[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005294271A - Manufacturing method for anisotropic conductive adhesive film - Google Patents

Manufacturing method for anisotropic conductive adhesive film Download PDF

Info

Publication number
JP2005294271A
JP2005294271A JP2005157615A JP2005157615A JP2005294271A JP 2005294271 A JP2005294271 A JP 2005294271A JP 2005157615 A JP2005157615 A JP 2005157615A JP 2005157615 A JP2005157615 A JP 2005157615A JP 2005294271 A JP2005294271 A JP 2005294271A
Authority
JP
Japan
Prior art keywords
film
conductive particles
conductive
adhesive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005157615A
Other languages
Japanese (ja)
Other versions
JP4103902B2 (en
Inventor
Junji Shirogane
淳次 白金
Hideji Kanota
秀司 叶多
Yukihisa Hirozawa
幸寿 広沢
Isao Tsukagoshi
功 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005157615A priority Critical patent/JP4103902B2/en
Publication of JP2005294271A publication Critical patent/JP2005294271A/en
Application granted granted Critical
Publication of JP4103902B2 publication Critical patent/JP4103902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive film which prevents secondary aggregation of conductive particles and can be disposed with uniformity and high density. <P>SOLUTION: A discharge nozzle is fixed, for a film moving in a fixed speed, in a horizontal direction against the moving direction of the film and the conductive particles are fluidized and scattered by passing through an air ejector. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示モジュ一ル等の電極と相対峙させた回路基板の電極を接続固定するために用いられる異方導電性接着フィルムの製造法に関する。   The present invention relates to a method for producing an anisotropic conductive adhesive film used for connecting and fixing an electrode of a circuit board that is opposed to an electrode of a liquid crystal display module or the like.

従来の異方導電性接着フィルムは、導電粒子を絶縁性接着剤中に分散し、剥離性フィルム上に製膜したものや、絶縁性接着剤中に導電粒子を含む層と含まない層をラミネ一トして、二層構造化したものが実用化されている。
特開昭61−187393号公報 特開平 7−302667号公報
Conventional anisotropic conductive adhesive films are obtained by dispersing conductive particles in an insulating adhesive and forming a film on a peelable film, or laminating a layer containing conductive particles and a layer containing no conductive particles in an insulating adhesive. First, a two-layer structure has been put into practical use.
JP 61-187393 A JP-A-7-302667

接続回路の高精細化に対応して接続電極間スぺ一スは、従来の200μm程度から50μm以下が要求されてきている。これに伴い、異方導電性接着フィルムは従来の電極間の電気的接続と接着のみでなく、導電粒子の凝集による電極間短絡に関しても特性の向上が求められている。従来の方法では、絶縁性接着剤中に微小径の導電粒子を添加・分散させる際に、所謂(ままこ)状態になりやすく導電粒子の二次凝集が発生しやすい。この二次凝集粒子が隣接する電極間短絡の原因となり、接続電極間スぺ−スの矮小化と共に二次凝集粒子の微細化が切望されている。
また、接続電極の小面積化に対応する接続抵抗の増大を防止するために、導電粒子の添加量を増大する方向にある。一般に異方導電性接着フィルムで接続する際、接続電極間の導電粒子は絶縁性接着剤と共に接続電極のスぺ−スに向かって流動し、その結果、接続電極のスペ−スには導電粒子が多く集まる。接続電極スぺ−スの導電粒子が多くなるに従い、近接電極を導電粒子が短絡する危険性が高くなる。
接続時の粒子流れを少なくして、接続電極上に残る導電粒子数を確保する方法として、二層構造の異方導電性接着フィルムが提案されているが、まだ不十分である。二層構造品では、導電粒子入り絶縁性接着剤層が薄い程粒子流れが少ないという知見があるが、従来の塗工法では薄くするにも限度があり、極限までの薄層化する方法が望まれていた。
さらに、接続電極間スぺ−スが小さくなるに伴い、許容される導電性異物の大きさと混入量も厳しくなり、製膜前の接着剤精密濾過が望まれるが、導電粒子を分散させた接着剤の濾過は、添加する導電粒子の通過を阻害しない目開きが必要で精密濾過に限度があり、現状では不十分である。
Corresponding to the high definition of the connection circuit, the space between the connection electrodes is required to be about 200 μm to 50 μm or less. Along with this, the anisotropic conductive adhesive film is required not only for electrical connection and adhesion between conventional electrodes, but also for improvement in characteristics regarding short-circuiting between electrodes due to aggregation of conductive particles. In the conventional method, when the conductive particles having a small diameter are added and dispersed in the insulating adhesive, a so-called (remaining) state is likely to occur, and secondary aggregation of the conductive particles is likely to occur. The secondary agglomerated particles cause a short circuit between adjacent electrodes, and the miniaturization of the secondary agglomerated particles is desired as the space between the connecting electrodes is reduced.
In addition, in order to prevent an increase in connection resistance corresponding to a reduction in the area of the connection electrode, the amount of conductive particles added tends to increase. In general, when connecting with an anisotropic conductive adhesive film, the conductive particles between the connection electrodes flow toward the space of the connection electrodes together with the insulating adhesive, and as a result, the conductive particles are formed in the space of the connection electrodes. Many gather. As the number of conductive particles in the connection electrode space increases, the risk that the conductive particles short-circuit the proximity electrode increases.
An anisotropic conductive adhesive film having a two-layer structure has been proposed as a method for reducing the particle flow at the time of connection and ensuring the number of conductive particles remaining on the connection electrode, but it is still insufficient. In the two-layer structure product, there is a knowledge that the thinner the insulating adhesive layer with conductive particles, the smaller the particle flow. However, the conventional coating method has a limit to making it thin, and a method to make the layer as thin as possible is desired. It was rare.
Furthermore, as the space between the connecting electrodes becomes smaller, the size and amount of conductive foreign substances allowed become stricter, and it is desirable to perform fine filtration of the adhesive before film formation. Filtration of the agent requires an opening that does not obstruct the passage of the conductive particles to be added, and there is a limit to microfiltration, which is insufficient at present.

本発明は、上記3点の課題を解決するためになされた。第1の課題である導電粒子の二次凝集に関して、導電粒子は元々は単粒子であるが、液状絶縁性接着剤中に分散させるときに二次凝集することが確認されている。この工程をなくする方法として、乾式の粒子噴霧法により絶縁性接着剤層の表面に導電粒子を直接散布する方法を考案した。
また、第2の課題である導電粒子入り接着剤層の薄層化に関しても、本法では自動的に導電粒子層は、絶縁性接着剤層表面に配置されるため、粒子層の極限薄層化が可能となった。
第3の課題である導電性異物の除去に関しては、本散布法では接着剤製膜は、導電粒子が添加されていないため充分な精密濾過が可能であり、接着剤中の導電性異物の除去は容易である。
すなわち、本発明は、フィルムに導電粒子を散布して製造する異方導電性フィルムの製造法であって、一定の速度で移動するフィルムに対して、当該移動方向に対して水平方向に噴霧ノズルを固定し、導電粒子をエアエジェクタを通して流動化させて散布する、異方導電性接着フィルムの製造法である。
The present invention has been made to solve the above three problems. Regarding the secondary aggregation of the conductive particles, which is the first problem, the conductive particles are originally single particles, but it has been confirmed that secondary aggregation occurs when dispersed in the liquid insulating adhesive. As a method for eliminating this step, a method of spraying conductive particles directly on the surface of the insulating adhesive layer by a dry particle spraying method was devised.
In addition, regarding the thinning of the adhesive layer containing conductive particles, which is the second problem, since the conductive particle layer is automatically disposed on the surface of the insulating adhesive layer in this method, the extremely thin layer of the particle layer It became possible.
Regarding the removal of conductive foreign matter, which is the third problem, in this spraying method, the adhesive film can be sufficiently fine filtered because no conductive particles are added, and the conductive foreign matter in the adhesive is removed. Is easy.
That is, the present invention relates to a method for manufacturing an anisotropic conductive film manufactured by spraying conductive particles on a film, the spray nozzle being in a horizontal direction with respect to the moving direction with respect to the film moving at a constant speed. Is fixed, and the conductive particles are fluidized and dispersed through an air ejector, and the anisotropic conductive adhesive film is produced.

本発明による効果は、第1に導電粒子の二次凝集粒子径が小さくなること。第二に導電粒子の配置を異方導電性接着フィルムの表層に極めて近い層に集中させ、回路接続時の粒子流れを改善し、粒子補足率が高くなり、接着剤に添加する導電粒子数を少なくすることが可能になる。この結果、回路間スぺ一スに存在する導電粒子数が格段に少なくなり、回路間の短絡ポテンシャルを下げることができる。
また、絶縁性接着剤に被覆されない導電粒子が存在して、回路電極の一方には裸状態の導電粒子と電極の接触が可能となり、接続抵抗を下げることができる。
さらに前述の様に、絶縁性接着剤の塗布直前の細かい濾過が可能になり、異方導電性接着フィルム中の異物低減に、大きな効果が認められた。
The first effect of the present invention is that the secondary aggregated particle diameter of the conductive particles is reduced. Secondly, the arrangement of the conductive particles is concentrated on the layer very close to the surface layer of the anisotropic conductive adhesive film, improving the particle flow at the time of circuit connection, increasing the particle capture rate, and reducing the number of conductive particles added to the adhesive. It becomes possible to reduce. As a result, the number of conductive particles existing in the inter-circuit space is significantly reduced, and the short-circuit potential between the circuits can be lowered.
In addition, there are conductive particles that are not covered with the insulating adhesive, and the contact between the bare conductive particles and the electrode can be made on one of the circuit electrodes, and the connection resistance can be lowered.
Further, as described above, fine filtration immediately before the application of the insulating adhesive becomes possible, and a great effect was observed in reducing foreign matters in the anisotropic conductive adhesive film.

図1、図2、図3に本発明方法の実施に係る装置の概念図を示すが、本発明はこれに限定されるものでははい。図1は本発明方法による散布箱4内の導電粒子の動きと空気の流れ方向を示したもので、エジェクタ2からの空気と混合された導電粒子1が噴霧ノズル3をとおして接着剤を塗布した剥離性フィルム7上に散布される。図2は、剥離性フィルムに絶縁性接着剤を塗布し、導電粒子を散布した後、非粘着性のセパレ一タ6を合わせてラミネ一トロ一ル12を通し、導電粒子を絶縁性接着剤層に押し込み固定する方法を示す。
図3は、セパレ−タ6上に導電粒子のみを散布した後、予め絶縁性接着剤を塗布した接着剤付フィルム基材7と合わせラミネ一トロ−ル12を通して、導電粒子を固定する方法を示す。
ここで、絶縁性接着剤を剥離性フィルム基材に塗布する工程と導電粒子を散布・固定する工程を連続化することは、加工費低減に有効である。但し、一般に絶縁性接着剤は有機溶剤を使用する場合が多く、危険物取り扱い設備とするための初期設備費との兼ね合いであり、どちらを選択をするも自由である。
剥離性フィルム基材に絶縁性接着剤を塗布し、接着剤中の溶媒が揮散する段階のタック性がある時に、導電粒子を散布する方法も導電粒子固定の一つの方法である。また、完全に溶媒を揮散させた後に、絶縁性接着剤がタック性を有して散布された粒子を完全に固定できる場合は、そのまま異方導電性接着フィルムとすることができる。
図4はこのようにして製造した異方導電性接着フィルムの断面を示したもので、絶縁性接着剤13の表面層に導電粒子の層11が形成されている状態を示した。
図2、図3に示す方法において、絶縁性接着剤層が加熱によりタック性、塑性変形性が具現される場合は、ラミネ−トロ−ルの加熱又はラミネ一ト前に被ラミネ一ト物を加熱するのが望ましい。また、ラミネ一トロ一ル間隙を制御することにより、導電粒子の一部を露出させた状態の粒子固定も可能である。
図5に示すように多層化し、導電粒子層11を中間に配置することも、接続部分の形状によっては粒子補足率の向上に効果的である場合もある。導電粒子層の位置は、どこでも本製造法では可能である。また、導電粒子層を含め、各層の溶融粘度を最適化することにより、粒子補足率の向上に効果的である。
1, 2, and 3 are conceptual diagrams of an apparatus according to the method of the present invention, but the present invention is not limited to this. FIG. 1 shows the movement of the conductive particles in the spray box 4 and the direction of air flow according to the method of the present invention. The conductive particles 1 mixed with the air from the ejector 2 apply the adhesive through the spray nozzle 3. Is spread on the peelable film 7. FIG. 2 shows an example in which an insulating adhesive is applied to a peelable film and conductive particles are dispersed, and then a non-tacky separator 6 is put through a laminating roll 12 to pass the conductive particles to the insulating adhesive. A method of indenting and fixing to a layer is shown.
FIG. 3 shows a method of fixing conductive particles through a laminating roll 12 together with a film base 7 with an adhesive previously coated with an insulating adhesive after spraying only the conductive particles on the separator 6. Show.
Here, it is effective to reduce the processing cost to make the process of applying the insulating adhesive to the peelable film substrate and the process of spraying and fixing the conductive particles continuous. However, in general, the insulating adhesive often uses an organic solvent, and this is in balance with the initial equipment cost for making the hazardous material handling equipment, and it is free to choose either.
A method of spreading conductive particles when applying an insulating adhesive to a peelable film substrate and having tackiness at a stage where the solvent in the adhesive is volatilized is also one method of fixing conductive particles. In addition, when the insulating adhesive has tackiness and can completely fix the dispersed particles after completely evaporating the solvent, the anisotropic conductive adhesive film can be used as it is.
FIG. 4 shows a cross section of the anisotropically conductive adhesive film manufactured as described above, and shows a state in which a layer 11 of conductive particles is formed on the surface layer of the insulating adhesive 13.
In the method shown in FIG. 2 and FIG. 3, when the insulating adhesive layer is tacky and plastically deformable by heating, the object to be laminated is heated before heating or laminating the laminating roll. It is desirable to heat. Further, by controlling the laminar-troll gap, it is possible to fix particles in a state where a part of the conductive particles is exposed.
As shown in FIG. 5, multilayering and arranging the conductive particle layer 11 in the middle may be effective in improving the particle capture rate depending on the shape of the connecting portion. The position of the conductive particle layer can be anywhere in this manufacturing method. Further, by optimizing the melt viscosity of each layer including the conductive particle layer, it is effective in improving the particle capture rate.

フェノキシ樹脂(PKHA:ユニオンカ一バイド社製高分子エポキシ樹脂)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(ノバキュアHP−3942HP:旭化成製、エポキシ当量185)の比率30/70とし、酢酸エチル30%接着剤溶液を得た。この溶液を離型処理した二軸延伸PET樹脂フィルム製のセパレ−タA上に流延・乾燥して、23μm厚みのフィルムBを得た。直径5μmの金めっきプラスチック粒子をエアエジェクタを通して流動化させて、噴霧ノズルからフィルムB上に平均8000個/mmの割合で散布し、フィルムCを得た。なお、このフィルムBは1m/分の速度で移動させ、噴霧ノズルは固定し水平方向に散布した。
このフィルムCに、離型処理した二軸延伸PET樹脂フィルム製のセパレ一タAの離型処理面と導電粒子散布面を向かい合わせて重ね、二本の金属ロ−ル間を通して、散布した導電粒子をフィルムCの表面層に押し込んで固定させた異方導電性接着フィルムDを得た。
ITOガラス基板に、この異方導電性接着フィルムDを貼り付け、セパレ−タムを剥がした後、50μm×90μmの金バンプを有するべアチップを位置合わせして、180℃、20kg/cm2 で20秒の加熱加圧して回路接続をした。異方導電性接着フィルムDを200倍の光学顕微鏡で観察して、単位面積当たりの導電粒子数aと二次凝集状態を計測した。また、回路接続した後のべアチップバンプ上の導電粒子数bを計測した。
A ratio of 30/70 of phenoxy resin (PKHA: polymer epoxy resin manufactured by Union Carbide Co.) and liquid epoxy resin (Novacure HP-3942HP: manufactured by Asahi Kasei, epoxy equivalent 185) containing a microcapsule type latent curing agent, acetic acid An ethyl 30% adhesive solution was obtained. This solution was cast and dried on a separator A made of a biaxially stretched PET resin film subjected to a release treatment to obtain a film B having a thickness of 23 μm. Gold-plated plastic particles having a diameter of 5 μm were fluidized through an air ejector and sprayed onto the film B from the spray nozzle at a rate of 8000 particles / mm 2 on average to obtain a film C. The film B was moved at a speed of 1 m / min, and the spray nozzle was fixed and sprayed in the horizontal direction.
On this film C, the release treatment surface of the separator A made of a biaxially stretched PET resin film and the conductive particle dispersion surface are overlapped with each other, and the dispersed conductive material is passed between the two metal rolls. An anisotropic conductive adhesive film D in which the particles were pressed into the surface layer of film C and fixed was obtained.
After this anisotropic conductive adhesive film D was attached to the ITO glass substrate and the separator was peeled off, the bare chip having 50 μm × 90 μm gold bumps was aligned, and 20 ° C. at 20 ° C. and 20 kg / cm 2 . The circuit was connected by heating and pressing for 2 seconds. The anisotropic conductive adhesive film D was observed with a 200-fold optical microscope, and the number of conductive particles a per unit area and the secondary aggregation state were measured. Further, the number b of conductive particles on the bear chip bump after circuit connection was measured.

比較例
実施例と同様の接着剤溶液により、15μm厚さの導電粒子なし接着層Nを作製した。また、同接着剤溶液中に導電粒子を分散させて、8μm厚さの導電粒子入りの接着層Mを作製した。接着層Nと接着層Mを貼り合わせた2層構造異方導電性接着フィルムLを得た。
この2層構造異方導電性接着フィルムLを用いて、実施例と同様な接続と計測を実施した。
実施例と比較例の計測結果を表1に示す。
Comparative Example A conductive particle-free adhesive layer N having a thickness of 15 μm was produced using the same adhesive solution as in the example. In addition, conductive particles were dispersed in the adhesive solution to prepare an adhesive layer M containing conductive particles having a thickness of 8 μm. A two-layer anisotropic conductive adhesive film L in which the adhesive layer N and the adhesive layer M were bonded together was obtained.
Using this two-layer structure anisotropic conductive adhesive film L, the same connection and measurement as in the example were performed.
Table 1 shows the measurement results of Examples and Comparative Examples.

Figure 2005294271
Figure 2005294271






本発明による散布箱内の導電粒子の動きと空気の流れ方向を示す概念図。The conceptual diagram which shows the motion of the electrically-conductive particle in the dispersion box by this invention, and the flow direction of air. 本発明方法による装置の説明図で、接着剤層付剥離性フィルム基材に導電粒子を散布する場合の概念図。It is explanatory drawing of the apparatus by this invention method, and is a conceptual diagram in the case of disperse | distributing conductive particles to the peelable film substrate with an adhesive layer. 本発明方法による装置の説明図で、剥離性フィルムに導電粒子を散布した後に接着剤を塗布した剥離性フィルム基材を貼り付ける方法の概念図。It is explanatory drawing of the apparatus by this invention method, and is a conceptual diagram of the method of affixing the peelable film base material which apply | coated the adhesive agent after spraying a conductive particle on a peelable film. 本発明による表面層に導電粒子を配置した異方薄電性接着フィルムを示す断面図。Sectional drawing which shows the anisotropic thin electroconductive film which has arrange | positioned the electrically-conductive particle in the surface layer by this invention. 本発明による中間層に導電粒子を配置した異方導電性接着フィルムを示す断面図。Sectional drawing which shows the anisotropic conductive adhesive film which has arrange | positioned the electrically-conductive particle to the intermediate | middle layer by this invention.

符号の説明Explanation of symbols

1 導電粒子 2 エジェクタ
3 噴霧ノズル 4 散布箱
5 接地受け板 6 セパレータ(剥離性フィルム)
7 接着剤付剥離性フィルム基材 8 導電粒子
9 製品 11 導電粒子層
12 ラミネータ 13 絶縁性接着剤層
14 絶縁性接着剤層















DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Ejector 3 Spray nozzle 4 Spraying box 5 Ground receiving plate 6 Separator (peelable film)
7 Peelable Film Base with Adhesive 8 Conductive Particles 9 Product 11 Conductive Particle Layer 12 Laminator 13 Insulating Adhesive Layer 14 Insulating Adhesive Layer















Claims (1)

フィルムに導電粒子を散布して製造する異方導電性フィルムの製造法であって、一定の速度で移動するフィルムに対して、当該移動方向に対して水平方向に噴霧ノズルを固定し、導電粒子をエアエジェクタを通して流動化させて散布する、異方導電性接着フィルムの製造法。




A method for producing an anisotropic conductive film produced by spraying conductive particles on a film, wherein the spray nozzle is fixed in a horizontal direction with respect to the moving direction of the film moving at a constant speed, and the conductive particles A method for manufacturing anisotropically conductive adhesive films in which fluid is sprayed through an air ejector.




JP2005157615A 2005-05-30 2005-05-30 Method for manufacturing anisotropic conductive adhesive film Expired - Fee Related JP4103902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157615A JP4103902B2 (en) 2005-05-30 2005-05-30 Method for manufacturing anisotropic conductive adhesive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157615A JP4103902B2 (en) 2005-05-30 2005-05-30 Method for manufacturing anisotropic conductive adhesive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10847197A Division JP4181231B2 (en) 1997-04-25 1997-04-25 Method for manufacturing anisotropic conductive adhesive film

Publications (2)

Publication Number Publication Date
JP2005294271A true JP2005294271A (en) 2005-10-20
JP4103902B2 JP4103902B2 (en) 2008-06-18

Family

ID=35326916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157615A Expired - Fee Related JP4103902B2 (en) 2005-05-30 2005-05-30 Method for manufacturing anisotropic conductive adhesive film

Country Status (1)

Country Link
JP (1) JP4103902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666124B1 (en) 2005-10-31 2007-01-09 전자부품연구원 Method of fabricating anisotropic conductive film using electrospun
CN112500806A (en) * 2020-11-20 2021-03-16 东莞市哲华电子有限公司 Manufacturing process of high-reliability heat-conducting adhesive tape for electronic components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192859A (en) * 1984-06-29 1986-05-10 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− Method and device for uniformly distributing severally separated particle onto moving porous web
JPS61127199A (en) * 1984-11-26 1986-06-14 日本精線株式会社 Conductive composite body and manufacture thereof
JPS61187393A (en) * 1985-02-15 1986-08-21 カシオ計算機株式会社 Joint material for connection of electronic component
JPS62137571U (en) * 1986-02-24 1987-08-29
JPH07302667A (en) * 1994-05-10 1995-11-14 Hitachi Chem Co Ltd Manufacture of anisotropic conductive resin film of bond and connection method between fine circuits
JPH0946028A (en) * 1995-07-31 1997-02-14 Nec Corp Terminal connecting method and circuit board manufactured by method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192859A (en) * 1984-06-29 1986-05-10 ザ、プロクタ−、エンド、ギヤンブル、カンパニ− Method and device for uniformly distributing severally separated particle onto moving porous web
JPS61127199A (en) * 1984-11-26 1986-06-14 日本精線株式会社 Conductive composite body and manufacture thereof
JPS61187393A (en) * 1985-02-15 1986-08-21 カシオ計算機株式会社 Joint material for connection of electronic component
JPS62137571U (en) * 1986-02-24 1987-08-29
JPH07302667A (en) * 1994-05-10 1995-11-14 Hitachi Chem Co Ltd Manufacture of anisotropic conductive resin film of bond and connection method between fine circuits
JPH0946028A (en) * 1995-07-31 1997-02-14 Nec Corp Terminal connecting method and circuit board manufactured by method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666124B1 (en) 2005-10-31 2007-01-09 전자부품연구원 Method of fabricating anisotropic conductive film using electrospun
CN112500806A (en) * 2020-11-20 2021-03-16 东莞市哲华电子有限公司 Manufacturing process of high-reliability heat-conducting adhesive tape for electronic components

Also Published As

Publication number Publication date
JP4103902B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
JP4887700B2 (en) Anisotropic conductive film and electronic / electrical equipment
TWI387157B (en) Conducting particles arranged sheet and producing method thereof
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
KR20110041181A (en) Method for bonding flip chip and structure at the same
TW201730896A (en) Anisotropic conductive film and production method therefor
US20120153008A1 (en) Joined structure, method for producing the same, and anisotropic conductive film used for the same
JP4686120B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
WO2005045851A1 (en) Insulated conductive particles and an anisotropic conductive film containing the particles
JP2007016088A (en) Anisotropically electrically conductive adhesive sheet and fine-connected structure
JP2000151084A (en) Anisotropic conductive adhesive film
JP2000149677A (en) Manufacturing device of anisotropic conductive adhesive film
JP4181231B2 (en) Method for manufacturing anisotropic conductive adhesive film
JP5032961B2 (en) Anisotropic conductive film and bonded body using the same
JP4103902B2 (en) Method for manufacturing anisotropic conductive adhesive film
JP5209778B2 (en) Anisotropic conductive film and bonded body using the same
JPH1050930A (en) Multichip mounting method
JP2000067647A (en) Insulating coating conductive fine particle, anisotropic conductive adhesive and conductive connecting structure
TW202147351A (en) Anisotropic Conductive Film Manufacturing method and Anisotropic Conductive Film
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP2006032335A (en) Anisotropic conductive adhesion film
JP4994653B2 (en) Anisotropic conductive adhesive sheet
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees