JP2005214878A - 角速度センサ - Google Patents
角速度センサ Download PDFInfo
- Publication number
- JP2005214878A JP2005214878A JP2004024372A JP2004024372A JP2005214878A JP 2005214878 A JP2005214878 A JP 2005214878A JP 2004024372 A JP2004024372 A JP 2004024372A JP 2004024372 A JP2004024372 A JP 2004024372A JP 2005214878 A JP2005214878 A JP 2005214878A
- Authority
- JP
- Japan
- Prior art keywords
- vibrator
- angular velocity
- velocity sensor
- support member
- piezoelectric body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5663—Manufacturing; Trimming; Mounting; Housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60N—SEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
- B60N3/00—Arrangements or adaptations of other passenger fittings, not otherwise provided for
- B60N3/08—Arrangements or adaptations of other passenger fittings, not otherwise provided for of receptacles for refuse, e.g. ash-trays
- B60N3/083—Ash-trays
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Gyroscopes (AREA)
Abstract
【課題】 限られた接続面積内で振動子の機械的支持且つ電気的接続をより確実なものとする。
【解決手段】 柱状の振動子1aの振動時に発生する2つの節点部をそれぞれ上下方向から挟持するように上記節点部に接合され、上記振動子1aの機械的支持及び電気的接続を兼ねる支持部材を備える角速度センサ1であって、上記振動子1a及び支持部材は、それぞれ電気的接続部位の最上層表面が銀若しくは金のコーティング層16,26が形成されてなり、上記支持部材の腕部の先端の接続部13の一部が切欠かれた切欠部13Aを介して上記接続部13の両面に亘って連続する状態に塗布された銀粒子を導電フィラーとする導電性接着剤35によって電気的及び機械的に接続される。
【選択図】 図6
【解決手段】 柱状の振動子1aの振動時に発生する2つの節点部をそれぞれ上下方向から挟持するように上記節点部に接合され、上記振動子1aの機械的支持及び電気的接続を兼ねる支持部材を備える角速度センサ1であって、上記振動子1a及び支持部材は、それぞれ電気的接続部位の最上層表面が銀若しくは金のコーティング層16,26が形成されてなり、上記支持部材の腕部の先端の接続部13の一部が切欠かれた切欠部13Aを介して上記接続部13の両面に亘って連続する状態に塗布された銀粒子を導電フィラーとする導電性接着剤35によって電気的及び機械的に接続される。
【選択図】 図6
Description
本発明は、例えば、ビデオカメラの手振れ検知や、バーチャルリアリティ装置における動作検知や、カーナビゲーションシステムにおける方向検知等に用いられる角速度センサに関する。
従来、民生用の角速度センサとしては、棒状の振動子を所定の共振周波数で振動させておき、角速度の影響によって生じるコリオリ力を圧電素子等で検出することによって角速度を検出する、いわゆる振動ジャイロ型の角速度センサが広く使用されている。
このような角速度センサにおいて、振動子の形状として四角柱状の音片型があり、音片型の支持方法として2つの振動節点を導電性の部材で支持する方法がある。
図19に従来の角速度センサの支持方法を示す。図19において、圧電材からなる振動子96の所定面の幅方向の略中央には長手方向に溝95が設けられ、前記所定面を91aと91bに分割する。導電性がある支持部材40,41は接続部40a,41aにて振動子96と機械的且つ電気的に接続される。接続方法としては半田接続や導電性接着剤による接続がある。
このように構成された従来の角速度センサは、支持部材40と支持部材41の間に駆動信号を加えることで振動子96を振動させる。このとき振動子96が長手方向を軸として回転されるとコリオリ力が発生し振動子96の面91aと面91bに各々コリオリ力に比例した逆の極性の信号が発生する。この信号を支持部材40より取り出すことで角速度信号を検出することができる。
ここで、支持部材40及び支持部材41は振動節点を拘束する機能と、振動子96が振動する為に、ある程度節点に自由度を与えるという相反する機能を併せ持つ必要がある。支持部材40及び支持部材41の拘束が強ければ振動量が減少し角速度の検出感度が低下する。また、逆に、拘束力が弱いと振動の節点の移動が大きく、特性上不安定となり問題となる。
近年のデバイスの小型化に伴い、支持部材40及び支持部材41が図19のような直線状では、自ずと距離が短くなり剛性が上がる為、図20の支持部材50及び支持部材51のように屈曲させ剛性を下げる手法が用いられる(例えば、特許文献1参照)。
また、支持部材の固定は量産性とコストを考慮しインサートモールドが用いられるが、インサートモールドの製法の都合上、上下の支持部材50及び支持部材51は固定位置をずらす必要があり、必然的に上下の支持部材を振動の節点を軸に対称に配置されていた。
ところで、従来、角速度センサにおける各電極部の電気的接続方法として通常使用されるのは半田であり、用途や被接続物の材質等によって好ましい半田の材質を選択して対応するが一般的である。しかし、昨今の環境問題に対応する為に、金属鉛を主成分とする半田材は敬遠するようになり、代わってスズ−銀−銅系やスズ−亜鉛系の合金が鉛フリーの半田材として主流になりつつある。これらの鉛フリー半田材を使用する際の問題点として、その融点が既存のスズ−鉛半田よりも高いことと合金配合や添加物をアレンジしても更に高融点の合金材料を作れないことが挙げられる。
これに対して昨今の価格競争の激化に伴い、センサ等機能部品においてもリフロー等での表面実装を用いて組立されるケースが多くなり、表面実装工程前後でこれら部品の性能や品質が劣化しないことが必須事項になっている。つまり、通常の使用環境での温度変化だけでなく、表面実装の高い温度プロファイルにも耐えられる仕様が求められており、商品設計を難しくさせている。
更に、環境対応によって表面実装工程で使用される半田材も鉛フリー品に変更となり従来よりも高融点になるために、リフローの設定温度条件を上昇せざるを得なくなっており、結果的にこれまで以上の高温の温度プロファイルに部品がさらされることになった。高融点のラインナップの存在しない鉛フリー半田なので、部品内部の電極接続も同様の半田材を使用せざるを得なくなり、リフローの熱で同接続部が溶融したり緩んだりして不具合を起こすケースが発生した。アンダーフィル剤等で半田が融けても部品が動かない形で対策するケースもあるが、振動体のようにそれ自体をリジットに拘束することができない部品の接続では、鉛フリー半田で接続するには限界があり、結果的に硬化後に溶融等のない導電性接着剤を使わざるを得なくなった。
ところが、導電性接着剤とは、元が絶縁性である熱硬化樹脂(エポキシ樹脂等)に導電性のある金属フィラーを高比率で分散させたものであり、硬化収縮しないと導電性が実現しないものであった。本来であれば、一度硬化した樹脂の性質は不変であり、金属フィラー間の絶縁破壊によって導通した部分も不変で抵抗変化等が起きる要素が考え難い。しかし、現実的には熱や湿度等の影響度で同絶縁破壊した部位の修復現象が起こるようで、接続抵抗が大きく変化したり、若しくは絶縁状態になってしまうものが発生した。また、同導電性接着剤で接続する被接続物の材質によっても初期抵抗自体が大きく異なる現象が発生し、同接続方法を用いた製品の信頼性を損ねることとなった。
また、振動体の基体に温度特性等の特性上の利点からアモルファスカーボン材を用いた場合、同材料が化学的に安定で緻密構造である為、半田付けすることはもちろん、メッキ処理等で成膜することは困難となる。仮に電極用の金属膜を成膜できたとしても、母材に対する付着力が弱いために十分な機械的接続強度を得ることは難しい。したがって、同材料を使いこなすにも電気的・機械的に信頼性の高い接続方法が見つからずデバイス化できないという問題があった。
そこで、本発明の目的は、以上のような従来の実情に鑑みて提案されたものであり、振動ジャイロ型の角速度センサにおいて、限られた接続面積内で振動子の機械的支持且つ電気的接続をより確実なものとすることにある。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
本発明に係る角速度センサは、表面に駆動電極と検出電極が形成された圧電セラミクス振動体からなる柱状の振動子と、上記振動子の振動時に発生する節点部を挟持するように上記節点部に接合され、上記振動子の機械的支持及び電気的接続を兼ねる支持部材を備え、上記支持部材は、上記振動子の振動方向と略直交する方向に長尺な腕部と、該腕部の先端に形成され、切欠部が設けられた上記振動子との接続部を有し、上記振動子及び支持部材は、それぞれ電気的接続部位の最上層表面が銀若しくは金でコーティングされてなり、上記切欠部を介して上記接続部の両面に亘って連続する状態に塗布された銀粒子を導電フィラーとする導電性接着剤によって電気的及び機械的に接続されてなることを特徴する。
本発明に係る角速度センサでは、導電性接着剤内の銀粒子の移動が起こらない為に一度形成された絶縁破壊状態は維持でき、熱や湿度等の外乱が加わっても同接続部での抵抗変化が起こり難くなる。更に、元来比抵抗値が小さく、化学的に安定な銀や金でコーティングしているので、接着剤硬化時の酸化や変質が抑制されて、結果的に接続部自体が有する電気抵抗を下げることができる。
したがって、本発明によれば、振動体電極部の信頼性が大幅に向上して、性能や品質を安定的に維持できる角速度センサを提供することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
図1は本発明を適用した角速度センサ1の外観斜視図であり、また、図2は上記角速度センサ1を使用するための駆動検出回路30の一例を示すブロック図である。
この実施の形態における角速度センサ1は、図1及び図2に示すように、振動ジャイロとして動作する振動子1aを備えている。
振動子1aは、図1に示されるように、基体2と圧電体3とを積層してなり、長手方向に対して垂直な平面で切断したときの断面の形状(以下、単に断面形状と称する)が矩形となる四角柱状に形成されている。
この振動子1aの基体2は、上記圧電体3の主面と対向する2つの主面2A,2Bと該2つの主面2A,2Bに連続する少なくとも1つの側面2Cに互いに 導通する電極2a,2b,2cが形成されている。そして、上記電極2b と基準電極3aが接合されることで上記基準電極3aと上記電極2a,2b,2cが導通し、上記基体2と圧電体3が積層された振動子1aを構成している。なお、上記基体2の全周面に導電性材料をメッキして電極を形成するようにしても良い。また、上記基体2を導電性を有する例えばアモルファスカーボンなどで形成した場合には上記電極2a,2b,2cを省略することができる。
また、この振動子1aの圧電体3は、PZT(チタン酸ジルコニウム酸鉛)を主成分とする圧電セラミックスからなり、通常、分極処理により生成されている。圧電体3には、その対向する一方の主面3Aであって上記基体2と接合される面に基準電極3aが形成されている。そして、この圧電体3は、その対向する他方の主面3Bに、駆動電極3bと、この駆動電極3bを挟む形で1対の検出電極3c1,3c2が、上記振動子1aの長手方向に沿って互いに平行に分割されて形成されており、駆動電極3bの形成されている部分が駆動用の圧電素子31として機能し、また、検出電極3c1,3c2の形成されている部分が検出用の圧電素子32,33として機能するようになっている。
ここで、上記振動子1aの基体2は、未分極のPZT、あるいは、上記圧電体3を構成する圧電セラミックスの主成分であるPZTと比べて、弾性変形に寄与する物性値が同等以下のPZT以外の材料、例えばアモルファスカーボンあるいはグラファイトなどのカーボンを主成分とするセラミックス材料からなる。各種材料の物性値の比較結果を図3に示すように、圧電セラミックスの主成分であるPZTはヤング率が103GPaで熱膨張係数が32×10−7〜35×10−7であるのに対し、アモルファスカーボンはヤング率が30〜33GPaで熱膨張係数が30×10−7であり、また、グラファイトはヤング率が14GPaで熱膨張係数が32×10−7であり、アモルファスカーボンやグラファイトなどカーボンを主成分とするセラミックス材料は、圧電セラミックスの主成分であるPZTとヤング率と熱膨張係数等の物性値が同等以下の値となっている。
ここで、この実施の形態における角速度センサ1では、上記基体2が導電性を有するアモルファスカーボンにて形成されているものとする。
この角速度センサ1において、圧電体3の厚さは基体2の厚さより薄く、例えば、圧電体3の厚さを0.2mm、基体2の厚さを0.8mmとしている。
そして、上記4角柱状の振動子1aは、その振動時に発生する2つの節点部をそれぞれ上下方向から挟持するように上記節点部に接合され、振動時に発生する節点部分が機械的支持及び電気的接続を兼ねる支持部材10A1,10A2,10B1,10B2により支持されている。
上記支持部材10A1,10A2,10B1,10B2は、例えば洋白、リン青銅、ステンレス等からなり、それぞれ各節点の上側の支持部材10A1,10A2と下側の支持部材10B1,10B2で上記振動子1aの長手方向に関して互いに同方向に屈曲された屈曲部11をそれぞれ途中に含み、上記振動子1aの上下方向および長手方向に直交する方向に伸びた腕部12と、該腕部12に上記振動子1aとの接続部13を有する。上側の支持部材10A1は、上記振動子1aの振動の節点において接続部13が1対の検出電極3c1,3c2に導電性接着剤により接合され、また、支持部材10A2は、振動子1aの振動の節点において接続部13が駆動電極3bに導電性接着剤により接合されている。
また、上記駆動電極3bに接合させる支持部材10A2が検出電極3c1,3c2を跨ぐ部分には、上記支持部材10A2の腕部12が検出電極3c1,3c2と接触しないように検出電極3c1,3c2を部分的にテーパ状に除去した短絡防止部18が設けてられている。
また、下側の支持部材10B1,10B2は、上記振動子1aの振動の節点において接続部13がアモルファスカーボンからなる基体2に導電性接着剤35により接合されており、上記基体2を介して上記基準電極3aと導通されている。
ここで、上記支持部材10A1,10A2,10B1,10B2、上記支持部材10A1,10A2が接合され検出電極3c1,3c2及び駆動電極3bは、それぞれ、少なくとも電気的接続部位の最上層表面には銀若しくは金のコーティング層16,26が形成されており、銀粒子を導電フィラーとする導電性接着剤35によって接合されることによって、電気的及び機械的に接続されている。
ここで、各種導電フィラーを使用した導電性接着剤の体積抵抗率を図4に示すように、銀粒子を導電フィラーとする導電性接着剤は、体積抵抗率が低い。
そして、各種導電フィラーを使用した導電性接着剤と各種基板との接続抵抗値を図5に示すように、銀粒子や金粒子を導電フィラーとする導電性接着剤35は、銀基板、金基板あるいは基板との接続抵抗値が低い。
また、上記腕部12の先端の接続部13は、その一部が切欠かれた切欠部13Aを有するリング形状や二股形状に形成されている。
このように上記腕部12の先端の接続部13は、切欠部13Aを有することによって、導電性接着剤が切欠部13Aに入り込むことでより高い機械的な接続強度が得られる。すなわち、例えば、図6に示すように、切欠部13Aを介して上記接続部13の両面に亘って連続する状態に塗布された銀粒子を導電フィラーとする導電性接着剤35によって、上記支持部材10A1,10A2と検出電極3c1,3c2及び駆動電極3bとの電気的及び機械的接続の信頼性を高めることができる。
なお、二股状に形成した接続部13は、二股の間に導電性接着剤35が入り込み易く、高い機械的な接続強度が得られる。また、振動子1aの小型化に伴い接続部13が小型になった場合においても、限られた面積においては、接続部13は、図7(A)に示すようなリング形よりも図7(B)に示すような半円形状とした方が内側の円の経を大きくとれるためにより機械的な接続強度が高まる。上記接続部13は、二股以上に分かれていれば図7(C)のようなY字型や図7(D)に示すコの字型や図7(E)に示す三股形状であっても同様な効果が得られる。
この角速度センサ1の圧電体3は、振動駆動機能及びその振動を検出する機能を合わせ持っている。これにより、角速度センサ1は、振動駆動機能により振動しているときに振動子1aが回転することによって生じたコリオリ力を検出機能により検出する。
すなわち、この角速度センサ1は、上記基体2と圧電体3とを積層して接合なる振動子1aの上記圧電体3の対向する一方の主面3Aに設けられている基準電極3aと他方の主面3Bに設けられている駆動電極3bとの間に電圧を印加することにより上記振動子1aを振動させるとともに上記振動子1aに生じるコリオリ力を圧電体3により検出し、上記他方の主面3Bに設けられている検出電極3c1,3c2から上記コリオリ力に応じた信号として角速度検出信号を出力する。
この角速度センサ1における振動子1aは、図2に示すように、支持部材10A1,10A2を介して駆動検出回路30と接続される。接続部13は、この駆動検出回路30により共振させられる振動子1aの振動の節点(ノード点)となり、振動子1aは軸方向の両端を自由端として共振させられる。
この角速度センサ1では、上下の支持部材10A1,10A2,10B1,10B2をほぼ同一位置に配置することにより、振動子1a周辺部の自由な空間が従来に比較し大幅に増大する。これにより、組立て時のハンドリング性、作業性が上がり、製造コストの低減が図れる。また、更なる小型化にも対応可能である。また、増大した空間にチップ部品等の回路部品を配置することが可能となり、デバイスの集積化が容易となる。一方、外部から衝撃が加わった場合、上下の支持部材10A1,10A2,10B1,10B2が同一方向に屈曲し対向されて配置されている為、振動の節点に回転モーメントが加わらず、上下の支持部材10A1,10A2,10B1,10B2が逆方向に配置された場合と比較し耐衝撃性に優れる。
なお、上部の支持部材10A1,10A2と下部の支持部材10B1,10B2は、図8に示すように、垂直方向に重なるが、上部の支持部材10A1,10A2の固定部の形状を拡大することによりインサートモールドへの接続は、問題なく行うことが可能である。また、図9に示すように、上部の支持部材10A1,10A2を折り曲げ延長して、基板60に対する接続片15を支持部材10A1,10A2に設けることにより、インサートモールド等の部品を使わず直接基板60上に実装することも可能である。
この角速度センサ1の駆動検出回路30は、図2に示すように、振動子1aの検出電極3c1,3c2に支持部材10A1を介して接続されたインピーダンス変換回路4及び差動増幅回路7と、上記インピーダンス変換回路4に接続された加算回路5と、この加算回路5に接続された発振回路6と、この発振回路6と上記差動増幅回路7に接続された同期検波回路8と、この同期検波回路8に接続された直流増幅回路9からなり、上記発振回路6の出力が支持部材10A2を介して駆動電極3bに供給されている。また、振動子1aの基準電極3aは、アモルファスカーボンからなる基体2に導通されており、支持部材10B1,10B2を介して基準電位37に接続されている。
この駆動検出回路30では、振動子1aとインピーダンス変換回路4と加算回路5と発振回路6で形成される自励発振回路によって、振動子1aは発振し、駆動片として用いられる駆動用の圧電素子31の形成面に直交する方向に屈曲振動する。
すなわち、振動子1aは、発振回路6の発振出力Vgoが駆動用の圧電素子31に印加されることによって駆動される。そして、上記振動子1aの検出用の圧電素子32の出力Vglと圧電素子33の出力Vgrがインピーダンス変換回路4を介してVzlとVzrとして加算回路5に入力され、この加算回路5による上記VzlとVzrの加算出力Vsaが発振回路6に帰還される。
この状態で、振動子1aの長軸を中心として回転すると、コリオリ力によって屈曲振動の向きが変わる。これによって、検出用の圧電素子32と圧電素子33の間に出力差Vgl−Vgrが生じ、差動増幅回路7から出力Vdaが得られる。このとき、振動子1aを駆動するための信号は、静止時の検出用の圧電素子32と圧電素子33の出力であり、圧電素子32と圧電素子33において同相で同じ大きさの信号である。このため、振動子1aを駆動するための信号は、差動増幅回路7で相殺される。また、コリオリ力に応じた信号は、圧電素子32と圧電素子33において逆相で同じ大きさの信号VclおよびVcrである。したがって、差動増幅回路7の出力VdaはVcl−Vcrに比例した信号となる。
この差動増幅回路7の出力Vdaを同期検波回路8で同期検波することで直流信号Vsdに変換している。同期検波回路8は差動増幅回路7の出力Vdaを 上記発振回路6が駆動信号に同期して出力するクロック信号Vckのタイミングで全波整流した後で積分し、直流信号Vsdを得ている。この信号Vsdを直流増幅回路9で所定の大きさまで直流増幅することで、回転により生じる角速度信号のみを検出することができる。
ここで、インピーダンス変換回路4は、入力がハイ・インピーダンスZ2で出力がロー・インピーダンスZ3となっており、圧電素子32と圧電素子33間のインピーダンスZ1と加算回路5の入力間のインピーダンスZ4を分離するために用いられている。仮にインピーダンス変換回路4がない場合は、圧電素子32と圧電素子33間のインピーダンスZ1と加算回路5の入力間のインピーダンスZ4は分離されず、圧電素子32と圧電素子33の間に生じた出力差はZ4/(Z1+Z4)を掛けた大きさになり、インピーダンス変換回路がある場合に比べて小さくなってしまう。
インピーダンス変換回路4は、入力と出力でのインピーダンスを変換しているだけで信号の大きさには影響を与えないため、圧電素子32の出力Vglとインピーダンス変換回路4の一方の出力Vzlは同じ大きさとなり、圧電素子33の出力Vgrとインピーダンス変換回路4の他方の出力Vzrは同じ大きさとなる。したがって、加算回路5の出力Vsaでは、コリオリ力に応じた信号は相殺され、静止時の圧電素子32と圧電素子33の出力の和となる。この加算回路5と振動子1aとインピーダンス変換回路4と発振回路6による正帰還ループで発振回路を形成していて、振動子1aの共振周波数にて自励発振する。
このような駆動検出回路30の電源に、数百キロヘルツ以上の発振周波数で作られたスイッチング・レギュレータの出力電圧を供給すると、電源ノイズがインピーダンス変換回路4の2つの出力間にも飛込むことで信号ノイズとなる。ここで、インピーダンス変換回路4の2つの出力への電源ノイズの飛込み方に違いがある場合は、2つの出力VzlとVzrの間にノイズによる電位差が生じることになる。前記信号ノイズを含むインピーダンス変換回路4の2つの出力VzlとVzrが、加算回路5で加算され、発振回路6を通して振動子1aに入力される。
当然、発振回路6の出力Vgoにも前記信号ノイズが乗っているが、振動子1aはバンド・パス・フィルタと同じ働きをするので、振動子1aの共振周波数以外の成分は除去される。したがって、この駆動検出回路30では、圧電素子32と圧電素子33の出力からは前記信号ノイズが除去されているので、差動増幅回路7の出力Vdaにも前記信号ノイズが含まれず、電源ノイズの影響を受けない。
また、この実施の形態において、角速度センサ1は、同一面に検出電極3c1,3c2と駆動電極3bが配されているので、図10(A)に示すように、基体の母体であるウェハ20と両面電極メッキを施すことにより各電極を形成した圧電体の母体であるウェハ25とを積層させてこれらを接着し、図10(B)に示すように、四角柱状として個々に切り出すことにより、図10(C)に示すように、振動子1aを製造することができる。このような工程により製造される振動子1aは、非常に精度が高く、かつ超小型化が可能となる。さらに量産効果も得やすい構造とされる。また、圧電体の接着位置ずれといった問題も解決することができる。また、基体は、上記圧電体と略同様の切削加工性を有していることから、基体のウェハと圧電体のウェハとから上述したように、振動子としての切り出しが容易とされる。
さらに、従来のように、恒弾性金属振動子に圧電素子を接着したり、曲面に電極を印刷するといった難しい工程を設ける必要がなくなる。
なお、この角速度センサ1では、上記圧電体3の対向する一方の主面3Aに形成された基準電極3a と接合される基体2を導電性がある材料で形成したが、絶縁性の基体2に導電性がある材料をメッキして、上記圧電体3の主面3Aと対向する上記基体2の2つの主面2A,2Bと該2つの主面2A,2Bに連続する少なくとも1つの側面に上記基準電極3aと導通する電極を形成することによって、圧電体3に効率よく駆動電界を印加することが可能になり、感度向上を図ることが可能になる。
また、当然、小型化に伴って技術的な難しさが増し、精度を確保することが困難になると考えられるが、既にLSIやヘッド加工などで確立されている微細加工技術を応用することにより、このような問題はクリアできる。従って、高精度の寸法精度が得られるため、振動子の周波数調整も簡略化することが可能になる。
また、自励発振型駆動回路を応用することにより、非常に簡単な回路によって高精度な角速度センサ1を構成することができる。
そして、この角速度センサ1は、自励発振型なので、他励発振型の角速度センサのように温度特性の影響によって感度が低下してしまうようなこともない。
ここで、この角速度センサ1の環境温度の変化に対する感度の変化特性の実測結果を図11に示す。この図11において、特性A1は、圧電体3を構成する圧電セラミックスの主成分であるPZTと比べてヤング率と熱膨張係数が同等以下の材料(アモルファスカーボン)にて基体2を構成した角速度センサ1の特性を示し、特性B1は、基体2をPZTにて構成した場合の特性を示している。
この図11からも明らかなように、圧電体3を構成する圧電セラミックスの主成分であるPZTと比べてヤング率と熱膨張係数が同等以下の材料(アモルファスカーボン)にて基体2を構成することによって、環境温度の変化の影響を受けにくい振動子1aを構成することができる。
また、この振動子1aは、図12に示す特性A2ように、基体をPZTにて構成した場合の特性B2と比較して、振動子単体の共振抵抗の温度変化を小さくすることができ、その結果角速度検出感度の温度変化が小さくなり、また、その変化の形態が直線的なので補正を容易に行うことができる。
また、この角速度センサ1における振動子1aの断面縦横比と離調度の関係を図13に示す。なお、離調度とは、縦方向の共振周波数と横方向の共振周波数の差であり、離調度が小さい程感度は高くなる。
この図13において、特性A3は、圧電体3を構成する圧電セラミックスの主成分であるPZTと比べてヤング率と熱膨張係数等の物性値が同等以下の材料(アモルファスカーボン)にて基体2を構成した角速度センサ1の特性を示し、特性B3は、基体2をPZTにて構成した場合の特性を示している。
この図13中に特性A3に対し離調度0±200Hzに対応する振動子1aの縦横比の範囲を黒枠にて囲んで示してあるように、この角速度センサ1では、振動子1aの全幅と厚みとの比すなわち断面縦横比を1.030〜1.055の範囲内とすることによって離調度を0近傍とすることができ、初期状態でこの範囲に抑えることによって離調度を容易に且つ確実に調整することができる。
なお、この角速度センサ1では、同一面に形成された駆動電極3bと検出電極3c1,3c2の振動子1aの幅方向の電極寸法W1,W2を、図14に示すように、検出電極3c1,3c2と駆動電極3bとで異ならしめることによって、検出特性を最適化することができる。すなわち、駆動電極3bの形状や寸法を調整することで駆動効率を調整することができ、また、検出電極3c1,3c2の形状や寸法を調整することで検出効率を調整が可能になる。
上記角速度センサ1において、駆動電極3bの幅をW1、検出電極3c1,3c2の幅をW2とし、W1/W2を1〜2.8の範囲で変えた場合の感度を測定した結果を図15に示す。
この図15に示す感度特性から明らかなように、上記角速度センサ1は、W1とW2との比率が1<W1/W2≦2.6の範囲でW1/W2=1と同等以上の感度を示す。特に、1.8<W1/W2≦2.0の範囲では、W1/W2=1の場合と比較して2倍以上の感度が得られる。
また、上記角速度センサ1の感度と離調度の関係を図16に示す。
ここで、離調度とは、縦方向の共振周波数と横方向の共振周波数の差であり、離調度が小さい程感度は高くなる。TYPE1はW1/W2=1の場合を示しており、TYPE2はW1/W2=1.9の場合を示している。この図16から明らかなように、離調度がどの範囲にあっても、W1/W2=1の場合よりもW1/W2=1.9の場合の方が圧倒的に感度が高い。
さらに、この実施の形態における角速度センサ1において、圧電体3の厚さT1は基体2の厚さT2より薄く、例えば、圧電体3の厚さT1を0.2mm、基体2の厚さを0.8mmとしているが、上記圧電体3の厚みT1と上記振動子1aの厚みT0との比を変えて、振動子1aの発振周波数及びその駆動回路の移相器の調整許容量を測定したところ、図17に示すような結果が得られた。上述の如き構造の角速度センサ1では、上記圧電体3の厚みT1と上記振動子の厚みT0との比を0.14〜0.27の範囲内、具体的には、振動子1aの厚みT0が0.9mm〜1.1mmに対して、圧電体3の厚みT1を0.15mm〜0.25mmの構成にすることで、共振抵抗と発振周波数を一定の範囲内に圧縮できるとともに、振動子1aを自励発振させるための駆動回路のフェイズマージンを確保できる。さらに、振動子1aの寸法変化に対する周波数変化の度合いを低減できることにより、所定の離調度や発振周波数への調整が容易になる。
以上のように、この実施の形態の角速度センサ1は、上記支持部材10A1,10A2と検出電極3c1,3c2及び駆動電極3bの最上層表面に銀若しくは金のメッキを施しており、これらを銀粒子を導電フィラーとする導電性接着剤35で接着接続してなる。
なお、この実施の形態の角速度センサ1のおいて、母材であるPZTや金属材料との親和性を向上させる為に下地膜としてニッケルや銅等の金属膜を形成し、その上に上記銀や金を成膜してもよい。また、適正な付着力と膜質が得られれば、成膜方法がメッキに限らずスパッタや蒸着等の手法であっても、本質的に問題ないことは言うまでもない。例えば、PZT側が下地膜をニッケル1μmとし、仕上げ膜に銀1μmをメッキにて処理している。金属バネの材質には100μm厚の洋白を用い、下地膜に銅1μm、仕上げ膜に銀1μmをメッキにて処理している。基体の材質がアモルファスカーボン材の場合は電極3bは不要となり、材料表面に直にエポキシ系導電性接着剤35を塗布して上記仕様の支持部材を接続すればよい。
この実施の形態の角速度センサ1のように、銀粒子を導電フィラーとする導電性接着剤35に適応した接続構造とすることにより、接着剤と被接着物の電気的親和性が向上して、他の条件下で接続したときよりも接続状態が安定する。特に被接着物の最上層表面を銀でコーティングした場合は、接着剤と被接着物の両方に銀が存在する形となり、化学的に平衡状態となって接点間での物質移動は起こり難くなる。また、熱や水分が作用することで導電性接着剤内銀粒子のマイグレーションが進行しようにも、被接着物表面に存在する銀や金がバリアーになって銀粒子の移動を阻害する。結果的に、導電性接着剤内の銀粒子の移動が起こらない為に一度形成された絶縁破壊状態は維持でき、熱や湿度等の外乱が加わっても同接続部での抵抗変化が起こり難くなる。さらに、元来比抵抗値が小さく、化学的に安定な銀や金でコーティングしているので、接着剤硬化時の酸化や変質が抑制されて、結果的に接続部自体が有する電気抵抗を下げることができる。
また、アモルファスカーボン材は、同材料を製造するためのスタート原材料が芳香族化合物の樹脂であり、特にエポキシ樹脂との親和性は高い。同材料自体が導電性であり緻密構造で化学的にも安定な為、銀や他金属元素とも反応し難く、熱や水分等の外乱が働いても導電性接着剤内の銀粒子の物質移動は起り難い。物質移動が無ければ導電性接着剤内の絶縁破壊状態を維持できるので、結果的に抵抗変化は起こらない。
ここで、実験比較例として、同じ形状で同じ材質の金属バネ2枚を用いて、導電性接着剤を挟む形の試料を作製し、同金属バネ最上層表面の材質のみを変化させた場合の同接続端子部の抵抗変化状況を図18に示す。
なお、各々のサンプルに対して加えた外乱は、高温高湿試験が85℃95%Rh環境に120h保持、リフロー試験がピーク温度250℃で230℃以上30秒間キープの温度プロファイルを有する連続炉に試料を2回通すものとする。いずれの評価も試験終了直後ではなく、常温常湿環境中に24h以上放置してから測定した。図18に示す通り、金属バネ最上層表面の材質が銀や金の場合は初期抵抗も小さく、高温高湿やリフロー処理といった外乱を加えた後でも抵抗変化は小さい。しかし、同最上層表面の材質がニッケルや洋白の場合は、初期抵抗が小さくとも外乱によって抵抗値が大きく変化し、結果的にデバイスの性能に悪影響を及ぼすことが読み取れる。
1 角速度センサ、1a 振動子、2 基体、2A,2B 主面、3 圧電体、3A,3B 主面、3a 基準電極、3b 駆動電極、3c1,3c2 検出電極、4 インピーダンス変換回路、5 加算回路、6 発振回路、7 差動増幅回路、8 同期検波回路、9 直流増幅回路、10A1,10A2,10B1,10B2 支持部材、11 屈曲部、12 腕部、13 接続部、13A 切欠部、15 接続片、16,26 コーティング層、18 短絡防止部、20,25 ウェハ、30 駆動検出回路、31,32,33 圧電素子、37 基準電位、35 導電性接着剤
Claims (5)
- 表面に駆動電極と検出電極が形成された圧電セラミクス振動体からなる柱状の振動子と、
上記振動子の振動時に発生する節点部を挟持するように上記節点部に接合され、上記振動子の機械的支持及び電気的接続を兼ねる支持部材を備え、
上記支持部材は、上記振動子の振動方向と略直交する方向に長尺な腕部と、該腕部の先端に形成され、切欠部が設けられた上記振動子との接続部を有し、
上記振動子及び支持部材は、それぞれ電気的接続部位の最上層表面が銀若しくは金でコーティングされてなり、上記切欠部を介して上記接続部の両面に亘って連続する状態に塗布された銀粒子を導電フィラーとする導電性接着剤によって電気的及び機械的に接続されてなることを特徴する角速度センサ。 - 上記支持部材は、各節点の上側の支持部材と下側の支持部材で上記振動子の長手方向に関して互いに同方向に屈曲された屈曲部をそれぞれ途中に含み、上記振動子の上下方向および長手方向に直交する方向に伸びた腕部と、該腕部に上記振動子との接続部を有することを特徴とする請求項1記載の角速度センサ。
- 上記振動子は基体と圧電体とを積層してなり、
上記圧電体はPZT(チタン酸ジルコニウム酸鉛)を主成分とする圧電セラミクスからなり、上記基体は、上記圧電セラミクスの主成分であるPZTと比べて、ヤング率と熱膨張係数が同等以下の物性値を持つPZT以外の材料からなることを特徴とする請求項1の記載角速度センサ。 - 上記基体は、アモルファスカーボンからなることを特徴とする請求項3記載の角速度センサ。
- 上記圧電体の対向する一方の主面であって上記基体と接合される面に形成され、基準電位に接続される基準電極と、
上記圧電体の対向する他方の主面に上記振動子の長手方向に沿って形成され、上記振動子を振動させるための信号が供給される少なくとも1つの駆動電極と、
上記圧電体の対向する他方の主面に上記駆動電極を挟む形で互いに平行に形成され、上記振動子に生じるコリオリ力に応じた信号を出力するための少なくとも1対の検出電極とを備え、
上記振動子の機械的支持及び電気的接続を兼ねる支持部材を介して上記駆動電極と上記基準電極との間に電圧を印加して、上記圧電体により上記振動子を振動させるとともに上記振動子に生じるコリオリ力を上記圧電体により検出し、上記検出電極から上記コリオリ力に応じた信号として得られる角速度検出信号を上記振動子の機械的支持及び電気的接続を兼ねる支持部材を介して出力することを特徴とする請求項3記載の角速度センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004024372A JP2005214878A (ja) | 2004-01-30 | 2004-01-30 | 角速度センサ |
US11/027,155 US7140249B2 (en) | 2004-01-30 | 2004-12-30 | Angular velocity sensor |
KR1020050006593A KR20050078207A (ko) | 2004-01-30 | 2005-01-25 | 각속도(角速度) 센서 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004024372A JP2005214878A (ja) | 2004-01-30 | 2004-01-30 | 角速度センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005214878A true JP2005214878A (ja) | 2005-08-11 |
Family
ID=34879124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004024372A Withdrawn JP2005214878A (ja) | 2004-01-30 | 2004-01-30 | 角速度センサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US7140249B2 (ja) |
JP (1) | JP2005214878A (ja) |
KR (1) | KR20050078207A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170165A (ja) * | 2007-01-09 | 2008-07-24 | Sony Corp | 振動型ジャイロセンサ、制御回路及び電子機器 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005114423A (ja) * | 2003-10-03 | 2005-04-28 | Sony Corp | 角速度センサ |
JP2005114631A (ja) * | 2003-10-09 | 2005-04-28 | Sony Corp | 角速度センサ |
JP4442526B2 (ja) * | 2005-07-20 | 2010-03-31 | セイコーエプソン株式会社 | 圧電振動ジャイロセンサ及び圧電振動ジャイロセンサを備えた電子機器 |
JP4310325B2 (ja) * | 2006-05-24 | 2009-08-05 | 日立金属株式会社 | 角速度センサ |
JP2008008634A (ja) * | 2006-06-27 | 2008-01-17 | Fujitsu Media Device Kk | 角速度センサ |
JP2009198493A (ja) * | 2007-12-26 | 2009-09-03 | Rohm Co Ltd | 角速度検出装置 |
JP5360361B2 (ja) | 2008-07-17 | 2013-12-04 | セイコーエプソン株式会社 | 角速度検出装置用回路、角速度検出装置及び故障判定システム |
JP5360362B2 (ja) * | 2008-07-17 | 2013-12-04 | セイコーエプソン株式会社 | 角速度検出装置用回路、角速度検出装置及び故障判定システム |
JP4802313B2 (ja) * | 2008-08-01 | 2011-10-26 | ニッコー株式会社 | 圧電振動子の保持装置 |
US9927239B2 (en) | 2015-06-01 | 2018-03-27 | Analog Devices, Inc. | Micromachined cross-hatch vibratory gyroscopes |
CN110347263A (zh) * | 2019-07-16 | 2019-10-18 | 异起(上海)智能科技有限公司 | 一种虚拟现实中的移动方法和装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493166A (en) * | 1988-08-12 | 1996-02-20 | Murata Manufacturing Co., Ltd. | Vibrator and vibrating gyroscope using the same |
US5345822A (en) * | 1991-06-28 | 1994-09-13 | Murata Manufacturing Co., Ltd. | Vibratory gyroscope having a support member |
DE69423014T2 (de) * | 1993-12-21 | 2000-08-31 | Murata Mfg. Co., Ltd. | Vibrationskreisel |
US5765046A (en) * | 1994-08-31 | 1998-06-09 | Nikon Corporation | Piezoelectric vibration angular velocity meter and camera using the same |
JP3341661B2 (ja) * | 1997-12-10 | 2002-11-05 | 株式会社村田製作所 | 振動ジャイロ |
JP3741041B2 (ja) * | 2001-05-09 | 2006-02-01 | 株式会社村田製作所 | 振動ジャイロおよびそれを用いた電子装置 |
JP3767540B2 (ja) * | 2002-10-28 | 2006-04-19 | 株式会社村田製作所 | 振動ジャイロ及び角速度センサー |
-
2004
- 2004-01-30 JP JP2004024372A patent/JP2005214878A/ja not_active Withdrawn
- 2004-12-30 US US11/027,155 patent/US7140249B2/en not_active Expired - Fee Related
-
2005
- 2005-01-25 KR KR1020050006593A patent/KR20050078207A/ko not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170165A (ja) * | 2007-01-09 | 2008-07-24 | Sony Corp | 振動型ジャイロセンサ、制御回路及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
US7140249B2 (en) | 2006-11-28 |
US20050188766A1 (en) | 2005-09-01 |
KR20050078207A (ko) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108507557B (zh) | 传感器装置 | |
US8511161B2 (en) | Physical amount detecting device | |
JP2005214878A (ja) | 角速度センサ | |
US20130057355A1 (en) | Piezoelectric vibration device and oscillator | |
US8065914B2 (en) | Vibration gyro | |
JP2008244244A (ja) | 電気機械装置および電気・電子機器 | |
JP2008014633A (ja) | 振動型ジャイロセンサ | |
JP2007024741A (ja) | 圧電振動ジャイロセンサ及び圧電振動ジャイロセンサを備えた電子機器 | |
JP2009092545A (ja) | 角速度および加速度検出用複合センサ | |
JP5030135B2 (ja) | 圧電単結晶振動子および圧電振動ジャイロ | |
JP2005114631A (ja) | 角速度センサ | |
JP2005257615A (ja) | 角速度センサ | |
JP2005214881A (ja) | 角速度センサ及びその製造方法 | |
JP2008039576A (ja) | 振動型ジャイロセンサ | |
JP3783708B2 (ja) | 角速度センサ | |
JP6567877B2 (ja) | 水晶デバイス | |
JP2005321374A (ja) | 音叉型圧電振動ジャイロ | |
JP2012167941A (ja) | センサーデバイス、モーションセンサー、電子機器 | |
JP2008003017A (ja) | 圧電単結晶振動子および圧電振動ジャイロ | |
JP2008139048A (ja) | 振動型ジャイロセンサ及びその製造方法 | |
JP5040196B2 (ja) | 角速度センサ素子及びこれを利用した角速度センサ | |
JP6567878B2 (ja) | 水晶デバイス | |
JP2005321221A (ja) | 圧電振動子 | |
JP2005308683A (ja) | 圧電振動子 | |
JP2014165758A (ja) | 圧電振動デバイス及び発振器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070403 |