JP2005226069A - Phosphor and light emitting device using the same, lighting device, and image displaying device - Google Patents
Phosphor and light emitting device using the same, lighting device, and image displaying device Download PDFInfo
- Publication number
- JP2005226069A JP2005226069A JP2005007208A JP2005007208A JP2005226069A JP 2005226069 A JP2005226069 A JP 2005226069A JP 2005007208 A JP2005007208 A JP 2005007208A JP 2005007208 A JP2005007208 A JP 2005007208A JP 2005226069 A JP2005226069 A JP 2005226069A
- Authority
- JP
- Japan
- Prior art keywords
- light
- phosphor
- elements
- mol
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
Landscapes
- Led Devices (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
本発明は、近紫外〜可視領域の光を発する発光体とこの光を吸収しより長波長の可視光を発する蛍光体を組み合わせて得られる高効率の発光装置及び蛍光体自身に関する。
ディスプレイ及び照明に必須な白色光は光の加算混合原理により青、緑、赤色の発光を組み合わせによって得るのが一般的である。ディスプレイでは色度座標上の広い範囲の色を効率よく再現するために、青、緑、赤の発光体はできるだけ発光強度が高いこと、色純度がよいことが必要である。一般照明においては高い発光効率と用途によっては照らされた物体の色が自然光により照らされたときと同様に見えること、いわゆる演色性が高いことが必要となる。代表的な照明である蛍光ランプでは励起源として水銀の放電による254nmの紫外線を用い人間の目にとって感度の高い450,540,610nmの発光をもたらす三種類の蛍光体を混合して使用し、演色性の高い照明を実現している。しかしながら励起光の波長が近紫外〜可視領域の場合には発光効率の高い蛍光体が開発されていないのが現状である。特にこの波長範囲の励起光に対して赤色蛍光体の発光効率が青、緑に比べて低く、性能の優れた赤色蛍光体の開発が望まれている。なお前記の450,540,610nmいずれか二つまたは三つの発光が一つの蛍光体から得られれば三種類の蛍光体を混合するのに比べ調合工程が簡素化し性能の安定が期待されるが実現していない。
The present invention relates to a highly efficient light-emitting device obtained by combining a phosphor that emits light in the near ultraviolet to visible region and a phosphor that absorbs this light and emits visible light having a longer wavelength, and the phosphor itself.
In general, white light essential for display and illumination is obtained by combining light emission of blue, green, and red by the additive mixing principle of light. In the display, in order to efficiently reproduce a wide range of colors on the chromaticity coordinates, the blue, green, and red light emitters must have as high emission intensity as possible and good color purity. In general lighting, depending on the light emission efficiency and application, it is necessary that the color of the illuminated object looks the same as when illuminated by natural light, that is, so-called color rendering is high. A fluorescent lamp, which is a typical illumination, uses a mixture of three types of phosphors that emit light of 450, 540, and 610 nm, which is sensitive to the human eye, using ultraviolet light of 254 nm by mercury discharge as an excitation source. Realized highly efficient lighting. However, in the present situation, phosphors having high emission efficiency have not been developed when the wavelength of excitation light is in the near ultraviolet to visible region. In particular, there is a demand for the development of red phosphors having excellent performance because the emission efficiency of red phosphors is lower than that of blue and green for excitation light in this wavelength range. In addition, if any two or three luminescences of 450, 540, and 610 nm are obtained from one phosphor, the preparation process can be simplified and stable performance can be expected compared to mixing three types of phosphors. Not done.
近紫外〜可視領域発光の光源と組み合わせて青、緑、赤色の発光をする各種の蛍光体が特許文献1に例示されている。この中でアルカリ土類金属ケイ酸塩蛍光体は青、および赤色に発光すると記述されており、また特許文献2には、Eu2+で付活した(Ba,Ca,Sr,Mg)−Si−O系においてBa,Caのみの場合505nmに発光、Srが加わると580nmに発光波長が移動するなどと記載されている。非特許文献1には(Ba,Ca,Sr)3MgSi2O8:Eu,Mnに関する報告がある。また非特許文献2ではB
a3MgSi2O8:Eu,Mnが442,505,620nmに発光ピークを有し、結晶
構造はmerwiniteであると記載されている。
It is described that a 3 MgSi 2 O 8 : Eu, Mn has an emission peak at 442,505,620 nm and the crystal structure is merwinite.
近紫外〜可視領域発光の光源と組み合わせて高効率に発光するディスプレイや照明に供するための高効率赤色発光蛍光体及び白色蛍光体の開発を目的とする。 The purpose is to develop a high-efficiency red light-emitting phosphor and a white phosphor for use in a display or illumination that emits light with high efficiency in combination with a light source emitting near-ultraviolet to visible light.
本発明者らは前記課題を解決すべく鋭意検討した結果、新規な組成でかつ特定な結晶構造を持つアルカリ土類シリケート蛍光体が近紫外〜可視領域の励起光に対し赤色または白色光を高効率に発光することを見出し、本発明を完成した。
具体的には、EuおよびMnで付活されたBaとCaを含有するM2SiO4型の珪酸塩を見い出し、本発明に到達した。特に、本発明の赤色蛍光体は発光ピーク波長が590−620nm内にあるため、明るく感じられる赤みを発するという特徴を備えている。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an alkaline earth silicate phosphor having a new composition and a specific crystal structure enhances red or white light against excitation light in the near ultraviolet to visible region. The present invention was completed by finding that light is emitted efficiently.
Specifically, an M 2 SiO 4 type silicate containing Ba and Ca activated by Eu and Mn was found, and the present invention was achieved. In particular, the red phosphor of the present invention has a feature that it emits redness that is felt bright because its emission peak wavelength is in the range of 590-620 nm.
即ち、本発明は、下記一般式[1]の化学組成を有する結晶相を有する蛍光体をその第一の要旨とし、350−430nmの光を発生する第1の発光体と、当該第1の発光体か
らの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、下記一般式[1]の化学組成を有する結晶相を有する蛍光体であることを特徴とする発光装置をその第二の要旨とする。
That is, the first aspect of the present invention is a phosphor having a crystal phase having a chemical composition represented by the following general formula [1], the first illuminant that emits light of 350 to 430 nm, and the first In a light emitting device having a second light emitter that generates visible light upon irradiation of light from the light emitter, the second light emitter has a crystal phase having a chemical composition represented by the following general formula [1] A light emitting device characterized in that is a second gist thereof.
(但し、M1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、5価の
元素の群から選ばれる少なくとも1種の元素であって、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満である。M2は、Siおよび
Geを合計で90mol%以上含む4価の元素群を表し、Zは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素である。aは0.01<a≦0.8、bは0<b≦0.8、c,dは0<c/(c+d)≦0.2、または0.3≦c/(c+d)≦0.8、a,b,c,dは1.8
≦(a+b+c+d)≦2.2、e,fは0≦f/(e+f)≦0.035、および3.6≦(e+f)≦4.4を満足する数である。)
(However, M 1 is at least one element selected from the group of divalent elements other than monovalent elements, Eu, Mn, and Mg, trivalent elements, and pentavalent elements. The proportion of the element is 80 mol% or more, the proportion of the total of Ba, Ca, and Sr is 40 mol% or more, and the proportion (molar ratio) of Ca to the sum of Ba and Ca is less than 0.2. 2 represents a tetravalent element group containing 90 mol% or more of Si and Ge in total, and Z is at least one element selected from the group consisting of −1 and −2 elements, H and N. A is 0.01 <a ≦ 0.8, b is 0 <b ≦ 0.8, c and d are 0 <c / (c + d) ≦ 0.2, or 0.3 ≦ c / (c + d) ≦. 0.8, a, b, c, d is 1.8
≦ (a + b + c + d) ≦ 2.2, e and f are numbers satisfying 0 ≦ f / (e + f) ≦ 0.035 and 3.6 ≦ (e + f) ≦ 4.4. )
本発明によれば、深みのある赤色、又は鮮やかな白色を発する蛍光体が得られ、かつ、演色性の高い可視光を効率良く発する発光装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the phosphor which emits deep red or bright white can be obtained, and the light-emitting device which emits visible light with high color rendering property efficiently can be provided.
以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本発明は、下記一般式[1]の化学組成を有する結晶相を有する蛍光体であり、そして、下記一般式[1]の化学組成を有する結晶相を有する蛍光体と、それに350−430nmの光を照射させるための発光源とを有する発光装置である。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
The present invention is a phosphor having a crystal phase having a chemical composition of the following general formula [1], a phosphor having a crystal phase having a chemical composition of the following general formula [1], and a phosphor having a crystal phase of 350 to 430 nm. And a light emitting device for irradiating light.
式[1]中のM1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、
5価の元素の群から選ばれる少なくとも1種の元素を表し、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満という条件を満たすものである。
M 1 in the formula [1] is a monovalent element, a divalent element excluding Eu, Mn, and Mg, a trivalent element,
It represents at least one element selected from the group of pentavalent elements, the proportion of divalent elements is 80 mol% or more, the proportion of the total of Ba, Ca, and Sr is 40 mol% or more, and Ba and It satisfies the condition that the ratio (molar ratio) of Ca to the total of Ca is less than 0.2.
Ba,Ca,Sr以外の元素を具体的に述べると、1価の元素としては、Li,Na,K,Rb,Cs等が挙げられ、2価の元素としては、V,Cr,Fe,Co,Ni,Cu,Zn,Mo,Ru,Pd,Ag,Cd,Sn,Sm,Tm,Yb,W,Re,Os,Ir,Pt,Hg,Pb等が挙げられ、3価の元素としては、B,Al,Ga,In等や、Y,Sc等の希土類元素が挙げられ、5価の元素としては、P,Sb,Bi等が挙げられるが、これらに限定されるものではない。中でも、2価の元素においては、V,Zn,M
o,Sn,Sm,Tm,Yb,W,Pbは性能に影響しにくい。
When elements other than Ba, Ca, and Sr are specifically described, examples of monovalent elements include Li, Na, K, Rb, and Cs. Examples of divalent elements include V, Cr, Fe, and Co. , Ni, Cu, Zn, Mo, Ru, Pd, Ag, Cd, Sn, Sm, Tm, Yb, W, Re, Os, Ir, Pt, Hg, Pb, and the like. B, Al, Ga, In, and the like, and rare earth elements such as Y, Sc, and the like. Examples of the pentavalent element include, but are not limited to, P, Sb, Bi, and the like. Among them, in divalent elements, V, Zn, M
o, Sn, Sm, Tm, Yb, W, and Pb hardly affect the performance.
M1中2価の元素及び付活元素Eu2+とMn2+の焼成時の固体内拡散による珪酸塩の結
晶化を助ける意味で、1価、3価、5価の元素を合計20mol%以内で導入しても良い。
深みのある赤色成分等の面では、BaとCaの合計に対するCaの割合(モル比)が0.1未満が好ましく、0がより好ましい。赤色又は白色の発光強度等の面から、Ba,Ca,Srの合計が占める割合が80mol%以上であることが好ましく、Ba,Caの合計が占める割合が80mol%以上であることがより好ましく、Ba,Ca,Srの合計が占める割合が100mol%であることが更に好ましい。
A total of 20 mol% of monovalent, trivalent, and pentavalent elements is used to aid crystallization of silicate by diffusion in the solid during firing of divalent elements and activators Eu 2+ and Mn 2+ in M 1. May be introduced within.
In terms of a deep red component or the like, the ratio (molar ratio) of Ca to the total of Ba and Ca is preferably less than 0.1, and more preferably 0. From the viewpoint of red or white emission intensity, the proportion of the total of Ba, Ca, Sr is preferably 80 mol% or more, more preferably the proportion of the total of Ba, Ca is 80 mol% or more, More preferably, the ratio of the total of Ba, Ca and Sr is 100 mol%.
式[1]中のM2は、SiおよびGeを合計で90mol%以上含む4価の元素群を表
すが、赤色又は白色の発光強度等の面から、M2がSiを80mol%以上含むことが好
ましく、M2がSiからなることがより好ましい。Si,Ge以外の4価の元素としては
、Zn,Ti,Hf等が挙げられ、赤色又は白色の発光強度等の点から、性能を損なわない範囲でこれらを含んでいてもよい。
M 2 in the formula [1] represents a tetravalent element group containing 90 mol% or more of Si and Ge in total, but M 2 contains 80 mol% or more of Si in terms of red or white emission intensity. It is more preferable that M 2 is made of Si. Examples of tetravalent elements other than Si and Ge include Zn, Ti, Hf, and the like, and these may be included within a range that does not impair the performance in terms of red or white emission intensity.
式[1]中のZは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素であり、例えば、酸素と同じ−2価の元素であるS,Se,Te以外に−1価であるF,Cl,Br,I等であってもよいし、OH基が含有されていてもよいし、酸素基が一部ON基やN基に変わっていてもよい。また、Zは、蛍光性能には影響が少ない程度、即ち、不純物レベルの対全元素比約2mol%以下で含まれていてもよい。これは、(Z+酸素原子)に対するZのモル比としては0.035以下に相当する。よって、(Z+酸素原子)に対するZのモル比であるf/(e+f)の範囲は0≦f/(e+f)≦0.035であり、蛍光体の性能の点から、f/(e+f)≦0.01が好ましく、より好ましくはf/(e+f)=0である。 Z in the formula [1] is at least one element selected from the group consisting of a −1 valent element, a −2 valent element, H, and N. For example, S, which is a −2 valent element similar to oxygen, In addition to Se and Te, it may be −1 valent F, Cl, Br, I, etc., OH group may be contained, and oxygen group is partially changed to ON group or N group. Also good. Z may be contained to such an extent that the fluorescent performance is not affected, that is, the impurity level to the total element ratio is about 2 mol% or less. This corresponds to a molar ratio of Z to (Z + oxygen atom) of 0.035 or less. Therefore, the range of f / (e + f), which is the molar ratio of Z to (Z + oxygen atom), is 0 ≦ f / (e + f) ≦ 0.035. From the viewpoint of phosphor performance, f / (e + f) ≦ 0.01 is preferable, and f / (e + f) = 0 is more preferable.
式[1]中のEuモル比aについては、aは、0.0003≦a≦0.8を満足する数である。発光中心イオンEu2+のモル比aが小さすぎると、発光強度が小さくなる傾向があり、好ましくは0.001以上、より好ましくは0.01以上である。一方、多すぎても、濃度消光や温度消光と呼ばれる現象によりやはり発光強度が小さくなる傾向がある。上限としては、a≦0.5がより好ましい。 Regarding the Eu molar ratio a in the formula [1], a is a number satisfying 0.0003 ≦ a ≦ 0.8. If the molar ratio “a” of the luminescent center ion Eu 2+ is too small, the luminescence intensity tends to decrease, and is preferably 0.001 or more, more preferably 0.01 or more. On the other hand, if the amount is too large, the emission intensity tends to decrease due to a phenomenon called concentration quenching or temperature quenching. As an upper limit, a ≦ 0.5 is more preferable.
式[1]中のMnモル比bは、赤色発光とするか白色発光とするかを左右する因子であり、bが0の場合、赤色ピークが得られず、青もしくは青緑ピークのみであるが、bが小さな正の値をとると、青、緑ピークに赤色ピークが現れ、全体として白色発光となり、bがより大きな正の値をとると、青、緑ピークが非常に小さくなり、赤色ピークが主となる。bの範囲は、赤色蛍光体又は白色蛍光体として、0<b≦0.8である。蛍光体が励起光源の照射を受けて励起したEu2+のエネルギーがMn2+に移動し、Mn2+が赤色発光しているものと考えられ、主にM1とM2の組成によってエネルギー移動の程度が多少異なるので、M1とM2の組成によって赤色蛍光体から白色蛍光体に切り替わるbの境界値が多少異なる。それゆえ、赤色発光と白色発光のbの良好な範囲を厳密に区別できないが、赤色、白色を含めた発光色の強度等の面から、0.002≦b≦0.6がより好ましく、0.005≦b≦0.4が更に好ましい。なお、本発明において「白色」とは、広義に解釈されるものとし、発光スペクトルにおいて、2つ以上の極大値が存在し、それぞれが広帯域発光ピークであることを意味する。 The Mn molar ratio b in the formula [1] is a factor that determines whether to emit red light or white light. When b is 0, a red peak is not obtained and only a blue or blue-green peak is obtained. However, when b takes a small positive value, a red peak appears in the blue and green peaks, and the whole emits white light, and when b takes a larger positive value, the blue and green peaks become very small and red. The peak is the main. The range of b is 0 <b ≦ 0.8 as a red phosphor or a white phosphor. Energy Eu 2+ phosphor has excited by the irradiation of the excitation light source is moved to Mn 2+, it believed that Mn 2+ is red-emitting, energy mainly by the composition of M 1 and M 2 Since the degree of movement is slightly different, the boundary value of b for switching from the red phosphor to the white phosphor is somewhat different depending on the composition of M 1 and M 2 . Therefore, the good range of b of red light emission and white light emission cannot be strictly distinguished, but 0.002 ≦ b ≦ 0.6 is more preferable from the viewpoint of the intensity of the light emission color including red and white, and 0 0.005 ≦ b ≦ 0.4 is more preferable. In the present invention, “white” is to be interpreted in a broad sense, and means that there are two or more maximum values in the emission spectrum, each of which is a broadband emission peak.
式[1]中のMgは、2価元素が主であるM1に置換され、MgとM1の合計モル数に対するMgのモル数の割合であるc,dは0<c/(c+d)≦0.2、または0.3≦c/(c+d)≦0.8であるが、赤色又は白色の発光強度等の面から、c,dは0<c/
(c+d)≦0.2、または0.3≦c/(c+d)≦0.7が好ましい。
前記一般式[1]の結晶相EuaMnbMgcM1 dM2OeZfにおいては、Eu2+、Mn2+、Mg2+は主に2価元素からなるM1に置換され、M2は主にSiとGeで占められ、アニオンは主に酸素であり、その基本組成は、M1、M3、酸素原子の総モル比がそれぞれ2,1,4のものであるが、カチオン欠損やアニオン欠損が多少生じていても本目的の蛍光性能に大きな影響がないので、SiとGeが主に占めるM2の全モル比を化学式上で1と固
定したときに、(M1+Eu+Mn+Mg)のモル比(a+b+c+d)は、1.8≦(
a+b+c+d)≦2.2の範囲であり、下限としては1.9≦(a+b+c+d)が好ましく、じょうげんとしては(a+b+c+d)≦2.1が好ましく、(a+b+c+d)=2であることがより好ましい。又、アニオン側のサイトの全モル比である(e+f)は、3.6≦(e+f)≦4.4の範囲であり、下限としては1.9≦(e+f)が好ましく、上限としては(e+f)≦2.1が好ましく、e=4、かつf=0であることがより好ましい。
Mg in the formula [1] is substituted by M 1 which is mainly a divalent element, and c and d which are the ratio of the number of moles of Mg to the total number of moles of Mg and M 1 are 0 <c / (c + d) ≦ 0.2, or 0.3 ≦ c / (c + d) ≦ 0.8. From the viewpoint of red or white emission intensity, c and d are 0 <c /
(C + d) ≦ 0.2 or 0.3 ≦ c / (c + d) ≦ 0.7 is preferable.
In the crystal phase Eu a Mn b Mg c M 1 d M 2 O e Z f of the general formula [1], Eu 2+ , Mn 2+ , and Mg 2+ are replaced with M 1 mainly composed of a divalent element. M 2 is mainly occupied by Si and Ge, the anion is mainly oxygen, and the basic composition is M 1 , M 3 , and the total molar ratio of oxygen atoms is 2, 1 , 4 respectively. However, even if some cation deficiency or anion deficiency occurs, the fluorescence performance for this purpose is not greatly affected. Therefore, when the total molar ratio of M 2 mainly occupied by Si and Ge is fixed to 1 in the chemical formula, The molar ratio (a + b + c + d) of M 1 + Eu + Mn + Mg is 1.8 ≦ (
a + b + c + d) ≦ 2.2, preferably 1.9 ≦ (a + b + c + d) as the lower limit, (a + b + c + d) ≦ 2.1, and more preferably (a + b + c + d) = 2. Further, (e + f), which is the total molar ratio of sites on the anion side, is in a range of 3.6 ≦ (e + f) ≦ 4.4, and preferably has a lower limit of 1.9 ≦ (e + f) and an upper limit of ( e + f) ≦ 2.1 is preferable, and it is more preferable that e = 4 and f = 0.
本発明で使用する蛍光体は、前記一般式[1]に示されるようなM1源、M2源、Mg源、及び、付活元素であるEuとMnの元素源化合物を下記の(A)又は(B)の混合法により調製した混合物を加熱処理して焼成することにより製造することができる。
(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを合わせた乾式混合法。
(B)粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
The phosphor used in the present invention includes an M 1 source, an M 2 source, an Mg source, and Eu and Mn element source compounds as shown in the general formula [1] described below (A ) Or (B) can be produced by heat-treating the mixture prepared by the mixing method.
(A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle, etc., mixer such as ribbon blender, V-type blender and Henschel mixer, or mortar and pestle Dry mixing method combined with mixing.
(B) Using a pulverizer or a mortar and pestle, etc., add water etc. and mix in a slurry or solution state with a pulverizer, mortar and pestle, or evaporating dish and stirrer, spray drying, heating Wet mixing method that is dried by drying or natural drying.
これらの混合法の中で、特に、付活元素の元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、蛍光体と反応性の低い材料を使用した坩堝やトレイ等の耐熱容器中で、通常750〜1400℃、好ましくは900〜1300℃の温度で、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。 Among these mixing methods, in particular, in the element source compound of the activator element, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the compound, and other elements The latter wet method is also preferred from the viewpoint of obtaining uniform mixing throughout the source compound, and as the heat treatment method, in a heat-resistant container such as a crucible or a tray using a material having low reactivity with the phosphor, Usually, it is made by heating at a temperature of 750 to 1400 ° C., preferably 900 to 1300 ° C., for 10 minutes to 24 hours in a single or mixed atmosphere of a gas such as carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. . In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.
尚、前記加熱雰囲気としては、付活元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEuとMn等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、一酸化炭素や水素を含む還元雰囲気下がより好ましく、カーボンが雰囲気中に存在すると更に好ましい。具体的にはカーボンヒーター炉による加熱、還元雰囲気下でカーボン製の坩堝等容器を使用した加熱、還元雰囲気中にカーボンビーズ等を共存させた加熱等によって達成される。 As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the activating element contributes to light emission is selected. In the case of divalent Eu and Mn in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but a reducing atmosphere containing carbon monoxide and hydrogen is more preferable. More preferably, carbon is present in the atmosphere. Specifically, it is achieved by heating using a carbon heater furnace, heating using a container such as a carbon crucible in a reducing atmosphere, heating in which carbon beads or the like coexist in the reducing atmosphere, and the like.
又、ここで、M1源、M2源、Mg源、及び、付活元素の元素源化合物としては、M1、
M2、Mg、及び、付活元素の各酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、
カルボン酸塩、ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、及び、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。
M1として挙げられている前記Ba、Ca、Srについて、それらのM1源化合物を具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3
、Ba(NO3)2、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH3)2、B
aCl2等が、又、Ca源化合物としては、CaO、Ca(OH)2、CaCO3、Ca(
NO3)2・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH3
)2・H2O、CaCl2等が、又、Sr源化合物としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO3)2、SrSO4、Sr(OCO)2・H2O、Sr(OCO
CH3)2・0.5H2O、SrCl2等がそれぞれ挙げられる。
Here, as the element source compounds of the M 1 source, M 2 source, Mg source, and activator element, M 1 ,
M 2 , Mg, and each of the oxides, hydroxides, carbonates, nitrates, sulfates, oxalates of the activating elements,
Carboxylic acid salts, halides and the like can be mentioned, and these are selected in consideration of reactivity to the composite oxide and non-generation of NOx, SOx, etc. during firing.
The Ba listed as M 1, Ca, the Sr, if specific examples thereof M 1 source compound, as a Ba source compound, BaO, Ba (OH) 2 · 8H 2 O,
, Ba (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 .2H 2 O, Ba (OCOCH 3 ) 2 , B
aCl 2 and the like, and Ca source compounds include CaO, Ca (OH) 2 , CaCO 3 , Ca (
NO 3 ) 2 · 4H 2 O, CaSO 4 · 2H 2 O, Ca (OCO) 2 · H 2 O, Ca (OCOCH 3
2 · H 2 O, CaCl 2 and the like, and Sr source compounds include SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (OCO) 2・ H 2 O, Sr (OCO
CH 3 ) 2 · 0.5H 2 O, SrCl 2 and the like.
M2として挙げられている前記Si、Geについて、それらのM2源化合物を具体的に例示すれば、Si源化合物としは、SiO2、H4SiO4、Si(OCOCH3)4等が、又
、Ge源化合物としは、GeO2、Ge(OH)4、Ge(OCOCH3)4、GeCl4等
がそれぞれ挙げられる。
Mgについて、Mg源化合物を具体的に例示すれば、MgO、Mg(OH)2、MgC
O3、Mg(OH)2・3MgCO3・3H2O、Mg(NO3)2・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH3)2・4H2O、MgCl2等がそれぞれ挙げられる。
Specific examples of the M 2 source compounds for the Si and Ge mentioned as M 2 include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4, etc. Examples of the Ge source compound include GeO 2 , Ge (OH) 4 , Ge (OCOCH 3 ) 4 , and GeCl 4 .
For Mg, specific examples of Mg source compounds include MgO, Mg (OH) 2 , MgC
O 3 , Mg (OH) 2 .3MgCO 3 .3H 2 O, Mg (NO 3 ) 2 .6H 2 O, MgSO 4 , Mg (OCO) 2 .2H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O , MgCl 2 and the like.
更に、付活元素として挙げられる前記EuとMnについて、その元素源化合物を具体的に例示すれば、Eu2O3、Eu2(SO4)3、Eu2(OCO)6、EuCl2、EuCl3
、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、MnO2、Mn2O3、Mn3O4
、MnO、Mn(OH)2、MnCO3、Mn(OCOCH3)2・2H2O、Mn(OCO
CH3)3・nH2O、MnCl2・4H2O等が挙げられる。
Further, with respect to Eu and Mn mentioned as the activation elements, specific examples of the element source compounds include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (OCO) 6 , EuCl 2 and EuCl. Three
Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, MnO 2 , Mn 2 O 3 , Mn 3 O 4
, MnO, Mn (OH) 2 , MnCO 3 , Mn (OCOCH 3 ) 2 .2H 2 O, Mn (OCO
CH 3 ) 3 · nH 2 O, MnCl 2 · 4H 2 O and the like.
本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−430nmの光を発生する。好ましくは波長350−430nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力が良く少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 430 nm. Preferably, a light emitter that generates light having a peak wavelength in the wavelength range of 350 to 430 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable because it consumes less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in GaN-based LDs, the multiple quantum of the In X Ga Y N layer and the GaN layer is preferred. A well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.
本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。 In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.
第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。
また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.
Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here refers to creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.
本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体を製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。
FIG. 1 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 1, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as the first light emitter, and 3 is a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the
第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性が良い点で好ましくはシリコン樹脂、もしくはエポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。 The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to. Examples of the resin that can be used in this case include various resins such as silicon resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, and polyester resin, which are preferable in terms of good dispersibility of the phosphor powder. Is a silicon resin or an epoxy resin. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole of the resin is usually 10 to 95%, preferably 20 to 90%, more preferably. Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.
本発明の発光装置は、波長変換材料としての前記蛍光体と、350−430nmの光を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する350−430nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、発光装置を構成する、本発明の結晶相を有する蛍光体は、350−430nmの光を発生する第1の発光体からの光の照射により、赤色又は白色を表す波長領域に発光している。そして、本発明の発光装置は、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。 The light-emitting device of the present invention includes the phosphor as a wavelength conversion material and a light-emitting element that generates 350-430 nm light, and the phosphor absorbs 350-430 nm light emitted from the light-emitting element. In addition, the phosphor having a good color rendering property and capable of generating high-intensity visible light regardless of the use environment, and the phosphor having the crystal phase of the present invention constituting the light-emitting device has a wavelength of 350 to 430 nm. By emitting light from the first light-emitting body that generates the light, light is emitted in a wavelength region representing red or white. The light-emitting device of the present invention is suitable for a light source such as a backlight source, a light source such as a traffic light, an image display device such as a color liquid crystal display, and a lighting device such as a surface light source.
本発明の発光装置を図面に基づいて説明すると、図2は、第1の発光体(350−430nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−430nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。 The light emitting device of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of a light emitting device having a first light emitter (350-430 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-430 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.
本発明の一例である発光装置は、図2に示されるように、一般的な砲弾型の形態をなし
、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−430nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。
As shown in FIG. 2, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the
又、この発光素子1を組み込んだ面発光照明装置11は、図3に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。
Further, as shown in FIG. 3, the surface emitting
そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加することにより350−430nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。
Then, by driving the surface emitting
以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.935:0.935:0.1:0.03:1)を白金容器中で混合し、乾燥後、4%の水素を含む窒素ガス流下1050℃で2時間加熱することにより焼成し、蛍光体Ba0.935Mg0.935Eu0.1Mn0.03SiO4(第2の発光体に用いる蛍光体)を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、後述の比較例5の発光ピークの強度を100としたときの、発光ピークの強度(以下、相対強度、という)、及び半値幅を示す。本蛍光体が、強度と半値幅が十分大きいため、高い演色性を与える強い赤色光を発し、かつ、ピーク波長が615―645nmの領域内なので、鮮やかな深赤色光を発することがわかる。400nm励起におけるピーク波長630nmでの励起スペクトルの測定によれば、励起波長254nm、280nm、382nm、400nmにおける相対強度が、それぞれ、208、328、351、320であり、従来型の254nm励起での発光より400nm付近の励起での発光が1.5倍以上強く、本蛍光体がGaN系半導体の光源に対し非常に有利な蛍光体であることがわかる。
(比較例1)
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(N
O3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が0.95:0.95:
0.1:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.95Mg0.95Eu0.1SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。実施例1の組成においてMnが添
加されないと、赤色ピークが現れないことがわかる。
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, Mn (NO 3 ) 2 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, SiO 2 molar ratio 0.935: 0.935: 0.1: 0.03: 1) was mixed in a platinum container, dried and heated at 1050 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen. The phosphor Ba 0.935 Mg 0.935 Eu 0.1 Mn 0.03 SiO 4 (phosphor used for the second light emitter) was manufactured. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength of the emission peak, the intensity of the emission peak (hereinafter referred to as relative intensity), and the half width when the intensity of the emission peak of Comparative Example 5 described later is 100. Since the present phosphor has sufficiently large intensity and half width, it emits strong red light giving high color rendering properties and emits bright deep red light because the peak wavelength is in the region of 615-645 nm. According to the measurement of the excitation spectrum at the peak wavelength of 630 nm in the excitation at 400 nm, the relative intensities at the excitation wavelengths of 254 nm, 280 nm, 382 nm, and 400 nm are 208, 328, 351, and 320, respectively. In addition, it can be seen that the light emission by excitation near 400 nm is 1.5 times or more stronger, and this phosphor is a very advantageous phosphor for the light source of the GaN-based semiconductor.
(Comparative Example 1)
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal silica (SiO 2 ) suspension (Ba (NO 2 ) 3 ) 2 , Mg (N
The molar ratio of O 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, SiO 2 is 0.95: 0.95:
Phosphor Ba 0.95 Mg 0.95 Eu 0.1 SiO 4 was produced in the same manner as in Example 1 except that 0.1: 1) was used as the stock solution. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. It can be seen that when Mn is not added in the composition of Example 1, no red peak appears.
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.623:1.247:0.1:0.03:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.623Mg1.247Eu0.1Mn0.03SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。本蛍光体が、強度と半値幅が十分大きいため、高い演色性を与える強い赤色光を発し、かつ、ピーク波長が615―645nmの領域内なので、鮮やかな深赤色光を発することがわかる。 Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, Mn (NO 3 ) 2 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, the molar ratio of SiO 2 is 0.623: 1.247: 0.1: 0.03: 1) except for using as a stock solution were charged, phosphor Ba in the same manner as in example 1 0.623 Mg 1.247 Eu 0.1 Mn 0.03 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. Since the present phosphor has sufficiently large intensity and half width, it emits strong red light giving high color rendering properties and emits bright deep red light because the peak wavelength is in the region of 615-645 nm.
(比較例2)
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(N
O3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が0.633:1.26
7:0.1:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.633Mg1.267Eu0.1SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。実施例2の組成においてMnが添加されないと、赤色ピークが現れないことがわか
る。
(Comparative Example 2)
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal silica (SiO 2 ) suspension (Ba (NO 2 ) 3 ) 2 , Mg (N
The molar ratio of O 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, SiO 2 is 0.633: 1.26.
A phosphor Ba 0.633 Mg 1.267 Eu 0.1 SiO 4 was produced in the same manner as in Example 1 except that 7: 0.1: 1) was used as the stock solution. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. It can be seen that the red peak does not appear if Mn is not added in the composition of Example 2.
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.587:1.173:0.2:0.04:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.587Mg1.173Eu0.2Mn0.04SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。図4にその発光スペクトルを示す。発光スペクトル上で励起光源の影響を取り除くため、420nm以下の光をカットするフィルターを導入して測定している。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。本蛍光体が、強度と半値幅が十分大きいため、高い演色性を与える強い赤色光を発し、かつ、ピーク波長が615―645nmの領域内なので、鮮やかな深赤色光を発することがわかる。 Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, Mn (NO 3 ) 2 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, The phosphor Ba 0.587 Mg 1.173 Eu 0.2 Mn was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 was 0.587: 1.173: 0.2: 0.04: 1). 0.04 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. FIG. 4 shows the emission spectrum. In order to remove the influence of the excitation light source on the emission spectrum, measurement is performed by introducing a filter that cuts light of 420 nm or less. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. Since the present phosphor has sufficiently large intensity and half width, it emits strong red light giving high color rendering properties and emits bright deep red light because the peak wavelength is in the region of 615-645 nm.
(比較例3)
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(N
O3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が0.6:1.2:0.
2:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.6
Mg1.2Eu0.2SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長であ
る400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。実施例3の組成においてMnが添加されないと、赤色ピークが現れないことがわかる。
(Comparative Example 3)
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal silica (SiO 2 ) suspension (Ba (NO 2 ) 3 ) 2 , Mg (N
The molar ratio of O 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, SiO 2 is 0.6: 1.2: 0.
Phosphor Ba 0.6 in the same manner as in Example 1 except that 2: 1) is used as the stock solution.
Mg 1.2 Eu 0.2 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. It can be seen that when Mn is not added in the composition of Example 3, no red peak appears.
(比較例4)
Ba(NO3)2の水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Eu(N
O3)3・6H2O、Mn(NO3)2、SiO2のモル比が1.7:0.2:0.1:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba1.7Eu0.2Mn0.1SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。結晶中にMnが含まれていても、Mgがないと、赤色ピークが現れないことがわかる。
(Comparative Example 4)
An aqueous solution of Ba (NO 3 ) 2, an aqueous solution of Eu (NO 3 ) 3 .6H 2 O, an aqueous solution of Mn (NO 3 ) 2 .6H 2 O, and a suspension of colloidal silica (SiO 2 ) (Ba (NO 3 ) 2 , Eu (N
Example 3 except that the molar ratio of O 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 , SiO 2 is 1.7: 0.2: 0.1: 1) is used as the stock solution. Similarly, a phosphor Ba 1.7 Eu 0.2 Mn 0.1 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. It can be seen that even if Mn is contained in the crystal, the red peak does not appear without Mg.
(比較例5)
Ba(NO3)2の水溶液、Ca(NO3)2・4H2Oの水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Ca(NO3)2、Mg(
NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.567:0.567:0.566:0.2:0.1:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.567Ca0.567Mg0.566Eu0.2Mn0.1SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−1に、その発光ピークの波長、相対強度、及び半値幅を示す。結晶中、Caの存在量がBaに対して多すぎると、ピーク波長が615nm未満となってしまい、鮮やかな深赤色光を出すことができないことがわかる。
(Comparative Example 5)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 .4H 2 O aqueous solution, Mg (NO 3 ) 2 .6H 2 O aqueous solution, Eu (NO 3 ) 3 .6H 2 O aqueous solution, Mn ( NO 3 ) 2 · 6H 2 O aqueous solution and colloidal silica (SiO 2 ) suspension (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 , Mg (
The molar ratio of NO 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 · 6H 2 O, SiO 2 is 0.567: 0.567: 0.566: 0. 0.2: 0.1: 1) was used in the same manner as in Example 1 except that phosphor Ba 0.567 Ca 0.567 Mg 0.566 Eu 0.2 Mn 0.1 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength, relative intensity, and half-value width of the emission peak. It can be seen that if the amount of Ca in the crystal is too much relative to Ba, the peak wavelength is less than 615 nm, and vivid deep red light cannot be emitted.
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.92:0.92:0.1:0.06:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.92Mg0.92Eu0.1Mn0.06SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。図5にその発光スペクトルを示す。表−2に、590nm以上のピーク(赤成分のピーク)の波長と相対強度、及び590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色を表す色度座標のx値,y値を示す。ピーク波長が615nm―645nmの領域内にある深赤色成分が十分含まれ、かつ、青・緑成分も含まれた幅広いスペクトルが得られており、高い演色性を与え、かつ、色鮮やかな白色光発光となっていることがわかる。 Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, Mn (NO 3 ) 2 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, The phosphor Ba 0.92 Mg 0.92 Eu 0.1 Mn was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 was 0.92: 0.92: 0.1: 0.06: 1). 0.06 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. FIG. 5 shows the emission spectrum. Table 2 shows the wavelength and relative intensity of a peak of 590 nm or more (the peak of the red component), the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, the x value of the chromaticity coordinates representing the color, y Indicates the value. A wide spectrum including a deep red component with a peak wavelength in the range of 615 nm to 645 nm and a blue / green component is obtained, giving high color rendering properties and bright white light. It turns out that it is light emission.
なお、590nm未満の最大ピークとは、発光スペクトル中の590nm未満の領域において、複数のピークが存在する場合、最も強度の高いピークのことを指し、単ピークの場合は、それを指す。また、ピーク群の半値幅とは、発光スペクトルがどれだけ幅広く分布していて、どれだけ演色性が高いかを知る目安となるものであり、図6の如く、発光スペクトル中の最大ピークの強度の、半分以上の強度を有する波長領域の幅の総和と定義する。 Note that the maximum peak of less than 590 nm refers to the peak with the highest intensity when a plurality of peaks are present in the region of less than 590 nm in the emission spectrum, and refers to that in the case of a single peak. The half width of the peak group is a measure for knowing how widely the emission spectrum is distributed and how high the color rendering is, and as shown in FIG. 6, the intensity of the maximum peak in the emission spectrum. Is defined as the sum of the widths of the wavelength regions having an intensity of more than half.
(比較例6)
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(N
O3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が0.95:0.95:
0.1:1)を仕込み原液として使用すること以外は、実施例1と同様にして白色発光の蛍光体Ba0.95Mg0.95Eu0.1SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。実施例4の組成においてMnが添加されないと、赤色ピークが現れないことがわかる。
(Comparative Example 6)
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal silica (SiO 2 ) suspension (Ba (NO 2 ) 3 ) 2 , Mg (N
The molar ratio of O 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, SiO 2 is 0.95: 0.95:
A white light emitting phosphor Ba 0.95 Mg 0.95 Eu 0.1 SiO 4 was produced in the same manner as in Example 1 except that 0.1: 1) was used as the stock solution. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. It can be seen that the red peak does not appear when Mn is not added in the composition of Example 4.
(比較例7)
Ba(NO3)2の水溶液、Ca(NO3)2・4H2Oの水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Ca(NO3)2・4H2O、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が1.2:0.2:0.4:0.2:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba1.2Ca0.2Mg0.4E
u0.2SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。実施例5の組成においてMnが添加されないと、赤色ピークが現れないことがわかる。
(Comparative Example 7)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 · 4H 2 O aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 .4H 2 O, Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, The phosphor Ba 1.2 Ca 0.2 Mg 0.4 E was used in the same manner as in Example 1 except that the molar ratio of SiO 2 was 1.2: 0.2: 0.4: 0.2: 1).
u 0.2 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. It can be seen that the red peak does not appear unless Mn is added in the composition of Example 5.
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.82:0.82:0.3:0.06:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.82Mg0.82Eu0.3Mn0.06SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である
400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。ピーク波長が615―645nmの領域内にある深赤色成分が十分含まれ、かつ、青・緑成分も含まれた幅広いスペクトルが得られており、高い演色性を与え、かつ、色鮮やかな白色発光となっていることがわかる。
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, Mn (NO 3 ) 2 · 6H 2 O aqueous solution, and colloidal Silica (SiO 2 ) suspensions (Ba (NO 3 ) 2 , Mg (NO 3 ) 2 .6H 2 O, Eu (NO 3 ) 3 .6H 2 O, Mn (NO 3 ) 2 .6H 2 O, The phosphor Ba 0.82 Mg 0.82 Eu 0.3 Mn was prepared in the same manner as in Example 1 except that the molar ratio of SiO 2 was 0.82: 0.82: 0.3: 0.06: 1). 0.06 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. Wide spectrum including deep red component in peak wavelength range of 615-645nm and blue / green component is obtained, giving high color rendering and bright white light emission It turns out that it is.
(比較例8)
Ba(NO3)2の水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Mg(N
O3)2・6H2O、Eu(NO3)3・6H2O、SiO2のモル比が0.85:0.85:
0.3:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.85Mg0.85Eu0.3SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。実施例6の組成においてMnが添加されないと、赤色ピークが現れないことがわかる。
(Comparative Example 8)
Ba (NO 3 ) 2 aqueous solution, Mg (NO 3 ) 2 · 6H 2 O aqueous solution, Eu (NO 3 ) 3 · 6H 2 O aqueous solution, and colloidal silica (SiO 2 ) suspension (Ba (NO 2 ) 3 ) 2 , Mg (N
The molar ratio of O 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, SiO 2 is 0.85: 0.85:
A phosphor Ba 0.85 Mg 0.85 Eu 0.3 SiO 4 was produced in the same manner as in Example 1 except that 0.3: 1) was used as the stock solution. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. It can be seen that the red peak does not appear when Mn is not added in the composition of Example 6.
(比較例9)
Ba(NO3)2の水溶液、Ca(NO3)2・4H2Oの水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Ca(NO3)2、Mg(
NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が0.88:0.44:0.44:0.2:0.04:1)を仕込み原液として使用すること以外は、実施例1と同様にして蛍光体Ba0.88Ca0.44Mg0.44Eu0.2Mn0.04SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。結晶中、CaがBaに対して半分量も存在すると、赤色成分のピーク波長が615nm未満となってしまい、色鮮やかな白色光を出すことができないことがわかる。
(Comparative Example 9)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 .4H 2 O aqueous solution, Mg (NO 3 ) 2 .6H 2 O aqueous solution, Eu (NO 3 ) 3 .6H 2 O aqueous solution, Mn ( NO 3 ) 2 · 6H 2 O aqueous solution and colloidal silica (SiO 2 ) suspension (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 , Mg (
The molar ratio of NO 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 · 6H 2 O, SiO 2 is 0.88: 0.44: 0.44: 0. 0.2 : 0.04: 1) was used in the same manner as in Example 1 except that phosphor Ba 0.88 Ca 0.44 Mg 0.44 Eu 0.2 Mn 0.04 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. It can be seen that when the amount of Ca is half the amount of Ba in the crystal, the peak wavelength of the red component is less than 615 nm, and colorful white light cannot be emitted.
(比較例10)
Ba(NO3)2の水溶液、Ca(NO3)2・4H2Oの水溶液、Mg(NO3)2・6H2Oの水溶液、Eu(NO3)3・6H2Oの水溶液、Mn(NO3)2・6H2Oの水溶液、およびコロイダルシリカ(SiO2)の懸濁液(Ba(NO3)2、Ca(NO3)2、Mg(
NO3)2・6H2O、Eu(NO3)3・6H2O、Mn(NO3)2・6H2O、SiO2のモル比が1.144:0.216:0.48:0.01:0.15:1)を仕込み原液として使用すること以外は、実施例1と同様にして白色発光の蛍光体Ba1.144Ca0.216Mg0.48Eu0.01Mn0.15SiO4を製造した。GaN系発光ダイオードの紫外光領域の主波
長である400nmでこの蛍光体を励起したときの発光スペクトルを測定した。表−2に、赤成分のピークの波長と相対強度、590nm未満の最大ピークの波長と相対強度、ピーク群の半値幅、色度座標のx値,y値を示す。結晶中、Euモル比が0.01と小さいと、赤色成分の強度がやや小さくなることがわかる。
(Comparative Example 10)
Ba (NO 3 ) 2 aqueous solution, Ca (NO 3 ) 2 .4H 2 O aqueous solution, Mg (NO 3 ) 2 .6H 2 O aqueous solution, Eu (NO 3 ) 3 .6H 2 O aqueous solution, Mn ( NO 3 ) 2 · 6H 2 O aqueous solution and colloidal silica (SiO 2 ) suspension (Ba (NO 3 ) 2 , Ca (NO 3 ) 2 , Mg (
The molar ratio of NO 3 ) 2 · 6H 2 O, Eu (NO 3 ) 3 · 6H 2 O, Mn (NO 3 ) 2 · 6H 2 O, SiO 2 is 1.144: 0.216: 0.48: 0. .01: 0.15: 1) was used in the same manner as in Example 1 except that white phosphor phosphor Ba 1.144 Ca 0.216 Mg 0.48 Eu 0.01 Mn 0.15 SiO 4 was produced. The emission spectrum was measured when this phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 2 shows the wavelength and relative intensity of the peak of the red component, the wavelength and relative intensity of the maximum peak of less than 590 nm, the half width of the peak group, and the x value and y value of the chromaticity coordinates. It can be seen that when the Eu molar ratio is as small as 0.01 in the crystal, the intensity of the red component is slightly reduced.
1 第2の発光体
2 面発光型GaN系LD
3 基板
4 発光装置
5 マウントリード
6 インナーリード
7 第1の発光体(350〜430nmの発光体)
8 本発明中の蛍光体を含有させた樹脂部
9 導電性ワイヤー
10 モールド部材
11 発光素子を組み込んだ面発光照明装置
12 保持ケース
13 発光装置
14 拡散板
DESCRIPTION OF
3 Substrate 4
DESCRIPTION OF
Claims (8)
元素の群から選ばれる少なくとも1種の元素であって、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満である。M2は、Siおよび
Geを合計で90mol%以上含む4価の元素群を表し、Zは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素である。aは0.0003≦a≦0.8、bは0<b≦0.8、c,dは0<c/(c+d)≦0.2、または0.3≦c/(c+d)≦0.8、a,b,c,dは1.8≦(a+b+c+d)≦2.2、e,fは0≦f/(e+f)≦0.035、および3.6≦(e+f)≦4.4を満足する数である。) A phosphor having a crystal phase having a chemical composition represented by the following general formula [1].
する請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein a ratio of the total of Ba, Ca, and Sr in M 1 is 80 mol% or more.
の蛍光体。 The phosphor according to 1 or 2, wherein the proportion of Si in M 2 is 80 mol% or more.
(但し、M1は、1価の元素、Eu,Mn,Mgを除く2価の元素、3価の元素、5価
の元素の群から選ばれる少なくとも1種の元素であって、2価の元素が占める割合が80mol%以上であり、Ba,Ca,Srの合計が占める割合が40mol%以上であり、BaとCaの合計に対するCaの割合(モル比)が0.2未満である。M2は、Siおよ
びGeを合計で90mol%以上含む4価の元素群を表し、Zは、−1価、−2価の元素、H、Nからなる群から選ばれる少なくとも1種の元素である。aは0.01<a≦0.5、bは0<b≦0.8、c,dは0<c/(c+d)≦0.2、または0.3≦c/(c+d)≦0.7、a,b,c,dは1.9≦(a+b+c+d)≦2.1、e,fは0≦f/(e+f)≦0.01、および3.8≦(e+f)≦4.2を満足する数である。) A phosphor having a crystal phase having the chemical composition of the general formula [1].
(However, M 1 is at least one element selected from the group of divalent elements other than monovalent elements, Eu, Mn, and Mg, trivalent elements, and pentavalent elements. The proportion of the element is 80 mol% or more, the proportion of the total of Ba, Ca, and Sr is 40 mol% or more, and the proportion (molar ratio) of Ca to the sum of Ba and Ca is less than 0.2. 2 represents a tetravalent element group containing 90 mol% or more of Si and Ge in total, and Z is at least one element selected from the group consisting of −1 and −2 elements, H and N. A is 0.01 <a ≦ 0.5, b is 0 <b ≦ 0.8, c and d are 0 <c / (c + d) ≦ 0.2, or 0.3 ≦ c / (c + d) ≦ 0.7, a, b, c, d are 1.9 ≦ (a + b + c + d) ≦ 2.1, e, f are 0 ≦ f / (e + f) ≦ 0.01, And 3.8 ≦ (e + f) ≦ 4.2.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005007208A JP4617890B2 (en) | 2004-01-16 | 2005-01-14 | Phosphor, and light emitting device, lighting device, and image display device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004009770 | 2004-01-16 | ||
JP2005007208A JP4617890B2 (en) | 2004-01-16 | 2005-01-14 | Phosphor, and light emitting device, lighting device, and image display device using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005226069A true JP2005226069A (en) | 2005-08-25 |
JP2005226069A5 JP2005226069A5 (en) | 2007-06-21 |
JP4617890B2 JP4617890B2 (en) | 2011-01-26 |
Family
ID=35001029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005007208A Expired - Fee Related JP4617890B2 (en) | 2004-01-16 | 2005-01-14 | Phosphor, and light emitting device, lighting device, and image display device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4617890B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100746204B1 (en) * | 2005-11-22 | 2007-08-03 | 특허법인 맥 | White luminescent material and the preparation method and white light emitting diode using the material |
WO2007136105A1 (en) * | 2006-05-19 | 2007-11-29 | Mitsui Mining & Smelting Co., Ltd | White phosphor, and white light-emitting element or device |
JP2008088399A (en) * | 2006-02-10 | 2008-04-17 | Mitsubishi Chemicals Corp | Fluorescent substance and its manufacturing method, composition containing fluorescent substance, light emitting device, image display device, and illuminating device |
JP2008095091A (en) * | 2006-09-15 | 2008-04-24 | Mitsubishi Chemicals Corp | Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device |
JP2008297505A (en) * | 2007-06-04 | 2008-12-11 | Mitsui Mining & Smelting Co Ltd | White phosphor for electron beam excitation and white light-emitting element and device |
KR101053478B1 (en) | 2008-12-01 | 2011-08-04 | 루시미아 주식회사 | Full color phosphor and its manufacturing method |
JP2015017261A (en) * | 2014-08-27 | 2015-01-29 | 独立行政法人 国立印刷局 | Afterglow illuminant and method for manufacturing the same, afterglow luminescent ink composition, and printed matter for authenticity discrimination |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09194833A (en) * | 1996-01-22 | 1997-07-29 | Kasei Optonix Co Ltd | Photostimulable phosphor |
JP2000282032A (en) * | 1999-03-30 | 2000-10-10 | Taiheiyo Keizai Kaihatsu:Kk | Luminous fluophor composition |
WO2002011214A1 (en) * | 2000-07-28 | 2002-02-07 | Patent Treuhand Gesellschaft für elektrische Glühlampen mbH | Illumination device with at least one led as the light source |
JP2002509978A (en) * | 1998-03-31 | 2002-04-02 | サーノフ コーポレイション | Long afterglow red phosphor |
JP2003306675A (en) * | 2002-02-15 | 2003-10-31 | Mitsubishi Chemicals Corp | Light-emitting device and illumination device using the same |
WO2004056940A1 (en) * | 2002-12-20 | 2004-07-08 | Toyoda Gosei Co., Ltd. | Phosphor and optical device using same |
JP2006505659A (en) * | 2002-11-05 | 2006-02-16 | ロディア エレクトロニクス アンド カタリシス | Photoconversion material containing barium magnesium silicate as an additive |
-
2005
- 2005-01-14 JP JP2005007208A patent/JP4617890B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09194833A (en) * | 1996-01-22 | 1997-07-29 | Kasei Optonix Co Ltd | Photostimulable phosphor |
JP2002509978A (en) * | 1998-03-31 | 2002-04-02 | サーノフ コーポレイション | Long afterglow red phosphor |
JP2000282032A (en) * | 1999-03-30 | 2000-10-10 | Taiheiyo Keizai Kaihatsu:Kk | Luminous fluophor composition |
WO2002011214A1 (en) * | 2000-07-28 | 2002-02-07 | Patent Treuhand Gesellschaft für elektrische Glühlampen mbH | Illumination device with at least one led as the light source |
JP2003306675A (en) * | 2002-02-15 | 2003-10-31 | Mitsubishi Chemicals Corp | Light-emitting device and illumination device using the same |
JP2006505659A (en) * | 2002-11-05 | 2006-02-16 | ロディア エレクトロニクス アンド カタリシス | Photoconversion material containing barium magnesium silicate as an additive |
WO2004056940A1 (en) * | 2002-12-20 | 2004-07-08 | Toyoda Gosei Co., Ltd. | Phosphor and optical device using same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100746204B1 (en) * | 2005-11-22 | 2007-08-03 | 특허법인 맥 | White luminescent material and the preparation method and white light emitting diode using the material |
JP2008088399A (en) * | 2006-02-10 | 2008-04-17 | Mitsubishi Chemicals Corp | Fluorescent substance and its manufacturing method, composition containing fluorescent substance, light emitting device, image display device, and illuminating device |
WO2007136105A1 (en) * | 2006-05-19 | 2007-11-29 | Mitsui Mining & Smelting Co., Ltd | White phosphor, and white light-emitting element or device |
DE112007001219T5 (en) | 2006-05-19 | 2009-03-12 | Mitsui Mining & Smelting Co., Ltd. | White phosphor, and white light-emitting element or device |
US7659658B2 (en) | 2006-05-19 | 2010-02-09 | Mitsui Mining & Smelting Co., Ltd. | White phosphor, and white light-emitting equipment or device |
KR101042583B1 (en) | 2006-05-19 | 2011-06-20 | 미쓰이 긴조꾸 고교 가부시키가이샤 | White phosphor, and white light-emitting element or device |
DE112007001219B4 (en) | 2006-05-19 | 2017-10-05 | Mitsui Mining & Smelting Co., Ltd. | White phosphor, and its use |
JP2008095091A (en) * | 2006-09-15 | 2008-04-24 | Mitsubishi Chemicals Corp | Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device |
JP2008297505A (en) * | 2007-06-04 | 2008-12-11 | Mitsui Mining & Smelting Co Ltd | White phosphor for electron beam excitation and white light-emitting element and device |
KR101053478B1 (en) | 2008-12-01 | 2011-08-04 | 루시미아 주식회사 | Full color phosphor and its manufacturing method |
JP2015017261A (en) * | 2014-08-27 | 2015-01-29 | 独立行政法人 国立印刷局 | Afterglow illuminant and method for manufacturing the same, afterglow luminescent ink composition, and printed matter for authenticity discrimination |
Also Published As
Publication number | Publication date |
---|---|
JP4617890B2 (en) | 2011-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7608200B2 (en) | Phosphor and including the same, light emitting apparatus, illuminating apparatus and image display | |
JP4168776B2 (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME | |
JP4617890B2 (en) | Phosphor, and light emitting device, lighting device, and image display device using the same | |
JP2005150691A (en) | Light-emitting device and phosphor | |
JP4165255B2 (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME | |
JP4411841B2 (en) | LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY | |
JP4389513B2 (en) | Light emitting device, lighting device, and image display device | |
JP2005298805A (en) | Light emitting device and illumination device | |
JP4561064B2 (en) | Light emitting device, lighting device, and image display device | |
JP4363194B2 (en) | Phosphor, and light emitting device, lighting device, and image display device using the same | |
JP5326986B2 (en) | Phosphor used in light emitting device | |
JP4706358B2 (en) | Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display | |
JP2004235546A (en) | Light emitting device and lighting device and display using it | |
JP4617889B2 (en) | Phosphor, and light emitting device, lighting device, and image display device using the same | |
JP4617888B2 (en) | Phosphor, and light emitting device, lighting device, and image display device using the same | |
JP4656109B2 (en) | Phosphor | |
JP2004253747A (en) | Light emitting device and lighting device using same | |
JP4972904B2 (en) | Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device | |
JP2010059429A (en) | Phosphor, luminescent device using the same, image display and illuminating device | |
JP2005064189A (en) | Light emitting device, lighting device and image display device | |
JP4337468B2 (en) | Light emitting device, lighting device, and image display device | |
JP4337465B2 (en) | Light emitting device, lighting device, and image display device | |
JP4246502B2 (en) | LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY | |
JP4604516B2 (en) | LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY | |
JP4433847B2 (en) | Phosphor, light emitting device using the same, image display device, and illumination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070508 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070508 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20090619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |