufficient for the chemical composition of the steel as long as it consists of the above-described components, the balance Fe, and impurities, but if necessary, Cr, Cu, V, B, Ca, Any one or more of Mg, Zr and REM may be positively added and contained. In this case, high strength can be obtained without impairing the low temperature toughness and weldability of the steel and its welded portion, particularly the weld heat affected zone, and a thicker steel plate or steel pipe can be obtained.
Cu:0.1〜1.5%
Cuは、焼入性を向上させ、溶接性をあまり損なうことなく鋼(母材)を強靭化する作用を有し、その効果は0.1%以上の含有量で顕著になる。しかし、1.5%を超えて含有させると、母材およびその溶接部の靭性が損なわれるだけでなく、熱間延性を大きく低下させる場合がある。このため、添加する場合のCu含有量は0.1〜1.5%とするのがよい。
Cu: 0.1 to 1.5%
Cu has the effect of improving hardenability and toughening steel (base material) without significantly impairing the weldability, and the effect becomes significant when the content is 0.1% or more. However, if the content exceeds 1.5%, not only the toughness of the base material and its welded portion is impaired, but also the hot ductility may be greatly reduced. For this reason, when added, the Cu content is preferably 0.1 to 1.5%.
Cr:1.0%以下
V:0.1%以下
B:0.0030%以下
これらの元素は、いずれも、焼入性を向上させて鋼を強靱化する作用を有する。しかし、Cr、VおよびBは、それぞれ、1.0%、0.1%、0.0030%を超えて含有させると、いずれも強度上昇が過度となり、鋼およびその溶接部の靭性が損なわれることがある。このため、Cr、VおよびBの含有量は、それぞれ、1.0%以下、0.1%以下および0.0030%以下とした。前記の効果は、いずれの元素についても、不純物量レベルでも得られる。したがって、下限は特に定めないが、Crでは0.01%以上、Vでは0.005%以上、Bでは0.0003%以上の含有量で顕著な効果がみられるので、積極的に添加含有させる場合のCr、VおよびBの含有量は、それぞれ、0.01〜1.0%、0.005〜0.1%、0.0003〜0.0030%とするのが好ましい。
Cr: 1.0% or less V: 0.1% or less B: 0.0030% or less Any of these elements has an effect of improving hardenability and strengthening the steel. However, if Cr, V, and B are contained in amounts exceeding 1.0%, 0.1%, and 0.0030%, respectively, the strength rises excessively, and the toughness of the steel and its welds is impaired. Sometimes. For this reason, the contents of Cr, V, and B are set to 1.0% or less, 0.1% or less, and 0.0030% or less, respectively. The above effects can be obtained at any impurity level for any element. Accordingly, the lower limit is not particularly defined, but a significant effect is seen with a content of 0.01% or more for Cr, 0.005% or more for V, and 0.0003% or more for B. In this case, the Cr, V, and B contents are preferably 0.01 to 1.0%, 0.005 to 0.1%, and 0.0003 to 0.0030%, respectively.
Ca:0.01%以下
Mg:0.01%以下
Zr:0.01%以下
REM(希土類元素):0.05%以下
これらの元素は、いずれも、鋼中の介在物の形態を制御し、鋼およびその溶接部の靱性および耐食性を向上させる他、低温靭性に有害な元素(N、C、O)を安定化させる作用を有する。しかし、Ca、MgおよびZrは、いずれも、0.01%を超えて含有させると、またREMについては0.05%を超えて含有させると、鋼の清浄度が低下し、鋼およびその溶接部の靭性が低下する。このため、Ca、MgおよびZrの含有量は、いずれも0.01%以下、REMの含有量は0.05%以下とした。
Ca: 0.01% or less Mg: 0.01% or less Zr: 0.01% or less REM (rare earth element): 0.05% or less These elements all control the form of inclusions in steel. In addition to improving the toughness and corrosion resistance of steel and its welds, it has the effect of stabilizing elements (N, C, O) that are harmful to low temperature toughness. However, if Ca, Mg and Zr are all contained in excess of 0.01%, and REM is contained in excess of 0.05%, the cleanliness of the steel decreases, and the steel and its weld The toughness of the part decreases. Therefore, the Ca, Mg, and Zr contents are all 0.01% or less, and the REM content is 0.05% or less.
前記の効果は、いずれの元素についても、不純物量レベルでも得られる。したがって、下限は特に定めないが、いずれも0.0005%以上の含有量で顕著な効果がみられるので、積極的に添加含有させる場合のCa、MgおよびZrの含有量は、いずれも0.0005〜0.01%、REMの含有量は0.0005〜0.05%とするのが好ましい。 The above effects can be obtained at any impurity level for any element. Accordingly, the lower limit is not particularly defined, but since a significant effect is observed at a content of 0.0005% or more, the contents of Ca, Mg, and Zr in the case of positively adding and containing are all 0. 0005 to 0.01%, and the content of REM is preferably 0.0005 to 0.05%.
なお、溶接性や鋼の清浄度を考慮し、以下に示す炭素当量CeqおよびVsをそれぞれ0.40〜0.58および0.28〜0.42%の範囲内にすることが好ましい。 In consideration of weldability and steel cleanliness, it is preferable that the carbon equivalents C eq and V s shown below are within the ranges of 0.40 to 0.58 and 0.28 to 0.42%, respectively.
Ceq(%)=C+(Mn/6)+{(Cu+Ni)/15}
+{(Cr+Mo+V)/5}
Vs(%)=C+(Mn/5)+5P−(Ni/10)
−(Mo/15)+(Cu/10)
ここで、元素記号はいずれもその元素の含有量(%)を意味する。
C eq (%) = C + (Mn / 6) + {(Cu + Ni) / 15}
+ {(Cr + Mo + V) / 5}
V s (%) = C + (Mn / 5) + 5P− (Ni / 10)
-(Mo / 15) + (Cu / 10)
Here, each element symbol means the content (%) of the element.
Ceqを0.40〜0.58%とするのが好ましい理由は、母材のみならず溶接熱影響部においてもベイナイトとマルテンサイトの混合組織とすることにより、靱性の劣化を伴うことなく広い製造条件で所望の組織を有する鋼を得ることが可能となるからである。炭素当量が下限値に満たない場合には焼入性の不足から母材の引張強さを750MPa以上に維持することが困難となる。また、炭素当量が上限値を超える場合には、焼入性の過度な上昇から溶接熱影響部での靱性および鋼板表面での靱性が劣化する。 The reason why C eq is preferably 0.40 to 0.58% is wide not involving deterioration of toughness by using a mixed structure of bainite and martensite not only in the base material but also in the weld heat affected zone. This is because it becomes possible to obtain steel having a desired structure under manufacturing conditions. When the carbon equivalent is less than the lower limit, it becomes difficult to maintain the tensile strength of the base material at 750 MPa or more due to insufficient hardenability. Moreover, when a carbon equivalent exceeds an upper limit, the toughness in a welding heat affected zone and the toughness in the steel plate surface deteriorate from the excessive raise of hardenability.
Vsを0.28〜0.42%とするのは、連続鋳造鋳片の中心偏析を軽減するためである。Vs値が0.42%を超えると、中心偏析が強く生じ、引張強さが750MPa以上の高強度鋼の場合、中心部の靭性の劣化が生じる。一方、0.28%未満では、中心偏析は生じないものの引張強さ750MPa以上を確保することができない。 The reason why V s is 0.28 to 0.42% is to reduce the center segregation of the continuous cast slab. When the V s value exceeds 0.42%, the center segregation is strongly generated, and in the case of a high strength steel having a tensile strength of 750 MPa or more, the toughness of the center portion is deteriorated. On the other hand, if it is less than 0.28%, center segregation does not occur, but a tensile strength of 750 MPa or more cannot be ensured.
前記(1)に記載の高強度鋼板は、以上に述べた化学組成を有する鋼からなり、かつ(110)面からのX線回折強度の半価幅が0.18度以上の鋼板である。前記X線回折強度の半価幅を0.18度以上とするのは、以下の理由による。 The high-strength steel plate described in (1) is a steel plate made of steel having the chemical composition described above and having a half width of X-ray diffraction intensity from the (110) plane of 0.18 degrees or more. The half width of the X-ray diffraction intensity is set to 0.18 degrees or more for the following reason.
図1は、鋼の(110)面におけるX線回折強度のデータを模式的に示す図で、X線回折強度の半価幅を説明するための図である。図1の(イ)はピークが一つの場合、(ロ)はピークが二つに分かれている場合である。図1に示すように、半価幅は、この回折強度のピークにおいて、回折強度が最も高い強度値(ピーク値)の1/2の強度値のところにおける分布の幅を角度で表したものである。図1(b)に示すように、ピークが二つに分かれている場合には、高い方のピーク強度値の1/2の値をとる。 FIG. 1 is a diagram schematically showing X-ray diffraction intensity data on the (110) plane of steel, and is a diagram for explaining the half-value width of the X-ray diffraction intensity. FIG. 1A shows a case where there is one peak, and FIG. 1B shows a case where the peak is divided into two. As shown in FIG. 1, the half width is an angle representing the width of the distribution at the half intensity value of the highest diffraction intensity (peak value) at this diffraction intensity peak. is there. As shown in FIG. 1B, when the peak is divided into two, it takes a value half that of the higher peak intensity value.
X線回折強度の半価幅は、金属組織等における格子欠陥密度の評価パラメータの一つであるが、本発明の高強度鋼板では、この半価幅を用い、低温域での高靭性を達成するための指標となる格子欠陥密度を限定した。すなわち、ベイナイト相やマルテンサイト相の(110)面でのX線回折強度の半価幅が0.18度以上という条件を満足すれば、微細なサブグレインの形成に関連した格子欠陥密度が大きく、低温域で優れた高靭性が発揮される。なお、前記X線回折強度の半価幅は、0.22度以上が望ましく、0.25度以上であればさらに望ましい。 The half width of the X-ray diffraction intensity is one of the evaluation parameters of the lattice defect density in the metal structure, etc., but the high strength steel sheet of the present invention uses this half width to achieve high toughness in a low temperature range. The lattice defect density, which is an index for doing so, was limited. That is, if the condition that the half-value width of the X-ray diffraction intensity in the (110) plane of the bainite phase or martensite phase satisfies 0.18 degrees or more, the lattice defect density related to the formation of fine subgrains increases. Excellent toughness is exhibited at low temperatures. The half width of the X-ray diffraction intensity is preferably 0.22 degrees or more, and more preferably 0.25 degrees or more.
X線回折をおこなう結晶面を(110)面としたのは、この結晶面がX線回折において最も一般的に用いられるからである。本発明の高強度鋼板では、良好な低温靱性を得るために、「(110)面でのX線回折強度の半価幅が0.18度以上」と規定するが、引張強さで750MPa級以上の強度を有する鋼板の場合は、強度等のバランスの観点から、半価幅を0.20〜0.30度とするのが好ましい。 The reason why the crystal plane for X-ray diffraction is the (110) plane is that this crystal plane is most commonly used in X-ray diffraction. In the high-strength steel sheet of the present invention, in order to obtain good low-temperature toughness, it is specified that “the half-value width of the X-ray diffraction intensity on the (110) plane is 0.18 degrees or more”, but the tensile strength is 750 MPa class. In the case of a steel sheet having the above strength, the half width is preferably 0.20 to 0.30 degrees from the viewpoint of balance of strength and the like.
前記半価幅は、回折パターンでKα1とKα2のピークが独立して現れる時は、Kα1のピークの1/2強度値のところでの値を採り、Kα1とKα2のピークの1/2強度値のところでの値が一部重なって現れる時は合計の幅で測定する。なお、前記半価幅の測定は、厚さ方向で鋼板表面から1mm内部に入った部位において、圧延面と平行な面で行うものとする。
When the Kα1 and Kα2 peaks appear independently in the diffraction pattern, the half width takes the value at the half intensity value of the Kα1 peak, and is the half intensity value of the Kα1 and Kα2 peak. By the way, when the values appear partially overlapping, measure with the total width. The half width is measured on a plane parallel to the rolling surface at a
(1)に記載の高強度鋼板は、前記のように化学組成(A値が0.5以下という条件も含む)とX線回折強度の半価幅を規定した鋼板である。半価幅を0.18度以上とすることは、後述するように、熱間圧延と圧延後の処理を適切に行うことによって可能であり、これにより微細な発達した転位下部組織を有するベイナイト、マルテンサイトあるいはそれらの混合組織が得られる。この金属組織を定量的に規定した鋼板が次に述べる(2)に記載の鋼板である。 The high-strength steel sheet described in (1) is a steel sheet that defines the chemical composition (including the condition that the A value is 0.5 or less) and the half-value width of the X-ray diffraction intensity as described above. Setting the half width to 0.18 degrees or more is possible by appropriately performing hot rolling and post-rolling treatment, as will be described later, whereby bainite having a finely developed dislocation substructure, Martensite or a mixed structure thereof is obtained. The steel sheet that quantitatively defines the metal structure is the steel sheet described in (2) below.
前記(2)に記載の高強度鋼板は、(1)の高強度鋼板において、さらに、金属組織が、表層部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が95体積%以上であり、肉厚中央部の金属組織に占めるマルテンサイト相とベイナイト相との合計割合が80体積%以上の鋼板である。 In the high-strength steel sheet according to (2), in the high-strength steel sheet according to (1), the total proportion of the martensite phase and the bainite phase in the metal structure of the surface layer portion is 95% by volume or more. There is a steel plate in which the total proportion of the martensite phase and the bainite phase in the metal structure at the center of the wall thickness is 80% by volume or more.
この鋼板では前記の(a)〜(c)の条件が明確に満たされており、十分に微細で発達した転位下部組織を有するベイナイト、マルテンサイトあるいはそれらの混合組織が得られる。したがって、低温における破壊発生抑制特性、破壊伝播停止特性が格段に優れるので、不安定破壊抵抗特性が一段と向上し、750MPa以上の高強度と、−46℃におけるシャルピー衝撃特性およびDWTT特性を両立させることができる。 In this steel plate, the above conditions (a) to (c) are clearly satisfied, and bainite, martensite or a mixed structure thereof having a sufficiently fine and developed dislocation substructure is obtained. Therefore, since the fracture occurrence suppression characteristics and the fracture propagation stop characteristics at low temperatures are remarkably excellent, the unstable fracture resistance characteristics are further improved, and both the high strength of 750 MPa or more, the Charpy impact characteristics and DWTT characteristics at -46 ° C. are achieved. Can do.
前記の半価幅が0.18度未満の鋼板では、転位下部組織の発達が十分でなく、また微細でないため、金属組織が前記の条件を満たしていても、十分なシャルピー衝撃特性やDWTT特性を得ることができない。 In a steel sheet having a half width of less than 0.18 degree, the dislocation substructure is not sufficiently developed and is not fine, so that even if the metal structure satisfies the above conditions, sufficient Charpy impact characteristics and DWTT characteristics are obtained. Can't get.
また、逆に、鋼の化学組成が本発明で規定する範囲から外れたり、鋼の組織が本発明で規定する組織でない場合には、(110)面ピークの半価幅が0.18度以上であっても、微細な転位下部組織とはならず、高強度と高靭性の両方を兼ね備えた鋼板は得られない。 Conversely, when the chemical composition of the steel is out of the range defined by the present invention, or when the steel structure is not the structure defined by the present invention, the half width of the (110) plane peak is 0.18 degrees or more. Even so, a fine dislocation substructure is not obtained, and a steel sheet having both high strength and high toughness cannot be obtained.
次に、前述した本発明の高強度鋼の製造方法(前記(4)の方法)について説明する。 Next, the manufacturing method (the method (4)) of the high-strength steel of the present invention described above will be described.
本発明の高強度鋼板は、鋼の化学組成が本発明で規定する条件を満たす限り、通常の熱間圧延後に再加熱焼入れして焼戻す方法や、同じく通常の熱間圧延後に直接焼入れして焼戻す方法、さらには同じく通常の熱間圧延後に加速冷却処理する方法などにより製造することも可能である。しかし、確実に、かつ安定して製造するには下記の条件により熱間圧延を施した後、加速冷却処理する方法で製造するのが望ましい。 As long as the chemical composition of the steel satisfies the conditions stipulated in the present invention, the high-strength steel sheet of the present invention can be tempered by reheating and quenching after normal hot rolling, or directly quenched after normal hot rolling. It can also be produced by a method of tempering, and also a method of accelerated cooling after normal hot rolling. However, for reliable and stable production, it is desirable to produce by an accelerated cooling treatment after hot rolling under the following conditions.
加熱温度:950〜1200℃
加熱温度が950℃未満であると、750MPa以上の引張強さが確保できない場合がある。また、加熱温度が1200℃を超えると、その後の熱間圧延後に脆性破壊の発生および低温靭性に有害な元素(N、C、O)の安定化が不十分となり、所望の低温靭性を確保することができない場合がある。このため、加熱温度は950〜1200℃とするのが望ましい。
Heating temperature: 950-1200 ° C
If the heating temperature is less than 950 ° C., a tensile strength of 750 MPa or more may not be ensured. On the other hand, if the heating temperature exceeds 1200 ° C., the occurrence of brittle fracture and the stabilization of elements (N, C, O) harmful to low temperature toughness after subsequent hot rolling become insufficient, and the desired low temperature toughness is ensured. It may not be possible. For this reason, the heating temperature is desirably 950 to 1200 ° C.
熱間圧延の仕上温度:900〜600℃
熱間圧延の仕上温度が600℃未満であると、750MPa以上の引張強さが確保できない場合がある。また、熱間圧延の仕上温度が900℃を超えると、圧延およびその後の加速冷却による組織の微細化が十分でなく、脆性破壊の発生および低温靭性に有害な元素(N、C)の安定化が不十分となり、所望の低温靭性を確保することができない場合がある。このため、熱間圧延の仕上温度は900〜600℃とする。
Hot rolling finishing temperature: 900-600 ° C
When the finishing temperature of hot rolling is less than 600 ° C., a tensile strength of 750 MPa or more may not be ensured. Moreover, when the finishing temperature of hot rolling exceeds 900 ° C., the structure is not sufficiently refined by rolling and subsequent accelerated cooling, and the occurrence of brittle fracture and stabilization of elements (N, C) harmful to low temperature toughness May become insufficient and the desired low-temperature toughness may not be ensured. For this reason, the finishing temperature of hot rolling shall be 900-600 degreeC.
なお、(110)面のX線半価幅を0.18度以上とするには、低温オーステナイト域で十分に圧下を加えた後、オーステナイト粒内から下部ベイナイトを核生成させ、かつ下部ベイナイトの成長を抑えることが必要である。このため高密度の転位が必要であり、そのためにはオーステナイトの未再結晶温度域(975℃以下Ar3変態点以上)で50%以上の圧延を行うことが望ましい。一方、オーステナイトの未再結晶温度域での圧下率が90%を超えると機械的性質の異方性が著しくなるため、未再結晶温度域での圧下率は90%以下とするのが望ましい。 In order to set the X-ray half width of the (110) plane to 0.18 degrees or more, after sufficiently reducing in the low temperature austenite region, lower bainite is nucleated from within the austenite grains, and the lower bainite It is necessary to suppress growth. For this reason, high-density dislocation is necessary, and for that purpose, it is desirable to perform rolling at 50% or more in the austenite non-recrystallization temperature region (975 ° C. or lower and Ar 3 transformation point or higher). On the other hand, if the reduction ratio of the austenite in the non-recrystallization temperature region exceeds 90%, the anisotropy of the mechanical properties becomes remarkable. Therefore, the reduction rate in the non-recrystallization temperature region is desirably 90% or less.
水冷開始温度:600℃以上
加速冷却時の水冷開始温度が600℃未満であると、750MPa以上の引張強さが確保できないことがある。このため、加速冷却時の水冷開始温度は600℃以上とするのがよい。
Water cooling start temperature: 600 ° C. or more When the water cooling start temperature during accelerated cooling is less than 600 ° C., a tensile strength of 750 MPa or more may not be ensured. For this reason, the water cooling start temperature at the time of accelerated cooling is preferably 600 ° C. or higher.
冷却速度:4℃/秒以上
加速冷却時の冷却速度が4℃/秒未満であると、組織中に粗大なベイナイトが混入し、良好な低温靭性が確保できない。また、圧延加工で導入された発達した転位下部組織が変態後の組織に残存せず、最終製品にもたらされなくなることがある。このため、加速冷却時の冷却速度は4℃/秒以上とするのがよい。なお、冷却速度の上限は特に規定されない。
Cooling rate: 4 ° C./second or more When the cooling rate during accelerated cooling is less than 4 ° C./second, coarse bainite is mixed in the structure, and good low temperature toughness cannot be ensured. In addition, the developed dislocation substructure introduced by rolling may not remain in the transformed structure and may not be brought to the final product. For this reason, the cooling rate during accelerated cooling is preferably 4 ° C./second or more. The upper limit of the cooling rate is not particularly specified.
水冷停止温度:550℃以下
加速冷却時の水冷停止温度が550℃を超えると、750MPa以上の引張強さが確保できず、また組織の微細化が十分でないだけではなく、圧延加工で導入された発達した転位下部組織が変態後の最終製品にもたらされなくなり、所望の不安定破壊抵抗特性が確保できないことがある。このため、加速冷却時の水冷停止温度は550℃以下とするのがよい。
Water cooling stop temperature: 550 ° C. or less When the water cooling stop temperature during accelerated cooling exceeds 550 ° C., a tensile strength of 750 MPa or more cannot be secured, and not only the structure is not sufficiently refined, but also introduced by rolling. The developed dislocation substructure is not brought into the final product after transformation, and the desired unstable fracture resistance characteristics may not be ensured. For this reason, the water cooling stop temperature during accelerated cooling is preferably 550 ° C. or lower.
なお、焼戻し効果による靭性向上および水素性欠陥防止の観点からは、冷却を室温まで行わずに、500〜300℃で停止してその後は徐冷することが望ましい。前記水冷停止温度は500〜300℃の温度域が限度で、それより高温での水冷停止は焼入れ不足に直結する。前記の焼戻し効果をより一層高めたい場合には、Ac1変態点未満で焼戻しを行う。 In addition, from the viewpoint of improving toughness due to the tempering effect and preventing hydrogen defects, it is desirable to stop at 500 to 300 ° C. and then gradually cool without cooling to room temperature. The water cooling stop temperature is limited to a temperature range of 500 to 300 ° C., and water cooling stop at a temperature higher than that is directly connected to insufficient quenching. When it is desired to further enhance the tempering effect, tempering is performed below the A c1 transformation point.
復熱温度幅:70℃以下
復熱温度幅が70℃以下となるようにして冷却を終了する。ここで、「復熱温度幅」とは、冷却を停止した時の鋼板の到達温度と、冷却停止後、鋼板内部の熱で表面の温度が上昇し、安定した時の鋼板の温度との差を意味する。具体的には、水冷装置を出た直後に測定した鋼板温度と、その後、20〜50秒(板厚によって異なる)経過したときに測定した鋼板温度との差である。
加速冷却停止後、冷却終了までの間の復熱温度幅が70℃を超える場合には、圧延加工で導入され発達した転位下部組織が変態後の最終製品にもたらされなくなり、破壊伝播停止特性が劣化する。復熱温度幅を小さくするには、冷却中の鋼板表層と中心部の温度差を小さくするとともに、冷却終了時において少なくとも表層部の相変態を終了させておくことが望ましい。
Recuperation temperature range: 70 ° C. or less Cooling is completed so that the recuperation temperature range becomes 70 ° C. or less. Here, the “recuperation temperature range” is the difference between the temperature reached when the cooling is stopped and the temperature of the steel plate when the surface temperature rises due to the heat inside the steel plate after cooling stops and becomes stable. Means. Specifically, it is the difference between the steel plate temperature measured immediately after leaving the water cooling device and the steel plate temperature measured after 20 to 50 seconds (depending on the plate thickness).
If the recuperation temperature range from the accelerated cooling stop to the end of cooling exceeds 70 ° C, the dislocation substructure introduced and developed in the rolling process is not brought into the final product after transformation, and the fracture propagation stoppage characteristic Deteriorates. In order to reduce the recuperation temperature range, it is desirable to reduce the temperature difference between the steel plate surface layer and the center portion during cooling and to end the phase transformation of at least the surface layer portion at the end of cooling.
以上述べた方法によれば、高強度と優れた極低温靱性を兼ね備えた前記(1)または(2)に記載の高強度鋼板を確実に、かつ安定して製造することができる。 According to the method described above, the high-strength steel sheet according to (1) or (2) having both high strength and excellent cryogenic toughness can be produced reliably and stably.
さらに、本発明の高強度溶接鋼管(前記(3)の溶接鋼管)について説明する。 Furthermore, the high-strength welded steel pipe of the present invention (the welded steel pipe of (3) above) will be described.
本発明の高強度溶接鋼管は、前述した本発明の高強度鋼板を加工して得られる溶接鋼管である。この溶接鋼管は、本発明の高強度鋼板を母材するものであれば、周知の如何なる溶接による製管方法で加工して得られたものであってもよい。 The high strength welded steel pipe of the present invention is a welded steel pipe obtained by processing the above-described high strength steel sheet of the present invention. As long as this welded steel pipe is a base material for the high-strength steel sheet of the present invention, it may be obtained by processing by any well-known welding pipe making method.
例えば、高強度鋼板をU字形に加工し、次いでO字形に加工し、通常の方法で溶接し拡管する方法(UOプレス方式)により鋼管を製造し、焼入れし、必要に応じて焼戻す方法が適用できる。前記のUOプレス、溶接および拡管は、通常の製管工場に備えられている装置を用いることにより実施できる。溶接は、市販の溶接材料を用いてサブマージアーク溶接法等により行えばよい。 For example, a high-strength steel sheet is processed into a U-shape, then processed into an O-shape, a steel pipe is manufactured by a method of welding and expanding by a normal method (UO press method), quenching, and tempering as necessary. Applicable. The UO press, welding, and pipe expansion can be performed by using an apparatus provided in a normal pipe manufacturing factory. Welding may be performed by a submerged arc welding method using a commercially available welding material.
表1に示す化学組成を有する鋼を実験室的に真空溶解し、厚さ100〜160mmのスラブとし、種々の条件で熱間圧延を施した後、種々の条件で冷却して厚さが14〜35mmの厚鋼板とした。熱間圧延条件と冷却条件を表2に示す。 Steel having the chemical composition shown in Table 1 was melted in a laboratory vacuum to form a slab having a thickness of 100 to 160 mm, subjected to hot rolling under various conditions, and then cooled under various conditions to obtain a thickness of 14 It was set as a -35 mm thick steel plate. Table 2 shows hot rolling conditions and cooling conditions.
得られた鋼板について、鋼の組織、X線回折強度の半価幅、引張特性および靭性を以下の方法で調査した。また、溶接継手部についても靭性の調査を行った。 About the obtained steel plate, the structure of steel, the half width of X-ray diffraction intensity, the tensile characteristics, and the toughness were investigated by the following methods. The toughness of the welded joint was also investigated.
鋼の組織の調査では、板厚の1/4に相当する部分から採取した試料の断面を研磨し、2%ナイタール腐食液によりエッチングを施した面について、光学顕微鏡観察によりマルテンサイトとベイナイトの合計面積率(合計比率)を測定した。1試料について10視野測定し、10個の測定値の平均を当該鋼板の合計比率とした。 In the investigation of the steel structure, the cross section of the sample taken from the portion corresponding to 1/4 of the plate thickness was polished, and the surface etched with 2% nital etchant was summed with martensite and bainite by optical microscope observation. The area ratio (total ratio) was measured. Ten fields of view were measured for one sample, and the average of the ten measurements was taken as the total ratio of the steel sheet.
X線回折強度の半価幅の測定は、厚さ方向で鋼板表面から1mm内部に入った部位の圧延面と平行な面を含む25mm角の試験片を採取し、その面を電解研磨して、そのうちの直径20mmの範囲を測定面として行った。なお、測定には、理学電機(社)製RU−200を使用し、コバルト線源を用いた。出力は30KV、100mAであった。
The half width of the X-ray diffraction intensity was measured by taking a 25 mm square test piece including a surface parallel to the rolling surface of the
引張特性については、板厚の中心部からJIS Z 2201に規定される14A号引張試験片を圧延方向に平行に採取して引張試験に供し、降伏強さYS(MPa)、引張強さTS(MPa)を求めた。 Regarding the tensile properties, a 14A tensile test piece defined in JIS Z 2201 is taken from the center of the plate thickness in parallel with the rolling direction and subjected to a tensile test. Yield strength YS (MPa), tensile strength TS ( MPa).
靭性については、JIS Z 2202に規定される4号のシャルピー衝撃試験片を板厚中心部から圧延方向に垂直に採取してシャルピー衝撃試験を行い、衝撃吸収エネルギーvE-46℃(J)および延性−脆性破面遷移温度vTs(℃)を求めた。さらに、API 5Lに規定されるDWTT試験片を圧延方向に垂直に採取し、DWTT試験に供して、−46℃における延性破面率SA-46℃(面積%)と75%延性−脆性破面遷移温度SATT75%(℃)を測定した。 As for toughness, No. 4 Charpy impact test piece defined in JIS Z 2202 was sampled perpendicularly to the rolling direction from the center of the plate thickness and subjected to Charpy impact test, and impact absorption energy v E -46 ° C (J) and The ductile-brittle fracture surface transition temperature v T s (° C.) was determined. Further, a DWTT test piece defined in API 5L was taken perpendicular to the rolling direction and subjected to a DWTT test. The ductile fracture surface ratio SA −46 ° C. (area%) at −46 ° C. and 75% ductile-brittle fracture surface. The transition temperature SATT 75% (° C.) was measured.
また、表裏面各1パスのサブマージアーク溶接(入熱3.2〜7.6kJ/mm)により溶接継手を作製し、シャルピー試験片を、そのノッチ部が溶接FL部(溶接金属と母材の境界線)に位置するように、溶接線に垂直に、表面から1mm内部に入った部位から採取してシャルピー衝撃試験を行い、同部位の衝撃吸収エネルギーvE-46℃(J)を測定した。
In addition, a welded joint was prepared by submerged arc welding (heat input: 3.2 to 7.6 kJ / mm) for each pass on the front and back surfaces, and the Charpy test piece was welded to the FL portion (welded metal and base metal). The Charpy impact test was conducted by sampling from the
鋼の組織(マルテンサイトとベイナイトの合計比率)およびX線回折強度の半価幅を前記表2に併せて示す。また、表3に、母材の引張特性(YS、TS)、ならびに母材の靱性(vE-46℃、vTsおよびSA-46℃、SATT75%)と溶接FL部の靭性(vE-46℃)を示す。 The steel structure (total ratio of martensite and bainite) and the half width of the X-ray diffraction intensity are also shown in Table 2 above. Further, in Table 3, the tensile properties of the base material (YS, TS), and toughness of the base material (v E -46 ℃, v T s and SA -46 ℃, SATT 75%) and the welding FL zone toughness (v E- 46 ° C ).
表3から明らかなように、本発明例では、母材の引張強さ(TS)が750MPa以上であり、−46℃で200J以上のシャルピー吸収エネルギー(vE-46℃)および75%以上のDWTT延性破面率(SA-46℃)を示し、継手シャルピー試験でも80Jを大きく上回る高いシャルピー吸収エネルギー(vE-46℃)を示した。すなわち、前記「発明が解決しようとする課題」の欄に示した目標性能を全て達成しており、高強度と優れた極低温靱性を兼ね備え、不安定破壊抵抗特性に優れた鋼板であることがわかる。 As is apparent from Table 3, in the present invention example, the base material has a tensile strength (TS) of 750 MPa or more, a Charpy absorbed energy ( v E −46 ° C. ) of 200 J or more at −46 ° C., and 75% or more. The DWTT ductile fracture surface ratio (SA −46 ° C. ) was exhibited, and the joint Charpy test also showed high Charpy absorbed energy ( v E −46 ° C. ) significantly exceeding 80 J. That is, the steel sheet has achieved all of the target performances shown in the column of “Problems to be Solved by the Invention”, has high strength and excellent cryogenic toughness, and has excellent unstable fracture resistance characteristics. Understand.
これに対し、鋼板の化学組成が本発明で規定する範囲から外れたり、規定の化学組成は満たしても半価幅や金属組織が本発明の規定から外れる比較例では、特にDWTT延性破面率が目標の75%を大きく下回り、750MPaの高強度と、−46℃におけるシャルピー衝撃特性およびDWTT特性、ならびに溶接FL部シャルピー特性を同時に満足することはできなかった。 On the other hand, in the comparative example in which the chemical composition of the steel sheet deviates from the range specified in the present invention, or the full width at half maximum or the metal structure deviates from the definition of the present invention even if the specified chemical composition is satisfied, the DWTT ductile fracture surface ratio Was significantly lower than 75% of the target, and the high strength of 750 MPa, the Charpy impact property and DWTT property at -46 ° C., and the welded FL part Charpy property could not be satisfied at the same time.
本発明の高強度鋼板およびこの鋼板を加工して得られる溶接管は、高強度で、しかも、溶接部を含め、極低温での靱性にも優れており、また、不安定破壊抵抗特性に優れている。したがって、極低温環境下においても、天然ガスや原油を輸送するラインパイプ、各種圧力容器等に安全に利用することができる。 The high-strength steel sheet of the present invention and the welded pipe obtained by processing this steel sheet are high-strength, and also have excellent toughness at cryogenic temperatures, including welds, and excellent unstable fracture resistance characteristics. ing. Therefore, even in a cryogenic environment, it can be safely used for a line pipe for transporting natural gas or crude oil, various pressure vessels, and the like.
Claims (6)
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。 In mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.20 to 2.50%, P: 0.010% or less, S: 0.002% or less, Ni: 0.2-1.5%, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: 0.05% or less, N: 0.0050% or less, and O (oxygen): 0.003% or less, with the balance being Fe and impurities, and the A value represented by the following formula (1) being 0 A high-strength steel plate made of steel of 5% or less and having a half-value width of X-ray diffraction intensity from the (110) plane of 0.18 degrees or more and a tensile strength of 750 MPa or more.
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。 In addition to the components according to claim 1, further, by mass, Cr: 1.0% or less, Cu: 0.1 to 1.5%, V: 0.1% or less and B: 0.0030% or less X-ray diffraction intensity from the (110) plane, comprising at least one of the above, with the balance being Fe and impurities, A value of 0.5% or less represented by the following formula (1) A high-strength steel sheet having a half width of 0.18 degrees or more and a tensile strength of 750 MPa or more.
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。 In addition to the components according to claim 1 or 2, further, by mass, Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.01% or less, and REM: 0.05% or less It contains one or more of them, the balance is Fe and impurities, the A value represented by the following formula (1) is 0.5% or less, and the X-ray diffraction intensity from the (110) plane A high strength steel plate having a half width of 0.18 degrees or more and a tensile strength of 750 MPa or more.
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
第1群の成分・・質量%で、Cr:1.0%以下、Cu:0.1〜1.5%、V:0 .1%以下およびB:0.0030%以下のうちの1種以上
第2群の成分・・Ca:0.01%以下、Mg:0.01%以下、Zr:0.01% 以下およびREM:0.05%以下のうちの1種以上
残部がFeおよび不純物で、下記(1)式で表されるA値が0.5%以下の鋼を、950〜1200℃に加熱後、熱間圧延を行って仕上温度900〜600℃で圧延を終了し、600℃を下回らない温度域から550℃以下の温度にまで4℃/秒以上の冷却速度で加速冷却した後、復熱温度幅が70℃以下となるようにして冷却を終了することを特徴とする高強度鋼の製造方法。
A=12P+45S+67(N+O) ・・・(1)
ここで、(1)式中の元素記号はいずれも鋼中に含まれる各元素の
含有量(質量%)を意味する。
In mass%, C: 0.01 to 0.10%, Si: 0.30% or less, Mn: 1.20 to 2.50%, P: 0.010% or less, S: 0.002% or less, Ni: 0.2-1.5%, Mo: 0.1-0.8%, Nb: 0.005-0.06%, Ti: 0.004-0.025%, sol. Al: 0.05% or less, N: 0.0050% or less, and O (oxygen): 0.003% or less, or in addition to the above-described components, the following first group or / and second group Containing the ingredients of
Components of the first group: mass%, Cr: 1.0% or less, Cu: 0.1 to 1.5%, V: 0. 1% or less and B: one or more of 0.0030% or less, second group components, Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.01% or less, and REM: One or more of 0.05% or less of the balance is Fe and impurities, and a steel having an A value of 0.5% or less represented by the following formula (1) is heated to 950 to 1200 ° C., and then hot rolled. The rolling is finished at a finishing temperature of 900 to 600 ° C., and accelerated cooling is performed at a cooling rate of 4 ° C./second or more from a temperature range not lower than 600 ° C. to a temperature of 550 ° C. or less. A method for producing high-strength steel, characterized in that the cooling is terminated so that the temperature is not higher than ° C.
A = 12P + 45S + 67 (N + O) (1)
Here, all the element symbols in formula (1) are for each element contained in the steel.
It means content (mass%).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041624A JP2005232513A (en) | 2004-02-18 | 2004-02-18 | High-strength steel sheet and its manufacturing method |
KR1020040086172A KR100605399B1 (en) | 2004-02-18 | 2004-10-27 | High-strength steel plate and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041624A JP2005232513A (en) | 2004-02-18 | 2004-02-18 | High-strength steel sheet and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005232513A true JP2005232513A (en) | 2005-09-02 |
Family
ID=35015769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004041624A Pending JP2005232513A (en) | 2004-02-18 | 2004-02-18 | High-strength steel sheet and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2005232513A (en) |
KR (1) | KR100605399B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270194A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing high-strength steel sheet excellent in sr resistance property |
JP2008163456A (en) * | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method thereof |
JP2008184638A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Metal Ind Ltd | Thick-wall high-tensile steel plate and manufacturing method thereof |
JP2009149917A (en) * | 2006-11-30 | 2009-07-09 | Nippon Steel Corp | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same |
JP2010222681A (en) * | 2009-03-25 | 2010-10-07 | Jfe Steel Corp | Thick and high toughness steel pipe material and method for producing the same |
JP2012144780A (en) * | 2011-01-13 | 2012-08-02 | Sumitomo Metal Ind Ltd | Weld joint |
JP2013082964A (en) * | 2011-10-07 | 2013-05-09 | Jfe Steel Corp | Steel stock for welded joint excellent in anti-ductile crack development property and method for producing the same |
WO2013100614A1 (en) * | 2011-12-27 | 2013-07-04 | 주식회사 포스코 | Austenitic steel having superior machinability and cryogenic temperature toughness in weld heat affected zones thereof and method for manufacturing same |
JP2014005490A (en) * | 2012-06-22 | 2014-01-16 | Nippon Steel & Sumitomo Metal | Continuous cast slab for high toughness steel having excellent surface crack resisting sensitivity |
JP2017504722A (en) * | 2013-12-24 | 2017-02-09 | ポスコPosco | Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method |
CN110484814A (en) * | 2019-08-05 | 2019-11-22 | 中国科学院金属研究所 | A kind of high strength steel seamless pipe and preparation method thereof of aerospace containing rare earth |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711371B1 (en) * | 2005-12-20 | 2007-04-30 | 주식회사 포스코 | Thick sheet for line pipe with excellent cryogenic toughness and manufacturing method |
KR100723156B1 (en) * | 2005-12-23 | 2007-05-30 | 주식회사 포스코 | Yield strength 552 MPA line pipes with excellent deformability and brittle fracture stopping characteristics and manufacturing method |
JP4502947B2 (en) | 2005-12-27 | 2010-07-14 | 株式会社神戸製鋼所 | Steel plate with excellent weldability |
KR100957990B1 (en) | 2007-12-24 | 2010-05-17 | 주식회사 포스코 | High strength steel sheet with excellent yield strength and low temperature toughness and manufacturing method |
KR101318227B1 (en) * | 2008-05-23 | 2013-10-15 | 한국기계연구원 | Cu-added complex bainitic steel and manufacturing method thereof |
KR101359141B1 (en) * | 2009-12-29 | 2014-02-05 | 주식회사 포스코 | Welded steel pipe for automobile and manufacturing method of the same |
JP5177310B2 (en) * | 2011-02-15 | 2013-04-03 | Jfeスチール株式会社 | High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same |
-
2004
- 2004-02-18 JP JP2004041624A patent/JP2005232513A/en active Pending
- 2004-10-27 KR KR1020040086172A patent/KR100605399B1/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270194A (en) * | 2006-03-30 | 2007-10-18 | Jfe Steel Kk | Method for producing high-strength steel sheet excellent in sr resistance property |
JP2009149917A (en) * | 2006-11-30 | 2009-07-09 | Nippon Steel Corp | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same |
JP2008163456A (en) * | 2006-12-04 | 2008-07-17 | Nippon Steel Corp | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method thereof |
JP2008184638A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Metal Ind Ltd | Thick-wall high-tensile steel plate and manufacturing method thereof |
JP2010222681A (en) * | 2009-03-25 | 2010-10-07 | Jfe Steel Corp | Thick and high toughness steel pipe material and method for producing the same |
JP2012144780A (en) * | 2011-01-13 | 2012-08-02 | Sumitomo Metal Ind Ltd | Weld joint |
JP2013082964A (en) * | 2011-10-07 | 2013-05-09 | Jfe Steel Corp | Steel stock for welded joint excellent in anti-ductile crack development property and method for producing the same |
WO2013100614A1 (en) * | 2011-12-27 | 2013-07-04 | 주식회사 포스코 | Austenitic steel having superior machinability and cryogenic temperature toughness in weld heat affected zones thereof and method for manufacturing same |
US10655196B2 (en) | 2011-12-27 | 2020-05-19 | Posco | Austenitic steel having excellent machinability and ultra-low temperature toughness in weld heat-affected zone, and method of manufacturing the same |
JP2014005490A (en) * | 2012-06-22 | 2014-01-16 | Nippon Steel & Sumitomo Metal | Continuous cast slab for high toughness steel having excellent surface crack resisting sensitivity |
JP2017504722A (en) * | 2013-12-24 | 2017-02-09 | ポスコPosco | Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method |
CN110484814A (en) * | 2019-08-05 | 2019-11-22 | 中国科学院金属研究所 | A kind of high strength steel seamless pipe and preparation method thereof of aerospace containing rare earth |
Also Published As
Publication number | Publication date |
---|---|
KR20050082417A (en) | 2005-08-23 |
KR100605399B1 (en) | 2006-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101511617B1 (en) | Method for manufacturing welded steel pipe for linepipe with high compressive strength | |
JP5251089B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
KR101603461B1 (en) | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet | |
JP5181639B2 (en) | Welded steel pipe for high-strength thick-walled line pipe excellent in low-temperature toughness and manufacturing method | |
EP3276026B1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
CA2980247C (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP5141073B2 (en) | X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same | |
JP4848966B2 (en) | Thick-wall high-tensile steel plate and manufacturing method thereof | |
JP2004315957A (en) | High strength hot rolled steel strip with excellent low-temperature toughness and weldability for resistance welded pipe, and its manufacturing method | |
KR100605399B1 (en) | High-strength steel plate and method for manufacturing the same | |
JP2006089789A (en) | Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method | |
EP3276025B1 (en) | Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe | |
JP2009057629A (en) | High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP2007260716A (en) | Method for producing ultrahigh strength welded steel pipe having excellent deformability | |
JP2017057449A (en) | Steel plate with excellent sour resistance and method for producing the same | |
JP5612532B2 (en) | Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same | |
JP4547944B2 (en) | Manufacturing method of high strength and high toughness thick steel plate | |
JP2009074111A (en) | Thick high strength steel plate for high heat input welding having reduced variation in base metal low temperature toughness and excellent heat affected zone toughness, and method for producing the same | |
JPWO2013099177A1 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5176847B2 (en) | Low yield ratio low temperature steel and method for producing the same | |
JP4250112B2 (en) | Steel plate manufacturing method with excellent earthquake resistance and weldability | |
JP4899885B2 (en) | Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same | |
WO2000075388A1 (en) | High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof | |
KR102648172B1 (en) | Steel materials for line pipes and their manufacturing method, and line pipes and their manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070706 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071016 |