[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005293878A - 燃料電池スタック - Google Patents

燃料電池スタック Download PDF

Info

Publication number
JP2005293878A
JP2005293878A JP2004103090A JP2004103090A JP2005293878A JP 2005293878 A JP2005293878 A JP 2005293878A JP 2004103090 A JP2004103090 A JP 2004103090A JP 2004103090 A JP2004103090 A JP 2004103090A JP 2005293878 A JP2005293878 A JP 2005293878A
Authority
JP
Japan
Prior art keywords
flow path
hydrogen gas
refrigerant
fuel cell
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103090A
Other languages
English (en)
Inventor
Shinya Watanabe
真也 渡邉
Masahiro Mouri
昌弘 毛里
Yosuke Fujii
洋介 藤井
Minoru Koshinuma
実 越沼
Mitsuro Ichikawa
充郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004103090A priority Critical patent/JP2005293878A/ja
Publication of JP2005293878A publication Critical patent/JP2005293878A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池スタックの発電を行ったときに、逆拡散などによってアノード電極側に発生するHOの結露を効果的に防止する。
【解決手段】燃料電池スタック1の互いに隣り合う膜電極構造体7,7の間のセパレータ8に形成された冷媒流路18は、その始端から終端に至る流路のうちの少なくとも一部の流路の終端近傍部分18xが、膜電極構造体7のアノード電極10の表面側の反応ガス(水素ガス)流路13の終端に、冷媒流路18の始端よりも近接して該反応ガス流路13の終端近傍に存するように形成されている。
【選択図】図4

Description

本発明は燃料電池スタックに関し、特に発電性能の改善を目的とした構造を有する燃料電池スタックに関する。
燃料電池スタックは、固体高分子電解質膜とその両面にそれぞれ接合されたアノード電極およびカソード電極とからそれぞれ構成された複数の膜電極構造体(いわゆるMEA)と、各膜電極構造体の各電極の表面に臨んで設けられたセパレータとを、互いに隣合う膜電極構造体同士の間にセパレータが介在するように積層することにより構成された電池本体部を備えている。セパレータは、これが臨む電極との間に反応ガスの流路を形成し、該電極の表面沿いに反応ガスを流通させるものである。アノード電極の表面側の流路に流通させる反応ガスと、カソード電極の表面側の流路に流通させる反応ガスとしては、それぞれ通常、水素ガス、空気が使用される。
この種の燃料電池スタックは、固体高分子電解質膜を介したガス反応(水素と空気中の酸素との反応)によって各膜電極構造体の両電極間に電力を発生する。そして、この電力の発生時の発熱によって燃料電池スタックの昇温が過剰になるのを防止するために、互いに隣合う膜電極構造体同士の間のセパレータに、反応ガスの流路と画成(隔離)された冷媒流路を形成し、この冷媒流路に冷媒を流すことが一般に行われている。
ところで、燃料電池スタックでは、酸素と水素との反応によって水もしくは水蒸気(H2O)が生成され、その生成されたHOは、通常は、カソード電極の表面からこれに臨む反応ガス流路(空気流路)に進入する。そして、このカソード電極の表面に発生したHOは、その多くは、該カソード電極の表面に臨む空気流路に供給される空気によって該空気流路の始端(入口)側から終端(出口)側に運搬されて、該空気流路から排出される。しかし、比較的低温な環境下で燃料電池スタックの運転を行ったような場合には、特に、空気流路の出口付近でHOが結露して、カソード電極に付着したまま残留したり、あるいは、空気流路内に残留する恐れがある。そして、このようにHOの結露およびその残留が発生すると、空気の流れが悪くなり、燃料電池スタックの発電能力が低下してしまう。
このような不具合を防止するために、例えば米国特許5547776(特許文献1)には、反応ガスとしての空気がアノード電極の表面側の反応ガス流路(空気流路)をその始端側の箇所から終端側の箇所に移っていくに伴い、その反応ガス流路の行路中の各箇所に隣接する冷媒流路の箇所(膜電極構造体の法線方向で見て反応ガス流路の各箇所とほぼ重なるような冷媒流路の箇所)が該冷媒流路の始端側から終端側に移っていくように、それらの空気流路および冷媒流路を形成するようにしたものが提案されている。これによれば、空気流路の終端付近の箇所が、冷媒流路を流れる過程で膜電極構造体の発熱によって暖められた冷媒を介して暖められやすくなる。その結果、空気流路の終端付近でのHOの結露を防止することが可能となる。
米国特許5547776
ところで、燃料電池スタックの固体高分子電解質膜は、近年、燃料電池スタックの小型化やコスト低減などのために、より薄い膜厚のものが製造されるようになってきている。そして、特に、薄い膜厚の固体高分子電解質膜(例えば40μmの厚さの固体高分子電解質膜)を使用する燃料電池スタックでは、膜電極構造体で生成されたHOの、いわゆる逆拡散が発生しやすい。このような逆拡散が発生しやすい燃料電池スタックでは、生成されたHOのうち、カソード電極の表面に拡散せずにアノード電極の表面に拡散(逆拡散)する量が多くなるため、アノード電極側の反応ガス流路(水素ガス流路)にもHOが進入しやすくなる。なお、通常的な厚さの固体高分子電解質膜を使用している場合でも、アノード電極側へのHOの逆拡散が多少生じることがある。そして、その逆拡散の発生の度合いが固体高分子電解質膜の厚さが薄くなるほど、高くなる。
この場合、アノード電極側の表面に拡散するHOの量は、カソード電極の表面に拡散するHOの量よりも一般には少ない。このため、従来は、アノード電極側に発生するHOについては、その結露の影響などは考慮されておらず、その結露の防止のための格別な方策も採られていないのが実状である。
しかし、本願発明者は、種々様々の検討、実験によって、アノード電極側でのHOの結露の防止が燃料電池スタックの発電性能の低下を防止する上で重要な課題であることを知見した。すなわち、アノード電極側の反応ガス流路(水素ガス流路)に供給される水素ガスの流量は、カソード電極側の空気流路に供給される空気の流量に比して小さい。加えて、水素ガス流路に供給された水素ガスは、アノード電極の表面沿いに流れる過程で徐々に消費されてその流量が少なくなっていく。このため、特にアノード電極側で発生したHOは、そのアノード電極の表面沿いの水素ガス流路の終端付近に溜まって結露しやすい。
そして、この場合、前記特許文献1のもののように、カソード電極側の空気流路とこれに隣接する冷媒流路とを形成しても、燃料電池スタックの発電を行ったときに、アノード電極側に発生したHOの結露の防止が不十分になり、ひいては、燃料電池スタックの発電能力が低下しやすいという不都合を生じる。
本発明はかかる背景に鑑みてなされたものであり、燃料電池スタックの発電を行ったときに、逆拡散などによってアノード電極側に発生するHOの結露を効果的に防止することができる燃料電池スタックを提供することを目的とする。
本発明の燃料電池スタックは、かかる目的を達成するために、固体高分子電解質膜とその両面にそれぞれ接合されたアノード電極およびカソード電極とからそれぞれ構成された複数の膜電極構造体と、各膜電極構造体の各電極の表面に臨んで設けられ、該電極との間に反応ガスの流路を形成するセパレータとを積層して構成された電池本体部を備えると共に、少なくとも一組の隣り合う膜電極構造体の間のセパレータに、当該一組の膜電極構造体のうちの一方の膜電極構造体のアノード電極の表面側の反応ガスの流路と他方の膜電極構造体のカソード電極の表面側の反応ガスの流路とから画成された冷媒の流路を形成してなる燃料電池スタックにおいて、前記一組の膜電極構造体の間のセパレータに形成された冷媒の流路は、その始端から終端に至る流路のうちの少なくとも一部の流路の終端近傍部分が、当該一組の膜電極構造体のうちの前記一方の膜電極構造体のアノード電極の表面側の反応ガスの流路の終端に、該冷媒の流路の始端よりも近接して該反応ガスの流路の終端近傍に存するように形成されていることを特徴とするものである。
なお、本発明において、アノード電極側の反応ガスの流路(該アノード電極の表面に臨む流路)に供給する反応ガスは、水素ガスもしくはこれを含有するガスであり、カソード電極側の反応ガスの流路(該カソード電極の表面に臨む流路)に供給する反応ガスは、酸素ガスもしくはこれを含有するガス(好適には空気)である。
本発明の燃料電池スタックによれば、前記一組の膜電極構造体のセパレータに形成された冷媒の流路が、上記のように形成されているので、この流路を流れる過程で燃料電池スタックの発電時の発熱により暖められる冷媒の少なくとも一部がその流路の終端近傍部分(該冷媒の流路の出口近傍の箇所)に達したときに、その熱によってアノード電極側の反応ガスの流路の終端近傍(該反応ガスの流路の出口近傍の箇所)を暖めることとなる。その結果、燃料電池スタックの発電運転を行ったときに、生成されたHOがアノード電極側に拡散して該アノード電極の表面に臨む反応ガス流路に進入しても、そのHOが該アノード電極側の反応ガス流路の終端付近で結露するのが効果的に防止される。
従って、本発明の燃料電池スタックによれば、燃料電池スタックの発電を行ったときに、逆拡散などによってアノード電極側に発生するHOの結露を効果的に防止することができる。ひいては、生成されたHOの結露による燃料電池スタックの発電性能の低下を防止することができる。
なお、本発明においては、アノード電極側の反応ガスの流路に供給する反応ガスは、水素ガスそのものでよいことはもちろんであるが、カソード電極側の反応ガスの流路に供給する反応ガスは、酸素を含有するガスとしての空気が好適である。カソード電極側の反応ガスとして空気を使用することで、カソード電極側の流路(空気流路)に供給すべき空気の流量が比較的多くなる。このため、アノード電極側に生成されるHOは、その大部分を空気によって運搬して、空気流路の終端(出口)から排出することが可能である。この場合、本発明では、アノード電極側の反応ガスの流路と冷媒の流路との関係については、カソード電極側と同様に、前記一組の膜電極構造体の間のセパレータに形成された冷媒の流路は、その始端から終端に至る流路のうちの少なくとも一部の流路の終端近傍部分が、当該一組の膜電極構造体のうちの前記他方の膜電極構造体のカソード電極の表面側の反応ガスの流路の終端に、該冷媒の流路の入口よりも近接して該反応ガスの流路の終端近傍に存するように形成されていることが好適である。但し、必ずしも、このように形成しておく必要はない。
本発明の第1実施形態を図1〜図6を参照して説明する。図1は燃料電池スタックの構成を模式的に示す斜視図である。同図に示すように燃料電池スタック1は、電池本体部2と、この電池本体部2の外周囲に装着されたヘッダ3とを備えている。ヘッダ3の一方の側部3a(図の左側部)には、水素ガスの導入側通路4inと、冷媒の導入側通路5inと、空気の導出側通路6outとが、それぞれ燃料電池スタック1の長手方向に貫通して設けられている。これらの水素ガスの導入側通路4in(以下、導入側水素ガス通路4inという)、冷媒の導入側通路5in(以下、導入側冷媒通路5inという)、および空気の導出側通路6out(以下、導出側空気通路6outという)は、この順番でヘッダ3の側部3aの上部側から下部側に向かって上下方向に並列している。
また、ヘッダ3の他方の側部3bには、水素ガスの導出側通路4outと、冷媒の導出側通路5outと、空気の導入側通路6inとが、それぞれ燃料電池スタック1の長手方向に貫通して設けられている。これらの水素ガスの導出側通路4out(以下、導出側水素ガス通路4outという)、冷媒の導出側通路5out(以下、導出側冷媒通路5outという)、および空気の導入側通路6in(以下、導入側空気通路6inという)は、この順番でヘッダ3の側部3bの下部側から上部側に向かって上下方向に並列している。
詳細な図示は省略するが、導入側水素ガス通路4inと導出側水素ガス通路4outとは燃料電池スタック1の長手方向の一端部(図1の奥側の端部。以下、後端部という)にて図示しない管を介して連通されている。そして、導入側水素ガス通路4inには、矢印(1)で示すように、燃料電池スタック1の長手方向の他端部(図1の手前側の端部。以下、前端部という)から図示しない水素ガス供給器によって水素ガスが供給される。さらに、その供給された水素ガスのうち、電池本体部2で消費された水素ガスを除く残余の水素ガスが、導出側水素ガス通路4outを矢印(1)’で示すように図1の手前側に向かって流れ、燃料電池スタック1の前端部にて該導出側水素ガス通路4outから導出されて回収されるようになっている。
同様に、導入側冷媒通路5inと導出側冷媒通路5outとは燃料電池スタック1の後端部にて連通されている。そして、導入側冷媒通路5inには、矢印(2)で示すように、燃料電池スタック1の前端部から図示しない冷媒供給器によって冷媒が供給される。さらに、その供給された冷媒が、電池本体部1の後述の冷媒流路を経由した後、導出側冷媒通路5outを矢印(2)’で示すように図1の手前側に向かって流れ、燃料電池スタック1の前端部にて該導出側冷媒通路5outから導出されて回収されるようになっている。なお、導出側冷媒通路5outから回収された冷媒は、燃料電池スタック1の外部にて図示しない放熱器を経由して放熱した後、再び導入側冷媒通路5inに供給されるようになっている。
また、導入側空気通路6inと導出側空気通路6outとは、上記と同様に燃料電池スタック1の後端部にて連通されている。そして、導入側空気通路6inには、矢印(3)で示すように、燃料電池スタック1の前端部から図示しない空気供給器によって空気(大気)が供給される。さらに、その供給された空気のうち、電池本体部2で消費される酸素を除いた空気が、導出側空気通路6outを矢印(3)’で示すように図1の手前側に向かって流れ、燃料電池スタック1の前端部にて該導出側空気通路6outから導出されるようになっている。
電池本体部2は、複数の板状の膜電極構造体7と、その各膜電極構造体7の各面に装着された導電性のセパレータ8とを各膜電極構造体7の法線方向(燃料電池スタック1の長手方向)に積層して構成されている。別の言い方をすれば、電池本体部2は、複数の膜電極構造体7と複数のセパレータ8とが交互に並ぶようにそれらを各膜電極構造体7の法線方向に積層して構成されている。さらに別の言い方をすれば、各膜電極構造体7とその両側のセパレータ8,8とによって、燃料電池スタック1の単位セル(1つの発電要素)が構成され、この単位セルを直列に積層することで、電池本体部2が構成されている。
以下に、図2を参照して、膜電極構造体7およびセパレータ8の基本構造を説明する。図2は電池本体部2を構成する一部の膜電極構造体7およびセパレータ8の断面図を示している。
各膜電極構造体7は、通常、MEA(Membrane Electrode Assembly)と称されるものであり、図示の如く、薄い方形フィルム状の固体ポリマーイオン交換膜などからなる固体高分子電解質膜9(以下、単に電解質膜9という)とその両面にそれぞれ接合された板状のアノード電極10およびカソード電極11とから構成されている。電解質膜9は、本実施形態では例えば40μmの厚さのものが用いられている。なお、かかる各膜電極構造体7の構造は公知のものであるので、本明細書でのさらなる説明は省略する。
セパレータ8は、各膜電極構造体7の各電極10,11との間に反応ガス(本実施形態では反応ガスとして水素ガスと空気とを用いる)の流路を形成するものである。この場合、互いに隣り合う膜電極構造体7,7の間のセパレータ8は、より詳しくは一方の膜電極構造体7のアノード電極10の表面に装着されて該アノード電極10との間に水素ガスの流路を形成するセパレータ8aと、他方の膜電極構造体7のカソード電極11の表面に装着されて該カソード電極11との間に空気の流路を形成するセパレータ8cとを接合して構成されている(以下、これらのセパレータ8a,8cをそれぞれアノード側セパレータ8a、カソード側セパレータ8cということがある)。これらのセパレータ8a,8cは本実施形態では例えばカーボンから構成されている。
アノード側セパレータ8aの、アノード電極10に臨む面には、複数の溝12が形成されており、その溝12とアノード電極10の表面との間に形成される空間が水素ガス流路13として形成されている。同様にカソード側セパレータ8cのカソード電極11に臨む面に形成された複数の溝14と該カソード電極11の表面との間に空間が空気流路15として形成されている。
また、本実施形態では、これらの互いに隣接して接合されたアノード側セパレータ8aおよびカソード側セパレータ8cの接合面、すなわち、アノード側セパレータ8aのカソード側セパレータ8cに臨む面と、カソード側セパレータ8cのアノード側セパレータ8aに臨む面とには、互いに対向する複数の溝16,17が各々形成されており、この溝16,17によって両セパレータ8a,8cの間に形成される空間が冷媒流路19として形成されている。冷媒流路19と水素ガス流路13とはアノード側セパレータ8aによって画成され、冷媒流路19と空気流路15とはカソード側セパレータ8cによって画成されている。
ここで、本実施形態におけるアノード側セパレータ8aとこれを装着したアノード電極10との間の水素ガス流路13のパターンと、互いに接合されたアノード側セパレータ8aとカソード側セパレータ8cとの間の冷媒流路18のパターンとをそれぞれ図3、図4を参照して説明する。図3は図2に示した矢印IIIの向きで見た水素ガス流路13のパターンを示しており、図4は図2に示した矢印IVの向きで見た冷媒流路18のパターンを示している。なお、これらの図3および図4には、ヘッダ3を併せて図示している。この場合、矢印III,IVの向きは逆向きであるので、図3および図4のヘッダ3は互いに左右が逆になっている。
図3に示すように、アノード側セパレータ8aの複数の溝12によって形成される水素ガス流路13(これは本実施形態では各溝12毎の複数の流路から構成されている)は、その始端(入口)13inが同図の右上箇所で、ヘッド3の側部3aの上部に存する導入側水素ガス通路4inに連通されており、その始端13inから左右に蛇行しながら同図の左下の終端(出口)13outに至っている。そして、その水素ガス流路13の終端13outがヘッド3の側部3bの下部に存する導出側水素ガス通路4outに連通されている。
また、図4に示すように、冷媒流路18は、その始端(入口)18inが同図の左側部の中央箇所で、ヘッド3の側部3aの中央部に存する導入側冷媒通路5inに連通されており、その始端18inから上下方向に並ぶ複数の流路18a,18b,18cに分岐した後、同図の右側部の中央箇所の終端(出口)18outに合流している。そして、その冷媒流路18の終端18outがヘッド3の側部3bの中央部に存する導出側冷媒通路5outに連通されている。なお、図4の破線は、冷媒流路18と水素ガス流路13の位置関係を示すために、水素ガス流路13の全体的(代表的)な経路を示したものである。
ここで、本実施形態では、前記図1に示した如く、ヘッド3の側部3aの上部と中央部(上下方向での中央部)とにそれぞれ導入側水素ガス通路4inおよび導入側冷媒通路5inが配置されており、また、ヘッド3の側部3bの中央部(上下方向の中央部)と下部とにそれぞれ導出側冷媒通路5outおよび導出側水素ガス通路4outが配置されている。従って、冷媒流路18と水素ガス流路13とを膜電極構造体7の法線方向で同じ向きから見たとき、図4に見られる如く、冷媒流路18のうちの下側の流路18cは、その終端近傍部分18x(流路18cのうちの終端18out寄りの部分)が、水素ガス流路13の終端近傍に位置している(膜電極構造体7の法線方向で見たときのそれらの終端近傍部分の位置がほぼ同じ位置になる)。また、冷媒流路18の下側の流路18cの終端近傍部分18xは、冷媒流路18の始端18inよりも、水素ガス流路13の終端に近接している。
なお、本実施形態では、カソード側セパレータ8cとこれを装着したカソード電極11との間に形成される空気流路15のパターンは、膜電極構造体7の法線方向で見たとき、概ね、水素ガス流路13のパターンとほぼ左右対称のパターンに形成されている。より詳しくは、空気流路15は、図2の矢印Vの向き(矢印IIIと同じ向き)で見たとき、図5に破線で示す如く、左上の始端(入口)15inから左右に蛇行しつつ、右下の終端(出口)15outに至っている。そして、空気流路15の始端15inがヘッド3の側部3bの上部に存する導入側空気通路6inに連通し、終端15outがヘッド3の側部3aの下部に存する導出側空気通路6outに連通している。従って、この空気流路15と冷媒流路18との関係については、図5に実線で示した冷媒流路18のうちの下側の流路18cの始端近傍部分(流路18cのうちの始端18in寄りの部分)が、空気流路15の終端近傍に位置し、また、該流路18cの始端近傍部分は、冷媒流路18の終端18outよりも、空気流路15の終端に近接している。
以上説明した如く構成された本実施形態の燃料電池スタック1では、その発電を行うとき、ヘッダ3の導入側冷媒通路5inに冷媒を供給しつつ、ヘッダ3の導入側水素ガス通路4inおよび導入側空気通路6inにそれぞれ反応ガスとしての水素ガス、空気が供給される。なお、冷媒としては、例えば水、エチレングリコール等が用いられる。
このとき、導入側水素ガス通路4inに供給された水素ガスは、各膜電極構造体7のアノード電極10に臨む水素ガス流路13にその始端13inから流入して、この水素ガス流路13を該アノード電極10の表面沿いに流れる。そして、その水素ガス流路13の終端13outから導出側水素ガス通路4outに流出する。また、導入側空気通路6inに供給された空気は、各膜電極構造体7のカソード電極11に臨む空気流路15にその始端15inから流入して、この空気流路15を該カソード電極11の表面沿いに流れる。そして、その空気流路15の終端15outから導出側空気通路6outに流出する。また、導入側冷媒通路5inに供給された冷媒は、互いに隣り合う膜電極構造体7,7の間の各冷媒流路18にその始端18inから流入してこの冷媒流路18を流れる。そして、その冷媒流路18の終端18outから導出側冷媒通路5outに流出する。
さらに、上記の如くアノード電極10の表面に水素ガス、カソード電11の表面に空気が供給された各膜電極構造体7にあっては、アノード電極10に供給された水素ガスがイオン化し、その水素イオンが電解質膜9を透過してカソード電極11に移動する。そして、このカソード電極11に移動した水素イオンが、該カソード電極11に供給された空気中の酸素と反応し、そのときに、両電極10,11間に起電力が発生して発電すると共に、HO(水もしくは水蒸気)が生成される。また、この発電時に各膜電極構造体7で発生する熱エネルギーは、これに隣接するセパレータ8の内部の冷媒流路18を流れる冷媒によって吸収され、これにより燃料電池スタック1の過剰な昇温が防止される。なお、各膜電極構造体7の両電極10,11間に発生した起電力(発電電力)は、各膜電極構造体7の両側のセパレータ8,8から図示しないケーブルを介して取り出され、それを全ての膜電極構造体7について直列に合成してなる電力が適宜の電気負荷に供給される。
かかる発電時において、各膜電極構造体7で生成されるHOはその多くが該膜電極構造体7の両電極10,11のうちのカソード電極11側に拡散して該カソード電極11の表面に臨む空気流路15に進入する。但し、いわゆる逆拡散などによって、生成されたHOの一部は、アノード電極側10に拡散して該アノード電極10の表面に臨む水素ガス流路13に進入する。
この場合、空気流路15に供給される空気のうち、各膜電極構造体11の発電のために消費される成分は、該空気の約1/5の組成割合である酸素のみであるので、該空気流路15に供給される空気の流量は、水素ガス流路13に供給される水素ガスの流量よりも十分に多いものとされている。また、空気流路15に供給される空気のうちの一部の組成成分である酸素が該空気流路15を流れる過程で各膜電極構造体11の発電によって消費されても、該空気流路15の流量はさほど低下しない。このため、空気流路15に進入するHOの大部分は、基本的には、カソード電極11の表面に結露して残留したりすることなく、空気流路15を流れる空気によって運搬されて、該空気流路15からヘッダ3の導出側空気通路5inに流出する。
一方、水素ガス流路13に供給される水素ガスの流量は空気流路15への空気の供給流量に比して少なく、また、その水素ガスが水素ガス流路13を流れる過程で膜電極構造体11の発電によって消費されることで、水素ガス流路13における水素ガスの流量は、その水素ガス流路13の終端13outに近づくに伴い減少していく(減少の度合いが空気流路15の場合よりも大きい)。このため、特に水素ガス流路13の終端近傍でHOの結露およびその残留が発生しやすい。
しかるに、本実施形態の燃料電池スタック1では、前記したように、冷媒流路18のうちの下側の流路18cは、その終端近傍部分18xが、水素ガス流路13の終端近傍に位置し、また、流路18cの終端近傍部分18xは、冷媒流路18の始端18inよりも、水素ガス流路13の終端に近接している。このため、水素ガス流路13の終端近傍は、冷媒流路18をその始端18inから終端18outに流れる過程で暖められた冷媒(流路18cの終端近傍部分18xの冷媒)の熱によって放熱しにくくなっている。その結果、水素ガス流路13の終端近傍でHOが結露するのが防止される。ひいては、結露しアノード電極10に付着したHOや水素ガス流路13内に残留するHOによって膜電極構造体7の発電能力(発電出力)が損なわれてしまうような事態を回避することができる。
ここで、図6を参照して、本実施形態の燃料電池スタック1の効果の検証結果について説明する。図6のグラフaは、本実施形態の燃料電池スタック1の起動後の定常状態(燃料電池スタック1への水素ガスの供給量、空気の供給量、冷媒の供給量、環境温度等を一定に維持した状態)における各単位セル(各膜電極構造体7とその両側のセパレータ8,8で構成される電池)の出力電圧の測定値を示すもの(実施例)である。なお、図6の横軸は、燃料電池スタック1の長手方向(膜電極構造体7の法線方向)における各セルの膜電極構造体7の位置を示し、縦軸は各セルの出力電圧である。
また、図6のグラフbは、比較例の燃料電池スタックの起動後の定常状態における各単位セルの出力電圧の測定値を示すものである。比較例の燃料電池スタックは、その構造は本実施形態の燃料電池スタックと同一であるが、実施形態のものと逆に、ヘッダ3の導出側水素ガス通路4outから水素ガスを供給すると共に、導出側空気通路6outから空気を供給するようにしたものである。つまり、比較例は、各水素ガス流路での水素ガスの流れの向きと、各空気流路での空気の流れの向きとを前記実施形態と逆向きにしたものである。これ以外の測定条件は、グラフaの実施例と同一である。この場合、比較例の燃料電池スタックでは、上記の如く水素ガス、酸素ガスを供給するので、水素ガス流路にあっては、その終端が冷媒流路の始端近傍部分に近いものとなり、また、空気流路にあっては、その終端が冷媒流路の終端近傍部分に近いものとなる。
図6に見られる如く、比較例の燃料電池スタックでは、図のA,Bに対応する位置の単位セルにおいて、出力電圧の比較的大きな落ち込みが生じている。ここで、比較例の燃料電池スタックでは、空気流路の終端近傍に、冷媒流路の一部の流路の終端近傍部分が存在しているので、空気流路の終端近傍でのHOの結露を防止する上では実施例のものよりも有利になっているにもかかわらず、水素ガス流路の終端と冷媒流路の終端近傍部分とが離れているため、水素ガス流路の終端近傍でHOの結露およびその残留が生じやすくなっている。比較例の燃料電池スタックでは、図のA,Bに対応する位置の単位セルにおいて、水素ガス流路の終端近傍でHOの結露およびその残留が発生し、それによって、それらの単位セルの出力電圧の落ち込みが生じていると考えられる。
これに対して、実施例の燃料電池スタック1では、図のA,Bに対応する位置の単位セルの出力電圧の落ち込みが比較例に比して小さくなっていると共に、各単位セルの出力電圧も全体的に比較例よりも高くなっている。そして、この場合、実施例の燃料電池スタック1では、空気流路15の終端が冷媒流路18の終端近傍部分から離れていて、空気流路15の終端近傍でのHOの結露を防止する上では比較例よりも不利であるにもかかわらず、上記の如く、比較例よりも各単位セルの出力特性を良好になっている。これは、実施例の燃料電池スタック1では、前記した通り、水素ガス流路13の終端近傍でのHOの結露が防止されることによる効果が大きいためであると考えられる。
次に、本発明の他の実施形態を説明する。なお、以降に説明する実施形態では、第1実施形態と同一構成もしくは同一機能部分については第1実施形態と同一の参照符号を用いて詳細な説明を省略する。
本発明では、冷媒流路のパターンと水素ガス流路のパターンとの関係は、前記第1実施形態のものに限られるものではない。例えば図7〜図11にそれぞれ示すようなパターンを用いてもよい。
図7に示す実施形態(第2実施形態)、図8に示す実施形態(第3実施形態)、および図9に示す実施形態(第4実施形態)は、いずれも、水素ガス流路13のパターンのみが第1実施形態と相違するものである。図7に示す第2実施形態では、水素ガス流路13は、ヘッダ3の導入側水素ガス通路4inに連通する始端から、冷媒流路18のうちの流路18a,18b,18cにそれぞれ沿う3つの流路に分岐され、それが、導出側水素ガス通路4outの付近で合流されて終端に至り、該導出側水素ガス通路4outに連通している。
また、図8に示す第3実施形態では、水素ガス流路13は、ヘッダ3の導入側水素ガス通路4inに連通する始端から、上下に蛇行しつつ右側に移動して導出側水素ガス通路4outに近づき、その終端で該導出側水素ガス通路4outに連通している。
また、図9に示す第4実施形態では、水素ガス流路13は、ヘッダ3の導入側水素ガス通路4inに連通する始端から左右に蛇行しつつ、下側に移動して左下側の箇所に至り、次いで、上下に蛇行しつつ右側に移動して導出側水素ガス通路4outに近づき、その終端で該導出側水素ガス通路4outに連通している。
これらの第2〜第4のいずれの実施形態においても、第1実施形態と同様に、冷媒流路18のうちの流路18cの終端近傍部分18xが水素ガス流路13の終端近傍に存在しており、また、流路18cの終端近傍部分18xは、冷媒流路18の始端18inよりも水素ガス流路13の終端に近接している。従って、第1実施形態と同様の効果を奏することができる。
また、図10に示す実施形態(第5実施形態)と、図11に示す実施形態(第6実施形態)とは、いずれも、水素ガス流路13のパターンを例えば前記第4実施形態と同一とすると共に、冷媒流路18のパターンとヘッダ3の導入側冷媒通路5inおよび導出側冷媒通路5outの位置とを第1実施形態と異なるものとしたものである。それ以外は、第1実施形態と同一である。
この場合、図10に示す第5実施形態では、ヘッダ3の導入側冷媒通路5inおよび導出側冷媒通路5outは、それぞれヘッダ3の上部の中央部(左右方向の中央部)、下部の中央部(左右方向の中央部)に設けられている。そして、冷媒流路18は、ヘッダ3の導入側冷媒通路5inに連通する始端18inから、下方に伸びる3つの流路18a,18b,18cに分岐されている。そして、これらの流路18a,18b,18cは、導出側冷媒通路5outの近くで合流した後、その終端18outが導出側冷媒通路5outに連通されている。この第5実施形態では、冷媒流路18のうちの右側の流路18cの終端近傍部分18xが水素ガス流路13の終端近傍に存在しており、また、流路18cの終端近傍部分18xは、冷媒流路18の始端18inよりも水素ガス流路13の終端に近接している。従って、第1実施形態と同様の効果を奏することができる。
また、図11に示す第6実施形態では、ヘッダ3の導入側冷媒通路5inおよび導出側冷媒通路5outは、それぞれヘッダ3の上側左隅、下側右隅に設けられている。そして、冷媒流路18は、ヘッダ3の導入側冷媒通路5inに連通する始端18inから、斜め下方に伸びる3つの流路18a,18b,18cに分岐されている。そして、これらの流路18a,18b,18cは、導出側冷媒通路5outの近くで合流した後、その終端18outが導出側冷媒通路5outに連通されている。この第6実施形態では、冷媒流路18(全ての流路18a〜18c)の終端近傍部分18xが水素ガス流路13の終端近傍に存在しており、また、冷媒流路18の終端近傍部分18xは、冷媒流路18の始端18inよりも水素ガス流路13の終端に近接している。従って、第1実施形態と同様の効果を奏することができる。
なお、以上説明した第1〜第6実施形態では、セパラレータをカーボンで構成したものを示したが、セパレータを金属板により構成してもよい。この場合、隣り合う膜電極構造体の間に冷媒流路を形成する場合、例えば2枚の金属板にプレス加工を施すことで各金属板の両面に凹凸溝を形成し、それぞれの金属板を一方の膜電極構造体のアノード電極、他方の膜電極構造体のカソード電極に各々接合することで、各電極との間に水素ガス流路、空気流路を形成する。さらに、それらの2枚の金属板を接合することで、両金属板の間に冷媒流路を形成することができる。
また、冷媒流路や、空気流路、水素ガス流路は、カーボンや金属板からなるセパレータに複数の突起(エンボス)を点在的に形成し、それによって、流路を構成してもよい。
また、前記第1〜第6実施形態では、冷媒流路は、互いに隣合う各組の膜電極構造体7,7の間に設けるようにしたが、必ずしも、全ての組の膜電極構造体7,7の間に設ける必要はない。例えば、膜電極構造体7,7の組の1つ置き毎に冷媒流路を設けるようにしてもよい。この場合、間に冷媒流路を設けない膜電極構造体7,7の組については、その膜電極構造体7,7の間のセパレータを単一構造(1部品構造)のカーボンもしくは金属板により形成してもよい。
また、前記第1実施形態では、空気流路15と冷媒流路18との関係については、図5に実線で示した冷媒流路18のうちの下側の流路18cの始端近傍部分(流路18cのうちの始端18in寄りの部分)が、空気流路15の終端近傍に位置し、また、該流路18cの始端近傍部分は、冷媒流路18の終端18outよりも、空気流路15の終端に近接しているようにした。但し、水素ガス流路13と冷媒流路18との関係と同様に、冷媒流路のうちの少なくとも一部の流路の終端近傍部分(その流路の始端寄りの部分)が、空気流路の終端近傍に位置し、また、その冷媒流路の少なくとも一部の流路の終端近傍部分が、冷媒流路の始端よりも、空気流路の終端に近接するようにしてもよい。この場合の実施形態は、例えば第1実施形態における導入側空気通路6inと導出側空気通路6outとをそれぞれ第1実施形態と逆に、導出側、導入側として使用して、空気を導出側空気通路6outから供給するようにするようすればよい。このようにすると、各空気流路15における空気の流れの向きが第1実施形態と逆になるので、冷媒流路18と空気流路15との上記の関係が実現できる。このことは、前記第2〜第6実施形態についても同様である。
本発明の第1実施形態の燃料電池スタックの全体構成を概略的に示す斜視図。 図1の燃料電池スタックの電池本体部の膜電極構造体およびセパレータの構成を示す断面図。 図2の矢印IIIの向きで見た水素ガス流路のパターンを示す図。 図2の矢印IVの向きで見た冷媒流路のパターンを示す図。 図2の矢印Vの向きで見た冷媒流路と空気流路とのパターンを示す図。 第1実施形態の燃料電池スタックの効果の検証結果を示すグラフ。 第2実施形態における燃料電池スタックの冷媒流路と水素ガス流路とのパターンの関係を示す図。 第3実施形態における燃料電池スタックの冷媒流路と水素ガス流路とのパターンの関係を示す図。 第4実施形態における燃料電池スタックの冷媒流路と水素ガス流路とのパターンの関係を示す図。 第5実施形態における燃料電池スタックの冷媒流路と水素ガス流路とのパターンの関係を示す図。 第6実施形態における燃料電池スタックの冷媒流路と水素ガス流路とのパターンの関係を示す図。
符号の説明
1…燃料電池スタック、2…電池本体部、7…膜電極構造体、8,8a,8b…セパレータ、9…固体高分子電解質膜、10…アノード電極、11…カソード電極、13…水素ガス流路、15…空気流路、18…冷媒流路。

Claims (1)

  1. 固体高分子電解質膜とその両面にそれぞれ接合されたアノード電極およびカソード電極とからそれぞれ構成された複数の膜電極構造体と、各膜電極構造体の各電極の表面に臨んで設けられ、該電極との間に反応ガスの流路を形成するセパレータとを積層して構成された電池本体部を備えると共に、少なくとも一組の隣り合う膜電極構造体の間のセパレータに、当該一組の膜電極構造体のうちの一方の膜電極構造体のアノード電極の表面側の反応ガスの流路と他方の膜電極構造体のカソード電極の表面側の反応ガスの流路とから画成された冷媒の流路を形成してなる燃料電池スタックにおいて、
    前記一組の膜電極構造体の間のセパレータに形成された冷媒の流路は、その始端から終端に至る流路のうちの少なくとも一部の流路の終端近傍部分が、当該一組の膜電極構造体のうちの前記一方の膜電極構造体のアノード電極の表面側の反応ガスの流路の終端に、該冷媒の流路の始端よりも近接して該反応ガスの流路の終端近傍に存するように形成されていることを特徴とする燃料電池スタック。
JP2004103090A 2004-03-31 2004-03-31 燃料電池スタック Pending JP2005293878A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103090A JP2005293878A (ja) 2004-03-31 2004-03-31 燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103090A JP2005293878A (ja) 2004-03-31 2004-03-31 燃料電池スタック

Publications (1)

Publication Number Publication Date
JP2005293878A true JP2005293878A (ja) 2005-10-20

Family

ID=35326602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103090A Pending JP2005293878A (ja) 2004-03-31 2004-03-31 燃料電池スタック

Country Status (1)

Country Link
JP (1) JP2005293878A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014519A (ja) * 2009-06-04 2011-01-20 Honda Motor Co Ltd 燃料電池スタック
KR101304884B1 (ko) 2007-08-08 2013-09-06 기아자동차주식회사 연료전지의 플러딩 저감을 위한 냉각유로구조

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125338A (ja) * 1996-10-22 1998-05-15 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH11185778A (ja) * 1997-12-18 1999-07-09 Toyota Motor Corp 燃料電池
JPH11283639A (ja) * 1998-03-27 1999-10-15 Toyota Motor Corp 燃料電池用セパレータおよび燃料電池
JPH11283637A (ja) * 1998-03-27 1999-10-15 Denso Corp 燃料電池
JP2000223141A (ja) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd 燃料電池スタックおよび燃料電池システム
JP2000294254A (ja) * 1999-04-05 2000-10-20 Toshiba Corp 固体高分子型燃料電池
JP2001148252A (ja) * 1999-09-10 2001-05-29 Honda Motor Co Ltd 燃料電池
JP2001185172A (ja) * 1999-12-28 2001-07-06 Honda Motor Co Ltd 燃料電池およびその運転方法
JP2002124292A (ja) * 2000-10-19 2002-04-26 Honda Motor Co Ltd 燃料電池スタック
JP2002289219A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2003151576A (ja) * 2001-11-14 2003-05-23 Sanyo Electric Co Ltd 燃料電池
JP2003346841A (ja) * 2002-05-23 2003-12-05 Asia Pacific Fuel Cell Technology Ltd 燃料電池装置の極板アセンブリの流場

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125338A (ja) * 1996-10-22 1998-05-15 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH11185778A (ja) * 1997-12-18 1999-07-09 Toyota Motor Corp 燃料電池
JPH11283639A (ja) * 1998-03-27 1999-10-15 Toyota Motor Corp 燃料電池用セパレータおよび燃料電池
JPH11283637A (ja) * 1998-03-27 1999-10-15 Denso Corp 燃料電池
JP2000223141A (ja) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd 燃料電池スタックおよび燃料電池システム
JP2000294254A (ja) * 1999-04-05 2000-10-20 Toshiba Corp 固体高分子型燃料電池
JP2001148252A (ja) * 1999-09-10 2001-05-29 Honda Motor Co Ltd 燃料電池
JP2001185172A (ja) * 1999-12-28 2001-07-06 Honda Motor Co Ltd 燃料電池およびその運転方法
JP2002124292A (ja) * 2000-10-19 2002-04-26 Honda Motor Co Ltd 燃料電池スタック
JP2002289219A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2003151576A (ja) * 2001-11-14 2003-05-23 Sanyo Electric Co Ltd 燃料電池
JP2003346841A (ja) * 2002-05-23 2003-12-05 Asia Pacific Fuel Cell Technology Ltd 燃料電池装置の極板アセンブリの流場

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304884B1 (ko) 2007-08-08 2013-09-06 기아자동차주식회사 연료전지의 플러딩 저감을 위한 냉각유로구조
JP2011014519A (ja) * 2009-06-04 2011-01-20 Honda Motor Co Ltd 燃料電池スタック

Similar Documents

Publication Publication Date Title
JP4245091B2 (ja) 燃料電池
JP2008053197A5 (ja)
JP4917755B2 (ja) 燃料電池
US7537851B2 (en) Fuel cell system including separator having cooling water flow channels
JP2009026727A (ja) 燃料電池用金属分離板
JP4753599B2 (ja) 燃料電池
KR101013853B1 (ko) 연료전지용 분리판
JP5042507B2 (ja) 燃料電池
JP2003132911A (ja) 燃料電池
JP2004063472A (ja) 発電機器の改良された流体流路
WO2009081726A1 (ja) 燃料電池システム
JP4314183B2 (ja) 燃料電池及び燃料電池用セパレータ
JP4726186B2 (ja) 燃料電池スタック
KR101675638B1 (ko) 연료전지용 유로형성부재
JP2005293878A (ja) 燃料電池スタック
JP4572252B2 (ja) 燃料電池スタック
JP2010061986A (ja) 燃料電池スタック
JP5123824B2 (ja) 燃料電池スタックおよび燃料電池スタックの運転方法
US20220255090A1 (en) Fuel cell stack
JP2010165692A (ja) 固体高分子型セルアセンブリ
JP2007227398A (ja) 燃料電池用セパレータ
US7329472B2 (en) Fuel cell system and stack used thereto
JP7480216B2 (ja) 燃料電池用セパレータ及び発電セル
US12068510B2 (en) Fuel cell stack
JP2008027804A (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803