JP2005204436A - Drive force control device of wheel independently driven type electric vehicle - Google Patents
Drive force control device of wheel independently driven type electric vehicle Download PDFInfo
- Publication number
- JP2005204436A JP2005204436A JP2004008986A JP2004008986A JP2005204436A JP 2005204436 A JP2005204436 A JP 2005204436A JP 2004008986 A JP2004008986 A JP 2004008986A JP 2004008986 A JP2004008986 A JP 2004008986A JP 2005204436 A JP2005204436 A JP 2005204436A
- Authority
- JP
- Japan
- Prior art keywords
- driving force
- wheel
- motor
- wheels
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Regulating Braking Force (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本発明は、車輪を駆動するモータの駆動力を減少させて、モータの焼け付きを防止する安全機能を具えた車輪独立駆動式電気自動車の駆動力制御に関するものである。 The present invention relates to a driving force control of a wheel independent driving type electric vehicle having a safety function for reducing the driving force of a motor for driving wheels and preventing the motor from being burned.
車輪を個々の駆動モータで独立に駆動する車輪独立駆動式車両につき、駆動モータに異常が生じて駆動不能に陥った場合における制御の発明としては従来、例えば特許文献1に記載のごときものが知られている。
特許文献1に記載の駆動力制御装置は、旋回走行中に、左右側に個々に設けた駆動源のうちの旋回方向内輪が駆動不能になった場合には、左右の駆動源の駆動力供給を瞬時に停止し、旋回方向外輪が駆動不能になった場合には、当該外輪の駆動源の駆動力供給を瞬時に停止するとともに、内輪の駆動力を徐々に減少させながら停止せしめ、車両の唐突な挙動変化を防止し、もって走行安定性および安全性の向上を図るものである。 In the driving force control device described in Patent Document 1, when turning inner wheels in the turning direction out of the driving sources individually provided on the left and right sides cannot be driven during turning, the driving force is supplied from the left and right driving sources. When the outer wheel in the turning direction cannot be driven, the supply of driving force from the driving source of the outer wheel is stopped instantaneously, and the driving force of the inner ring is gradually decreased to stop the vehicle. It is intended to prevent sudden changes in behavior and thereby improve running stability and safety.
しかし、上記従来のような駆動力制御装置にあっては、以下に説明するような問題を生ずる。つまり、駆動力供給を停止する特許文献1の制御では、車両の唐突な挙動変化によって生じる車両の不安定な走行を抑制することはできるものの、車両の挙動変化そのものまで防止することはできないという問題が依然として残っている。
このため、運転者の操舵操作に対応した車両の実際の旋回走行状態であるヨーレイト挙動を維持することができず、駆動不能に陥る前の直進安定性や、旋回半径等が変化してしまう。
また、駆動不能に陥る前の総駆動力を維持することができず、運転者のアクセル操作に対応した加速状態で走行できない。
However, the conventional driving force control apparatus has the following problems. That is, in the control of Patent Document 1 for stopping the supply of driving force, although the unstable running of the vehicle caused by the sudden behavior change of the vehicle can be suppressed, the behavior change of the vehicle itself cannot be prevented. Still remains.
For this reason, the yaw rate behavior that is the actual turning traveling state of the vehicle corresponding to the driver's steering operation cannot be maintained, and the straight-running stability before turning incapable of driving, the turning radius, and the like change.
In addition, the total driving force before the driving becomes impossible cannot be maintained, and the vehicle cannot travel in an acceleration state corresponding to the driver's accelerator operation.
本発明は、車輪を駆動するモータの温度を監視し、モータ温度が焼け付きを生じない許容温度域を超えて上昇することが推定される場合には、このモータにより駆動される車輪の駆動力を通常の制御時よりも減少側に補正してこのモータを保護することを第1の目的とする。
そして、車輪の駆動力を通常の制御時よりも減少補正することにより新たに生じる問題、つまり、駆動力配分の変化により、車両に新たなヨーモーメントが発生してしまい、ヨーレイト挙動が変化するという問題を解決し、モータ保護のための減少補正中は勿論、その後も通常の制御時のヨーレイト挙動を維持することを第2の目的とする。
The present invention monitors the temperature of the motor that drives the wheel, and if it is estimated that the motor temperature rises beyond an allowable temperature range that does not cause seizure, the driving force of the wheel that is driven by this motor. The first object is to protect the motor by correcting the motor to a lower side than during normal control.
Then, a new problem that arises by correcting the wheel driving force to be smaller than that during normal control, that is, a change in the driving force distribution, a new yaw moment is generated in the vehicle, and the yaw rate behavior changes. A second object is to solve the problem and maintain the yaw rate behavior during normal control as well as during the reduction correction for motor protection.
この目的のため本発明による駆動力制御装置は、請求項1に記載のごとく、
車輪を個々のモータで独立に駆動する車輪独立駆動式電気自動車に用いられ、該車輪の駆動力を個々に制御する駆動力制御装置において、
前記モータの温度を検出する手段と、検出したモータ温度に基づき検出後のモータ温度を推定する温度推定手段を具え、
推定したモータ温度が、モータに不具合を与えない温度範囲である許容温度域を超える時、該許容温度域を超えるモータにより駆動される車輪の駆動力を減少側に補正するものである。
For this purpose, the driving force control device according to the invention is as described in claim 1,
In a driving force control device that is used in a wheel independent drive type electric vehicle that independently drives wheels by individual motors and individually controls the driving force of the wheels,
Means for detecting the temperature of the motor, and temperature estimating means for estimating the detected motor temperature based on the detected motor temperature,
When the estimated motor temperature exceeds an allowable temperature range that is a temperature range that does not cause problems with the motor, the driving force of the wheel driven by the motor that exceeds the allowable temperature range is corrected to the decreasing side.
そして、上記補正をしない場合の車両のヨーモーメントを維持するよう、残りの車輪の駆動力を補正するよう構成したことを特徴としたものである。 In addition, the driving force of the remaining wheels is corrected so as to maintain the yaw moment of the vehicle when the above correction is not performed.
かかる本発明の駆動力制御装置によれば、許容温度域を超えると推定されるモータの出力を通常よりも減少させ、焼け付きを防止することができる。そして、これがために車輪の駆動力配分が変化する場合であっても、減少側に補正する前に車両に発生していたヨーモーメントを維持するように、残りのモータの出力を補正することにより、当該補正中であっても車両に発生するヨーモーメントが変化することがなく、補正前の運転者の操舵操作に対する車両の実際の旋回走行であるヨーレイト挙動を維持することが可能となる。
したがって、直進走行中にモータ保護のため当該補正を行う場合であっても、ヨーモーメントの発生を防止して直進性を損なうことがない。
また、旋回走行中にモータ保護のため当該補正を行う場合であっても、ヨーレイト挙動が変化するのを防止して、旋回走行時の走行特性を維持することができる。
According to the driving force control apparatus of the present invention, it is possible to reduce the output of the motor that is estimated to exceed the allowable temperature range, and to prevent burn-in. And even if the driving force distribution of the wheels changes because of this, by correcting the output of the remaining motor so as to maintain the yaw moment that was generated in the vehicle before correcting to the decrease side Even during the correction, the yaw moment generated in the vehicle does not change, and it is possible to maintain the yaw rate behavior that is the actual turning traveling of the vehicle with respect to the steering operation of the driver before the correction.
Therefore, even when the correction is performed to protect the motor during the straight traveling, the yaw moment is prevented from being generated and the straight traveling performance is not impaired.
Further, even when the correction is performed to protect the motor during turning, it is possible to prevent the yaw rate behavior from changing and maintain the running characteristics during turning.
以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の一実施例になる駆動力制御装置を具えた4輪独立駆動方式の電気自動車を、その駆動系と共に示す要部平面図である。
この電気自動車1は、左前輪2FL、右前輪2FR、左後輪2RL、および右後輪2RRの4つの車輪具え、これら車輪2FL,2FR,2RL,2RRはそれぞれドライブシャフト9FL,9FR,9RL,9RRを介して、個々の駆動源であるモータ3FL,3FR,3RL,3RRと連結する。これによりモータ3FL,3FR,3RL,3RRは車輪2FL,2FR,2RL,2RRを個別に駆動することで電気自動車1を走行可能とする。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is a plan view showing a main part of a four-wheel independent drive type electric vehicle equipped with a drive force control device according to an embodiment of the present invention, together with its drive system.
The electric vehicle 1 has four wheels, a left front wheel 2FL, a right front wheel 2FR, a left rear wheel 2RL, and a right rear wheel 2RR. These wheels 2FL, 2FR, 2RL, and 2RR are drive shafts 9FL, 9FR, 9RL, and 9RR, respectively. The motors 3FL, 3FR, 3RL, and 3RR, which are individual drive sources, are connected via the. Thus, the motors 3FL, 3FR, 3RL, and 3RR can drive the electric vehicle 1 by individually driving the wheels 2FL, 2FR, 2RL, and 2RR.
モータ3FL,3FR,3RL,3RRは電力ケーブル4FL,4FR,4RL,4RRを介してコントローラ5と接続する。コントローラ5は、車輪2FL,2FR,2RL,2RRの目標駆動力を演算し、これら目標駆動力の実現に必要な電力をモータ3FL,3FR,3RL,3RRへ供給する。 コントローラ5が、各車輪の目標駆動力を求め、必要な電力を供給し得るよう、このコントローラ5には、モータ3FL,3FR,3RL,3RRの温度をそれぞれ検出する温度センサ6FL,6FR,6RL,6RRからの信号と、
電気自動車1のヨーレイト挙動を検出するヨーレイトセンサ7からの信号と、バッテリ8からの電力とを入力する。
Motors 3FL, 3FR, 3RL, 3RR are connected to
A signal from the
コントローラ5は、基本的にはアクセル開度および車速に基づいて各車輪の目標駆動力を演算し、これら目標駆動力を実現するようモータへ電力を供給するが、検出したモータ3FL,3FR,3RL,3RRの温度およびこれらモータ温度の単位時間あたりの上昇率から、モータ温度が所定の許容温度域を超えると推定するときは、超えると推定したモータへの電力供給を絞ってこのモータに係る車輪の駆動力を減少側に補正し、このモータの発熱量を低減することでモータの焼け付きを防止する。
このように車輪の駆動力を減少補正する場合、電気自動車1は運転者が入力したアクセル開度に応じた加速走行を実現できず、運転者が違和感を感じることとなる。また、左右輪のうち、一方の車輪の駆動力のみを減少補正する場合、電気自動車1に新たなヨーモーメントが発生してヨーレイト挙動が変化するため、運転者の操舵操作通りに直進走行または旋回走行することができなくなる。
The
In this way, when the driving force of the wheel is decreased and corrected, the electric vehicle 1 cannot realize acceleration traveling according to the accelerator opening input by the driver, and the driver feels uncomfortable. Further, when only the driving force of one of the left and right wheels is corrected to decrease, a new yaw moment is generated in the electric vehicle 1 and the yaw rate behavior changes, so that the vehicle travels straight or turns according to the steering operation of the driver. It becomes impossible to run.
そこで本実施例では、コントローラ5が、アクセル開度および車速に基づいて各車輪の目標駆動力を演算し、これら目標駆動力を実現するようモータ3FL,3FR,3RL,3RRの出力を制御する通常の制御に加えて、図2にフローチャートで示す制御プログラムを繰り返し実行して、上記の問題が生じないよう残りのモータに係る車輪の目標駆動力を補正する。
Therefore, in this embodiment, the
先ずステップS1では、温度センサ6FL,6FR,6RL,6RRからの信号を読み込み、モータ3FL,3FR,3RL,3RRの温度を検出する。 First, in step S1, signals from the temperature sensors 6FL, 6FR, 6RL, 6RR are read, and the temperatures of the motors 3FL, 3FR, 3RL, 3RR are detected.
次のステップS2では、モータが駆動回転するのに理想的な温度範囲であるモータ温度の推奨温度域を参照し、検出した各モータ3FL,3FR,3RL,3RRのモータ温度のうち、いずれか1つ以上が推奨温度域を超えているか否かを判断する。なお、推奨温度域はコントローラ5にあらかじめ記憶しておく。
いずれのモータ温度も推奨温度域を超えていない場合 (No)、検出したモータ温度が許容温度域の上限値よりも十分低く、モータが焼け付くおそれがないため、ステップS3へ進み、演算した各車輪の目標駆動力を補正せずにそのまま実現する通常の制御に従って4輪走行を継続し、本制御を終了する。
なお、モータ温度の許容温度域とは、モータが焼け付き等の不具合を生しないように駆動回転することができる範囲をいい、許容温度域の上限値は、推奨温度域の上限値よりも高い。
In the next step S2, the recommended temperature range of the motor temperature, which is an ideal temperature range for driving and rotating the motor, is referred to and any one of the detected motor temperatures of the motors 3FL, 3FR, 3RL, 3RR is detected. Determine whether one or more of them exceed the recommended temperature range. The recommended temperature range is stored in the
If any motor temperature does not exceed the recommended temperature range (No), the detected motor temperature is sufficiently lower than the upper limit value of the allowable temperature range, and there is no possibility that the motor will be burned. The four-wheel running is continued in accordance with the normal control that is realized without correcting the target driving force of this, and this control is terminated.
The allowable temperature range of the motor temperature refers to a range in which the motor can be driven and rotated so as not to cause problems such as seizure. The upper limit value of the allowable temperature range is higher than the upper limit value of the recommended temperature range. .
一方ステップS2において、いずれか1つ以上のモータ温度が推奨温度域を超えている場合には(Yes)、ステップS4へ進み、時間Δtのモータ温度の変化量、例えば前回フローチャート実行時に検出したモータ温度と、今回フローチャート実行時に検出したモータ温度との変化量をフローチャート実行時間で除したモータ温度変化率、を算出する。そして、算出したモータ温度変化率と、直近で検出したモータ温度とから、演算した各車輪の目標駆動力を実現する通常の制御に従って4輪走行を継続した場合に、許容温度域を超えるか否か推定する。
前方のモータ3FL,3FRおよび後方のモータ3RL,3RRの両者が許容温度域を超えると推定する場合(Yes)、ステップS5へ進み、全ての車輪の目標駆動力を一律の割合で減少側に補正し、減少補正した駆動力を実現するよう4輪走行を継続し、本制御を終了する。
図3は、上記ステップS5で実行する目標駆動力の補正の一例を、模式的に示した平面図であり、全てのモータ3FL,3FR,3RLおよび3RRの出力を同じ割合で減少補正する。
On the other hand, if at least one motor temperature exceeds the recommended temperature range in step S2 (Yes), the process proceeds to step S4, and the amount of change in the motor temperature at time Δt, for example, the motor detected when the previous flowchart was executed. A motor temperature change rate is calculated by dividing the amount of change between the temperature and the motor temperature detected at the time of execution of this flowchart by the flowchart execution time. Whether or not the allowable temperature range is exceeded when the four-wheel traveling is continued according to the normal control for realizing the calculated target driving force of each wheel based on the calculated motor temperature change rate and the most recently detected motor temperature. I guess.
If it is estimated that both the front motors 3FL and 3FR and the rear motors 3RL and 3RR exceed the allowable temperature range (Yes), the process proceeds to step S5, and the target driving force of all the wheels is corrected to the decreasing side at a uniform rate. Then, the four-wheel drive is continued so as to realize the driving force corrected for decrease, and this control is finished.
FIG. 3 is a plan view schematically showing an example of the correction of the target driving force executed in step S5. The outputs of all the motors 3FL, 3FR, 3RL and 3RR are reduced and corrected at the same rate.
一方ステップS4において、前方のモータ3FL,3FRまたは後方のモータ3RL,3RRのうちいずれか一方のモータが許容温度域を超えると推定する場合には(No)、ステップS6へ進む。 On the other hand, when it is estimated in step S4 that any one of the front motors 3FL and 3FR or the rear motors 3RL and 3RR exceeds the allowable temperature range (No), the process proceeds to step S6.
ステップS6では、許容温度域を超えると推定されたモータが、前輪2FL,2FRの駆動モータ3FL,3FRか、または後輪2RL,2RRの駆動モータ3RL,3RRかを判断する。
前輪モータ3FL,3FRのうち、いずれか一方あるいは双方が許容温度域を超えると推定する場合には(Yes)、ステップS7へ進み、該当する前輪モータに係る前輪2FL,2FRの目標駆動力を所定値αだけ減少側に補正するよう、該当するモータの出力を速やかに減少させる。
In step S6, it is determined whether the motor estimated to exceed the allowable temperature range is the front wheel 2FL, 2FR drive motor 3FL, 3FR or the rear wheel 2RL, 2RR drive motor 3RL, 3RR.
If it is estimated that either one or both of the front wheel motors 3FL and 3FR exceed the allowable temperature range (Yes), the process proceeds to step S7, and the target driving force of the front wheels 2FL and 2FR related to the corresponding front wheel motor is predetermined. The output of the corresponding motor is quickly decreased so that the value α is corrected to the decreasing side.
続くステップS8では、後輪モータ3RL,3RRの最大出力に基づき後輪2RL,2RRの最大駆動力をまず求め、これら最大駆動力と目標駆動力との差を算出し、後輪2RL,2RRの駆動力を所定値αだけ増大可能であるか否かを判断する。
増大可能であると判断した場合(Yes)、ステップS9へ進み、左右輪のうち上記ステップS7で減少補正した側と同じ側にある後輪2RL,2RR の駆動力を、所定値αだけ増大側に補正し、4駆走行を行う。
つまり、車輪2FL,2FR,2RL,2RRの総駆動力が、補正をしない場合のそれを維持する状態で走行を継続する。
図4は、上記ステップS7およびS9で実行する目標駆動力の補正の一例を、模式的に示した平面図である。上記ステップS7において例えば前輪モータ3FLの出力を減少補正する場合には、上記ステップS9において後輪モータ3RLの出力を増大補正する。
In the following step S8, the maximum driving force of the rear wheels 2RL and 2RR is first obtained based on the maximum output of the rear wheel motors 3RL and 3RR, the difference between the maximum driving force and the target driving force is calculated, and the rear wheels 2RL and 2RR are It is determined whether or not the driving force can be increased by a predetermined value α.
If it is determined that the vehicle can be increased (Yes), the process proceeds to step S9, and the driving force of the rear wheels 2RL and 2RR on the same side as the decrease corrected in step S7 of the left and right wheels is increased by a predetermined value α. Correct to 4 and run 4WD.
In other words, the vehicle continues traveling in a state where the total driving force of the wheels 2FL, 2FR, 2RL, and 2RR is maintained without correction.
FIG. 4 is a plan view schematically showing an example of the correction of the target driving force executed in steps S7 and S9. For example, when the output of the front wheel motor 3FL is corrected to decrease in step S7, the output of the rear wheel motor 3RL is corrected to increase in step S9.
なお、上記ステップS7において左右の前輪2FL,2FRの双方を減少側に補正する場合には、ステップS9において左右の後輪2RL,2RRの目標駆動力をそれぞれ増大側に補正する。 When correcting both the left and right front wheels 2FL and 2FR to the decreasing side in step S7, the target driving force of the left and right rear wheels 2RL and 2RR is corrected to the increasing side in step S9.
一方上記ステップS8において、増大不可能であると判断した場合(No)、ステップS10へ進み、左側輪および右側輪のうち上記ステップS7で減少補正した側と反対側にある後輪2RL,2RRの駆動力を所定値αだけ減少側に補正し、4駆走行を継続する。
つまり、車輪2FL,2FR,2RL,2RRの総駆動力が補正をしない場合のそれよりも減少した状態で走行を継続する。
図5は、上記ステップS7およびS10で実行する目標駆動力の補正の一例を、模式的に示した平面図である。上記ステップS7において例えば前輪モータ3FLの出力を減少補正する場合には、上記ステップS10において後輪モータ3RRの出力を減少補正する。
On the other hand, if it is determined in step S8 that it is impossible to increase (No), the process proceeds to step S10, and the rear wheels 2RL and 2RR on the opposite side of the left wheel and right wheel on the side corrected for reduction in step S7 are detected. The driving force is corrected to the decreasing side by a predetermined value α, and the four-wheel drive is continued.
In other words, the vehicle continues running with the total driving force of the wheels 2FL, 2FR, 2RL, and 2RR being smaller than that when no correction is made.
FIG. 5 is a plan view schematically showing an example of the correction of the target driving force executed in steps S7 and S10. For example, when the output of the front wheel motor 3FL is corrected to decrease in step S7, the output of the rear wheel motor 3RR is corrected to decrease in step S10.
一方ステップS6において、後輪モータ3RL,3RRのうち、いずれか一方あるいは双方が許容温度域を超えると推定する場合には(No)、ステップS11へ進み、該当する後輪モータに係る後輪2RL,2RRの目標駆動力を所定値αだけ減少側に補正するよう、該当するモータの出力を速やかに減少させる。 On the other hand, when it is estimated in step S6 that one or both of the rear wheel motors 3RL and 3RR exceed the allowable temperature range (No), the process proceeds to step S11, and the rear wheel 2RL related to the corresponding rear wheel motor is obtained. , 2RR is quickly reduced so that the target driving force of 2RR is corrected by a predetermined value α.
続くステップS12では、前輪モータ3FL,3FRの最大出力に基づき前輪2FL,2FRの最大駆動力を算出し、前輪2FL,2FRの駆動力を所定値αだけ増大可能であるか否かを判断する。
増大可能であると判断した場合(Yes)、ステップS13へ進み、左側輪および右側輪のうち上記ステップS11で出力を減少補正する側と同じ側にある前輪2FL,2FRの駆動力を、所定値αだけ増大補正し、4駆走行を継続する。
つまり、車輪2FL,2FR,2RL,2RRの総駆動力が、補正をしない場合のそれを維持する状態で走行を継続する。
In the subsequent step S12, the maximum driving force of the front wheels 2FL, 2FR is calculated based on the maximum output of the front wheel motors 3FL, 3FR, and it is determined whether or not the driving force of the front wheels 2FL, 2FR can be increased by a predetermined value α.
If it is determined that it can be increased (Yes), the process proceeds to step S13, and the driving force of the front wheels 2FL, 2FR on the same side as the side on which the output is reduced and corrected in step S11 among the left and right wheels is set to a predetermined value. Increase correction by α and continue to drive 4WD.
In other words, the vehicle continues traveling in a state where the total driving force of the wheels 2FL, 2FR, 2RL, and 2RR is maintained without correction.
なお、上記ステップS11において左右の後輪2RL,2RRの双方を減少側に補正する場合には、ステップS13において左右の前輪2FL,2FRの目標駆動力をそれぞれ増大補正する。 If both the left and right rear wheels 2RL and 2RR are corrected to decrease in step S11, the target driving force for the left and right front wheels 2FL and 2FR is corrected to increase in step S13.
一方、上記ステップS12において、増大不可能であると判断した場合(No)、ステップS14へ進み、左側輪および右側輪のうち上記ステップS11で減少補正した側と反対側にある前輪2FL,2FRの駆動力を所定値αだけ減少側に補正し、4駆走行を継続する。
つまり、車輪2FL,2FR,2RL,2RRの総駆動力が補正をしない場合のそれよりも減少した状態で走行を継続する。
On the other hand, if it is determined in step S12 that the vehicle cannot be increased (No), the process proceeds to step S14, and the front wheels 2FL and 2FR on the opposite side of the left wheel and the right wheel on the side subjected to the reduction correction in step S11. The driving force is corrected to the decreasing side by a predetermined value α, and the four-wheel drive is continued.
In other words, the vehicle continues running with the total driving force of the wheels 2FL, 2FR, 2RL, and 2RR being smaller than that when no correction is made.
上記ステップS9,S10,S13またはS14における車輪2FL,2FR,2RL,2RRの駆動力の補正制御の実行後は、ステップS15へ進み、温度センサ6FL,6FR,6RL,6RRからの信号を読み込み、モータ3FL,3FR,3RL,3RRの温度を検出する。
次のステップS16では、検出したモータ温度が推奨温度域の上限値以下であるか否かを判断する。いずれのモータ温度も推奨温度域の上限値以下である場合(Yes)、ステップS17へ進み、車輪2FL,2FR,2RL,2RRの駆動力を補正しない場合の目標駆動力に一致させるよう、モータ3FL,3FR ,3RL,3RRの出力補正を徐々に行って、本制御を終了する。
一方ステップS16で、推奨温度域を超えている場合(No)、ステップS17をスキップして本制御を終了し、繰り返し制御の上記ステップS7〜S14で、目標駆動力の補正を継続する。
After executing the driving force correction control of the wheels 2FL, 2FR, 2RL, 2RR in the above step S9, S10, S13 or S14, the process proceeds to step S15, and the signals from the temperature sensors 6FL, 6FR, 6RL, 6RR are read and the motor is read. Detects temperature of 3FL, 3FR, 3RL, 3RR.
In the next step S16, it is determined whether or not the detected motor temperature is equal to or lower than the upper limit value of the recommended temperature range. If any motor temperature is equal to or lower than the upper limit value of the recommended temperature range (Yes), the process proceeds to step S17, and the motor 3FL is set so as to match the target driving force when the driving force of the wheels 2FL, 2FR, 2RL, 2RR is not corrected. , 3FR, 3RL, 3RR output correction is performed gradually, and this control ends.
On the other hand, if the recommended temperature range is exceeded in step S16 (No), step S17 is skipped and the present control is terminated, and the correction of the target driving force is continued in steps S7 to S14 of the repetitive control.
図6は検出したモータ3FL,3FR,3RL,3RRの温度の時間変化と、焼け付き防止のため出力を減少補正されるモータの出力の時間変化とを対比して示すタイムチャートである。このタイムチャートに基づき本実施例の駆動制御について説明すると、時刻t1で4つのモータ温度のうち1つがモータ推奨温度域を超えた場合(上記ステップS2にてYes)、この時刻t1から時間Δt後までのモータ温度の変化量から、図中の一点鎖線で示すように当該モータ温度の上昇率を推定する。この結果当該モータ温度の推定値がモータ許容温度域の上限値を超えるため(上記ステップS4にてNo)、その後の時刻t2から時刻t3の短い時間D1で当該モータの出力を、太点線で示すように通常制御時よりも減少側に補正する(上記ステップS7およびS11)。 FIG. 6 is a time chart showing the time change of the detected temperatures of the motors 3FL, 3FR, 3RL, and 3RR and the time change of the output of the motor whose output is corrected to decrease to prevent burn-in. The drive control of the present embodiment will be described based on this time chart. When one of the four motor temperatures exceeds the recommended motor temperature range at time t1 (Yes in step S2), after time Δt from time t1. The rate of increase in the motor temperature is estimated from the amount of change in the motor temperature up to the point indicated by the one-dot chain line in the figure. As a result, since the estimated value of the motor temperature exceeds the upper limit value of the motor allowable temperature range (No in step S4), the output of the motor is indicated by a thick dotted line in a short time D1 from time t2 to time t3 thereafter. As described above, the correction is made to be smaller than the normal control (steps S7 and S11).
当該モータの出力は時刻t3以降も継続して、減少補正されているが、その後しばらくして、時刻t4で当該モータ温度がモータ推奨温度域の上限値以下になったとき(上記ステップS16にてYes)、時刻t4から時刻t5までの長い時間D2をかけて当該モータの出力を、太点線で示すように、補正をしない場合の値(通常の制御時の出力)に戻し、車輪2FL,2FR,2RL,2RRの駆動力を補正をしない場合の目標駆動力に一致させる。
図6では、残りのモータの目標駆動力の補正について記載を省略したが、残りのモータのうち、目標駆動力の補正を行ったモータについても、時刻t4から時刻t5までの間に、補正をしない場合の値(通常の制御時の出力)へ徐々に戻す。
なお上記の通り、車輪の目標駆動力を絞って減少補正するときは速やかに行うため、所要時間D1は短く、車輪の目標駆動力を元に戻すときは緩やかに行うため、所要時間D2は長いものとする(D1<D2)。
The output of the motor continues to be corrected to decrease after time t3, but after a while, when the motor temperature falls below the upper limit value of the recommended motor temperature range at time t4 (in step S16 above) Yes), over the long time D2 from time t4 to time t5, the motor output is returned to the value without correction (output during normal control) as shown by the thick dotted line, and the wheels 2FL, 2FR , 2RL and 2RR are adjusted to the target driving force when correction is not performed.
In FIG. 6, the description of the correction of the target driving force of the remaining motor is omitted. However, among the remaining motors, the correction of the target driving force is also performed between time t4 and time t5. Gradually return to the value when it is not used (output during normal control).
As described above, when the target driving force of the wheel is reduced and corrected for reduction, the required time D1 is short, and when the target driving force of the wheel is restored, the required time D2 is long. Assume that D1 <D2.
ところで、上記本実施例においては、例えば図7に示すようにモータ3FLのモータ温度が所定の許容温度域を超えると推定された時には、コントローラ5が、ステップS7においてモータ3FLの出力を減少側に補正するとともに、残りのモータ3FR,3RL,3RRの出力を上記ステップS8〜S10において通常制御、または、増大あるいは減少補正することとし、補正時の左側輪2FL,2RLの総駆動力と補正時の右側輪2FR,2RRの総駆動力との比率が、補正をしない場合の左側輪2FL,2RLの総駆動力と補正をしない場合の右側輪2FR,2RRの総駆動力との比率を維持するように、残りの車輪2FR,2RL,2RRの目標駆動力を補正するものである。
したがって、補正直後に車体1に発生するヨーモーメントを、補正直前に車体1に発生するヨーモーメントと同一にすることが可能になり、補正直後にヨーレイトが急激に変化することを防止することができる。
さらに、補正中の車体1のヨーレイト挙動を、補正をしない場合の車体1のヨーレイト挙動に一致させることが可能となり、従来のように車両の走行性能が変化してしまうことない。したがって、焼け付き防止のためモータの出力を減少補正することと、車両のヨーレイト挙動を維持することの両立が可能となって、運転車の操舵操作に対する直進安定性および旋回走行時の走行特性が変化するのを防止することができる。
また従来のように、車輪の駆動力をすべて停止して走行を続けることができなくなるということがなく、自走を続行することができる。
By the way, in the present embodiment, for example, as shown in FIG. 7, when it is estimated that the motor temperature of the motor 3FL exceeds a predetermined allowable temperature range, the
Accordingly, the yaw moment generated in the vehicle body 1 immediately after the correction can be made the same as the yaw moment generated in the vehicle body 1 immediately before the correction, and it is possible to prevent the yaw rate from rapidly changing immediately after the correction. .
Furthermore, the yaw rate behavior of the vehicle body 1 being corrected can be matched with the yaw rate behavior of the vehicle body 1 when no correction is made, and the running performance of the vehicle does not change as in the conventional case. Therefore, it is possible to both reduce and correct the motor output to prevent burn-in and maintain the yaw rate behavior of the vehicle, and the straight running stability with respect to the steering operation of the driving vehicle and the running characteristics during turning It is possible to prevent the change.
Further, as in the prior art, it is possible to continue self-running without stopping all the driving forces of the wheels and continuing running.
なお、上記ステップS7〜S14で残りの車輪の目標駆動力につき所定値αの増減補正を行う場合において、ヨーレイトセンサ7からの信号に基づき、当該目標駆動力補正をフィードバック制御により微調整することで、車体1のヨーレイト挙動の変化防止に完全を期することができる。
In addition, when performing increase / decrease correction of predetermined value (alpha) about the target drive force of the remaining wheel in said step S7-S14, based on the signal from the
また本実施例においては、焼け付き防止のためモータの出力を減少補正しつつ、図8(a),(b),(c)等の各図に示すように4駆走行を維持するものであるが、この全輪駆動モード(4WD)に限らず、図9(a),(b)等に示すような前方輪2FL,2FRを駆動する前方輪駆動モード(FF)と、図10(a),(b)等に示すような後方輪2RL,2RRを駆動する後方輪駆動モード(RR)と、図11(a),(b)等に示すような右側前方輪2FRおよび左側後方輪2RLを駆動する、あるいは図示しなかったが左側前方輪2FLおよび右側後方輪2RRを駆動する対角輪駆動モードと、をコントローラ5に設定しておき、
焼け付き防止のためのモータ出力補正時には、第1に全輪駆動モードを実行し、走行設定上あるいはモータ3FL,3FR ,3RL,3RRの失陥等の理由により全輪駆動モードが実行できない場合には、第2に前方輪駆動モードを実行し、以下第3に後方輪駆動モードを実行し、第4に対角輪駆動モードを実行するようにしても、車体1のヨーレイト挙動を維持することが可能であるとともに、車両の運動特性を安定サイドに設定することができ、走行安全性を高めることができる。
In this embodiment, the four-wheel drive running is maintained as shown in FIGS. 8A, 8B, 8C, etc. while reducing and correcting the motor output to prevent burn-in. However, the present invention is not limited to the all-wheel drive mode (4WD), and the front wheel drive mode (FF) for driving the front wheels 2FL, 2FR as shown in FIGS. ), (B) etc., the rear wheel drive mode (RR) for driving the rear wheels 2RL, 2RR, the right front wheel 2FR and the left rear wheel 2RL as shown in FIGS. 11 (a), 11 (b), etc. Or the diagonal wheel drive mode for driving the left front wheel 2FL and the right rear wheel 2RR, which is not shown, is set in the
When correcting the motor output to prevent burn-in, first, the all-wheel drive mode is executed. If the all-wheel drive mode cannot be executed due to travel settings or the failure of the motors 3FL, 3FR, 3RL, 3RR, etc. The second is to execute the front wheel drive mode, the third is to execute the rear wheel drive mode, and the fourth is to execute the diagonal wheel drive mode, so that the yaw rate behavior of the vehicle body 1 is maintained. In addition, the movement characteristics of the vehicle can be set to the stable side, and the driving safety can be improved.
ここで付言すると、全輪駆動モード(4WD)は車体1の重量配分等に応じて車輪2FL,2FR,2RL,2RRの駆動力配分を最適に決定することができるため、車両の運動特性を最も安全側に設定することができる。また、前方輪駆動モード(FF)は旋回特性がアンダーステアとなるため、車体がスピンしにくく車両の運動特性を安全側に設定することができる。また、後方輪駆動モード(RR)は旋回特性がオーバーステアとなる。
したがって、実行する駆動モードの優先順位を、第1に全輪駆動モード(4WD)を選択し、第2に前方輪駆動モード(FF) を選択し、第3に後方輪駆動モード(RR)を選択し、第4に対角輪駆動モードを選択するよう設定するものである。
In addition, the all-wheel drive mode (4WD) can optimally determine the driving force distribution of the wheels 2FL, 2FR, 2RL, 2RR according to the weight distribution of the vehicle body 1 and so on. Can be set on the safe side. Further, in the front wheel drive mode (FF), the turning characteristic is understeer, so that the vehicle body is hard to spin and the movement characteristic of the vehicle can be set to the safe side. Further, in the rear wheel drive mode (RR), the turning characteristic is oversteer.
Therefore, the priority order of the drive modes to be executed is as follows: first, the all-wheel drive mode (4WD) is selected, the second is the front wheel drive mode (FF), and the third is the rear wheel drive mode (RR). And fourth, setting to select the diagonal wheel drive mode.
なお、本実施例においては4つのモータ3FL,3FR ,3RL,3RRにより全輪駆動モード(4WD)を実行するものであるが、本実施例以外にも2つのモータ3FL,3FRのみを搭載し、前方輪駆動モード(FF)のみを実行する車両や、あるいはまた、2つのモータ3RL,3RRのみを搭載し、後方輪駆動モード(RR)のみを実行する車両であっても、本発明によれば車体のヨーレイト挙動を維持することが可能であること勿論である。 In this embodiment, all-wheel drive mode (4WD) is executed by four motors 3FL, 3FR, 3RL, 3RR, but only two motors 3FL, 3FR are mounted in addition to this embodiment, According to the present invention, even a vehicle that executes only the front wheel drive mode (FF), or a vehicle that mounts only the two motors 3RL and 3RR and executes only the rear wheel drive mode (RR). Of course, it is possible to maintain the yaw rate behavior of the vehicle body.
特に本実施例においては図4に示すように、ステップS7においてモータ3FLの出力を減少側に補正する場合には、ステップS9において残りのモータ3RLの出力を増大側に補正するものである。
すなわち、ステップS9を選択した場合においては、−α補正された左側前方輪2FLと同じ左側にある左側後方輪2RLの目標駆動力を+α補正する。したがって、補正後の車輪2FL,2RL,2FR,2RRの総駆動力が、補正前の車輪2FL,2RL,2FR,2RRの総駆動力を維持するように残りの車輪2FR,2RL,2RRの目標駆動力を補正することが可能となり、ヨーレート挙動の維持のみならず前後方向加速度も維持することができ、車両の走行特性が低下することなくモータの焼け付きを防止することができる。
In particular, in this embodiment, as shown in FIG. 4, when the output of the motor 3FL is corrected to the decrease side in step S7, the output of the remaining motor 3RL is corrected to the increase side in step S9.
That is, when step S9 is selected, the target driving force of the left rear wheel 2RL on the same left side as the left front wheel 2FL corrected by -α is corrected by + α. Therefore, the target drive of the remaining wheels 2FR, 2RL, 2RR is maintained so that the total driving force of the corrected wheels 2FL, 2RL, 2FR, 2RR maintains the total driving force of the corrected wheels 2FL, 2RL, 2FR, 2RR. The force can be corrected, the yaw rate behavior can be maintained as well as the longitudinal acceleration, and the motor burn-in can be prevented without deteriorating the running characteristics of the vehicle.
あるいは、後輪モータ3RLの最大出力につき余裕分がなく、ステップS9に代えてステップS10を選択した場合においては、−α補正された左側前方輪2FLと車体1に対して対角位置にある右側後方輪2RRの目標駆動力を−α補正する。
したがって、補正後の車輪2FL,2RL,2FR,2RRの総駆動力が、補正前の車輪2FL,2RL,2FR,2RRの総駆動力を維持できず、前後方向加速度は低下するものの、補正後の左側輪2FL,2RLの駆動力合計と補正後の右側輪2FR,2RRの駆動力合計との比率が、補正前の左側輪2FL,2RLの駆動力合計と補正前の右側輪2FR,2RRの駆動力合計との比率と同一にすることができる。
この結果、車体1に発生するヨーモーメントが変化するのを防止し、車体1のヨーレイト挙動を維持することが可能となって、車両1の旋回特性を維持しながらモータの焼け付きを防止することができる。
特に、前方輪駆動モード(FF)や、後方輪駆動モード(RR)や、対角輪駆動モードを実行する場合、全輪駆動モード(4WD)と異なり補正前の車輪2FL,2RL,2FR,2RRの総駆動力を維持できないため、ステップS10で実行する本制御により、車体1のヨーレイト挙動を維持することができる。
Alternatively, when there is no allowance for the maximum output of the rear wheel motor 3RL and step S10 is selected instead of step S9, the right side that is diagonally positioned with respect to the left front wheel 2FL and the vehicle body 1 that have been corrected by -α. The target driving force of the rear wheel 2RR is corrected by -α.
Therefore, the total driving force of the corrected wheels 2FL, 2RL, 2FR, 2RR cannot maintain the total driving force of the corrected wheels 2FL, 2RL, 2FR, 2RR, and although the longitudinal acceleration decreases, the corrected driving force The ratio between the total driving force of the left wheels 2FL and 2RL and the corrected driving force of the right wheels 2FR and 2RR is the total driving force of the left wheels 2FL and 2RL before correction and the driving of the right wheels 2FR and 2RR before correction. It can be the same as the ratio to the total force.
As a result, the yaw moment generated in the vehicle body 1 can be prevented from changing, the yaw rate behavior of the vehicle body 1 can be maintained, and motor seizure can be prevented while maintaining the turning characteristics of the vehicle 1. Can do.
In particular, when executing the front wheel drive mode (FF), the rear wheel drive mode (RR), and the diagonal wheel drive mode, the wheels 2FL, 2RL, 2FR, 2RR before correction are different from the all wheel drive mode (4WD). Therefore, the yaw rate behavior of the vehicle body 1 can be maintained by the main control executed in step S10.
なお本実施例においては、全てのモータ3FL,3FR ,3RL,3RRの焼け付きを防止する際には、ステップS5において全てのモータ3FL,3FR ,3RL,3RRの出力を一律に減少側に補正することから、前後方向加速度は低下するものの、車体1のヨーレート挙動を維持することが可能となって、車両1の旋回特性を維持しながら一部のモータの焼け付きを防止することができる。 In this embodiment, in order to prevent the burn-in of all the motors 3FL, 3FR, 3RL, 3RR, the output of all the motors 3FL, 3FR, 3RL, 3RR is uniformly corrected to the decreasing side in step S5. Therefore, although the longitudinal acceleration decreases, the yaw rate behavior of the vehicle body 1 can be maintained, and the seizure of some motors can be prevented while maintaining the turning characteristics of the vehicle 1.
また、コントローラ5は、温度センサ6FL,6FR,6RL,6RRからの信号に基づき、各モータ3FL,3FR ,3RL,3RRのモータ温度と、これより時間Δtだけ前に検出したモータ温度との時間変化とから、モータ温度が許容域を超えるか否かを推定することから、
モータ3FL,3FR ,3RL,3RRをオーバーヒートさせることなく、モータの焼け付きを防止することができる。したがって、モータ3FL,3FR ,3RL,3RRの耐久性の向上を期待できる。
Further, the
The motor 3FL, 3FR, 3RL, 3RR can be prevented from being burned without overheating. Therefore, the durability of the motors 3FL, 3FR, 3RL, 3RR can be expected to be improved.
さらに本実施例では、焼け付き防止のため出力を減少補正したモータの温度が、推奨温度域まで低下した場合には、ステップS16において、図6の時刻t4からt5までに示すように、当該減少補正されたモータの出力を通常制御時の出力に徐々に戻すものである。
したがって、電気自動車1の走行特性の変化が緩やかなものとなり、運転者に違和感を与えることがない。
Further, in the present embodiment, when the motor temperature whose output has been corrected to decrease to prevent burn-in has fallen to the recommended temperature range, in step S16, as shown from time t4 to time t5 in FIG. The corrected motor output is gradually returned to the output during normal control.
Therefore, the change in running characteristics of the electric vehicle 1 becomes gradual, and the driver does not feel uncomfortable.
なお本発明は、電動モータも用いて車輪を駆動する全ての車両に適用することができるものであって、モータの電源としてバッテリーの他、燃料電池等を含むこと勿論である。 The present invention can be applied to all vehicles that drive wheels using an electric motor, and of course includes a fuel cell and the like as a power source of the motor.
1 電気自動車(車体)
2FL 左側前方の車輪
2FR 右側前方の車輪
2RL 左側後方の車輪
2RR 右側後方の車輪
3FL 左側前方車輪の駆動モータ
3FR 右側前方車輪の駆動モータ
3RL 左側後方車輪の駆動モータ
3RR 右側後方車輪の駆動モータ
5 コントローラ
6FL 左側前方車輪の駆動モータの温度センサ
6FR 右側前方車輪の駆動モータの温度センサ
6RL 左側後方車輪の駆動モータの温度センサ
6RR 右側後方車輪の駆動モータの温度センサ
7 ヨーレイトセンサ
8 バッテリ
1 Electric car (body)
2FL Left front wheel 2FR Right front wheel 2RL Left rear wheel 2RR Right rear wheel 3FL Left front wheel drive motor 3FR Right front wheel drive motor 3RL Left rear wheel drive motor 3RR Right rear
6FL Temperature sensor for left front wheel drive motor
6FR Temperature sensor for right front wheel drive motor
6RL Temperature sensor for left rear wheel drive motor
6RR Temperature sensor for right rear
Claims (8)
前記モータの温度を検出する手段と、検出したモータ温度に基づき検出後のモータ温度を推定する温度推定手段を具え、
推定したモータ温度が、モータに熱的不具合が生じない温度範囲である許容温度域を超える時、該許容温度域を超えるモータで駆動される車輪の駆動力を減少側に補正するとともに、補正をしない場合の車両のヨーモーメントを維持するよう、残りの車輪の駆動力を補正するよう構成したことを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 In a driving force control device that is used in a wheel independent drive type electric vehicle that independently drives wheels by individual motors and individually controls the driving force of the wheels,
Means for detecting the temperature of the motor, and temperature estimating means for estimating the detected motor temperature based on the detected motor temperature,
When the estimated motor temperature exceeds the allowable temperature range that does not cause a thermal failure in the motor, the driving force of the wheel driven by the motor exceeding the allowable temperature range is corrected to the decrease side, and the correction is made. A driving force control device for a wheel independent drive type electric vehicle, wherein the driving force of the remaining wheels is corrected so as to maintain the yaw moment of the vehicle when not.
前記複数の駆動モードに優先順位を設定し、前記補正時には、前記駆動モード選択手段が前記優先順位に従って駆動モードを選択して実行することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The drive mode selection means according to claim 1, further comprising a drive mode selection means for setting a plurality of drive modes for driving at least one of the wheels and selecting and executing one of the drive modes. In the driving force control device,
A drive power control device for a wheel independent drive type electric vehicle, wherein priority is set for the plurality of drive modes, and the drive mode selection means selects and executes a drive mode according to the priority when the correction is performed. .
前記複数の駆動モードとは、すべての車輪を駆動する全輪駆動モードと、前方輪を駆動する前方輪駆動モードと、後方輪を駆動する後方輪駆動モードと、右側前方輪および左側後方輪を駆動する、あるいは左側前方輪および右側後方輪を駆動する対角輪駆動モードのことであり、
前記優先順位とは、第1に全輪駆動モード、第2に前方輪駆動モード、第3に後方輪駆動モード、第4に対角輪駆動モードの順で優先することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The driving force control device according to claim 2, wherein the driving force control device is used for a wheel independent drive type electric vehicle including the wheels on the front, rear, left and right sides of the vehicle body.
The plurality of drive modes include an all-wheel drive mode for driving all wheels, a front wheel drive mode for driving front wheels, a rear wheel drive mode for driving rear wheels, a right front wheel and a left rear wheel. It is a diagonal wheel drive mode that drives or drives the left front wheel and the right rear wheel,
The priority order includes priority in the order of first in all-wheel drive mode, second in front wheel drive mode, third in rear wheel drive mode, and fourth in diagonal wheel drive mode. Driving force control device for driving electric vehicle.
前記補正時の車輪の総駆動力が、補正をしない場合の車輪の総駆動力を維持するよう、前記残りの車輪の駆動力を補正することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The driving force control apparatus according to any one of claims 1 to 3,
The driving force of the wheel independent drive type electric vehicle is characterized in that the driving force of the remaining wheels is corrected so that the total driving force of the wheel at the time of correction maintains the total driving force of the wheel without correction. Control device.
車輪の最大駆動力を算出する手段を具え、算出した最大駆動力が不足するために補正をしない場合の車輪の総駆動力を維持できない場合には、左右に配置された前記残りの車輪のうち、許容温度域を超えるモータで駆動される車輪が位置する側と反対側に位置する車輪の駆動力を、減少側に補正することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The driving force control device according to claim 4, wherein the wheels are provided on the left side and the right side of the vehicle body, respectively.
Means for calculating the maximum driving force of the wheel, and if the total driving force of the wheel cannot be maintained when the correction is not performed because the calculated maximum driving force is insufficient, among the remaining wheels arranged on the left and right A driving force control device for a wheel independent drive type electric vehicle, wherein the driving force of a wheel located on the side opposite to the side where the wheel driven by the motor exceeding the allowable temperature range is located is corrected to a decreasing side.
すべてのモータの推定したモータ温度が前記許容温度域を超える時には、該モータにより駆動される車輪の駆動力を、一律に減少側に補正することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The driving force control apparatus according to any one of claims 1 to 3,
When the estimated motor temperature of all the motors exceeds the allowable temperature range, the driving force of the wheel driven by the motor is uniformly corrected to the decreasing side. Control device.
前記温度推定手段は、複数の異なる時刻でそれぞれ検出したモータ温度の時間変化から、検出後のモータ温度を推定することを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 The driving force control apparatus according to any one of claims 1 to 6,
The said temperature estimation means estimates the motor temperature after a detection from the time change of the motor temperature each detected at several different time, The driving force control apparatus of the wheel independent drive type electric vehicle characterized by the above-mentioned.
前記補正時に、検出したモータ温度が、モータの駆動回転に適切な温度範囲である推奨温度域まで低下した場合には、補正した車輪の駆動力を、補正をしない場合の駆動力に徐々に戻すことを特徴とする車輪独立駆動式電気自動車の駆動力制御装置。 In the driving force control device according to any one of claims 1 to 7,
When the detected motor temperature is reduced to a recommended temperature range that is appropriate for driving rotation of the motor during the correction, the corrected wheel driving force is gradually returned to the driving force without correction. A driving force control device for a wheel independent drive type electric vehicle characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004008986A JP2005204436A (en) | 2004-01-16 | 2004-01-16 | Drive force control device of wheel independently driven type electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004008986A JP2005204436A (en) | 2004-01-16 | 2004-01-16 | Drive force control device of wheel independently driven type electric vehicle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009136486A Division JP4956800B2 (en) | 2009-06-05 | 2009-06-05 | Driving force control device for wheel independent electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005204436A true JP2005204436A (en) | 2005-07-28 |
Family
ID=34822152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004008986A Pending JP2005204436A (en) | 2004-01-16 | 2004-01-16 | Drive force control device of wheel independently driven type electric vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005204436A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006345677A (en) * | 2005-06-10 | 2006-12-21 | Denso Corp | Vehicle drive unit by motor |
JP2007124832A (en) * | 2005-10-28 | 2007-05-17 | Toyota Motor Corp | Drive force controller of electric vehicle |
JP2007124735A (en) * | 2005-10-25 | 2007-05-17 | Nissan Motor Co Ltd | Drive controller for vehicle |
JP2007190941A (en) * | 2006-01-17 | 2007-08-02 | Nissan Motor Co Ltd | Driving force distribution device of four-wheel independent drive vehicle |
JP2007203998A (en) * | 2006-02-06 | 2007-08-16 | Toyota Motor Corp | Vehicle and its control method |
JP2008141875A (en) * | 2006-12-01 | 2008-06-19 | Toyota Motor Corp | Running system and drive control device |
JP2008168790A (en) * | 2007-01-12 | 2008-07-24 | Ntn Corp | In-wheel motor drive |
JP2009177994A (en) * | 2008-01-28 | 2009-08-06 | Honda Motor Co Ltd | Device for controlling a plurality of drive sources |
JP2009248689A (en) * | 2008-04-03 | 2009-10-29 | Toyota Motor Corp | Driving force control device for vehicle |
JP2009542183A (en) * | 2006-06-26 | 2009-11-26 | ソシエテ ド テクノロジー ミシュラン | Redundancy hardware design philosophy for the power stage of a vehicle braking system in which all wheels are connected to at least one rotating electrical machine |
JP2010226880A (en) * | 2009-03-24 | 2010-10-07 | Denso Corp | Navigation apparatus, drive motor control system of electric vehicle, and control method of drive motor |
JP2011111002A (en) * | 2009-11-25 | 2011-06-09 | Suzuki Motor Corp | Motor-driven rough terrain traveling vehicle |
JP2011163149A (en) * | 2010-02-05 | 2011-08-25 | Yanmar Co Ltd | Engine and engine generator system |
WO2012002234A1 (en) * | 2010-06-30 | 2012-01-05 | 日立建機株式会社 | Driving-force control apparatus for electric vehicle |
WO2012121199A1 (en) * | 2011-03-07 | 2012-09-13 | Ntn株式会社 | Electric vehicle |
WO2013057930A1 (en) * | 2011-10-19 | 2013-04-25 | 三菱自動車工業株式会社 | Drive control device for electric automobile |
WO2013137189A1 (en) | 2012-03-12 | 2013-09-19 | 日産自動車株式会社 | Electric vehicle driving force control device and electric vehicle driving force control method |
WO2014054148A1 (en) * | 2012-10-04 | 2014-04-10 | トヨタ自動車株式会社 | Wheel control device, vehicle, and wheel control method |
WO2015068186A1 (en) * | 2013-11-06 | 2015-05-14 | 川崎重工業株式会社 | Vehicle and power supply unit used therein |
JP2015112897A (en) * | 2013-12-09 | 2015-06-22 | トヨタ自動車株式会社 | Vehicle brake/drive force control device |
WO2016031663A1 (en) * | 2014-08-27 | 2016-03-03 | Ntn株式会社 | Drive control device for wheel independent driving vehicle |
WO2016075812A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社安川電機 | Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine |
JP2019062706A (en) * | 2017-09-28 | 2019-04-18 | 株式会社Subaru | Drive force control device for vehicle |
JP2019062705A (en) * | 2017-09-28 | 2019-04-18 | 株式会社Subaru | Drive force control device for vehicle |
CN109910581A (en) * | 2019-01-28 | 2019-06-21 | 合肥工业大学 | The driving of electric car multi power source and brake assembly framework |
JP2019118188A (en) * | 2017-12-27 | 2019-07-18 | 株式会社Subaru | Control device of vehicle and method for controlling vehicle |
JP2020022268A (en) * | 2018-07-31 | 2020-02-06 | 株式会社デンソー | Drive control device for vehicle drive system |
-
2004
- 2004-01-16 JP JP2004008986A patent/JP2005204436A/en active Pending
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006345677A (en) * | 2005-06-10 | 2006-12-21 | Denso Corp | Vehicle drive unit by motor |
JP4654781B2 (en) * | 2005-06-10 | 2011-03-23 | 株式会社デンソー | Vehicle drive device by motor |
JP2007124735A (en) * | 2005-10-25 | 2007-05-17 | Nissan Motor Co Ltd | Drive controller for vehicle |
JP4650207B2 (en) * | 2005-10-25 | 2011-03-16 | 日産自動車株式会社 | Vehicle drive control device |
JP2007124832A (en) * | 2005-10-28 | 2007-05-17 | Toyota Motor Corp | Drive force controller of electric vehicle |
JP2007190941A (en) * | 2006-01-17 | 2007-08-02 | Nissan Motor Co Ltd | Driving force distribution device of four-wheel independent drive vehicle |
JP2007203998A (en) * | 2006-02-06 | 2007-08-16 | Toyota Motor Corp | Vehicle and its control method |
JP2009542183A (en) * | 2006-06-26 | 2009-11-26 | ソシエテ ド テクノロジー ミシュラン | Redundancy hardware design philosophy for the power stage of a vehicle braking system in which all wheels are connected to at least one rotating electrical machine |
JP2008141875A (en) * | 2006-12-01 | 2008-06-19 | Toyota Motor Corp | Running system and drive control device |
JP2008168790A (en) * | 2007-01-12 | 2008-07-24 | Ntn Corp | In-wheel motor drive |
JP2009177994A (en) * | 2008-01-28 | 2009-08-06 | Honda Motor Co Ltd | Device for controlling a plurality of drive sources |
JP2009248689A (en) * | 2008-04-03 | 2009-10-29 | Toyota Motor Corp | Driving force control device for vehicle |
JP2010226880A (en) * | 2009-03-24 | 2010-10-07 | Denso Corp | Navigation apparatus, drive motor control system of electric vehicle, and control method of drive motor |
JP2011111002A (en) * | 2009-11-25 | 2011-06-09 | Suzuki Motor Corp | Motor-driven rough terrain traveling vehicle |
JP2011163149A (en) * | 2010-02-05 | 2011-08-25 | Yanmar Co Ltd | Engine and engine generator system |
JP2012016162A (en) * | 2010-06-30 | 2012-01-19 | Hitachi Constr Mach Co Ltd | Driving force control apparatus for electric vehicle |
WO2012002234A1 (en) * | 2010-06-30 | 2012-01-05 | 日立建機株式会社 | Driving-force control apparatus for electric vehicle |
CN102985282A (en) * | 2010-06-30 | 2013-03-20 | 日立建机株式会社 | Driving-force control apparatus for electric vehicle |
US9174549B2 (en) | 2010-06-30 | 2015-11-03 | Hitachi Construction Machinery Co., Ltd. | Driving force control device for electric vehicle |
AU2011272007B2 (en) * | 2010-06-30 | 2014-03-27 | Hitachi Construction Machinery Co., Ltd. | Driving-force control apparatus for electric vehicle |
CN102985282B (en) * | 2010-06-30 | 2015-10-14 | 日立建机株式会社 | The driving-force control apparatus of elec. vehicle |
WO2012121199A1 (en) * | 2011-03-07 | 2012-09-13 | Ntn株式会社 | Electric vehicle |
JP2012186929A (en) * | 2011-03-07 | 2012-09-27 | Ntn Corp | Electric vehicle |
US9126599B2 (en) | 2011-03-07 | 2015-09-08 | Ntn Corporation | Electric vehicle |
WO2013057930A1 (en) * | 2011-10-19 | 2013-04-25 | 三菱自動車工業株式会社 | Drive control device for electric automobile |
CN104169123A (en) * | 2012-03-12 | 2014-11-26 | 日产自动车株式会社 | Electric vehicle driving force control device and electric vehicle driving force control method |
WO2013137189A1 (en) | 2012-03-12 | 2013-09-19 | 日産自動車株式会社 | Electric vehicle driving force control device and electric vehicle driving force control method |
EP2826661A4 (en) * | 2012-03-12 | 2015-12-30 | Nissan Motor | Electric vehicle driving force control device and electric vehicle driving force control method |
US9221359B2 (en) | 2012-03-12 | 2015-12-29 | Nissan Motor Co., Ltd. | Electric vehicle driving force control device and electric vehicle driving force control method |
WO2014054148A1 (en) * | 2012-10-04 | 2014-04-10 | トヨタ自動車株式会社 | Wheel control device, vehicle, and wheel control method |
CN104520138A (en) * | 2012-10-04 | 2015-04-15 | 丰田自动车株式会社 | Wheel control device, vehicle, and wheel control method |
JP5841265B2 (en) * | 2012-10-04 | 2016-01-13 | トヨタ自動車株式会社 | Wheel control device, vehicle, wheel control method |
CN104520138B (en) * | 2012-10-04 | 2016-09-28 | 丰田自动车株式会社 | Wheel controls device, vehicle, wheel control method |
US10179512B2 (en) | 2013-11-06 | 2019-01-15 | Kawasaki Jukogyo Kabushiki Kaisha | Vehicle and electric power supply unit incorporated in vehicle |
WO2015068186A1 (en) * | 2013-11-06 | 2015-05-14 | 川崎重工業株式会社 | Vehicle and power supply unit used therein |
JPWO2015068186A1 (en) * | 2013-11-06 | 2017-03-09 | 川崎重工業株式会社 | Vehicle and power supply unit used therefor |
JP2015112897A (en) * | 2013-12-09 | 2015-06-22 | トヨタ自動車株式会社 | Vehicle brake/drive force control device |
WO2016031663A1 (en) * | 2014-08-27 | 2016-03-03 | Ntn株式会社 | Drive control device for wheel independent driving vehicle |
JP2016048987A (en) * | 2014-08-27 | 2016-04-07 | Ntn株式会社 | Drive control device for wheel independent drive type vehicle |
WO2016075812A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社安川電機 | Drive force control system for electric vehicle, electric vehicle, and rotary electrical machine |
JP2019062706A (en) * | 2017-09-28 | 2019-04-18 | 株式会社Subaru | Drive force control device for vehicle |
JP2019062705A (en) * | 2017-09-28 | 2019-04-18 | 株式会社Subaru | Drive force control device for vehicle |
JP7017894B2 (en) | 2017-09-28 | 2022-02-09 | 株式会社Subaru | Vehicle driving force control device |
JP7017895B2 (en) | 2017-09-28 | 2022-02-09 | 株式会社Subaru | Vehicle driving force control device |
JP2019118188A (en) * | 2017-12-27 | 2019-07-18 | 株式会社Subaru | Control device of vehicle and method for controlling vehicle |
JP2020022268A (en) * | 2018-07-31 | 2020-02-06 | 株式会社デンソー | Drive control device for vehicle drive system |
JP7183614B2 (en) | 2018-07-31 | 2022-12-06 | 株式会社デンソー | Drive control device for vehicle drive system |
CN109910581A (en) * | 2019-01-28 | 2019-06-21 | 合肥工业大学 | The driving of electric car multi power source and brake assembly framework |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956800B2 (en) | Driving force control device for wheel independent electric vehicle | |
JP2005204436A (en) | Drive force control device of wheel independently driven type electric vehicle | |
JP5999360B2 (en) | Vehicle behavior control device | |
EP2406111B1 (en) | Parking lock device | |
US8718870B2 (en) | Vehicle control system and control device | |
US8335625B2 (en) | Slip control device and method for a vehicle | |
JP4867369B2 (en) | Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle | |
JP4582031B2 (en) | Driving force control device for four-wheel drive vehicle | |
JP6108294B2 (en) | Vehicle behavior control device | |
JP2005119647A (en) | Driving force control device for wheel independent drive system vehicle | |
JP4687471B2 (en) | Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle | |
JP4450201B2 (en) | Electric car | |
JP2007276674A (en) | Driving force distribution control device for hybrid four-wheel drive vehicle | |
JP5397119B2 (en) | Driving force control device for left and right independent driving vehicle | |
JP4797513B2 (en) | Vehicle driving force distribution control device | |
JP2005160262A (en) | Driving force control device for vehicle | |
JP4844238B2 (en) | Driving force distribution control device for four-wheel drive vehicle | |
JP3087441B2 (en) | Vehicle turning state estimation device | |
JP6803197B2 (en) | Vehicle control device | |
JP4742504B2 (en) | Drive control device | |
JP6114591B2 (en) | Electric car | |
JP4650207B2 (en) | Vehicle drive control device | |
JP5397294B2 (en) | Vehicle control device | |
JP2004187388A (en) | Driving control device for vehicle | |
JP4238707B2 (en) | Driving force control device for electric motor driven vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090804 |