[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005287900A - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
JP2005287900A
JP2005287900A JP2004109306A JP2004109306A JP2005287900A JP 2005287900 A JP2005287900 A JP 2005287900A JP 2004109306 A JP2004109306 A JP 2004109306A JP 2004109306 A JP2004109306 A JP 2004109306A JP 2005287900 A JP2005287900 A JP 2005287900A
Authority
JP
Japan
Prior art keywords
projection
endoscope
light
observation target
position coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109306A
Other languages
Japanese (ja)
Inventor
Atsuo Miyagawa
厚夫 宮川
Susumu Terakawa
進 寺川
Keiichi Abe
圭一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Hamamatsu University School of Medicine NUC
Original Assignee
Shizuoka University NUC
Hamamatsu University School of Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Hamamatsu University School of Medicine NUC filed Critical Shizuoka University NUC
Priority to JP2004109306A priority Critical patent/JP2005287900A/en
Publication of JP2005287900A publication Critical patent/JP2005287900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an endoscope capable of measuring the three-dimensional shape of an object to be observed speedily and highly precisely. <P>SOLUTION: In the endoscope 10, a plurality of projection rays 44 projected from a projection lens system 26 on the object 42 to be observed are photographed by respective photography elements 24, and based on the image photographed by each photography element 24, the position coordinate of each projection ray 44 on the object 42 to be observed is calculated and the three-dimensional shape of the object 42 to be observed is measured. Since the position coordinates of the plurality of projection rays 44 on the object 42 to be observed are calculated by a control part 38, scanning of the projection rays 44 is not necessary, so that the three-dimensional shape of the object 42 to be observed can be measured at high speed. Furthermore, since the position coordinates of the projection rays 44 on the object 42 to be observed are calculated by the control part 38 based on the images photographed by the photography elements 24, even the length not more than the three-dimensional resolution of the photography elements 24 can be measured, so that the three-dimensional shape of the object 42 to be observed can be measured highly precisely. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は内視鏡に係り、特に、観察対象の立体形状(3次元形状)を計測することができる医療用または工業用として利用可能な内視鏡に関する。   The present invention relates to an endoscope, and more particularly, to an endoscope that can be used for medical use or industrial use that can measure a three-dimensional shape (three-dimensional shape) of an observation target.

内視鏡としては、身体内の胃、腸、気管支、肺、膀胱、及び腎臓等の器官を観察、診断、または治療する医療用内視鏡、及び各種の機械装置や設備における間隙やパイプの内側、自然界における洞窟内の割れ目や隙間等の狭い場所や観察困難な場所を観察、または操作する工業用内視鏡が知られている。   Endoscopes include medical endoscopes that observe, diagnose, or treat organs such as the stomach, intestines, bronchi, lungs, bladder, and kidneys in the body, and gaps and pipes in various mechanical devices and equipment. 2. Description of the Related Art Industrial endoscopes are known that observe or manipulate narrow places such as cracks and gaps in caves in nature and places that are difficult to observe.

このような内視鏡は、一般に単眼鏡であるため、観察対象を立体的に観察することができないだけでなく、観察対象の立体形状を計測することもできない。従来の内視鏡では、内視鏡の撮影視野の大きさ及び内視鏡と観察対象との間の距離を推測すると共に、内視鏡のピントのぼけ具合や内視鏡を移動した際の画像の動き等を考慮することで、観察対象のおおよその立体形状を推測できるに過ぎない。   Since such an endoscope is generally a monocular, it cannot not only observe the observation object in three dimensions but also cannot measure the three-dimensional shape of the observation object. In a conventional endoscope, the size of the field of view of the endoscope and the distance between the endoscope and the observation target are estimated, and the degree of focus blur of the endoscope and the movement of the endoscope are estimated. By considering the movement of the image and the like, it is only possible to estimate the approximate three-dimensional shape of the observation target.

また、内視鏡とし、2台のカメラ及びイメージファイバ等が適度な間隔で配置されて観察対象の立体視が可能とされた立体内視鏡、または3次元内視鏡等と呼ばれる内視鏡が開発されている。   An endoscope called a three-dimensional endoscope or a three-dimensional endoscope or the like in which two cameras, image fibers, and the like are arranged at an appropriate interval to enable stereoscopic viewing of an observation target. Has been developed.

しかしながら、この立体内視鏡では、観察対象の立体視により観察対象表面の凹凸を捉えることは可能であるが、内視鏡と観察対象との間の距離を計測することができないため、観察対象の立体形状を計測することができない。この問題を解決するために、観察対象との間の距離を計測することができる内視鏡が開発されている(例えば、特許文献1及び特許文献2参照)。   However, with this stereoscopic endoscope, although it is possible to capture the unevenness of the surface of the observation target by stereoscopic viewing of the observation target, it is impossible to measure the distance between the endoscope and the observation target. The three-dimensional shape cannot be measured. In order to solve this problem, endoscopes that can measure the distance to the observation target have been developed (see, for example, Patent Document 1 and Patent Document 2).

特許文献1の内視鏡では、1つの測定光(スポット光)を対象物上に投影し、この測定光を2台のカメラで撮影することで、三角測量の原理を応用して、内視鏡先端と対象物上の測定光との距離を演算している。   In the endoscope of Patent Document 1, one measurement light (spot light) is projected onto an object, and this measurement light is photographed by two cameras, thereby applying the principle of triangulation to the endoscope. The distance between the mirror tip and the measurement light on the object is calculated.

また、特許文献2の内視鏡では、細いスコープの先端に投影系及び撮影系を設置し、投影系から細かい縞模様を観察個所上に投影すると共に、この縞模様を1台の撮影系で撮影することで、縞模様のずれから、三角測量の原理を応用して、観察個所の立体形状を計測するようにしている。
特許2875832号公報 特開平2−297515号公報
In the endoscope of Patent Document 2, a projection system and an imaging system are installed at the tip of a thin scope, and a fine stripe pattern is projected from the projection system onto an observation point. By taking a picture, the principle of triangulation is applied to measure the three-dimensional shape of the observation site from the deviation of the stripe pattern.
Japanese Patent No. 2875832 JP-A-2-297515

しかしながら、特許文献1の内視鏡では、カメラが撮影する全画面における対象物の立体形状を計測するためには、測定光を全画面にわたって走査する必要があり、この走査によって計測に時間を要する、という問題がある。したがって、計測中に動いたり変形する対象物の立体形状を正確に計測するのは困難である。特に、医療用内視鏡では、体動、呼吸、及び心臓の鼓動等の振動による影響を計測中に受けるので、対象物の立体形状を正確に計測することは困難である。   However, in the endoscope of Patent Document 1, in order to measure the three-dimensional shape of the object on the entire screen captured by the camera, it is necessary to scan the measurement light over the entire screen, and this scanning requires time. There is a problem. Therefore, it is difficult to accurately measure the three-dimensional shape of an object that moves or deforms during measurement. In particular, medical endoscopes are affected by vibrations such as body movement, breathing, and heartbeat during measurement, and it is difficult to accurately measure the three-dimensional shape of an object.

また、特許文献2の内視鏡では、細いスコープの先端に投影系及び撮影系を設置しているため、三角測量を実施するために重要な基線長(投影系と撮影系との間の距離)を長くすることは困難である。このため、実用的なスコープ先端と観察個所との間の間隔は、2.5cm程度に留まると記載されており、スコープ先端と観察個所との間の間隔が大きくなると、観察個所の立体形状を高精度に計測できない、という問題が生じる。   In the endoscope of Patent Document 2, since the projection system and the imaging system are installed at the tip of a thin scope, the baseline length (distance between the projection system and the imaging system) that is important for performing triangulation is used. ) Is difficult to lengthen. For this reason, it is described that the distance between the practical scope tip and the observation point is about 2.5 cm, and when the distance between the scope tip and the observation point becomes large, the three-dimensional shape of the observation point is changed. There arises a problem that measurement cannot be performed with high accuracy.

本発明は、上記問題点を解決するためになされたもので、観察対象の立体形状を高速かつ高精度に計測できる内視鏡を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an endoscope capable of measuring a three-dimensional shape of an observation target with high speed and high accuracy.

上記目的を達成するために、本発明の内視鏡は、複数の計測点を有するパターン像を観察対象に投影する投影手段と、前記観察対象に投影されたパターン像を異なる位置から撮影するように、所定間隔隔てて配置された複数の撮影手段と、前記撮影手段の各々で撮影された画像に基づいて、前記計測点各々の位置座標を演算する演算手段と、を含んで構成されている。   In order to achieve the above object, an endoscope of the present invention is configured to project a pattern image having a plurality of measurement points onto an observation target and to capture the pattern image projected onto the observation target from different positions. And a plurality of photographing means arranged at predetermined intervals, and a computing means for computing the position coordinates of each of the measurement points based on images photographed by each of the photographing means. .

本発明では、投影手段によって複数の計測点を有するパターン像が観察対象に投影され、所定間隔隔てて配置された複数の撮影手段によって、観察対象に投影されたパターン像が異なる位置から撮影される。複数の撮影手段は、所定間隔隔てて配置されているため、撮影手段で撮影された画像間には視差が生じることになる。さらに、撮影手段の各々で撮影された画像に基づいて、演算手段によって観察対象に投影されたパターン像の計測点各々の位置座標が演算される。この演算された位置座標から3次元情報が得られので、観察対象の立体形状を計測することができる。   In the present invention, a pattern image having a plurality of measurement points is projected onto the observation target by the projection means, and the pattern image projected on the observation target is photographed from different positions by the plurality of photographing means arranged at predetermined intervals. . Since the plurality of photographing means are arranged at a predetermined interval, parallax occurs between images photographed by the photographing means. Further, the position coordinates of each measurement point of the pattern image projected onto the observation target are calculated by the calculation means based on the images shot by each of the shooting means. Since the three-dimensional information is obtained from the calculated position coordinates, the three-dimensional shape of the observation target can be measured.

本発明では、複数の計測点を有するパターン像を観察対象に投影し、投影されたパターン像の計測点の各々の位置座標が演算されるため、走査を行なうことなく、観察対象の立体形状を計測することができる。このため、観察対象の立体形状を高速で計測することができる。   In the present invention, a pattern image having a plurality of measurement points is projected onto an observation object, and the position coordinates of each measurement point of the projected pattern image are calculated, so that the three-dimensional shape of the observation object can be obtained without scanning. It can be measured. For this reason, the three-dimensional shape of the observation object can be measured at high speed.

さらに、撮影手段の各々で撮影された画像に基づいて、計測点の各々の位置座標を演算するため、撮影手段の立体分解能以下の長さでも計測することができる。このため、観察対象の立体形状を高精度に計測することができる。   Furthermore, since the position coordinates of each measurement point are calculated based on the images photographed by each photographing means, it is possible to measure even with a length less than the stereoscopic resolution of the photographing means. For this reason, the three-dimensional shape of the observation target can be measured with high accuracy.

また、本発明の内視鏡は、観察対象に投影される計測点各々の投影態様を、計測点の各々が区別できるように互いに異ならせるのが好ましい。これにより、各撮影手段の撮影画像間で同一の計測点を容易に対応させることができ、これによって計測点の位置座標を容易に演算することができる。   In the endoscope of the present invention, it is preferable that the projection modes of the measurement points projected on the observation target are different from each other so that the measurement points can be distinguished from each other. Thereby, the same measurement point can be easily made to correspond between the captured images of the respective imaging means, and thereby the position coordinates of the measurement point can be easily calculated.

計測点の各々が区別できるようにするには、計測点の各々を、光量が各々一定でかつ色(波長又はスペクトル)が各々異なる光を照射することによって形成するのが効果的である。これによって、輝度が一定でかつ色が異なる複数の計測点が投影されるので、単一色の光の強度を変調して計測点の各々を区別できるようにする場合と比較して、撮影手段のダイナミックレンジが狭くても容易に撮影することができる。   In order to be able to distinguish each measurement point, it is effective to form each measurement point by irradiating light having a constant light amount and different colors (wavelengths or spectra). As a result, a plurality of measurement points having a constant luminance and different colors are projected, so that it is possible to distinguish each of the measurement points by modulating the intensity of light of a single color. It is possible to easily shoot even if the dynamic range is narrow.

さらに、本発明の内視鏡は、演算された位置座標に基づいて、該位置座標に対応する点の分布を表示する表示手段を更に設けるのが好ましい。これにより、観察対象の立体形状を容易に把握することができる。   Furthermore, it is preferable that the endoscope of the present invention further includes display means for displaying a distribution of points corresponding to the position coordinates based on the calculated position coordinates. Thereby, the three-dimensional shape of the observation target can be easily grasped.

以上説明したように本発明の内視鏡によれば、観察対象の立体形状を高速かつ高精度に計測できる、という効果が得られる。   As described above, according to the endoscope of the present invention, there is an effect that the three-dimensional shape of the observation target can be measured at high speed and with high accuracy.

[第1の実施の形態]
次に、本発明を電子内視鏡に適用した第1の実施の形態について説明する。図1には、本発明の第1の実施の形態の内視鏡10の内部構成が断面図にて示されている。
[First Embodiment]
Next, a first embodiment in which the present invention is applied to an electronic endoscope will be described. FIG. 1 is a cross-sectional view showing the internal configuration of the endoscope 10 according to the first embodiment of the present invention.

内視鏡10は、長尺筒状の挿入部12、及びこの挿入部12の基端12Bに接続された処理部14を備えている。また、内視鏡10の挿入部12の先端側には、所定間隔隔てて配置された2つの撮影装置16、及び複数の計測点Pを有するパターンを観察対象42に投影する投影装置18が設けられている。   The endoscope 10 includes a long cylindrical insertion portion 12 and a processing portion 14 connected to a proximal end 12B of the insertion portion 12. In addition, on the distal end side of the insertion portion 12 of the endoscope 10, there are provided two imaging devices 16 arranged at a predetermined interval and a projection device 18 that projects a pattern having a plurality of measurement points P onto the observation object 42. It has been.

各撮影装置16は、撮影レンズ22及びカラーCCDのような異なった波長帯域の画像を撮影できる撮影素子24を備えたCCDカメラ20で構成されており、撮影レンズ22は挿入部12の先端12A側に配置され、撮影素子24は撮影レンズ22の画像結像位置に配置されている。各撮影装置16は、所定間隔隔てて配置されているため、各CCDカメラ20で撮影された画像間には視差が生じることになる。本実施の形態では、CCDカメラ20は、撮影レンズ22の光軸が平行になるように配置されているが、撮影レンズ22の光軸が交差するように配置してもよい。   Each photographing device 16 includes a photographing lens 22 and a CCD camera 20 having a photographing element 24 capable of photographing images of different wavelength bands such as a color CCD. The photographing lens 22 is on the distal end 12A side of the insertion portion 12. The photographing element 24 is disposed at the image forming position of the photographing lens 22. Since each photographing device 16 is arranged at a predetermined interval, parallax occurs between images photographed by the CCD cameras 20. In the present embodiment, the CCD camera 20 is arranged so that the optical axis of the photographing lens 22 is parallel, but may be arranged so that the optical axes of the photographing lens 22 intersect.

投影装置18には、挿入部12の先端側の各撮影レンズ22とは異なる位置に配置された投影レンズ系26が設けられている。図2に示す如く、投影レンズ系26は、2つの凸レンズ28と凸レンズ28間に配置された1つの凹レンズ30とで構成されたトリプレット型又はガウス型等の広画角で低収差なレンズ系で構成されている。   The projection device 18 is provided with a projection lens system 26 disposed at a position different from each photographing lens 22 on the distal end side of the insertion portion 12. As shown in FIG. 2, the projection lens system 26 is a lens system having a wide angle of view and low aberration such as a triplet type or a Gauss type, which includes two convex lenses 28 and one concave lens 30 disposed between the convex lenses 28. It is configured.

挿入部12内における投影レンズ系26の光入射側には、集光レンズ32が配置され、集光レンズ32の光入射側には、光源34が配置されている。光源34は、半導体レーザ、スーパールミネッセントダイオード、または発光ダイオード等の高輝度で低コヒーレントな光を発光する光源で構成することができる。   A condenser lens 32 is disposed on the light incident side of the projection lens system 26 in the insertion unit 12, and a light source 34 is disposed on the light incident side of the condenser lens 32. The light source 34 can be composed of a light source that emits high-luminance and low-coherent light, such as a semiconductor laser, a superluminescent diode, or a light-emitting diode.

投影レンズ系26と集光レンズ32との間には、投影パターン板36が配置されている。図3に示すように、投影パターン板36には、格子状に配列された正方形状の複数の特定範囲毎に、2次元状の透過パターン36Aが形成されている。透過パターン36Aには、図4に示すように、中心が特定範囲の中心に一致させて配置された光が透過可能な十字状の透過部37Aと、十字状の透過部37Aで区画された4つの領域に設けられた光が透過可能な点状の複数の透過部37Bとが設けられている。十字状の透過部37Aは、複数の点状透過部37Bに変更することもできる。   A projection pattern plate 36 is disposed between the projection lens system 26 and the condenser lens 32. As shown in FIG. 3, the projection pattern plate 36 is formed with a two-dimensional transmission pattern 36A for each of a plurality of square-shaped specific ranges arranged in a lattice pattern. As shown in FIG. 4, the transmissive pattern 36A includes four cross-shaped transmissive portions 37A that are arranged so that the centers thereof coincide with the centers of the specific ranges, and the cross-shaped transmissive portions 37A. There are provided a plurality of dot-shaped transmission portions 37B that are capable of transmitting light provided in one region. The cross-shaped transmission part 37A can be changed to a plurality of point-like transmission parts 37B.

投影パターン板36は、カバースライドのように、各特定範囲内の複数の透過部37B毎に、透過する光の色を変化させて透過する光をスペクトル変調させる透過パターン36Aが、格子状に形成されたガラス板やプラスチック板等で構成されている。透過部37Bは、所定個数、例えば10個×10個等間隔の細かいピッチで格子状に配置され、各透過部37Bから透過する光量が一定でかつ透過する光の色が異なるように構成されている。すなわち、各透過部37Bは、赤光、緑光、及び青光の各々が異なる割合で透過すると共に、各透過部37Bで透過した光量が同じになるように、カラーフィルターを蒸着する等によって構成されている。例えば、赤光、緑光、及び青光の相対強度の最小値を0、最大値を228とすると、図5の表に示すように、各透過部37Bにおいて赤光、緑光、及び青光の各々の相対強度の組合せが異なり、各透過部37Bにおいて赤光、緑光、及び青光の相対強度の合計が一定(図5の例では、228)になるように構成されている。   On the projection pattern plate 36, like a cover slide, a transmission pattern 36A for changing the color of transmitted light and modulating the transmitted light is formed in a lattice pattern for each of a plurality of transmitting portions 37B in each specific range. It is comprised with the glass plate, the plastic plate, etc. which were made. The transmissive portions 37B are arranged in a grid with a predetermined number, for example, 10 × 10 equally spaced pitches, and are configured such that the amount of light transmitted from each transmissive portion 37B is constant and the color of the transmitted light is different. Yes. That is, each transmission part 37B is configured by evaporating a color filter so that each of red light, green light, and blue light transmits at different ratios, and the amount of light transmitted by each transmission part 37B is the same. ing. For example, when the minimum value of the relative intensity of red light, green light, and blue light is 0 and the maximum value is 228, as shown in the table of FIG. The combinations of the relative intensities are different, and the total of the relative intensities of red light, green light, and blue light is constant (228 in the example of FIG. 5) in each transmission portion 37B.

これにより、投影レンズ系26から照射された投影光44は、投影パターン板36の特定範囲毎に設けられた透過パターン36Aに対応して観察対象に照射され、正方形状の特定範囲毎に各測定点(点状の投影光44)の明るさが等しいパターンで投影される。また、各測定点は、投影パターン板36によってスペクトル変調され、投影パターンの各計測点Pの色が異なるように投影されるので各々識別可能である。なお、観察対象42上に投影される投影光44は、観察対象42(特に医療用内視鏡10である場合には血液)に吸収されない光を使用するのが好ましい。投影光44が観察の妨害になる場合は、赤外光や紫外光と、これらの光に感度のある撮影素子24を用いることができる。   Thereby, the projection light 44 irradiated from the projection lens system 26 is irradiated to the observation object corresponding to the transmission pattern 36A provided for each specific range of the projection pattern plate 36, and each measurement is performed for each square specific range. The dots (dot-like projection light 44) are projected in the same pattern. Each measurement point is spectrally modulated by the projection pattern plate 36 and projected so that the color of each measurement point P of the projection pattern is different, so that each measurement point can be identified. The projection light 44 projected onto the observation object 42 preferably uses light that is not absorbed by the observation object 42 (particularly blood in the case of the medical endoscope 10). When the projection light 44 interferes with observation, infrared light or ultraviolet light and the imaging element 24 sensitive to these lights can be used.

処理部14内には、挿入部12内に配置されたリード線40を介して、上記各撮影素子24及び光源34に接続されると共に、CCDカメラで撮影された各画像に基づいて、計測点各々の三次元位置座標を演算するマイクロコンピュータで構成された制御部38が設けられている。制御部38には、立体形状計測時に操作されるスイッチ46、及び立体形状を表示するモニタ48が接続されている。   The processing unit 14 is connected to the imaging elements 24 and the light source 34 via lead wires 40 arranged in the insertion unit 12, and based on the images captured by the CCD camera, measurement points are measured. A control unit 38 composed of a microcomputer for calculating each three-dimensional position coordinate is provided. Connected to the control unit 38 are a switch 46 that is operated during measurement of the three-dimensional shape, and a monitor 48 that displays the three-dimensional shape.

次に、制御部38によって実行される計測点各々の三次元位置座標の演算について説明する。まず、図6に示すように、各撮影レンズ22の光軸を含むようにXY平面を定めると共に、2つの撮影レンズ22の中心を通る直線がY軸となり、撮影レンズ22間の中心が原点になるようにXY座標を定める。また、各撮影レンズ22の中心を(0,Yd1)、(0,Yd2)、観察対象42上に投影された計測点Pの位置座標を(Xa,Yb)、計測点Pの各撮影素子24上の像点の位置座標を(Xp1,Yp1)、(Xp2,Yp2)とし、Yd1=−Yd2とする。   Next, calculation of the three-dimensional position coordinates of each measurement point executed by the control unit 38 will be described. First, as shown in FIG. 6, the XY plane is determined so as to include the optical axis of each photographing lens 22, and a straight line passing through the centers of the two photographing lenses 22 becomes the Y axis, and the center between the photographing lenses 22 is the origin. The XY coordinates are determined so that Further, the center of each photographing lens 22 is (0, Yd1), (0, Yd2), the position coordinate of the measurement point P projected on the observation object 42 is (Xa, Yb), and each photographing element 24 of the measurement point P is displayed. The position coordinates of the upper image point are (Xp1, Yp1) and (Xp2, Yp2), and Yd1 = −Yd2.

ここで、各CCDカメラ20における撮影レンズ22の中心と計測点Pの撮影素子24上の像点の位置とを結ぶ直線の交点の座標が、観察対象42上のXY平面に含まれる計測点Pの位置座標となる。計測点Pの二次元位置座標は、   Here, the coordinates of the intersection of a straight line connecting the center of the photographic lens 22 in each CCD camera 20 and the position of the image point on the photographic element 24 of the measurement point P are the measurement points P included in the XY plane on the observation target 42. Position coordinates. The two-dimensional position coordinate of the measurement point P is

Figure 2005287900
で表される。
Figure 2005287900
It is represented by

同様にして、XY平面をZ軸方向に平行移動させることにより、移動させた位置での計測点Pの二次元位置座標が求まるので、移動させたZ軸方向で表されるZ座標と上記のようにして求めた二次元位置座標を用いることにより、計測点Pの三次元位置座標が求まる。求めた三次元位置座標は、制御部に設けられているメモリに記憶される。   Similarly, by translating the XY plane in the Z-axis direction, the two-dimensional position coordinates of the measurement point P at the moved position can be obtained, so the Z-coordinate represented by the moved Z-axis direction and the above-mentioned By using the two-dimensional position coordinates obtained in this way, the three-dimensional position coordinates of the measurement point P are obtained. The obtained three-dimensional position coordinates are stored in a memory provided in the control unit.

ここで、投影パターン板の配置位置に応じて、CCDカメラから観察対象までの距離を所定距離(例えば、25mm〜250mm)変化させた場合における撮影素子24の像面24A上に結像される像点の移動範囲について考察する。   Here, the image formed on the image plane 24A of the imaging element 24 when the distance from the CCD camera to the observation target is changed by a predetermined distance (for example, 25 mm to 250 mm) according to the arrangement position of the projection pattern plate. Consider the moving range of points.

XY平面上において、投影レンズの中心の座標を(0,0)、各撮影レンズ22の中心の座標を(0,3mm)、(0,−3mm)とし、投影レンズ系26及び各撮影レンズ22の焦点距離を各々2.56mm、Y軸方向(水平方法)の画角を±30°、Z軸方向(垂直方向)の画角を±22.5°とし、各撮影素子24の像面24Aの水平方向のサイズを2.56mm、垂直方向のサイズを1.92mmとし、撮像素子の画素数を水平方向に640画素、垂直方向に480画素とし、各画素サイズを4×4μmとする。   On the XY plane, the coordinates of the center of the projection lens are (0, 0), the coordinates of the center of each photographing lens 22 are (0, 3 mm), and (0, −3 mm), and the projection lens system 26 and each photographing lens 22. The focal length is 2.56 mm, the angle of view in the Y-axis direction (horizontal method) is ± 30 °, and the angle of view in the Z-axis direction (vertical direction) is ± 22.5 °. The horizontal size is 2.56 mm, the vertical size is 1.92 mm, the number of pixels of the image sensor is 640 pixels in the horizontal direction, 480 pixels in the vertical direction, and each pixel size is 4 × 4 μm.

この条件で、各撮影レンズから観察対象までの距離Xaを−25mmから−250mmまで変化させた際には、図8の投影パターン板の点状透過部37Bが原点に位置している場合(Yp0=0.00mmの場合)、図9の投影パターン板の点状透過部37BがYp0=0.64mmに位置している場合、図10の投影パターン板の点状透過部37BがYp0=1.28mmに位置している場合の各々において、一方の撮影素子24における像点の位置Yp1は図8〜図10の(A)のグラフのように変化し、他方の撮影素子24における像点の位置Yp2は図8〜図10の(B)のグラフのように変化する。   Under these conditions, when the distance Xa from each photographic lens to the observation target is changed from −25 mm to −250 mm, the point-like transmission part 37B of the projection pattern plate in FIG. 8 is located at the origin (Yp0). = 0.00mm), when the point transmission part 37B of the projection pattern plate of FIG. 9 is located at Yp0 = 0.64 mm, the point transmission part 37B of the projection pattern plate of FIG. In each case of 28 mm, the position Yp1 of the image point on one imaging element 24 changes as shown in the graphs of FIGS. 8 to 10A, and the position of the image point on the other imaging element 24. Yp2 changes as shown in the graphs of FIGS.

以上のことから、観察対象上の1つの計測点Pに注目すると、各撮影レンズから観察対象までの距離Xaが変化しても、各撮影素子の像面上での計測点Pの像点の位置Yp1、Yp2はある範囲内で移動する。   From the above, when attention is paid to one measurement point P on the observation object, even if the distance Xa from each imaging lens to the observation object changes, the image point of the measurement point P on the image plane of each imaging element is changed. The positions Yp1 and Yp2 move within a certain range.

従って、この像面上での範囲に対応する観察対象上での範囲(1つの投影パターンが配置される所定範囲)内で観察対象上に投影される各計測点を変調させれば、各計測点を各CCDカメラの撮影画像間で容易に対応させることができ、観察対象の立体形状を容易に計測できることになる。   Therefore, if each measurement point projected on the observation target is modulated within a range on the observation target corresponding to the range on the image plane (a predetermined range where one projection pattern is arranged), each measurement is performed. A point can be easily associated between the captured images of the CCD cameras, and the three-dimensional shape of the observation target can be easily measured.

このため、像面のサイズが1.92mm×2.56mmの撮影素子では、像面上で0.27648mm×0.27648mmの各範囲内で観察対象上に投影される各計測点を変調すれば、観察対象の立体形状を容易に計測できることになる。一般的なCCDカメラの有効画素数を上記のように480画素×640画素とすると、像面上で80画素×80画素の各範囲内で観察対象上に投影される各点状の投影光を変調させればよい。例えば、像面上で4画素×4画素当たりに1つの計測点を観察対象上に投影したとすると、観察対象上の各所定範囲内で20個×20個の計測点が必要になるが、計測点を400種類に識別可能に変調させることは容易である。なお、観察対象上に投影される点状の投影光は、像面上で1画素×1画素以上3画素×3画素以下に相当するサイズにするのがより好ましい。   For this reason, in an imaging device having an image plane size of 1.92 mm × 2.56 mm, if each measurement point projected on the observation target is modulated within a range of 0.27648 mm × 0.276648 mm on the image plane, Thus, the three-dimensional shape of the observation target can be easily measured. Assuming that the number of effective pixels of a general CCD camera is 480 pixels × 640 pixels as described above, each point-like projection light projected on the observation object within each range of 80 pixels × 80 pixels on the image plane is obtained. What is necessary is just to modulate. For example, if one measurement point is projected onto the observation target per 4 pixels × 4 pixels on the image plane, 20 × 20 measurement points are required within each predetermined range on the observation target. It is easy to modulate the measurement points so that they can be distinguished into 400 types. In addition, it is more preferable that the dot-like projection light projected on the observation target has a size corresponding to 1 pixel × 1 pixel or more and 3 pixels × 3 pixels or less on the image plane.

以上の構成の内視鏡10では、内視鏡10が作動されると共に挿入部12の先端12A側が観察対象42側へ挿入されて観察対象42に向けられ、スイッチ46が押されると、制御部38により光源34が点灯される。光源34から発光された光は、集光レンズ32、及び投影パターン板36を介して、投影レンズ系26から観察対象42の挿入部12側の面に投影され、投影パターンに応じたパターン像が投影される。   In the endoscope 10 having the above configuration, when the endoscope 10 is operated, the distal end 12A side of the insertion portion 12 is inserted into the observation target 42 side and directed toward the observation target 42, and when the switch 46 is pressed, the control unit The light source 34 is turned on by 38. The light emitted from the light source 34 is projected from the projection lens system 26 onto the surface on the insertion unit 12 side of the observation object 42 via the condenser lens 32 and the projection pattern plate 36, and a pattern image corresponding to the projection pattern is formed. Projected.

また、制御部38により各CCDカメラ20が作動されることで、各CCDカメラ20によって、観察対象42と観察対象42上のパターン像が撮影される。   Further, each CCD camera 20 is operated by the control unit 38, whereby the observation target 42 and the pattern image on the observation target 42 are taken by each CCD camera 20.

制御部38では、上記(1)式に従って計測点の三次元位置座標を演算する。この際、各々の計測点は変調により容易に対応させることができるため、計算は簡単である。一方、制御部38は、各CCDカメラ20による撮影画像の十字状の投影光44の中心を特徴点とし、特徴点を基準として撮影画像内の特徴点以外の計測点の三次元位置座標を順次演算することも、計測点数が少ないので容易である。なお、特徴点は複数個設けるようにしてもよい。これにより、観察対象42上の計測点各々の三次元位置座標が得られ、観察対象42の立体形状を非接触で計測することができる。   The control unit 38 calculates the three-dimensional position coordinates of the measurement point according to the above equation (1). At this time, since each measurement point can be easily associated by modulation, the calculation is simple. On the other hand, the control unit 38 uses the center of the cross-shaped projection light 44 of the captured image of each CCD camera 20 as a feature point, and sequentially sets the three-dimensional position coordinates of measurement points other than the feature point in the captured image based on the feature point. Calculation is also easy because the number of measurement points is small. A plurality of feature points may be provided. Thereby, the three-dimensional position coordinate of each measurement point on the observation object 42 is obtained, and the three-dimensional shape of the observation object 42 can be measured without contact.

また、モニタ48には、制御部38によって演算された各計測点の三次元位置座標に基づいて、この三次元位置座標に対応する点の分布が表示される。これにより、観察対象42の立体形状を目視で把握することができる。   The monitor 48 displays a distribution of points corresponding to the three-dimensional position coordinates based on the three-dimensional position coordinates of each measurement point calculated by the control unit 38. Thereby, the three-dimensional shape of the observation object 42 can be grasped visually.

本実施の形態では、観察対象上に二次元のパターン像が投影されるため、観察対象上に投影する投影光を走査しなくても、観察対象の立体形状を計測することができる。このため、観察対象の立体形状を高速で計測することができ、観察対象が動いたり変形する場合でも、観察対象の立体形状を正確に計測することができる。   In the present embodiment, since a two-dimensional pattern image is projected onto the observation target, the three-dimensional shape of the observation target can be measured without scanning the projection light projected onto the observation target. For this reason, the three-dimensional shape of the observation target can be measured at high speed, and the three-dimensional shape of the observation target can be accurately measured even when the observation target moves or deforms.

さらに、観察対象上の計測点の位置座標を、投影された計測点の重心位置又はピーク位置で検出すれば、撮影素子の画素数以上の数の細かい位置座標を計測することができる。このため、三角測量における基線長(撮影レンズ間の距離)を大きく取ることができなくても、観察対象の立体形状を高精度に計測することができる。   Furthermore, if the position coordinates of the measurement points on the observation target are detected from the center of gravity or the peak position of the projected measurement points, it is possible to measure fine position coordinates that are more than the number of pixels of the imaging element. For this reason, even if the base line length (distance between photographing lenses) in triangulation cannot be increased, the three-dimensional shape of the observation target can be measured with high accuracy.

さらに、観察対象上の計測点の色を異ならせているので、観察対象上の計測点を各CCDカメラの撮影画像間で容易に対応させることができ、計測点の三次元位置座標を容易に演算することができる。また、各計測点の輝度は一定であるため、CCDカメラのダイナミックレンジを大きくしたり、位置座標を演算するときに各計測点の輝度を規格化処理する等の付加的な演算処理を行なう必要も無くなる。   Furthermore, since the colors of the measurement points on the observation target are different, the measurement points on the observation target can be easily matched between the captured images of the CCD cameras, and the three-dimensional position coordinates of the measurement points can be easily set. It can be calculated. In addition, since the brightness at each measurement point is constant, it is necessary to perform additional calculation processing such as increasing the dynamic range of the CCD camera or normalizing the brightness at each measurement point when calculating the position coordinates. Will also disappear.

以上説明したように本実施の形態を特に医療用内視鏡として使用する場合には、胃ガンや大腸ガン等の病変部の立体形状(表面の形状、凹凸、テクスチャ)や大きさ(広がり)が、診断とその後の治療方針とに重要な意味を持つ疾患に対して、診断や治療に重要な手がかりをもたらすことができる。   As described above, particularly when this embodiment is used as a medical endoscope, the three-dimensional shape (surface shape, unevenness, texture) and size (spread) of a lesion such as stomach cancer or colon cancer However, it can provide important clues for diagnosis and treatment for diseases that have important implications for diagnosis and subsequent treatment strategies.

なお、上記の実施の形態では、投影パターン板を集光レンズと投影レンズ系との間に設けた例について説明したが、投影パターン板を光源と集光レンズ系との間に設けてもよい。   In the above embodiment, the example in which the projection pattern plate is provided between the condenser lens and the projection lens system has been described. However, the projection pattern plate may be provided between the light source and the condenser lens system. .

[第2の実施の形態]
図7には、本発明の第2の実施の形態に係る内視鏡50の内部構成が断面図にて示されている。なお、本実施の形態において上記第1の実施の形態と同一の部品については、同一の符号を付し、その詳細な説明は省略する。
[Second Embodiment]
FIG. 7 is a sectional view showing the internal configuration of the endoscope 50 according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態に係る内視鏡50は、挿入部12及び処理部14を備えている。また、内視鏡50には、2つの撮影装置52、及び複数の計測点Pを有するパターンを観察対象に投影する投影装置54が設けられている。   The endoscope 50 according to the present embodiment includes an insertion unit 12 and a processing unit 14. The endoscope 50 is provided with two imaging devices 52 and a projection device 54 that projects a pattern having a plurality of measurement points P onto an observation target.

各撮影装置52は、各々挿入部12の先端12A内に所定間隔隔てて配置された撮影レンズ22を有しており、各撮影レンズ22の光入射側には、複数の光ファイバをバンドルして挿入部12内に挿通したイメージファイバ56の出射端56Aが対向するように配置されている。   Each photographing device 52 has a photographing lens 22 arranged at a predetermined interval in the distal end 12A of the insertion portion 12, and a plurality of optical fibers are bundled on the light incident side of each photographing lens 22. The emission end 56A of the image fiber 56 inserted into the insertion portion 12 is disposed so as to face each other.

処理部14内には、結像レンズ60及び撮影素子24を有する2つのCCDカメラ58が配置されている。結像レンズ60はイメージファイバ56の基端56B側に対向し、撮影素子24は結像レンズ60の画像結像位置に配置されている。   Two CCD cameras 58 having an imaging lens 60 and a photographing element 24 are arranged in the processing unit 14. The imaging lens 60 faces the base end 56 </ b> B side of the image fiber 56, and the imaging element 24 is disposed at the image imaging position of the imaging lens 60.

投影装置54は、挿入部12の先端12A内において各撮影レンズ22とは異なる位置に配置された投影レンズ系26を有している。投影レンズ系26の光入射側には、挿入部12内に挿通されたイメージファイバ62の出射端62Aが対向するように配置されている。   The projection device 54 includes a projection lens system 26 disposed at a position different from each photographing lens 22 in the distal end 12A of the insertion portion 12. On the light incident side of the projection lens system 26, the output end 62 </ b> A of the image fiber 62 inserted into the insertion portion 12 is arranged so as to face.

処理部14内には、イメージファイバ62の入射端62Bに対向する結像レンズ64が配置されている。結像レンズ64の光入射側には集光レンズ32が配置され、集光レンズ32の光入射側には光源34が配置されている。結像レンズ64と集光レンズ32との間には、第1の実施の形態で説明した投影パターン板36が配置されている。   An imaging lens 64 is disposed in the processing unit 14 so as to face the incident end 62 </ b> B of the image fiber 62. A condenser lens 32 is disposed on the light incident side of the imaging lens 64, and a light source 34 is disposed on the light incident side of the condenser lens 32. Between the imaging lens 64 and the condenser lens 32, the projection pattern plate 36 described in the first embodiment is arranged.

処理部14内には、上記各撮影素子24及び光源34に電気的に接続されると共に、スイッチ46及びモニタ48が接続された制御部38が設けられている。   In the processing unit 14, a control unit 38 is provided which is electrically connected to each of the imaging elements 24 and the light source 34 and to which a switch 46 and a monitor 48 are connected.

以上の構成の内視鏡50では、内視鏡50が作動されると共に挿入部12の先端12A側が観察対象42側へ挿入されて観察対象42に向けられ、スイッチ46が押されると、光源34が点灯される。光源34から発光された光は、集光レンズ32、投影パターン板36、結像レンズ64、及びイメージファイバ62を介して、投影レンズ系26から観察対象42の挿入部12側の面に照射され、パターン像が投影される。   In the endoscope 50 having the above configuration, when the endoscope 50 is operated, the distal end 12A side of the insertion portion 12 is inserted into the observation object 42 side and directed toward the observation object 42, and the switch 46 is pressed, the light source 34 Lights up. The light emitted from the light source 34 is irradiated from the projection lens system 26 onto the surface of the observation object 42 on the insertion portion 12 side via the condenser lens 32, the projection pattern plate 36, the imaging lens 64, and the image fiber 62. A pattern image is projected.

また、観察対象42と観察対象42上のパターン像が、各CCDカメラ58によって撮影される。   Further, the observation object 42 and a pattern image on the observation object 42 are taken by each CCD camera 58.

各イメージファイバは、画像を伝送するだけであるので、結像レンズ60が撮影レンズ22の位置に一致するように各CCDカメラ58を移動させた場合と等価であるので、第1の実施の形態と同様に上記(1)式に従って三次元位置座標を演算することができる。   Since each image fiber only transmits an image, it is equivalent to the case where each CCD camera 58 is moved so that the imaging lens 60 coincides with the position of the photographing lens 22, and therefore the first embodiment. Similarly, the three-dimensional position coordinates can be calculated according to the above equation (1).

従って、本実施の形態に係る内視鏡においても、上記第1の実施の形態で説明したのと同様の効果を奏することができる。   Therefore, the endoscope according to the present embodiment can achieve the same effects as those described in the first embodiment.

さらに、本実施の形態では光源及び投影パターン板等が挿入部外に設けられているので、光源及び投影パターン板等を手動で容易に交換することができ、観察対象上に投影される投影光のパターンや変調方式を目的に応じて容易に選択することができる。   Furthermore, in this embodiment, since the light source and the projection pattern plate are provided outside the insertion portion, the light source and the projection pattern plate can be easily replaced manually, and the projection light projected onto the observation target The pattern and modulation method can be easily selected according to the purpose.

なお、本実施の形態では、結像レンズと集光レンズとの間に投影パターン板を設けたが、投影パターン板を光源と集光レンズとの間に設けてもよい。   In this embodiment, the projection pattern plate is provided between the imaging lens and the condenser lens. However, the projection pattern plate may be provided between the light source and the condenser lens.

また、上記各実施の形態では、撮影装置を2個設けた例について説明したが、撮影装置を3個以上設けてもよい。この場合、撮影装置の数をn個とすると、1つの計測点に対して三次元位置座標の解が、n2個求まる。このため、3個以上の撮影装置を設けた場合には、三次元位置座標の解の平均値や最適値を求めることができ、撮影装置の数を増加するに従い、三次元位置座標をより高精度に演算できて、観察対象の立体形状をより高精度に計測することができる。 In each of the above embodiments, an example in which two imaging devices are provided has been described. However, three or more imaging devices may be provided. In this case, if the number of imaging devices is n, n C 2 solutions of three-dimensional position coordinates are obtained for one measurement point. For this reason, when three or more imaging devices are provided, the average value or optimum value of the solution of the three-dimensional position coordinates can be obtained, and the three-dimensional position coordinates are increased as the number of imaging devices is increased. The calculation can be performed with high accuracy, and the three-dimensional shape of the observation target can be measured with higher accuracy.

さらに、上記各実施の形態では、撮影画像に所定数の特徴点を設け特徴点以外の計測点の三次元位置座標を順次演算するようにしたが、計測点の数が少ない場合等には計測点の三次元位置座標を同時に演算するようにしてもよい。これにより、観察対象の立体形状を一層高速で計測することができる。   Furthermore, in each of the above embodiments, a predetermined number of feature points are provided in the captured image, and the three-dimensional position coordinates of measurement points other than the feature points are sequentially calculated. However, measurement is performed when the number of measurement points is small. You may make it calculate the three-dimensional position coordinate of a point simultaneously. As a result, the three-dimensional shape of the observation target can be measured at a higher speed.

また、上記各実施の形態では、投影光をスペクトル変調する例について説明したが、投影光の輝度を変化させる強度変調、またはビーム径を変化させたりビーム形状を変化させて投影光の形状を変化させる形状変調を行なってもよく、スペクトル変調、強度変調、及び形状変調を2つ以上組み合わせた変調を行なっても良い。   In each of the above-described embodiments, the example in which the projection light is spectrally modulated has been described. However, the intensity modulation that changes the brightness of the projection light, or the shape of the projection light is changed by changing the beam diameter or the beam shape. Shape modulation to be performed may be performed, or modulation in which two or more of spectrum modulation, intensity modulation, and shape modulation are combined may be performed.

さらに、上記各実施の形態では、投影パターン板の透過部毎に透過する光の色を変化させる例について説明したが、投影パターン板は、透過部としての貫通孔が穿設された穴開き金属板、穴開き不透明プラスチック板、または、無色透明ガラス板や無色透明プラスチック板等の基盤上に金属蒸着膜や不透明インク等を付着して特定範囲毎に無色透明な透過部が透過パターン状に形成された投影パターン板で構成してもよい。この場合、複数の光源を設けることなどによって、光源からスペクトル変調または強度変調された光が複数の貫通孔の各々、または無色透明な複数の透過部の各々へ照射される。   Furthermore, in each of the above-described embodiments, the example in which the color of light transmitted through each transmission portion of the projection pattern plate is changed has been described. However, the projection pattern plate is a perforated metal in which a through hole is formed as a transmission portion. A transparent, transparent part is formed in a transparent pattern for each specific area by depositing a metal vapor deposition film or opaque ink on a base plate such as a plate, a perforated opaque plastic plate, or a colorless transparent glass plate or a colorless transparent plastic plate. You may comprise with the projected pattern board made. In this case, for example, by providing a plurality of light sources, the spectrum-modulated or intensity-modulated light is emitted from the light sources to each of the plurality of through holes or each of the plurality of colorless and transparent transmitting portions.

また、上記各実施の形態では、投影パターン板に十字状の透過部点状の透過部を形成したが、投影パターン板の透過パターンは、点状の透過部、直線状の透過部、円弧及び円などの曲線状の透過部のいずれかで構成してもよく、これらを2つ以上の組み合わせて構成してもよい。   Further, in each of the above embodiments, the cross-shaped transmissive portion and the point-shaped transmissive portion are formed on the projection pattern plate, but the transmissive pattern of the projection pattern plate includes the point-shaped transmissive portion, the linear transmissive portion, the arc, It may be configured by any one of curved transmission parts such as a circle, or may be configured by combining two or more thereof.

さらに、上記各実施の形態では、投影パターン板によってパターン像を投影する例について説明したが、投影パターン板を用いずに、ホログラフィックレンズを利用してパターン像を投影してもよく、複数の光ファイバの出射端面を投影パターン状に配置して束ねた光ファイバ束を用いてもよい。   Furthermore, in each of the above-described embodiments, an example in which a pattern image is projected by a projection pattern plate has been described. However, a pattern image may be projected using a holographic lens without using a projection pattern plate, and a plurality of pattern images may be projected. An optical fiber bundle in which the emission end faces of the optical fibers are arranged in a projection pattern and bundled may be used.

本発明の第1の実施の形態に係る内視鏡の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the endoscope which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る内視鏡において投影光を観察対象上に投影する構成を示す断面図である。It is sectional drawing which shows the structure which projects projection light on the observation object in the endoscope which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る内視鏡における投影パターン板の一部を示す正面図である。It is a front view which shows a part of projection pattern board in the endoscope which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る内視鏡における投影パターン板の透過パターンを示す正面図である。It is a front view which shows the transmission pattern of the projection pattern board in the endoscope which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る内視鏡において観察対象上の所定範囲内での各点状の投影光をスペクトル変調させる状況を示す表である。It is a table | surface which shows the condition which carries out the spectrum modulation | alteration of each point-like projection light within the predetermined range on an observation object in the endoscope which concerns on the 1st Embodiment of this invention. 本発明の実施例の内視鏡において観察対象上の投影光の位置座標を演算する方法を説明するための断面図である。It is sectional drawing for demonstrating the method to calculate the position coordinate of the projection light on an observation object in the endoscope of the Example of this invention. 本発明の第2の実施の形態に係る内視鏡の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the endoscope which concerns on the 2nd Embodiment of this invention. 本発明の第1の実施の形態に係る内視鏡において、Yp0=0.00mmである場合にXaを−25mmから−250mmまで変化させた際についてのグラフであり、(A)は、この際のYp1の変化を示すグラフであり、(B)は、この際のYp2の変化を示すグラフである。In the endoscope which concerns on the 1st Embodiment of this invention, when Yp0 = 0.00mm, it is a graph at the time of changing Xa from -25mm to -250mm, (A) is in this case Is a graph showing the change in Yp1, and (B) is a graph showing the change in Yp2 at this time. 本発明の第1の実施の形態に係る内視鏡において、Yp0=0.64mmである場合にXaを−25mmから−250mmまで変化させた際についてのグラフであり、(A)は、この際のYp1の変化を示すグラフであり、(B)は、この際のYp2の変化を示すグラフである。In the endoscope which concerns on the 1st Embodiment of this invention, when Yp0 = 0.64mm, it is a graph at the time of changing Xa from -25mm to -250mm, (A) is in this case Is a graph showing the change in Yp1, and (B) is a graph showing the change in Yp2 at this time. 本発明の第1の実施の形態に係る内視鏡において、Yp0=1.28mmである場合にXaを−25mmから−250mmまで変化させた際についてのグラフであり、(A)は、この際のYp1の変化を示すグラフであり、(B)は、この際のYp2の変化を示すグラフである。In the endoscope which concerns on the 1st Embodiment of this invention, when Yp0 = 1.28mm, it is a graph at the time of changing Xa from -25mm to -250mm, (A) is in this case Is a graph showing the change in Yp1, and (B) is a graph showing the change in Yp2 at this time.

符号の説明Explanation of symbols

10 内視鏡
12 挿入部
16 撮影装置
18 投影装置
38 制御部
42 観察対象
48 モニタ
50 内視鏡
52 撮影装置
54 投影装置
P 計測点
DESCRIPTION OF SYMBOLS 10 Endoscope 12 Insertion part 16 Imaging device 18 Projection apparatus 38 Control part 42 Observation object 48 Monitor 50 Endoscope 52 Imaging apparatus 54 Projection apparatus P Measurement point

Claims (4)

複数の計測点を有するパターン像を観察対象に投影する投影手段と、
前記観察対象に投影されたパターン像を異なる位置から撮影するように、所定間隔隔てて配置された複数の撮影手段と、
前記撮影手段の各々で撮影された画像に基づいて、前記計測点各々の位置座標を演算する演算手段と、
を含む内視鏡。
Projection means for projecting a pattern image having a plurality of measurement points onto an observation target;
A plurality of photographing means arranged at predetermined intervals so as to photograph the pattern image projected on the observation object from different positions;
Based on the images photographed by each of the photographing means, computing means for computing the position coordinates of each of the measurement points;
Including endoscope.
前記観察対象に投影される前記計測点各々の投影態様を、該計測点の各々が区別できるように互いに異ならせた請求項1記載の内視鏡。   The endoscope according to claim 1, wherein projection modes of the measurement points projected onto the observation target are different from each other so that the measurement points can be distinguished from each other. 前記計測点の各々は、光量が各々一定でかつ波長又はスペクトルが各々異なる光を照射することによって形成されている請求項2記載の内視鏡。   The endoscope according to claim 2, wherein each of the measurement points is formed by irradiating light having a constant light amount and a different wavelength or spectrum. 前記演算された位置座標に基づいて、該位置座標に対応する点の分布を表示する表示手段を更に設けた請求項1〜請求項3のいずれか1項記載の内視鏡。   The endoscope according to any one of claims 1 to 3, further comprising display means for displaying a distribution of points corresponding to the position coordinates based on the calculated position coordinates.
JP2004109306A 2004-04-01 2004-04-01 Endoscope Pending JP2005287900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109306A JP2005287900A (en) 2004-04-01 2004-04-01 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109306A JP2005287900A (en) 2004-04-01 2004-04-01 Endoscope

Publications (1)

Publication Number Publication Date
JP2005287900A true JP2005287900A (en) 2005-10-20

Family

ID=35321499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109306A Pending JP2005287900A (en) 2004-04-01 2004-04-01 Endoscope

Country Status (1)

Country Link
JP (1) JP2005287900A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283090A (en) * 2006-03-24 2007-11-01 Olympus Corp Image measurement system
JP2009078133A (en) * 2007-08-16 2009-04-16 Steinbichler Optotechnik Gmbh Device for determining 3d coordinates of object, in particular of tooth
JP2013506861A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Endoscope
JP2013240590A (en) * 2012-04-26 2013-12-05 Yamaguchi Univ Three-dimensional shape acquisition device from stereoscopic endoscopic image
JP2016191888A (en) * 2015-03-31 2016-11-10 オリンパス株式会社 Pattern projection optical system for stereo measurement and stereo measurement endoscope device including the same
JP2017185225A (en) * 2016-03-31 2017-10-12 コヴィディエン リミテッド パートナーシップ Thoracic endoscope for surface scanning
US11071591B2 (en) 2018-07-26 2021-07-27 Covidien Lp Modeling a collapsed lung using CT data
JP2021535407A (en) * 2018-08-24 2021-12-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring head that determines the position of at least one object
US11705238B2 (en) 2018-07-26 2023-07-18 Covidien Lp Systems and methods for providing assistance during surgery
US12089902B2 (en) 2019-07-30 2024-09-17 Coviden Lp Cone beam and 3D fluoroscope lung navigation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197806A (en) * 1989-12-26 1991-08-29 Olympus Optical Co Ltd Measurement light projector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197806A (en) * 1989-12-26 1991-08-29 Olympus Optical Co Ltd Measurement light projector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283090A (en) * 2006-03-24 2007-11-01 Olympus Corp Image measurement system
US8619125B2 (en) 2006-03-24 2013-12-31 Olympus Corporation Image measuring apparatus and method
JP2009078133A (en) * 2007-08-16 2009-04-16 Steinbichler Optotechnik Gmbh Device for determining 3d coordinates of object, in particular of tooth
JP2013506861A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Endoscope
JP2013240590A (en) * 2012-04-26 2013-12-05 Yamaguchi Univ Three-dimensional shape acquisition device from stereoscopic endoscopic image
JP2016191888A (en) * 2015-03-31 2016-11-10 オリンパス株式会社 Pattern projection optical system for stereo measurement and stereo measurement endoscope device including the same
JP2017185225A (en) * 2016-03-31 2017-10-12 コヴィディエン リミテッド パートナーシップ Thoracic endoscope for surface scanning
JP2019042551A (en) * 2016-03-31 2019-03-22 コヴィディエン リミテッド パートナーシップ Thoracic endoscope for surface scanning
CN109998450A (en) * 2016-03-31 2019-07-12 柯惠有限合伙公司 Chest endoscope for surface scan
US11071591B2 (en) 2018-07-26 2021-07-27 Covidien Lp Modeling a collapsed lung using CT data
US11701179B2 (en) 2018-07-26 2023-07-18 Covidien Lp Modeling a collapsed lung using CT data
US11705238B2 (en) 2018-07-26 2023-07-18 Covidien Lp Systems and methods for providing assistance during surgery
US12004815B2 (en) 2018-07-26 2024-06-11 Covidien Lp Modeling a collapsed lung using CT data
JP2021535407A (en) * 2018-08-24 2021-12-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring head that determines the position of at least one object
US12089902B2 (en) 2019-07-30 2024-09-17 Coviden Lp Cone beam and 3D fluoroscope lung navigation

Similar Documents

Publication Publication Date Title
US11019327B2 (en) Endoscope employing structured light providing physiological feature size measurement
US11190752B2 (en) Optical imaging system and methods thereof
JP6454489B2 (en) Observation system
JP5530456B2 (en) Cameras that record surface structures such as dental use
CN102402799B (en) Object classification for measured three-dimensional object scenes
KR101734094B1 (en) Augmented Reality Image Projection System
WO2018051679A1 (en) Measurement assistance device, endoscope system, processor for endoscope system, and measurement assistance method
JP6891345B2 (en) An endoscope that uses structured light to measure the size of physiological features
BR112014028811B1 (en) imaging system, method for registering an image of an object in a spectral band of terahertz radiation through radiography and visualization of the image in visible light, and storage medium
US20130023732A1 (en) Endoscope and endoscope system
WO2018229832A1 (en) Endoscope system
JP2005287900A (en) Endoscope
KR20210035831A (en) System and method for multi-modal detection of depth in a vision system for an automated surgical robot
CN109328319B (en) Lens alignment method and apparatus for capsule camera
JP6738465B2 (en) Endoscope system
CN103561627B (en) Image processing apparatus
JP2005279028A (en) Endoscope
CN118105060A (en) Measuring system providing shape according to shadows
JP2016106867A (en) Electronic scope, and electronic endoscope system
JP6549021B2 (en) Endoscope system and operation method of measurement apparatus
JP7451679B2 (en) Endoscope system, endoscope and distance calculation method
Geng Three-dimensional endoscopic surface imaging techniques
JP2018141681A (en) Distance measurement device
JPH07104491B2 (en) Endoscope with measuring function
US20200281698A1 (en) Dental image acquisition apparatus and dental image acquisition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019