JP2005296756A - Treatment method of ion-exchange resin regeneration waste liquid - Google Patents
Treatment method of ion-exchange resin regeneration waste liquid Download PDFInfo
- Publication number
- JP2005296756A JP2005296756A JP2004114442A JP2004114442A JP2005296756A JP 2005296756 A JP2005296756 A JP 2005296756A JP 2004114442 A JP2004114442 A JP 2004114442A JP 2004114442 A JP2004114442 A JP 2004114442A JP 2005296756 A JP2005296756 A JP 2005296756A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- waste liquid
- ion exchange
- ion
- resin regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 70
- 239000002699 waste material Substances 0.000 title claims abstract description 56
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 48
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 48
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 230000008929 regeneration Effects 0.000 title claims abstract description 31
- 238000011069 regeneration method Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000011282 treatment Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 6
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims abstract description 5
- 239000000701 coagulant Substances 0.000 claims abstract description 3
- 230000001112 coagulating effect Effects 0.000 claims abstract description 3
- 238000004062 sedimentation Methods 0.000 claims abstract description 3
- 238000001556 precipitation Methods 0.000 claims description 15
- -1 alkali metal halide salt Chemical class 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910001508 alkali metal halide Inorganic materials 0.000 claims description 4
- 230000015271 coagulation Effects 0.000 claims description 4
- 238000005345 coagulation Methods 0.000 claims description 4
- 230000002776 aggregation Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 2
- 239000002244 precipitate Substances 0.000 abstract description 6
- 239000012492 regenerant Substances 0.000 abstract 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000001172 regenerating effect Effects 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003957 anion exchange resin Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003651 drinking water Substances 0.000 description 4
- 235000020188 drinking water Nutrition 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000005189 flocculation Methods 0.000 description 3
- 230000016615 flocculation Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- BCBHDSLDGBIFIX-UHFFFAOYSA-N 4-[(2-hydroxyethoxy)carbonyl]benzoic acid Chemical compound OCCOC(=O)C1=CC=C(C(O)=O)C=C1 BCBHDSLDGBIFIX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
本発明は、河川などの原水中の不純物を除去する際に使用されるイオン交換樹脂を再生液で再生する際に発生するイオン交換樹脂再生廃液(以下単に「再生廃液」と称する)の処理方法に関する。 The present invention relates to a method for treating an ion exchange resin regeneration waste liquid (hereinafter simply referred to as “regeneration waste liquid”) generated when an ion exchange resin used for removing impurities in raw water such as rivers is regenerated with a regeneration liquid. About.
河川などの水を浄水して飲料水を作る際に、不純物を除去する方法として、膜ろ過、凝集剤の添加沈殿、活性炭、イオン交換樹脂などによる吸着除去法があることはよく知られている。 It is well known that there are adsorption / removal methods using membrane filtration, coagulant addition precipitation, activated carbon, ion exchange resin, etc., as a method for removing impurities when purifying water from rivers and making drinking water. .
水の不純物除去にイオン交換樹脂を利用した場合には、そのイオン交換樹脂を再利用するために、不純物を樹脂から取り除かなければならない。このときに使用する液が再生液であり、イオン交換樹脂に吸着された不純物を溶出させた後は再生廃液となる。現在、この再生廃液は、液中の不純物濃度がある一定以上の値となると廃液として廃棄されるが、この際、この再生廃液は、再生廃液のまま廃棄物処理業者で処理され、廃棄されているのが現状である。 When an ion exchange resin is used for removing impurities from water, the impurities must be removed from the resin in order to reuse the ion exchange resin. The liquid used at this time is a regenerated liquid, and becomes a regenerated waste liquid after the impurities adsorbed on the ion exchange resin are eluted. At present, this recycled waste liquid is discarded as waste liquid when the concentration of impurities in the liquid exceeds a certain value. At this time, this recycled waste liquid is processed and discarded by the waste disposal contractor as the recycled waste liquid. The current situation is.
また、飲料水用以外の水処理にもイオン交換樹脂は広く使用され、その再生廃液の処理も種々行われている。例えば、特許文献1には、イオン交換樹脂再生廃液の処理方法として、ポリエチレンテレフタレートの解重合溶液を脱イオン処理するときに使用したアニオン交換樹脂の再生処理で生じた、少なくともモノヒドロキシエチルテレフタレートのアルカリ塩を溶解している廃液の処理方法が提案されている。 In addition, ion exchange resins are widely used for water treatment other than for drinking water, and various treatments of the regenerated waste liquid are also performed. For example, Patent Document 1 discloses, as a method for treating an ion exchange resin regeneration waste liquid, an alkali of at least monohydroxyethyl terephthalate produced by the regeneration treatment of an anion exchange resin used when depolymerizing a polyethylene terephthalate depolymerization solution. A method for treating a waste liquid in which a salt is dissolved has been proposed.
また、特許文献2には、一般に難分解性のCOD成分を含む排水、特に、脱硫装置等から排出されるジチオ酸イオンを多量に含む排水は環境汚染を防止するためにイオン交換樹脂で吸着処理した後放流されるが、かかるイオン交換樹脂の再生廃液を電気集塵器に添加して該電気集塵器の集塵効率を向上させる技術が提案されている。 In addition, in Patent Document 2, wastewater containing generally difficult-to-decompose COD components, especially wastewater containing a large amount of dithioate ions discharged from a desulfurization apparatus, etc. is adsorbed with an ion exchange resin to prevent environmental pollution. However, there has been proposed a technique for improving the dust collection efficiency of the electric dust collector by adding the regenerated waste liquid of the ion exchange resin to the electric dust collector.
さらに 特許文献3には、有機炭素の吸着されたイオン交換樹脂を塩化ナトリウム溶液等のブラインを用いて再生する工程を含む、溶解された有機炭素を水から除去するための水処理方法が記載されている。
上述のように、イオン交換樹脂再生廃液の処理方法としては種々の技術が提案されてはいるが、河川などの水を浄水して飲料水を作る際にイオン交換樹脂を利用した場合、その再生時に生ずる再生廃液の有効な処理方法はこれまで存在せず、上述のように、再生廃液のまま廃棄物処理業者で処理され、廃棄されているのが現状である。 As described above, various techniques have been proposed as a method for treating ion exchange resin regeneration waste liquid. However, when ion exchange resin is used to make drinking water by purifying water such as rivers, the regeneration is performed. There is no effective treatment method for the regenerated waste liquid that sometimes occurs, and as described above, the recycle waste liquid is processed and discarded by a waste disposal contractor as it is.
そこで、本発明の目的は、河川等の原水中の有機物等の不純物を除去する際に使用されたイオン交換樹脂を再生液で再生するときに発生するイオン交換樹脂再生廃液中の不純物を、効率的に沈殿・除去することのできるイオン交換樹脂再生廃液の処理方法を提供することにある。 Therefore, an object of the present invention is to improve the efficiency of impurities in the ion exchange resin regeneration waste liquid generated when regenerating the ion exchange resin used in removing raw materials such as organic substances in raw water such as rivers with the regeneration liquid. Another object of the present invention is to provide a method for treating an ion exchange resin recycling waste liquid that can be precipitated and removed.
上記課題を解決するために、本発明は、原水中の不純物を除去するために使用されたイオン交換樹脂を再生液で再生するときに発生するイオン交換樹脂再生廃液から、凝集剤としてポリ塩化アルミニウム(PAC)を用いた凝集沈殿法によって有機物および硫酸塩を除去することを特徴とするイオン交換樹脂再生廃液の処理方法を提供する。 In order to solve the above problems, the present invention provides a polyaluminum chloride as a flocculant from an ion exchange resin regeneration waste liquid generated when regenerating an ion exchange resin used for removing impurities in raw water with a regeneration liquid. Provided is a method for treating an ion-exchange resin regeneration waste liquid, wherein organic substances and sulfate are removed by a coagulation precipitation method using (PAC).
河川などの原水中の微小なコロイドを凝集させるためにPACを用いた凝集沈殿法を利用することは、既に公知の技術である。しかし、イオン交換樹脂などを再生する際に生ずる、塩化ナトリウムを初めとするハロゲン化アルカリ金属塩を含有する廃水の処理には、これまでPACが利用されることはなかった。そこで本発明者らは、汚泥等の二次廃棄物量を可能な限り減らし、イオン交換樹脂再生廃液の再利用回数を上げることで環境に負荷を与えない方法として、凝集剤としてPACを用いた凝集沈殿法により、再生廃液中の不純物としての有機物および硫酸塩を沈殿、除去することができることを見出して、本発明を完成するに至ったのである。 It is a known technique to use a flocculation precipitation method using PAC to agglomerate minute colloids in raw water such as rivers. However, PAC has not been used so far for the treatment of wastewater containing alkali metal halides such as sodium chloride, which is generated when regenerating ion exchange resins and the like. Therefore, the present inventors reduced the amount of secondary waste such as sludge as much as possible, and increased the number of reuses of the ion exchange resin regeneration waste liquid so as not to burden the environment. The inventors have found that organic substances and sulfates as impurities in the recycled waste liquid can be precipitated and removed by the precipitation method, and have completed the present invention.
本発明によれば、河川などの原水中の有機物を除去する際に使用されたイオン交換樹脂を再生液で再生するときに発生するイオン交換樹脂再生廃液中の不純物としての有機物および硫酸塩を、効率的に沈殿・除去することができる。 According to the present invention, organic substances and sulfates as impurities in the ion exchange resin regeneration waste liquid generated when regenerating the ion exchange resin used when removing organic substances in raw water such as rivers with the regeneration liquid, It can be efficiently precipitated and removed.
以下、本発明の実施の形態につき具体的に説明する。
本発明の処理方法において処理し得るイオン交換樹脂再生廃液は、河川などの原水中の不純物を除去する際に使用される既知のイオン交換樹脂を再生液で再生する際に発生する廃液であり、かかるイオン交換樹脂の種類は特に制限されず、陽イオン交換樹脂であっても陰イオン交換樹脂であってもよい。
Hereinafter, embodiments of the present invention will be specifically described.
The ion exchange resin regeneration waste liquid that can be treated in the treatment method of the present invention is a waste liquid that is generated when regenerating a known ion exchange resin used in removing raw impurities such as rivers with a regeneration liquid, The kind of ion exchange resin is not particularly limited, and may be a cation exchange resin or an anion exchange resin.
本発明においては、既知のイオン交換樹脂をイオン交換樹脂再生液で再生する際に発生するイオン交換樹脂再生廃液から、凝集剤としてポリ塩化アルミニウム(PAC)を用いた凝集沈殿法によって、有機物および硫酸塩を沈殿、除去する。かかるイオン交換樹脂再生液として食塩(塩化ナトリウム)等のハロゲン化アルカリ金属塩を用いることがあるが、本発明によれば、その場合でも、処理前後、即ち、沈殿ろ過前後において溶液量のみならずハロゲン化アルカリ金属塩濃度にも殆ど変化はない。従って、再生液および塩をいずれもさほど損失することなく有機物を沈殿、除去することが可能である。本発明においては、イオン交換樹脂再生廃液中のハロゲン化アルカリ金属塩の濃度が0.5〜5.4mol/l程度の場合でも、再生廃液に対し電解処理が有効である点に特徴があり、この濃度範囲は実質的に海水濃度から飽和塩水濃度に対応する。 In the present invention, organic matter and sulfuric acid are obtained from an ion exchange resin regeneration waste solution generated when a known ion exchange resin is regenerated with an ion exchange resin regeneration solution by an aggregation precipitation method using polyaluminum chloride (PAC) as an aggregating agent. Precipitate and remove salt. As such an ion exchange resin regenerated solution, a halogenated alkali metal salt such as sodium chloride (sodium chloride) may be used. However, according to the present invention, not only the amount of the solution before and after the treatment, that is, before and after the precipitation filtration. Almost no change in alkali metal halide salt concentration. Therefore, it is possible to precipitate and remove organic matter without losing much of the regenerated solution and salt. In the present invention, even when the concentration of the alkali metal halide salt in the ion exchange resin regeneration waste liquid is about 0.5 to 5.4 mol / l, the electrolytic treatment is effective for the regeneration waste liquid. This concentration range substantially corresponds to seawater concentration to saturated brine concentration.
また、本発明に係る凝集沈殿法におけるPACの好適添加量は、再生廃液1Lに対し、Al2O3として10%以上の濃度で18g〜38gであり、これは、Alとして1〜5gに相当する。特には、Alとして1〜2gの添加量範囲が好適である。また、凝集沈殿を行う際の再生廃液のpHは、室温20〜25℃においてpH4〜7の範囲、特にはpH4.5〜7.0の範囲に調整することが好ましい。上記適切な添加量にてPACを添加した後、再生廃液のpHを上記範囲に調整して、凝集沈殿およびろ過を順次行うことで、有機物および硫酸塩の除去を最も効率よく行うことが可能となる。 Further, preferred amount of PAC in the flocculation method of the present invention, the reproduction with respect to waste 1L, a 18g~38g at a concentration of 10% or more of Al 2 O 3, which is equivalent to 1~5g as Al To do. In particular, an addition amount range of 1 to 2 g as Al is preferable. Moreover, it is preferable to adjust the pH of the regenerated waste liquid at the time of coagulating sedimentation to the range of pH 4-7, especially pH 4.5-7.0 at room temperature 20-25 degreeC. After adding PAC at the appropriate addition amount, the pH of the regenerated waste liquid is adjusted to the above range, and coagulation precipitation and filtration are sequentially performed, so that organic substances and sulfates can be removed most efficiently. Become.
実際に塩濃度として100g/l前後ある再生廃液にPACを添加した場合、酸またはアルカリで再生廃液のpHを調整し、攪拌を行って沈殿を生じさせた後、沈殿物と液とをろ過によって分離すれば、ろ液中の有機物が大きく減少するとともに、硫酸塩も減少することが確認されている。なお、硫酸塩については、凝集剤としてPACを用いて除去できるとの知見はこれまで得られていなかった。これらのことから、本発明によれば、再生廃液中の有機物および硫酸塩が減少することでイオン交換樹脂の再生液の再利用回数が上がり、更に、再生液の利用回数の向上により、使用する塩の損失も減らすことができるという利点がある。 When PAC is added to the reclaimed waste liquid having a salt concentration of about 100 g / l, the pH of the regenerated waste liquid is adjusted with acid or alkali, and the precipitate is formed by stirring, and then the precipitate and liquid are filtered. When separated, it has been confirmed that the organic matter in the filtrate is greatly reduced and the sulfate is also reduced. In addition, about the sulfate, the knowledge that it could be removed using PAC as a flocculant was not obtained until now. From these facts, according to the present invention, the number of reuses of the regenerated liquid of the ion exchange resin is increased by reducing the organic matter and sulfate in the regenerated waste liquid, and further, the use of the regenerated liquid is improved by increasing the number of times of using the regenerated liquid. There is an advantage that salt loss can also be reduced.
以下、本発明を実施例に基づき説明する。
(比較例1および実施例1〜5)
主に原水中の有機物や硫酸根を除去するのに用いられる陰イオン交換樹脂(オリカ(株)製、商品名:MIEX(登録商標)、平均粒径:180μm)の再生液で、利用回数が十数回になった再生液(以下「再生廃液」と称す)の液量の一部、500ミリリットルをサンプルの液として、本発明に係る凝集剤としてPACを用いた凝集沈殿を、再生廃液のpHを変えて行った。
Hereinafter, the present invention will be described based on examples.
(Comparative Example 1 and Examples 1-5)
This is a regenerated solution of anion exchange resin (manufactured by Orica Co., Ltd., trade name: MIEX (registered trademark), average particle size: 180 μm) mainly used to remove organic substances and sulfate radicals in raw water. A part of the regenerated liquid (hereinafter referred to as “recycled waste liquid”) that has become a dozen times, 500 ml of sample liquid, and flocculation precipitation using PAC as the flocculant according to the present invention, The pH was changed.
操作順序としては、まず、500ミリリットルの再生廃液に約19gのPAC(Al2O3として10%以上のものを使用)を攪拌しながら添加し、次に、塩酸および水酸化ナトリウム溶液を攪拌しながら適宜添加することにより、再生廃液のpHを下記表1に示す値にそれぞれ調整した。なお、このときの室温は20℃前後であった。約24時間後にメンブランフィルターを用いて吸引ろ過を行い、沈殿物と溶液とを分離した。その後、得られたろ液、即ち、処理液を分析した結果、有機物のトータル量を示すTOC濃度、硫酸イオン(SO4 2-)濃度、塩化ナトリウム(NaCl)濃度のそれぞれにつき、下記の表1に示すような値が得られた。実施例1〜5は、それぞれ再生廃液のpHを変えて沈殿、ろ過を行った場合である。また、比較のため、比較例1として、PAC添加前の各値を併せて示す。 The operation sequence is as follows. First, about 19 g of PAC (use 10% or more of Al 2 O 3 is used) is added to 500 ml of recycled waste liquid while stirring, and then hydrochloric acid and sodium hydroxide solution are stirred. While being added as appropriate, the pH of the recycled waste liquid was adjusted to the values shown in Table 1 below. In addition, the room temperature at this time was around 20 degreeC. After about 24 hours, suction filtration was performed using a membrane filter to separate the precipitate from the solution. Then, as a result of analyzing the obtained filtrate, that is, the treatment liquid, the TOC concentration, the sulfate ion (SO 4 2− ) concentration, and the sodium chloride (NaCl) concentration indicating the total amount of organic substances are shown in Table 1 below. The values shown were obtained. Examples 1 to 5 are cases where precipitation and filtration were performed while changing the pH of the regenerated waste liquid. For comparison, as Comparative Example 1, the values before PAC addition are also shown.
上記表1の結果より、再生廃液のpHを4〜7程度とした実施例2〜4、特には、4.5〜7.0の範囲とした実施例3、4において、TOC濃度および硫酸根濃度の双方を最も良好に低減できることがわかる。 From the results of Table 1 above, in Examples 2 to 4, in which the pH of the recycled waste liquid was about 4 to 7, particularly in Examples 3 and 4 in the range of 4.5 to 7.0, the TOC concentration and sulfate radical It can be seen that both concentrations can be best reduced.
(実施例6〜9)
主に原水中の有機物や硫酸根を除去するのに用いられる陰イオン交換樹脂(オリカ(株)製、商品名:MIEX(登録商標)、平均粒径:180μm)の再生液で、利用回数が十数回になった再生液の液量の一部、500ミリリットルをサンプルの液として、本発明に係る凝集剤としてPACを用いた凝集沈殿を、PACの添加量を変えて行った。
(Examples 6 to 9)
This is a regenerated solution of anion exchange resin (manufactured by Orica Co., Ltd., trade name: MIEX (registered trademark), average particle size: 180 μm) mainly used to remove organic substances and sulfate radicals in raw water. Using a part of the regenerated liquid amount of more than 10 times, 500 ml of the sample liquid, coagulation precipitation using PAC as the flocculant according to the present invention was performed by changing the amount of PAC added.
操作順序としては、まず、500ミリリットルの再生廃液に、PAC(Al2O3として10%以上のものを使用)を、それぞれ下記の表2中に示す添加量にて攪拌しながら添加し、次に、塩酸および水酸化ナトリウム溶液を攪拌しながら適宜添加することにより、再生廃液のpHを4.5〜7に調整した。なお、このときの室温は20℃前後であった。約24時間後にメンブランフィルターを用いて吸引ろ過を行い、沈殿物と溶液とを分離した。その後、得られたろ液、即ち、処理液を分析した結果、有機物のトータル量を示すTOC濃度、硫酸根(SO4 2-)濃度、塩化ナトリウム(NaCl)濃度のそれぞれにつき、下記の表2に示すような値が得られた。実施例6〜9は、それぞれPACの添加量を変えて沈殿、ろ過を行った場合である。また、比較のため、表1の場合と同様に、比較例1として、PAC添加前の各値を併せて示す。 As an operation sequence, first, PAC (using 10% or more of Al 2 O 3 ) was added to 500 ml of the recycle waste liquid while stirring at the addition amount shown in Table 2 below. In addition, hydrochloric acid and sodium hydroxide solution were appropriately added with stirring to adjust the pH of the recycled waste liquid to 4.5-7. In addition, the room temperature at this time was around 20 degreeC. After about 24 hours, suction filtration was performed using a membrane filter to separate the precipitate from the solution. Then, as a result of analyzing the obtained filtrate, that is, the treatment liquid, each of TOC concentration, sulfate radical (SO 4 2− ) concentration, and sodium chloride (NaCl) concentration indicating the total amount of organic substances is shown in Table 2 below. The values shown were obtained. Examples 6 to 9 are cases in which precipitation and filtration were performed while changing the amount of PAC added. For comparison, as in Comparative Example 1, values before PAC addition are also shown as Comparative Example 1.
PACの添加量を多くした実施例7においては、PAC添加のみでは沈殿は生じず、水酸化ナトリウム溶液にて再生廃液のpHを調整する必要があった。また、沈殿量が非常に多く、さらに、処理後の液量も大幅に減少してしまった。 In Example 7 in which the amount of PAC added was increased, precipitation did not occur only by adding PAC, and it was necessary to adjust the pH of the regenerated waste solution with a sodium hydroxide solution. In addition, the amount of precipitation was very large, and the amount of liquid after treatment was greatly reduced.
この結果から、本発明の処理方法におけるPACの最適添加量は、再生廃液1Lに対してAlとして1g以上、特には1〜2gの範囲が最適であることが確認された。これは、再生廃液の処理コストの面からも最適な添加量であるといえる。 From this result, it was confirmed that the optimum addition amount of PAC in the treatment method of the present invention is 1 g or more, particularly 1 to 2 g as Al with respect to 1 L of the regenerated waste liquid. This can be said to be an optimum addition amount from the viewpoint of the treatment cost of the regenerated waste liquid.
本発明によれば、河川などの水をイオン交換樹脂を用いて浄水して飲料水などを作る際に、かかるイオン交換樹脂を再利用するために使用する再生液の利用回数が上がり、経費の軽減が可能となる。また、再生液に食塩水を用いても、その食塩がさほど損失せず、この点からも経費の軽減が可能となり、イオン交換樹脂再生廃液の処理方法として極めて有用である。特に、本発明は、再生廃液中の有機物、さらには硫酸塩の濃度が高い場合に、より有効である。 According to the present invention, when water such as rivers is purified using ion exchange resin to make drinking water, the number of times of using the regenerated liquid used for reusing such ion exchange resin is increased, and the cost is reduced. Mitigation is possible. Further, even if a saline solution is used as the regenerating solution, the salt is not lost so much, and from this point, the cost can be reduced, which is extremely useful as a method for treating the ion exchange resin regenerating waste solution. In particular, the present invention is more effective when the concentration of organic matter and also sulfate in the recycled wastewater is high.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114442A JP2005296756A (en) | 2004-04-08 | 2004-04-08 | Treatment method of ion-exchange resin regeneration waste liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114442A JP2005296756A (en) | 2004-04-08 | 2004-04-08 | Treatment method of ion-exchange resin regeneration waste liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005296756A true JP2005296756A (en) | 2005-10-27 |
Family
ID=35328953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004114442A Pending JP2005296756A (en) | 2004-04-08 | 2004-04-08 | Treatment method of ion-exchange resin regeneration waste liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005296756A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194520A (en) * | 2009-02-27 | 2010-09-09 | Tosoh Corp | Salt water refining method |
JP2014000510A (en) * | 2012-06-18 | 2014-01-09 | Maezawa Ind Inc | Water treatment method and facility |
CN112624436A (en) * | 2021-01-18 | 2021-04-09 | 山东省水利科学研究院 | Phosphorus treatment system and method with zero discharge of wastewater |
CN115159722A (en) * | 2022-06-23 | 2022-10-11 | 嘉戎技术(北京)有限公司 | Electroplating rinsing wastewater efficient recovery system and method thereof |
-
2004
- 2004-04-08 JP JP2004114442A patent/JP2005296756A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194520A (en) * | 2009-02-27 | 2010-09-09 | Tosoh Corp | Salt water refining method |
JP2014000510A (en) * | 2012-06-18 | 2014-01-09 | Maezawa Ind Inc | Water treatment method and facility |
CN112624436A (en) * | 2021-01-18 | 2021-04-09 | 山东省水利科学研究院 | Phosphorus treatment system and method with zero discharge of wastewater |
CN115159722A (en) * | 2022-06-23 | 2022-10-11 | 嘉戎技术(北京)有限公司 | Electroplating rinsing wastewater efficient recovery system and method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4343706A (en) | Method of removing heavy metals from industrial waste streams | |
KR20130115785A (en) | Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater | |
KR20140096094A (en) | Coking wastewater treatment | |
JP2004141799A (en) | Silica-containing waste water treatment method | |
JP2007117965A (en) | Method and apparatus for removing metal from drainage | |
CN110668613A (en) | Deep treatment method for gold hydrometallurgy cyanide-containing wastewater | |
CN101628771B (en) | Method with zero discharge of waste water | |
JP2005296756A (en) | Treatment method of ion-exchange resin regeneration waste liquid | |
JP5986819B2 (en) | Water treatment method and equipment | |
JP3642516B2 (en) | Method and apparatus for removing COD components in water | |
JP7084704B2 (en) | Silica-containing water treatment equipment and treatment method | |
JP4086297B2 (en) | Boron-containing wastewater treatment method and chemicals used therefor | |
JPS63258690A (en) | Treatment of organic sewage | |
JP2020058963A (en) | Water treatment device and water treatment method | |
JP6318193B2 (en) | Water treatment method and equipment | |
JP2001232372A (en) | Treatment process for water containing boron | |
JP6045966B2 (en) | Fluorine-containing wastewater treatment method and fluorine-containing wastewater treatment equipment | |
JPH04322784A (en) | Treatment of waste processing liquid for photosensitive material | |
JP4716913B2 (en) | Recycling of used titanium compounds as fluorine scavengers | |
JP2003053350A (en) | Method and device for highly removing cod component in water | |
JP2007098270A (en) | Method and apparatus for producing pure water | |
JP4110295B2 (en) | Method for simultaneously treating copper etching waste liquid and resist waste liquid and chemicals used therefor | |
JP2005185904A (en) | Method for purifying manufacturing wastewater of nickel-cadmium battery | |
CN218810940U (en) | High hydrochloric acid solution recovery processing system | |
TWI725782B (en) | Method and device for treating molybdenum-containing wastewater |