[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005228836A - Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus - Google Patents

Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus Download PDF

Info

Publication number
JP2005228836A
JP2005228836A JP2004034359A JP2004034359A JP2005228836A JP 2005228836 A JP2005228836 A JP 2005228836A JP 2004034359 A JP2004034359 A JP 2004034359A JP 2004034359 A JP2004034359 A JP 2004034359A JP 2005228836 A JP2005228836 A JP 2005228836A
Authority
JP
Japan
Prior art keywords
heat treatment
gan layer
doped
compound semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004034359A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Mishima
友義 三島
Tsuneaki Fujikura
序章 藤倉
Kazuto Takano
和人 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004034359A priority Critical patent/JP2005228836A/en
Publication of JP2005228836A publication Critical patent/JP2005228836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a nitride compound semiconductor having higher hole concentration with low electric resistance by improving activation of doped p-type impurities. <P>SOLUTION: In a manufacturing method of the nitride compound semiconductor for growing a GaN layer with the p-type impurities doped on a substrate by the MOCVD method and thereafter activating the impurities by heat treatment, the heat treatment is performed in an inert gas atmosphere or in a vacuum. To do so, a grown wafer 1 with the GaN layer is doped with the p-type impurities and is sandwiched between electrode plates 2 and 3. A direct-current voltage is applied from a power source 5 having the GaN layer side as a cathode between the electrode plates 2 and 3 to generate an electric field in the GaN layer. Hydrogen deviating during the heat treatment due to the electric field is extracted from the GaN layer to improve the activation of the doped impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高濃度の正孔濃度を有した窒化物系化合物半導体の製造方法と、これにより得られる半導体装置およびその製造に適した熱処理装置に関するものである。   The present invention relates to a method for producing a nitride compound semiconductor having a high hole concentration, a semiconductor device obtained thereby, and a heat treatment apparatus suitable for the production.

GaN、AlGaN、GaInNなどの窒化物系化合物半導体は、赤色から紫外線の発光が可能な発光素子材料として注目を集めている。   Nitride-based compound semiconductors such as GaN, AlGaN, and GaInN are attracting attention as light-emitting element materials capable of emitting red to ultraviolet light.

窒化物系化合物半導体を用いてデバイスを構成する場合、導電型、及び正孔あるいは電子密度の制御が非常に重要となる。   When a device is configured using a nitride-based compound semiconductor, control of the conductivity type and the hole or electron density is very important.

例えば、発光ダイオード(LED)や半導体レーザ(LD)などを製造する場合には、AlGaN、GaInN、GaNなどを多層に積層し、発光層(活性層)をn型クラッド層およびp型クラッド層によりはさんだ構造を形成する必要がある。   For example, when manufacturing a light emitting diode (LED), a semiconductor laser (LD), etc., AlGaN, GaInN, GaN, etc. are laminated in multiple layers, and the light emitting layer (active layer) is formed by an n-type cladding layer and a p-type cladding layer. It is necessary to form a sandwich structure.

また、ヘテロ接合バイポーラトランジスタ(HBT)においても、AlGaN、GaInN、GaNなどを多層に積層し、npnあるいはpnp接合を形成する必要がある。   Also in a heterojunction bipolar transistor (HBT), it is necessary to stack AlGaN, GaInN, GaN, etc. in multiple layers to form an npn or pnp junction.

従来、有機金属化学気相成長(MOCVD)法などの気相成長法により、例えばp型GaN層を成長させるには、水素(H2)またはH2と窒素(N2)との混合ガス中において、Ga原料としてのトリメチルガリウム(TMG、Ga(CH33)、N原料としてのアンモニア(NH3)およびp型ドーパントとしてのシクロペンタジエニルマグネシウム(CP2Mg)等を、加熱されたサファイア基板、SiC基板、GaAs基板などの上に供給し、熱分解反応によって、MgドープGaN層を成長させる。 Conventionally, in order to grow, for example, a p-type GaN layer by a vapor deposition method such as a metal organic chemical vapor deposition (MOCVD) method, in a mixed gas of hydrogen (H 2 ) or H 2 and nitrogen (N 2 ). , Trimethylgallium (TMG, Ga (CH 3 ) 3 ) as a Ga raw material, ammonia (NH 3 ) as an N raw material, cyclopentadienyl magnesium (CP 2 Mg) as a p-type dopant, and the like were heated. An Mg-doped GaN layer is grown on a sapphire substrate, SiC substrate, GaAs substrate, etc. by thermal decomposition reaction.

このMgドープGaN層はそのままでは高抵抗層であり、成長後に真空中または不活性ガス中において熱処理を行うことにより、始めて低抵抗なp型の導電性を示す。この熱処理は、例えば、窒化ガリウム系化合物半導体の分解圧以上に加圧した窒素雰囲気において400℃以上でアニーリングするものであり、これにより低抵抗なp型窒化ガリウム系化合物半導体を得ようとするものである。この場合、この熱処理によりGaN中のMgと結合していた水素が、熱処理(アニール)により解離し、GaN結晶表面から排出され、Mgがアクセプタとして作用するようになり、p型化するものと考えられている。   This Mg-doped GaN layer is a high-resistance layer as it is, and exhibits low-resistance p-type conductivity only after heat treatment in a vacuum or an inert gas after growth. In this heat treatment, for example, annealing is performed at 400 ° C. or higher in a nitrogen atmosphere pressurized to a pressure higher than the decomposition pressure of the gallium nitride compound semiconductor, thereby obtaining a low-resistance p-type gallium nitride compound semiconductor. It is. In this case, hydrogen bonded to Mg in GaN by this heat treatment is dissociated by heat treatment (annealing) and is discharged from the surface of the GaN crystal, so that Mg acts as an acceptor and becomes p-type. It has been.

しかしながら、気相成長プロセス中のガスに含まれる水素がマグネシウムと結合してマグネシウムを電気的に不活性化する水素パシベーションのために、成長直後の結晶は高抵抗になることが知られている。   However, it is known that crystals immediately after growth have high resistance due to hydrogen passivation in which hydrogen contained in a gas in a vapor phase growth process binds to magnesium and electrically inactivates magnesium.

そこでp型化の方法としては、窒素原料としてアンモニアを用いた気相成長法で、p型不純物であるMgをドープした窒化ガリウム系半導体を堆積した後、冷却時において600℃以上の温度域で冷却雰囲気をアンモニアから水素または窒素の混合雰囲気に切り替える方法(例えば、特許文献1参照)がある。この方法によれば 600℃以上の温度域で冷却雰囲気を切り替えることによりアンモニアから供給される原子状水素の供給を回避できるので、水素パッシベーションが起きず低抵抗なp型窒化ガリウム系化合物半導体が得られる。
特開平8−115880号公報
Therefore, as a p-type method, a vapor phase growth method using ammonia as a nitrogen raw material is used to deposit a gallium nitride based semiconductor doped with p-type impurity Mg, and then at a temperature range of 600 ° C. or higher during cooling. There is a method of switching the cooling atmosphere from ammonia to a mixed atmosphere of hydrogen or nitrogen (for example, see Patent Document 1). According to this method, since the supply of atomic hydrogen supplied from ammonia can be avoided by switching the cooling atmosphere in a temperature range of 600 ° C. or higher, a p-type gallium nitride compound semiconductor with low resistance without hydrogen passivation is obtained. It is done.
JP-A-8-115880

しかしながら、既に触れたように、成長後に熱処理を行ってp型化する方法の場合、成長後の熱処理により得られるp型GaN層のキャリア濃度が、現状では4×1017cm-3程度であり、その抵抗率が高いという課題がある。 However, as already mentioned, in the case of the p-type method by performing the heat treatment after the growth, the carrier concentration of the p-type GaN layer obtained by the heat treatment after the growth is currently about 4 × 10 17 cm −3 . There is a problem that the resistivity is high.

本発明者等の知見によれば、この原因は、通常の熱処理ではMgに結合している水素原子がMgからいったん解離するもののその結晶層に留まるため、Mgと再結合してアクセプタとしての活性化が十分に行えないことにある。このため、例えば窒化物系III−V族化合物半導体を用いた発光素子においては、pコンタクト層における電圧損失、発熱による劣化等の問題が不可避であった。また、HBTではベース層の抵抗が高く高周波特性が十分なものが得られなかった。   According to the findings of the present inventors, this is because the hydrogen atom bonded to Mg once dissociates from Mg in ordinary heat treatment, but remains in the crystal layer. This is because it cannot be fully implemented. For this reason, for example, in a light emitting device using a nitride III-V compound semiconductor, problems such as voltage loss in the p contact layer and deterioration due to heat generation are unavoidable. Moreover, HBT has a high resistance of the base layer, and a high frequency characteristic cannot be obtained.

特許文献1も、この課題を解決する有効な方法となり得るが、冷却時に気相雰囲気を切り替えるだけであり、より積極的にp型GaN層中の正孔濃度を高めるものではない。   Although Patent Document 1 can also be an effective method for solving this problem, it merely switches the gas phase atmosphere during cooling, and does not more positively increase the hole concentration in the p-type GaN layer.

そこで、本発明の目的は、上記課題を解決し、ドーピングしたp型不純物の活性化を高め、より高濃度の正孔濃度を有する電気抵抗の低い窒化物系化合物半導体の製造方法と、これにより得られる半導体装置およびその製造に適した熱処理装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, increase the activation of doped p-type impurities, and produce a nitride-based compound semiconductor having a higher hole concentration and a lower electrical resistance, and thereby An object of the present invention is to provide a semiconductor device to be obtained and a heat treatment apparatus suitable for its manufacture.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る窒化物系化合物半導体の製造方法は、基板上にp型不純物をドープしたGaN層をMOCVD法により成長した後、熱処理を行って、上記ドープした不純物の活性化を行う窒化物系化合物半導体の製造方法において、上記熱処理を不活性ガス雰囲気中又は真空中で行い、その際、上記p型不純物をドープしたGaN層を成長したウェハを電極板間に挟み、この電極板間にGaN層側を負極とする電圧を加えてGaN層中に電界を発生させ、この電界によって熱処理中に乖離した水素を結晶中から引き抜いて上記ドープした不純物の活性化を高めることを特徴とする。   In the method of manufacturing a nitride-based compound semiconductor according to the first aspect of the present invention, after a GaN layer doped with a p-type impurity is grown on a substrate by MOCVD, heat treatment is performed to activate the doped impurity. In the method for producing a nitride-based compound semiconductor, the heat treatment is performed in an inert gas atmosphere or in a vacuum, and a wafer on which a GaN layer doped with the p-type impurity is grown is sandwiched between electrode plates. A voltage is applied between the GaN layer side as a negative electrode to generate an electric field in the GaN layer, and hydrogen separated by the electric field during heat treatment is extracted from the crystal to increase the activation of the doped impurities. To do.

上記不活性ガスとしては、主として、窒素、ヘリウム、アルゴンが好適に用いられる。   As the inert gas, mainly nitrogen, helium and argon are preferably used.

上記基板としては、主として、サファイア基板が好適に用いられるが、必ずしもサファイア基板に限定されるべきものではなく、その上にGaN層を形成できるものであるならば基本的にどのようなものでも良い。例えば、上記基板としては、SiC基板、GaN基板などでも良い。   As the substrate, a sapphire substrate is mainly preferably used. However, the substrate is not necessarily limited to the sapphire substrate, and basically any substrate can be used as long as a GaN layer can be formed thereon. . For example, the substrate may be a SiC substrate, a GaN substrate, or the like.

請求項2の発明は、請求項1記載の窒化物系化合物半導体の製造方法において、上記電極板間に発生する電界強度を3kV/cm以上、好ましくは10kV/cm以上とすることを特徴とする。   The invention of claim 2 is the method for producing a nitride-based compound semiconductor according to claim 1, wherein the electric field strength generated between the electrode plates is 3 kV / cm or more, preferably 10 kV / cm or more. .

請求項3の発明は、請求項1又は2記載の窒化物系化合物半導体の製造方法において、上記GaN層にドープするp型不純物としてMgを用いることを特徴とする。   According to a third aspect of the present invention, in the nitride compound semiconductor manufacturing method according to the first or second aspect, Mg is used as a p-type impurity doped into the GaN layer.

請求項4の発明に係る半導体装置は、上記請求項1〜3のいずれかの製造方法により基板上にp型GaN層が形成された半導体装置であって、上記熱処理後のp型GaN層のキャリア濃度が4×1017cm-3より高いことを特徴とする。 A semiconductor device according to a fourth aspect of the present invention is a semiconductor device in which a p-type GaN layer is formed on a substrate by the manufacturing method according to any one of the first to third aspects, wherein the p-type GaN layer after the heat treatment is The carrier concentration is higher than 4 × 10 17 cm −3 .

請求項5の発明に係る熱処理装置は、p型不純物をドープしたGaN層(p型不純物ドープGaN層)を成長したウェハを挟むべく互いに対向して配置された電極板と、この電極板に挟んだウェハを内部に設置し、内部を不活性ガス雰囲気又は真空の状態として加熱し得る熱処理炉と、上記熱処理炉での加熱中に、電極板間にGaN層側を負極とする電圧を加える電圧回路とを具備することを特徴とする。   According to a fifth aspect of the present invention, there is provided a heat treatment apparatus comprising: an electrode plate disposed opposite to each other so as to sandwich a wafer on which a GaN layer doped with a p-type impurity (p-type impurity doped GaN layer) is sandwiched; A heat treatment furnace in which a wafer is placed inside and heated in an inert gas atmosphere or in a vacuum state, and a voltage for applying a voltage with the GaN layer side as a negative electrode between the electrode plates during heating in the heat treatment furnace And a circuit.

請求項6の発明は、請求項5記載の熱処理装置において、上記互いに対向する電極板の周辺部が互いに離れる方向に反っていることを特徴とする。   According to a sixth aspect of the present invention, in the heat treatment apparatus according to the fifth aspect, the peripheral portions of the electrode plates facing each other are warped in a direction away from each other.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

請求項1〜3に記載の製造方法によれば、p型化の熱処理に際して、p型不純物ドープGaN層、例えばMgドープGaN層を成長したウェハを電極板間に挟み、この電極板間にp型不純物ドープGaN層側が負極となるように電圧を加え、GaN層中に発生する電界によって熱処理中に解離した水素を結晶中から引き抜くようにしたので、上記ドープした不純物の活性化率を高めることができる。   According to the manufacturing method described in claims 1 to 3, during the p-type heat treatment, a wafer on which a p-type impurity-doped GaN layer, for example, an Mg-doped GaN layer is grown, is sandwiched between the electrode plates, and p By applying a voltage so that the negative impurity-doped GaN layer side becomes a negative electrode and extracting the hydrogen dissociated during the heat treatment from the crystal by the electric field generated in the GaN layer, the activation rate of the doped impurity is increased. Can do.

特に、請求項2の発明によれば、上記電極板間に発生する電界強度を3kV/cm以上、好ましくは10kV/cm以上とするので、図2から分かるように、4×1017cm-3より高いキャリア濃度の窒化物系化合物半導体装置、例えば、LED、LD、HBTなどの半導体素子構造を形成したウェハとそれを用いて作製したLED、LD、HBTなどの半導体素子を得ることができる(請求項4)。 In particular, according to the invention of claim 2, since the electric field strength generated between the electrode plates is 3 kV / cm or more, preferably 10 kV / cm or more, as can be seen from FIG. 2, 4 × 10 17 cm −3. A nitride-based compound semiconductor device having a higher carrier concentration, for example, a wafer on which a semiconductor element structure such as an LED, LD, or HBT is formed, and a semiconductor element such as an LED, LD, or HBT manufactured using the same can be obtained ( Claim 4).

また請求項5に記載の熱処理装置によれば、p型不純物ドープGaN層を成長したウェハを挟むべく互いに対向して配置された電極板と、この電極板に挟んだウェハを内部に設置し、内部を不活性ガス雰囲気又は真空の状態として加熱し得る熱処理炉と、上記熱処理炉での加熱中に、電極板間にGaN層側を負極とする電圧を加える電圧回路とを具備する構成としたので、GaN層中に電界を発生させ、この電界によって、熱処理中に乖離した水素をGaN層中から引き抜いて不純物の活性化を高めることができる。   Further, according to the heat treatment apparatus of claim 5, the electrode plates disposed opposite to each other to sandwich the wafer on which the p-type impurity doped GaN layer is grown, and the wafer sandwiched between the electrode plates are installed inside, A heat treatment furnace that can be heated in an inert gas atmosphere or in a vacuum state, and a voltage circuit that applies a voltage with the GaN layer side as a negative electrode between the electrode plates during heating in the heat treatment furnace. Therefore, an electric field is generated in the GaN layer, and the hydrogen activated during the heat treatment can be extracted from the GaN layer by this electric field, thereby increasing the activation of impurities.

特に、請求項6の発明によれば、上記互いに対向する電極板の周辺を互いに離れる方向に反らせているので、周辺部での電界集中を避けてウェハ面内での電界強度の均一性を高めることができる。   In particular, according to the invention of claim 6, since the periphery of the electrode plates facing each other is warped away from each other, electric field concentration in the peripheral portion is avoided and electric field strength uniformity in the wafer surface is improved. be able to.

以下、本発明を図示の実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

本発明の要点は、結晶中に熱処理によって解離した水素イオンを電界によって表面から強制的に引き出すようにしたことにある。すなわち、ウェハを電極板間に挟み熱処理中に高電界を加えることで不活性化の要因となる原子を引き抜く。   The main point of the present invention is that hydrogen ions dissociated by heat treatment in a crystal are forcibly extracted from the surface by an electric field. That is, by interposing a wafer between electrode plates and applying a high electric field during heat treatment, atoms that cause inactivation are extracted.

図1に、このための熱処理装置の構成を示す。この熱処理装置は、p型不純物ドープGaN層を成長したウェハ1を挟むべく互いに対向して配置された電極板2、3と、この電極板2、3に挟んだウェハ1を内部に設置し、内部を不活性ガス雰囲気又は真空の状態として加熱し得る熱処理炉4と、上記熱処理炉4での加熱中に、電極板2、3間にGaN層側を負極とする電圧を電源5から加えてGaN層中に電界を発生させ、この電界によって熱処理中に解離した水素を結晶中から引き抜く作用を営ませる電圧回路50とを具備する。   FIG. 1 shows the configuration of a heat treatment apparatus for this purpose. In this heat treatment apparatus, electrode plates 2 and 3 disposed opposite to each other to sandwich a wafer 1 on which a p-type impurity-doped GaN layer is grown, and a wafer 1 sandwiched between the electrode plates 2 and 3 are installed inside, A heat treatment furnace 4 capable of heating the inside in an inert gas atmosphere or a vacuum state, and a voltage having a negative electrode on the GaN layer side between the electrode plates 2 and 3 is applied from the power supply 5 during the heating in the heat treatment furnace 4. A voltage circuit for generating an electric field in the GaN layer and for extracting hydrogen dissociated during the heat treatment from the crystal by the electric field.

上記熱処理装置において、例えば、MOCVD法で成長したp型GaN層を備えるウェハ1を平行平板電極である電極板2、3間に挟み、電圧を加えながら不活性ガス雰囲気中や真空中で650℃において30分間熱処理する。この際、電極板2、3間に500V程度の直流電圧を加えると、基板を含めて約500ミクロンメートルの厚さの結晶中には10kV/cmの高電界が発生し、表面側を負電極にすることで乖離した水素を結晶から引き抜くことができる。これにより電界がない通常の熱処理に比べ、図2の如く、Mgのドーピング濃度にもよるが、p型GaN層中の正孔濃度を大幅に高めることができる。図2には、Mgのドーピング濃度が2×1020cm-3の場合と、2×1019cm-3の場合とが示されており、前者の方がより正孔濃度の改善効果が大きい。 In the above heat treatment apparatus, for example, a wafer 1 having a p-type GaN layer grown by MOCVD is sandwiched between electrode plates 2 and 3 which are parallel plate electrodes, and 650 ° C. in an inert gas atmosphere or vacuum while applying voltage. Heat treatment for 30 minutes. At this time, when a DC voltage of about 500 V is applied between the electrode plates 2 and 3, a high electric field of 10 kV / cm is generated in the crystal having a thickness of about 500 μm including the substrate, and the surface side is a negative electrode. By doing so, dissociated hydrogen can be extracted from the crystal. This makes it possible to significantly increase the hole concentration in the p-type GaN layer, although it depends on the Mg doping concentration as shown in FIG. FIG. 2 shows a case where the Mg doping concentration is 2 × 10 20 cm −3 and a case where the Mg doping concentration is 2 × 10 19 cm −3 , and the former has a larger effect of improving the hole concentration. .

本発明の第1の実施例を図1を用いて説明する。   A first embodiment of the present invention will be described with reference to FIG.

周知のMOCVD法により(0001)面サファイア基板上にアンドープGaN層(厚さ500nm)とMgドープp型GaN層(厚さ1000nm)を順に成長したウェハ1を用意する。原料ガスには一般に用いられるところの、Ga原料としてトリメチルガリウム、N原料としてアンモニア、p型ドーパントとしてシクロペンタジエニルマグネシウムを使用した。   A wafer 1 is prepared by sequentially growing an undoped GaN layer (thickness 500 nm) and an Mg-doped p-type GaN layer (thickness 1000 nm) on a (0001) plane sapphire substrate by a known MOCVD method. As a raw material gas, trimethylgallium was used as a Ga raw material, ammonia was used as a N raw material, and cyclopentadienyl magnesium was used as a p-type dopant.

このウェハ1を電極板2と電極板3間に挟み、熱処理炉4に設置する。電極板2、3の材料として、本実施例ではタンタルを用いた。タンタル以外にチタン、タングステン、モリブデン、グラファイトなどの高温でも脱ガスの少ない導電性材料であれば効果に変わりはない。   The wafer 1 is sandwiched between the electrode plate 2 and the electrode plate 3 and placed in the heat treatment furnace 4. In this embodiment, tantalum was used as the material for the electrode plates 2 and 3. In addition to tantalum, there is no change in the effect as long as it is a conductive material with little degassing even at high temperatures such as titanium, tungsten, molybdenum and graphite.

電極板の周辺を反らせるように変形させてあるのは、周辺部での電界集中を避けてウェハ面内での電界強度の均一性を高めるためである。不活性ガスである高純度窒素ガスを熱処理炉4に流しながら、p型GaN層側の電極板が負極、サファイア基板側の電極板が正極となるように電源5より直流電圧を加える。この状態で650℃に昇温して30分間熱処理する。   The reason for deforming the periphery of the electrode plate is to avoid the concentration of the electric field in the peripheral portion and to increase the uniformity of the electric field strength in the wafer surface. A DC voltage is applied from the power source 5 so that the electrode plate on the p-type GaN layer side becomes a negative electrode and the electrode plate on the sapphire substrate side becomes a positive electrode while flowing high-purity nitrogen gas as an inert gas into the heat treatment furnace 4. In this state, the temperature is raised to 650 ° C. and heat treatment is performed for 30 minutes.

図2は、2種類のMgドーピング濃度(2×1020cm-3の試料Aと、2×1019cm-3の試料B)における熱処理中の電界強度と正孔濃度の関係を示したものである。高濃度にMgをドーピングした試料ほど、電界を加えることによる正孔濃度の改善効果が大きい。これはMg濃度が高い試料Aでは水素も高濃度になっていたことから説明できる現象である。 FIG. 2 shows the relationship between the electric field intensity and the hole concentration during heat treatment at two Mg doping concentrations (sample A of 2 × 10 20 cm −3 and sample B of 2 × 10 19 cm −3 ). It is. A sample doped with Mg at a high concentration has a greater effect of improving the hole concentration by applying an electric field. This is a phenomenon that can be explained by the high concentration of hydrogen in the sample A having a high Mg concentration.

この図2から分かるように、本実施例によれば、電解強度が3kV/cm以上で通常の電解のない場合を比べて正孔濃度が上昇し始め、10kV/cm以上では2倍から10倍の改善効果が得られる。   As can be seen from FIG. 2, according to the present embodiment, the hole concentration starts to increase compared with the case where the electrolysis strength is 3 kV / cm or more and there is no normal electrolysis, and it is 2 to 10 times at 10 kV / cm or more. The improvement effect is obtained.

本発明を発光ダイオード(LED)の製造に適用した第2の実施例を、図3を用いて説明する。   A second embodiment in which the present invention is applied to the manufacture of a light emitting diode (LED) will be described with reference to FIG.

図3は、本発明によるウェハを用いたLEDの構造である。作製工程はMOCVD法によりサファイア基板6上に形成したアンドープGaN層7の上に、シリコンをドープしたn型GaN層8を1100℃で成長し、その上にシリコンをドープしたn型InGaN層9を低温の800℃で成長し、その後、成長温度を再び1100℃まで上昇し、p型GaN層10を成長した。   FIG. 3 shows the structure of an LED using a wafer according to the present invention. In the manufacturing process, an n-type GaN layer 8 doped with silicon is grown at 1100 ° C. on an undoped GaN layer 7 formed on the sapphire substrate 6 by MOCVD, and an n-type InGaN layer 9 doped with silicon is formed thereon. After growing at a low temperature of 800 ° C., the growth temperature was raised again to 1100 ° C. to grow the p-type GaN layer 10.

この結晶成長後、実施例1と同様に、熱処理炉4において電界強度10kV/cmで熱処理を行った。すなわち、このウェハ1を電極板2と電極板3間に挟んで熱処理炉4に設置し、不活性ガスである高純度窒素ガスを熱処理炉4に流しながら、p型GaN層10側の電極板が負極、サファイア基板6側の電極板が正極となるように電源5より直流電圧を加え、この状態で650℃にて30分間熱処理した。   After this crystal growth, as in Example 1, heat treatment was performed in the heat treatment furnace 4 with an electric field strength of 10 kV / cm. That is, the wafer 1 is placed in the heat treatment furnace 4 with the electrode plate 2 and the electrode plate 3 being sandwiched, and the high purity nitrogen gas, which is an inert gas, is allowed to flow into the heat treatment furnace 4 while the electrode plate on the p-type GaN layer 10 side. A direct current voltage was applied from the power source 5 so that the electrode plate on the sapphire substrate 6 side was a negative electrode, and heat treatment was performed at 650 ° C. for 30 minutes in this state.

上記の半導体ウェハ表面をRIE(Reactive Ion Etching:反応性イオンエッチング)により部分的に除去して、n型GaN層8の一部を露出させ、露出した部分にTi/Al電極11を形成する一方、p型GaN層10の表面にNi/Au電極12を形成した。   While the surface of the semiconductor wafer is partially removed by RIE (Reactive Ion Etching), a part of the n-type GaN layer 8 is exposed, and a Ti / Al electrode 11 is formed on the exposed part. A Ni / Au electrode 12 was formed on the surface of the p-type GaN layer 10.

本実施例の構成のLEDと、電界を加えないで熱処理した従来型のウェハを用いた同様の構成のLEDを対象に、その発光出力と発光開始電圧を測定したところ、20mA通電時の発光出力が、本実施例のLEDでは51mWであったのに対して、従来型のウェハを用いたLEDでは1mWであった。また、発光開始電圧は、実施例のLEDでは2.8Vであったのに対して、従来型の半導体ウェハを用いたLEDでは4.0Vであった。このようにLEDにおいても本発明の効果が顕著に現れている。   When the light emission output and the light emission start voltage were measured for an LED having the structure of this example and an LED having a similar structure using a conventional wafer that was heat-treated without applying an electric field, the light emission output at 20 mA energization was measured. However, the LED of this example was 51 mW, whereas the LED using a conventional wafer was 1 mW. The light emission starting voltage was 2.8 V in the LED of the example, whereas it was 4.0 V in the LED using the conventional semiconductor wafer. As described above, the effect of the present invention is remarkably exhibited also in the LED.

以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, Various deformation | transformation based on the technical idea of this invention is possible. For example, the numerical values given in the above embodiment are merely examples, and different numerical values may be used as necessary.

本発明の実施例1、2に係る熱処理装置の構成を示した概略図である。It is the schematic which showed the structure of the heat processing apparatus which concerns on Example 1, 2 of this invention. MgドープGaNの正孔濃度と熱処理中における電界強度との関係を示した図である。It is the figure which showed the relationship between the hole density | concentration of Mg dope GaN, and the electric field strength during heat processing. 本発明の実施例2に係るLEDの構造を示した断面図である。It is sectional drawing which showed the structure of LED which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

1 ウェハ
2、3 電極板
4 熱処理炉
5 電源
6 サファイア基板
7 アンドープGaN層
8 n型GaN層
9 n型InGaN層
10 p型GaN層
11 Ti/Al電極
12 Ni/Au電極
50 電圧回路
DESCRIPTION OF SYMBOLS 1 Wafer 2, 3 Electrode plate 4 Heat processing furnace 5 Power supply 6 Sapphire substrate 7 Undoped GaN layer 8 n-type GaN layer 9 n-type InGaN layer 10 p-type GaN layer 11 Ti / Al electrode 12 Ni / Au electrode 50 Voltage circuit

Claims (6)

基板上にp型不純物をドープしたGaN層をMOCVD法により成長した後、熱処理を行って、上記ドープした不純物の活性化を行う窒化物系化合物半導体の製造方法において、
上記熱処理を不活性ガス雰囲気中又は真空中で行い、その際、上記p型不純物をドープしたGaN層を成長したウェハを電極板間に挟み、この電極板間にGaN層側を負極とする電圧を加えてGaN層中に電界を発生させ、この電界によって熱処理中に解離した水素を結晶中から引き抜いて上記ドープした不純物の活性化を高めることを特徴とする窒化物系化合物半導体の製造方法。
In a method for manufacturing a nitride-based compound semiconductor in which a GaN layer doped with a p-type impurity is grown on a substrate by MOCVD, followed by heat treatment to activate the doped impurity.
The above heat treatment is performed in an inert gas atmosphere or in a vacuum. At this time, a wafer on which the GaN layer doped with the p-type impurity is grown is sandwiched between electrode plates, and a voltage with the GaN layer side as a negative electrode between the electrode plates. Is added to generate an electric field in the GaN layer, and hydrogen dissociated during the heat treatment by this electric field is extracted from the crystal to increase the activation of the doped impurity, thereby producing a nitride compound semiconductor.
請求項1記載の窒化物系化合物半導体の製造方法において、
上記電極板間に発生する電界強度を3kV/cm以上、好ましくは10kV/cm以上とすることを特徴とする窒化物系化合物半導体の製造方法。
In the manufacturing method of the nitride type compound semiconductor of Claim 1,
A method for producing a nitride-based compound semiconductor, wherein an electric field strength generated between the electrode plates is 3 kV / cm or more, preferably 10 kV / cm or more.
請求項1又は2記載の窒化物系化合物半導体の製造方法において、
上記GaN層にドープするp型不純物としてMgを用いることを特徴とする窒化物系化合物半導体の製造方法。
In the manufacturing method of the nitride type compound semiconductor of Claim 1 or 2,
A method for producing a nitride-based compound semiconductor, wherein Mg is used as a p-type impurity doped into the GaN layer.
上記請求項1〜3のいずれかの製造方法により基板上にp型GaN層が形成された半導体装置であって、上記熱処理後のp型GaN層のキャリア濃度が4×1017cm-3より高いことを特徴とする半導体装置。 A semiconductor device in which a p-type GaN layer is formed on a substrate by the manufacturing method according to claim 1, wherein the carrier concentration of the p-type GaN layer after the heat treatment is from 4 × 10 17 cm −3 . A semiconductor device characterized by being expensive. p型不純物をドープしたGaN層を成長したウェハを挟むべく互いに対向して配置された電極板と、
この電極板にウェハを内部に設置し、内部を不活性ガス雰囲気又は真空の状態として加熱し得る熱処理炉と、
上記熱処理炉での加熱中に、電極板間にGaN層側を負極とする電圧を加える電圧回路とを具備することを特徴とする熱処理装置。
an electrode plate disposed opposite to each other to sandwich a wafer on which a GaN layer doped with a p-type impurity is grown;
A heat treatment furnace in which a wafer is installed inside this electrode plate, and the inside can be heated in an inert gas atmosphere or in a vacuum state;
A heat treatment apparatus comprising: a voltage circuit that applies a voltage having a GaN layer side as a negative electrode between electrode plates during heating in the heat treatment furnace.
請求項5記載の熱処理装置において、
上記互いに対向する電極板の周辺部が互いに離れる方向に反っていることを特徴とする熱処理装置。
The heat treatment apparatus according to claim 5, wherein
A heat treatment apparatus characterized in that peripheral portions of the electrode plates facing each other are warped in a direction away from each other.
JP2004034359A 2004-02-12 2004-02-12 Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus Pending JP2005228836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034359A JP2005228836A (en) 2004-02-12 2004-02-12 Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004034359A JP2005228836A (en) 2004-02-12 2004-02-12 Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005228836A true JP2005228836A (en) 2005-08-25

Family

ID=35003323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034359A Pending JP2005228836A (en) 2004-02-12 2004-02-12 Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005228836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204362A (en) * 2011-03-23 2012-10-22 Sharp Corp Method of manufacturing nitride semiconductor light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204362A (en) * 2011-03-23 2012-10-22 Sharp Corp Method of manufacturing nitride semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US9059374B2 (en) Semiconductor light emitting device
CN105658848B (en) N-type aluminum-nitride single crystal substrate and vertical-type nitride compound semiconductor device
CN101378101B (en) Method for fabricating low-resistivity ohmic contacts on p-type III-V nitride materials
JP6432004B2 (en) Nitride semiconductor and manufacturing method thereof
JP2003289156A (en) Gallium nitride based semiconductor crystal growth method and compound semiconductor light emitting device
KR100747062B1 (en) Method of producing p-type nitride based iii-v compound semiconductor and method of fabricating semiconductor device using the same
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP3987985B2 (en) Manufacturing method of semiconductor device
JP4980594B2 (en) Method for producing P-type gallium nitride compound semiconductor
JP2001102623A (en) Nitride semiconductor light emitting device and method of manufacturing the same
CN111180527A (en) A kind of GaN-based PN diode and preparation method thereof
JPH10294490A (en) P-type gallium nitride-based compound semiconductor, method for producing the same, and blue light emitting device
Keogh et al. High current gain InGaN/GaN HBTs with 300° C operating temperature
JP4089752B2 (en) Manufacturing method of semiconductor device
JP2003178987A (en) Method of manufacturing nitride system compound semiconductor, nitride system compound semiconductor wafer and nitride system compound semiconductor device
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JPH11354458A (en) P-type III-V nitride semiconductor and method for manufacturing the same
US8906159B2 (en) (Al, Ga, In)N-based compound semiconductor and method of fabricating the same
JP2005228836A (en) Manufacturing method of nitride compound semiconductor, semiconductor device, and heat treatment apparatus
JP2012182203A (en) Group-iii nitride semiconductor element, and method of producing the same
JP2000223741A (en) Nitride semiconductor light emitting element
JP4137223B2 (en) Method for producing compound semiconductor
KR101026059B1 (en) Nitride semiconductor light emitting device and manufacturing method
WO2010116424A1 (en) Semiconductor device manufacturing method
JPH0529653A (en) Semiconductor device