[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005274528A - Leak inspection device - Google Patents

Leak inspection device Download PDF

Info

Publication number
JP2005274528A
JP2005274528A JP2004092123A JP2004092123A JP2005274528A JP 2005274528 A JP2005274528 A JP 2005274528A JP 2004092123 A JP2004092123 A JP 2004092123A JP 2004092123 A JP2004092123 A JP 2004092123A JP 2005274528 A JP2005274528 A JP 2005274528A
Authority
JP
Japan
Prior art keywords
adder
inspected
drift
air pressure
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004092123A
Other languages
Japanese (ja)
Inventor
Akio Furuse
昭男 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2004092123A priority Critical patent/JP2005274528A/en
Publication of JP2005274528A publication Critical patent/JP2005274528A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leak inspection device capable of simultaneously inspecting a plurality of detection objects. <P>SOLUTION: Two detection objects are provided for a common reference tank, and a pressure difference generated between the reference tank and each of the two objects is detected by each differential pressure detector. The detection outputs are added at a reversed polarity by a first adder, and an inspection object having a leak is specified by the polarity of the addition result. Whether or not the leak quantity exceeds an allowable value is determined, and the detection outputs of the differential detectors are added at the same polarity by a second adder, and whether the leak close to the same quantity of the object is present or not is determined by the addition result. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は各種の容器の洩れの有無を自動的に検査することに用いられる洩れ検査装置に関する。   The present invention relates to a leakage inspection apparatus used for automatically inspecting various containers for leakage.

一般的に洩れ検査装置は図3に示すように、1個の被検査体9と1個の基準タンク11に空気圧を印加し、これらの間に圧力差が発生するか否かにより被検査体9に洩れが有るか否かを判定している。先ずこの一般的な洩れ検査装置について簡素に説明する。
図中1は空圧源を示す。この空圧源1で発生する空気圧が管路2を通じて調整弁3に与えられ、調整弁3により一定の空気圧に安定化されて三方電磁弁4に与えられる。三方電磁弁4の出口側に分岐管5が接続され、分岐管5によって空圧源1から与えられる空気圧を二つの分岐路6と7に分岐する。
In general, as shown in FIG. 3, a leakage inspection apparatus applies air pressure to one inspection object 9 and one reference tank 11, and determines whether or not a pressure difference occurs between them. It is determined whether or not 9 is leaked. First, this general leak inspection apparatus will be briefly described.
In the figure, reference numeral 1 denotes an air pressure source. The air pressure generated by the air pressure source 1 is given to the regulating valve 3 through the pipe line 2, stabilized at a constant air pressure by the regulating valve 3, and given to the three-way electromagnetic valve 4. A branch pipe 5 is connected to the outlet side of the three-way solenoid valve 4, and the air pressure supplied from the pneumatic pressure source 1 is branched into two branch paths 6 and 7 by the branch pipe 5.

二つの分岐路6と7のそれぞれに遮断弁8A、8Bが介挿され、これら遮断弁8Aと8Bを通じて被検査体9と基準タンク11に空圧源1から出力される空気圧を与える。分岐路6、7に挿入した遮断弁8A、8Bの先の部分(被検査体9と基準タンク11との間の分岐路)を分岐路6′、7′とする。分岐路6′と7′の間には差圧検出器12が差渡され、分岐路6′と7′の間の差圧を計測できるように構成される。尚、分岐路6′には必要に応じて圧力計17を接続する場合もある。
差圧検出器12の検出出力は増幅器13で増幅され、その増幅出力信号を良否判定装置14に与え、被検査体9の洩れの有無を判定し、その判定結果を表示器15に表示させるか、又は良否仕分け装置を作動させて、洩れの有る不良品と良品とを自動的に仕分けさせることができる。
Shutoff valves 8A and 8B are inserted in the two branch paths 6 and 7, respectively, and the air pressure output from the air pressure source 1 is applied to the object 9 and the reference tank 11 through the shutoff valves 8A and 8B. The first part of the shutoff valves 8A and 8B inserted in the branch paths 6 and 7 (the branch path between the object to be inspected 9 and the reference tank 11) is defined as branch paths 6 'and 7'. A differential pressure detector 12 is passed between the branch paths 6 'and 7' so that the differential pressure between the branch paths 6 'and 7' can be measured. Note that a pressure gauge 17 may be connected to the branch path 6 'as necessary.
Whether the detection output of the differential pressure detector 12 is amplified by the amplifier 13, and the amplified output signal is given to the pass / fail determination device 14 to determine whether the device under test 9 is leaking and display the determination result on the display 15. Alternatively, the defective / non-defective product can be automatically sorted by operating the good / bad sorting device.

洩れの検査は次のようにして行われる。三方電磁弁4をA−B間が連通する第1の状態に制御し、遮断弁8A、8Bを開に制御して被検査体9と基準タンク11に空気圧を与える。この状態を加圧モードと称する(図4)。
加圧後一定時間(安定モード)の後に遮断弁8A、8Bを閉じる。基準タンク11は被検査体9と同一内容積の洩れのない容器で構成される。従って被検査体9に洩れが無ければ分岐路6′と7′の間には圧力差が発生しないが、被検査体9に洩れが有る場合は時間の経過に従って分岐路6′と7′の間に圧力差が発生する。この圧力差を差圧検出器12で検出し、この検出出力信号を増幅器13で増幅し、良否判定装置14で所定時間経過後の差圧検出値が所定値以上に達したとき洩れ有りと判定する(検査モード)。
Leakage inspection is performed as follows. The three-way solenoid valve 4 is controlled to a first state in which A and B communicate with each other, and the shutoff valves 8A and 8B are controlled to be opened to apply air pressure to the object 9 and the reference tank 11. This state is referred to as a pressurizing mode (FIG. 4).
The shut-off valves 8A and 8B are closed after a certain time after pressurization (stable mode). The reference tank 11 is composed of a container having the same internal volume as the object to be inspected 9 and having no leakage. Therefore, if there is no leakage in the inspection object 9, no pressure difference is generated between the branch paths 6 'and 7'. However, if there is a leakage in the inspection object 9, the branch paths 6 'and 7' pass over time. A pressure difference occurs between them. This pressure difference is detected by the differential pressure detector 12, this detection output signal is amplified by the amplifier 13, and it is determined by the pass / fail determination device 14 that there is a leak when the detected differential pressure value after a predetermined time has reached a predetermined value or more. Yes (inspection mode).

検査終了後、三方電磁弁4をB−C間が連通する第2の状態に切換え、遮断弁8A、8Bを開に制御することにより被検査体9と基準タンク11に与えられた空気圧を三方電磁弁4の排気口Cから放出(排気モード)させ、1テストサイクルを終了し、被検査体9の交換を行なう。16はこれらの工程を制御する制御器である。
図3に示した洩れ検査装置では基準タンク11を固定とし、被検査体9を順次交換するから、基準タンク11には順次空気圧が繰返し与えられる。この空気圧の供給によって基準タンクの温度が上昇し、基準タンク11と被検査体9との間に温度差が発生し、この温度差によってゼロ点変動等の外乱が発生する欠点がある。
After the inspection is finished, the three-way solenoid valve 4 is switched to the second state in which B-C communicates, and the shutoff valves 8A and 8B are controlled to be opened to thereby adjust the air pressure applied to the inspection object 9 and the reference tank 11 in three directions. Release from the exhaust port C of the solenoid valve 4 (exhaust mode), one test cycle is completed, and the object to be inspected 9 is replaced. Reference numeral 16 denotes a controller for controlling these processes.
In the leakage inspection apparatus shown in FIG. 3, since the reference tank 11 is fixed and the inspected objects 9 are sequentially replaced, air pressure is repeatedly applied to the reference tank 11 sequentially. Due to the supply of air pressure, the temperature of the reference tank rises, and a temperature difference is generated between the reference tank 11 and the object 9 to be inspected, and this temperature difference has a drawback that disturbance such as zero point fluctuation occurs.

この欠点を解消するために本出願人は特許文献1に開示するように、共通の基準タンクに対して2個の被検査体を接続し、基準タンクと2個の各被検査体との間に発生する圧力差を差圧測定器によって測定し、その測定値を加算し、その加算結果の極性により洩れの有る被検査体を特定し、洩れ量が許容量を超えているか否かを判定する洩れ検査装置を提案した。
図5にその構成例を示す。制御器16は三方電磁弁4と遮断弁8A、8B、8Cを制御して加圧モード、検査モード、排気モードに制御する点は図3に示した洩れ検査装置と同じである。
In order to eliminate this drawback, the present applicant, as disclosed in Patent Document 1, connects two test objects to a common reference tank, and connects the reference tank and each of the two test objects. Measure the pressure difference generated by the differential pressure measuring device, add the measured values, identify the inspected object with the polarity of the addition result, and determine whether the leakage amount exceeds the allowable amount A leakage inspection device was proposed.
FIG. 5 shows an example of the configuration. The controller 16 controls the three-way solenoid valve 4 and the shutoff valves 8A, 8B, and 8C to control the pressurization mode, the inspection mode, and the exhaust mode, which is the same as the leak inspection apparatus shown in FIG.

図3と異なる点は三方電磁弁4の出力側に三方分岐管18を設けると共に、三方分岐管18の各分岐路6A、6B及び7にそれぞれ遮断弁8A、8B、8Cをそれぞれ接続する。ここでは遮断弁8A、8B、8Cを通過した出力側の分岐路を分岐路6A′、7′、6B′と称することにする。分岐路7′に基準タンク11を接続し、分岐路6A′と6B′にそれぞれ被検査体9Aと9Bを接続する点である。
これと共に基準タンク11に通じる分岐路7′と一方の被検査体9Aに通じる分岐路6A′との間及び7′と分岐路6B′との間にそれぞれ差圧検出器12Aと12Bを差渡して設ける。この接続構造により、差圧検出器12Aは基準タンク11と被検査体9Aとの間の圧力差を検出し、差圧検出器12Bは基準タンク11と被検査体9Bとの間の圧力差を検出する。
3 differs from FIG. 3 in that a three-way branch pipe 18 is provided on the output side of the three-way solenoid valve 4, and shut-off valves 8A, 8B, and 8C are connected to the branch paths 6A, 6B, and 7 of the three-way branch pipe 18, respectively. Here, the branch path on the output side that has passed through the shutoff valves 8A, 8B, and 8C will be referred to as branch paths 6A ', 7', and 6B '. The reference tank 11 is connected to the branch path 7 ', and the test objects 9A and 9B are connected to the branch paths 6A' and 6B ', respectively.
At the same time, differential pressure detectors 12A and 12B are passed between the branch path 7 'leading to the reference tank 11 and the branch path 6A' leading to one of the inspected objects 9A and between 7 'and the branch path 6B', respectively. Provide. With this connection structure, the differential pressure detector 12A detects the pressure difference between the reference tank 11 and the inspection object 9A, and the differential pressure detector 12B detects the pressure difference between the reference tank 11 and the inspection object 9B. To detect.

特許文献1で提案した洩れ検査装置の特徴とする構成はこれら二つの差圧検出器12Aと12Bの検出出力信号を加算器19で加算する構造とした点である。つまり、差圧検出器12Aでは被検査体9Aに洩れが有る場合にはダイヤフラムDFは点線で示す方向に偏位し、例えば正極性の検出信号Vを発信する。また差圧検出器12Bでは被検査体9Bに洩れが有る場合は差圧検出器12BのダイヤフラムDFは点線で示す方向に偏位し、例えば負極性の検出信号−Vを発信する。この二つの検出信号Vと−Vを加算器19で加算し、その加算結果の極性により、洩れの有無及び洩れが有る側の被検査体を特定することができる。 The characteristic configuration of the leakage inspection apparatus proposed in Patent Document 1 is that the adder 19 adds the detection output signals of these two differential pressure detectors 12A and 12B. That is, in the differential pressure detector 12A, when there is a leak in the inspection object 9A, the diaphragm DF is displaced in the direction indicated by the dotted line and, for example, transmits a positive polarity detection signal V A. The diaphragm DF of the pressure difference detector 12B If leakage is present in the pressure difference detector 12B in the test subject 9B displaced in the direction indicated by the dotted line, transmitting the example, a negative polarity of the detection signal -V B. The two detection signals V A and −V B are added by the adder 19, and the presence or absence of leakage and the inspection target on the side having leakage can be specified by the polarity of the addition result.

つまり、被検査体9Aに洩れが有り、被検査体9Bに洩れが無い場合は正極性の検出信号Vが発信され、負極性の検出信号−Vは−V=0であるから、加算器19の加算結果は正極性となる。よってこの場合は被検査体9Aに洩れが有ることが解る。また被検査体9Bに洩れが有る場合は加算器19の加算結果は負極性となる。
ここで、基準タンク11の温度が加圧の繰返しの結果上昇し、空気圧を与えた直後に、この温度上昇により基準タンク11内の空気が熱膨張し、空気圧を与えた直後に、この温度上昇により基準タンク11内の圧力が上昇したとすると、この圧力上昇は二つの差圧検出器12A、12Bの各ダイヤフラムDFを互に逆向の方向に同程度偏位させる。このダイヤフラムDFの動きを加算器19の出力で見るとΔV+(−ΔV)≒0となる。つまり基準タンク11の温度上昇或は変形管による外乱は除去されることがわかる。よって図5に示す構成によれば被検査体9Aと9Bの圧力差を計測したのと等価となり、基準タンク11の温度上昇及び変形管による外乱を除去した精度の高い検査結果を得ることができる。
That is, when there is a leak in the inspection object 9A and there is no leakage in the inspection object 9B, the positive detection signal VA is transmitted, and the negative detection signal -V B is -V B = 0. The addition result of the adder 19 is positive. Therefore, in this case, it can be seen that there is a leak in the inspection object 9A. When there is a leak in the inspection object 9B, the addition result of the adder 19 is negative.
Here, immediately after the temperature of the reference tank 11 is increased as a result of repeated pressurization and the air pressure is applied, the air in the reference tank 11 is thermally expanded due to this temperature increase, and immediately after the air pressure is applied, the temperature rises. If the pressure in the reference tank 11 increases, the pressure increase causes the diaphragms DF of the two differential pressure detectors 12A and 12B to be displaced to the same extent in opposite directions. When the movement of the diaphragm DF is viewed from the output of the adder 19, ΔV A + (− ΔV B ) ≈0. That is, it can be seen that the temperature rise of the reference tank 11 or the disturbance caused by the deformation pipe is removed. Therefore, the configuration shown in FIG. 5 is equivalent to measuring the pressure difference between the objects to be inspected 9A and 9B, and it is possible to obtain a highly accurate inspection result in which the temperature rise of the reference tank 11 and the disturbance due to the deformation pipe are removed. .

従って加算器19の加算結果を増幅器13で増幅し、その増幅出力を良否判定装置14に入力することにより、良否判定装置14では入力される信号の極性と、その電圧値によって被検査体9Aと9Bの何れに洩れが有るか否かと、その洩れ量が許容範囲か否かを判定することができ、その判定結果を例えば表示器15に表示させることができる。図6は表示器15の表示の一例を示す。指示計の正側に被検査体9Aの洩れ量を表示し、負側に被検査体9Bの洩れ量を表示する。従って指針15Aが正側に振れた場合は被検査体9Aに洩れが有ることを表示し、負側に振れた場合は被検査体9Bに洩れが有ることを表示する。指針15Aが不良ゾーンAまで振れると被検査体9Aは不良と判定し、不良ゾーンBまで振れると被検査体9Bは不良と判定する。指針15Aが中央の良ゾーンの範囲にある状態で良と判定する。
特許第2126343号明細書
Accordingly, the addition result of the adder 19 is amplified by the amplifier 13, and the amplified output is input to the pass / fail judgment device 14, so that the pass / fail judgment device 14 determines the signal to be inspected 9A by the polarity of the input signal and the voltage value. It is possible to determine which of 9B has a leak and whether or not the leak amount is within an allowable range, and the determination result can be displayed on the display 15, for example. FIG. 6 shows an example of display on the display 15. The leakage amount of the inspection object 9A is displayed on the positive side of the indicator, and the leakage amount of the inspection object 9B is displayed on the negative side. Therefore, when the pointer 15A swings to the positive side, it indicates that there is a leak in the inspection object 9A, and when it moves to the negative side, it indicates that the inspection object 9B has a leakage. When the pointer 15A swings to the defective zone A, the inspection target 9A is determined to be defective, and when the pointer 15A swings to the defective zone B, the inspection target 9B is determined to be defective. When the pointer 15A is in the range of the center good zone, it is determined to be good.
Japanese Patent No. 2126343

特許文献1で提案した洩れ検査装置によれば一度に基準タンク11と2個の被検査体9Aと9Bとをそれぞれ比較し検査することができるため、多量の被検査体を検査する場合に適用して有効である。然も基準タンク11の温度が単独で変動しても、その変動に伴なう圧力変化は2つの差圧検出器12Aと12Bの検出出力を加算することで相殺することができる利点が得られる。
ところで、上述では加算器19の加算値の極性により何れの被検査体9A,9Bに洩れが有るか否かが判定できると説明したが、この判定方法では厳密に正しい判定を行なうことはできない。例えば加算器19の加算値が正極性で指針15Aが不良ゾーンAまで振れたとしても、加算器19の加算値はV+(−V)であるため、被検査体9Bに洩れが有ってもV+(−V)>0の状態になれば指針15Aは正側に振れ、更にVの値が大きければ不良ゾーンAに達することも考えられる。従って、V+(−V)>0であるから「被検査体9Aのみに洩れが有る」と判定することは危険である。
According to the leak inspection apparatus proposed in Patent Document 1, it is possible to compare and inspect the reference tank 11 and the two inspected objects 9A and 9B at a time, so that it is applied when inspecting a large number of inspected objects. It is effective. However, even if the temperature of the reference tank 11 fluctuates independently, the pressure change accompanying the fluctuation can be offset by adding the detection outputs of the two differential pressure detectors 12A and 12B. .
By the way, in the above description, it has been described that it can be determined which of the inspected objects 9A and 9B is leaked by the polarity of the added value of the adder 19. However, this determination method cannot make a correct determination strictly. For example, even if the addition value of the adder 19 is positive and the pointer 15A swings to the defective zone A, the addition value of the adder 19 is V A + (− V B ), and therefore there is a leak in the inspection object 9B. Even if V A + (− V B )> 0, the pointer 15A swings to the positive side, and if the value of V A is larger, it may be possible to reach the defective zone A. Therefore, since V A + (− V B )> 0, it is dangerous to determine that “only the subject 9A is leaking”.

この欠点を解消するには図7に示すように各差圧検出器12Aと12Bの検出結果を別々に良否判定装置14Bと14Cに入力し、各被検査体9Aと9Bの個々について別々に洩れの有無を判定し、個々の差圧検出値がゼロで、更に加算器19の加算結果もゼロであれば両方の被検査体9Aと9Bは洩れが無いと判定すれば正確に判定したことになる。
また、加算器19の加算結果が正極性であり、被検査体9Aの個別の検査結果が「洩れ有り」で、このとき被検査体9Bの検査結果が「洩れ無し」であれば被検査体9Aのみに「洩れが有る」と判定することができる。また加算器19の加算結果が負極性で被検査体9Bの個別の検査結果が「洩れ有り」で、被検査体9Aの個別の検査結果が「洩れ無し」であれば被検査体9Bのみに「洩れ有り」と判定することができる。
In order to eliminate this drawback, as shown in FIG. 7, the detection results of the differential pressure detectors 12A and 12B are separately input to the pass / fail judgment devices 14B and 14C, and the respective inspected objects 9A and 9B are leaked separately. If each of the detected differential pressure values is zero and the addition result of the adder 19 is also zero, both the inspected objects 9A and 9B are accurately determined if it is determined that there is no leakage. Become.
Further, if the addition result of the adder 19 is positive and the individual inspection result of the inspection object 9A is “leakage”, and the inspection result of the inspection object 9B is “no leakage”, the inspection object Only 9A can be determined to have “leakage”. Further, if the addition result of the adder 19 is negative and the individual inspection result of the inspection object 9B is “leakage”, and the individual inspection result of the inspection object 9A is “no leakage”, only the inspection object 9B. It can be determined that there is a leak.

このように、加算器19の加算結果により2個の被検査体の洩れの有無を判定する場合には、真の判定結果を得ることができる。然し乍ら各被検査体9Aと9B毎に個別に良否判定を行なわなくてはならないから検査装置の規模が大きくなる欠点がある。
更に、各個別に設けた良否判定手段14Aと14Bに入力される差圧検出信号には基準タンク11の温度変動等に伴なって発生するドリフト成分を含むから、個別の良否判定装置14Aと14Bの判定はドリフト成分より大きい洩れの場合しか不良を検出することはできない。つまり、ドリフト成分より小さい洩れの有無を検出することができない不都合が生じる。この結果、図7に示す洩れ検査装置を用いたとしても、被検査体9Aと9Bにドリフト成分より小さく同じ程度の洩れが有った場合には、その洩れを検出することはできないことになる。
As described above, when the presence or absence of leakage of the two test objects is determined based on the addition result of the adder 19, a true determination result can be obtained. However, there is a drawback that the scale of the inspection apparatus becomes large because the pass / fail determination must be made individually for each of the inspected objects 9A and 9B.
Furthermore, since the differential pressure detection signals input to the quality determination means 14A and 14B provided individually include drift components generated due to temperature fluctuations of the reference tank 11, the individual quality determination devices 14A and 14B. In this determination, a defect can be detected only when the leak is larger than the drift component. That is, there is a disadvantage that it is impossible to detect the presence or absence of leakage smaller than the drift component. As a result, even if the leak inspection apparatus shown in FIG. 7 is used, if the inspected objects 9A and 9B have the same level of leakage smaller than the drift component, the leakage cannot be detected. .

この発明の目的は図7に示した洩れ検査装置で2個の被検査体9Aと9Bに同じような洩れが有っても、その洩れを検出することができる洩れ検査装置を提案するものである。
この発明の更に他の目的は2個の被検査体9Aと9Bに同じような洩れが存在することを検出する場合に発生するドリフトの影響を除去することができる洩れ検査装置を提案するものである。
The object of the present invention is to propose a leakage inspection apparatus capable of detecting the leakage even when the two inspection objects 9A and 9B have similar leakage in the leakage inspection apparatus shown in FIG. is there.
Still another object of the present invention is to propose a leak inspection apparatus that can eliminate the effect of drift that occurs when detecting the presence of similar leaks in the two test objects 9A and 9B. is there.

この発明の請求項1では、空圧源から与えられる空気圧を三方に分岐する三方分岐管と、この三方分岐管によって分岐された各管路に接続された遮断弁と、この遮断弁を通じて取出された空気圧の一つの管路に接続した標準タンクと、上記遮断弁を通じて取出された空気圧の二本の管路に接続した一対の被検査体と、この一対の被検査体に連通する管路と上記基準タンクに通ずる管路との間のそれぞれに差渡されて標準タンクと各被検査体との間に発生する圧力差をそれぞれ検出する一対の差圧検出器と、この一対の差圧検出器の検出出力を逆極性で加算する第1加算器と、この加算器の加算結果により、各被検査体の洩れの有無を判定する第1良否判定装置と、一対の差圧検出器の検出出力を同極性で加算する第2加算器と、この第2加算器の加算結果より、ドリフト補正値を減算するドリフト補正手段と、このドリフト補正手段でドリフト補正した補正結果により各被検査体の洩れの有無を判定する第2良否判定装置と、空圧源と三方分岐管との間に接続され、空圧源から与えられる空気圧を三方分岐管側に与える第1の状態と、空圧源側を閉じ三方分岐管を大気に解放する第2の状態に切換る三方電磁弁と、この三方電磁弁を上記第1の状態に切換え、遮断弁をそれぞれ開の状態にして基準タンク及び各被検査体のそれぞれに空気圧を与える加圧モードと、遮断弁を閉じこの状態で差圧検出器の検出出力を計測して各被検査体の洩れの有無を判定する検査モードと、三方電磁弁を上記第2の状態に切換え、基準タンク及び各被検査体に与えられた空気を大気に放出させる排気モード切換制御する制御器とによって構成した洩れ検査装置を提案する。   According to the first aspect of the present invention, a three-way branch pipe that branches the air pressure supplied from the pneumatic pressure source in three directions, a shut-off valve connected to each pipeline branched by the three-way branch pipe, and the take-off valve are taken out. A standard tank connected to one pipe line of air pressure, a pair of test objects connected to the two pipes of air pressure taken out through the shutoff valve, and a pipe line communicating with the pair of test objects A pair of differential pressure detectors that respectively detect a pressure difference generated between the standard tank and each object to be inspected by being passed between the pipes communicating with the reference tank, and the pair of differential pressure detections A first adder for adding the detection outputs of the detectors in reverse polarity, a first pass / fail judgment device for judging the presence or absence of leakage of each object to be inspected based on the addition result of the adders, and detection by a pair of differential pressure detectors A second adder for adding the outputs in the same polarity, and this second addition Drift correction means for subtracting the drift correction value from the addition result, a second pass / fail judgment device for judging the presence or absence of leakage of each object to be inspected based on the correction result drift-corrected by the drift correction means, an air pressure source and the three-way The first state is connected between the branch pipes and the air pressure supplied from the air pressure source is applied to the three-way branch pipe side, and the second state is closed by closing the air pressure source side and releasing the three-way branch pipe to the atmosphere. The three-way solenoid valve, the three-way solenoid valve is switched to the first state, the shut-off valve is opened, the pressurizing mode for supplying air pressure to the reference tank and each object to be inspected, and the shut-off valve is closed. In this state, the detection output of the differential pressure detector is measured to determine the presence or absence of leakage of each inspection object, and the three-way solenoid valve is switched to the second state to be applied to the reference tank and each inspection object. Exhaust that discharges fresh air to the atmosphere Suggest leakage inspection apparatus is constituted by a controller for controlling over de switching.

この発明の請求項2では請求項1記載の洩れ検査装置において、ドリフト補正手段は校正モードで取得したドリフト補正値を記憶するドリフト記憶装置と、このドリフト記憶器に記憶したドリフト補正値を第2加算器の加算出力値から差し引く引算器とによって構成したことを特徴とする洩れ検査装置を提案する。
この発明の請求項3では請求項1又は2記載の洩れ検査装置の何れかにおいて、ドリフト記憶器に記憶するドリフト補正値は一対の被検査体と基準タンクに空気圧を印加し、検査時のタイミングにほぼ等しい第1タイミングで第2加算器が得られる初期加算値と、第1タイミングからドリフトが収束すると見られる時間が経過した第2タイミングで第2加算器から得られる真の洩れに相当する測定値との差の値としたことを特徴とする洩れ検査装置を提案する。
According to a second aspect of the present invention, in the leak inspection apparatus according to the first aspect, the drift correction means stores the drift correction value acquired in the calibration mode and the drift correction value stored in the drift memory is the second. This invention proposes a leakage inspection apparatus characterized by comprising a subtracter that subtracts from the added output value of an adder.
According to a third aspect of the present invention, in the leak inspection apparatus according to the first or second aspect, the drift correction value stored in the drift memory applies air pressure to the pair of inspected objects and the reference tank, and the timing at the time of the inspection. The initial addition value obtained by the second adder at the first timing substantially equal to the first addition value, and the true leakage obtained from the second adder at the second timing after the time when drift is expected to converge from the first timing. We propose a leakage inspection device characterized by the difference between the measured values.

この発明による洩れ検査装置によれば2つの差圧検出器の検出出力を同極性で加算する第2加算器を設けたから、2つの被検査体に同じ程度の洩れが有った場合、第1加算器の出力が0であってもこの第2加算器の加算結果には一方の差圧検出器の差圧検出値がΔAであった場合、2ΔAが出力される。この結果、2つの被検査体に同じような洩れが有った場合、それを検出することができる。
更に、この発明では第2加算器の加算結果を良否判定装置に入力する前段に、ドリフト補正手段を設けたから、第2加算器の加算結果にドリフト成分が含まれていても、このドリフト補正手段でドリフト成分を除去するから、ドリフト成分によって誤った判定を下すことを回避することができる。
According to the leakage inspection apparatus according to the present invention, since the second adder for adding the detection outputs of the two differential pressure detectors with the same polarity is provided, if the two inspection objects have the same level of leakage, the first adder Even if the output of the adder is 0, 2ΔA is output as the addition result of the second adder if the differential pressure detection value of one of the differential pressure detectors is ΔA. As a result, if there is a similar leak in the two test objects, it can be detected.
Further, in the present invention, since the drift correction means is provided before the addition result of the second adder is input to the pass / fail judgment device, even if a drift component is included in the addition result of the second adder, this drift correction means. Since the drift component is removed by this, it is possible to avoid making an erroneous determination due to the drift component.

特にドリフト補正手段に設けたドリフト記憶器にはマスタリングと呼ばれる手法で取得したドリフト補正値を記憶するから、そのドリフト補正値の信頼性は高く、ドリフトによる影響を確実に除去することができる。従って信頼性の高い洩れ検査を実施することができる。   In particular, the drift memory provided in the drift correction means stores the drift correction value acquired by a technique called mastering. Therefore, the drift correction value is highly reliable, and the influence of drift can be reliably removed. Therefore, a highly reliable leak test can be performed.

図1にこの発明による洩れ検査装置の一実施例を示す。図5と対応する部分には同一符号を付し、その重複説明は省略するが、この発明では図5で説明した加算器19を第1加算器、良否判定装置14を第1良否判定装置と定めると共に、第2加算器21と、第2良否判定装置22を設けた構成を第1の特徴とするものである。
更に、第2加算器21の出力側にドリフト補正手段23を設けた構成を第2の特徴とするものである。
更に、このドリフト補正手段23に設けるドリフト記憶器23Bに記憶するドリフト補正値をマスタリングと呼ばれている手法で取得した点を第3の特徴とするものである。
FIG. 1 shows an embodiment of a leak inspection apparatus according to the present invention. The parts corresponding to those in FIG. 5 are denoted by the same reference numerals, and repeated description thereof is omitted. In the present invention, the adder 19 described in FIG. 5 is the first adder, and the pass / fail judgment device 14 is the first pass / fail judgment device. In addition, the first feature is a configuration in which the second adder 21 and the second pass / fail judgment device 22 are provided.
Further, the configuration in which the drift correction means 23 is provided on the output side of the second adder 21 is a second feature.
Furthermore, the third feature is that the drift correction value stored in the drift memory 23B provided in the drift correction means 23 is acquired by a technique called mastering.

以下にそれらの各特長とする点について説明する。
第1加算器19では差圧検出器12Aと12Bの検出出力を互に逆極性で加算(V−V)したから、2つの被検査体9Aと9Bの何れか一方に洩れが有ればその加算結果に正極性か負極性の検出信号を得ることができ、この加算出力信号の極性によってどちらの被検査体に洩れが有るか否かを判定することができる。
これに対し、第2加算器21では2つの差圧検出器12Aと12Bの検出出力信号を同極性で加算(V+V)する。図1に示すインバータ26はその極性反転のために設けている。同極性で加算した場合には被検査体9Aと9Bに同じ値の洩れが有った場合、差圧検出器12Aと12Bの一方で検出される差圧値ΔPの2倍の加算値2ΔPを算出する。従って第2良否判定装置22は加算値2ΔPを設定値と比較し、設定値を超えていれば被検査体9Aと9Bの双方に「洩れ有り」と判定し、表示器25にそれを表示させる。従って、第1良否判定装置14では検出できない同一の洩れを検出することができる。
The features of each feature will be described below.
Since the first adder 19 adds the detection outputs of the differential pressure detectors 12A and 12B with opposite polarities (V A -V B ), there is a leak in one of the two inspected objects 9A and 9B. For example, a detection signal having a positive polarity or a negative polarity can be obtained as a result of the addition, and it can be determined which of the inspected objects has a leak based on the polarity of the addition output signal.
In contrast, the second adder 21 adds the detection output signals of the two differential pressure detectors 12A and 12B with the same polarity (V A + V B ). The inverter 26 shown in FIG. 1 is provided for polarity inversion. When the same polarity is added and the inspected objects 9A and 9B have the same value of leakage, an added value 2ΔP that is twice the differential pressure value ΔP detected by one of the differential pressure detectors 12A and 12B is obtained. calculate. Accordingly, the second pass / fail judgment device 22 compares the added value 2ΔP with the set value, and if it exceeds the set value, it determines that both of the inspected objects 9A and 9B have “leakage” and displays it on the display 25. . Therefore, it is possible to detect the same leakage that cannot be detected by the first pass / fail judgment device 14.

次に第2の特徴とする点について説明する。第2の特徴とする点は第2加算器21の後段にドリフト補正手段23を設けた構成とした点である。尚、ドリフトとは被検査体9A、9Bと基準タンク11に空気圧を印加した状態で、空気の断熱変化等によって発生するドリフト成分は2つの差圧検出器に同極性で発生する。従って第2加算器21では2つの差圧検出器12Aと12Bが検出する差圧検出信号を同極性で加算するから、これら2つの差圧検出器12Aと12Bが出力する差圧検出信号に含まれるドリフト成分が互いに加算されることになる。この結果、被検査体9Aと9Bに同一の洩れが無くともドリフト成分だけで「洩れ有り」と判定してしまうおそれがある。   Next, the second feature will be described. The second feature is that the drift correcting means 23 is provided in the subsequent stage of the second adder 21. The drift is a state in which air pressure is applied to the inspected objects 9A and 9B and the reference tank 11, and a drift component generated by adiabatic change of air or the like is generated in the two differential pressure detectors with the same polarity. Therefore, since the second adder 21 adds the differential pressure detection signals detected by the two differential pressure detectors 12A and 12B with the same polarity, it is included in the differential pressure detection signals output by the two differential pressure detectors 12A and 12B. Drift components to be added to each other. As a result, there is a possibility that even if the inspected objects 9A and 9B do not have the same leakage, it may be determined that “there is leakage” only by the drift component.

ドリフト補正手段23でドリフト成分を除去し、ドリフト成分を除去した結果を増幅器24を通じて第2良否判定装置22に入力することにより、ドリフト成分による影響を除去することができる。ドリフト成分の除去方法としてはドリフト記憶器23Bにドリフト補正値を記憶しておき、このドリフト補正値を減算器23Aで第2加算器21から出力される加算結果から減算することにより除去する方法を採ることができる。
この発明の第3の特徴はドリフト記憶器23Bに記憶するドリフト補正値をマスタリングによって取得したドリフト補正値とした点である。以下にマスタリングによってドリフト補正値を取得する方法を説明する。
The drift component is removed by the drift correction means 23, and the result of removing the drift component is input to the second pass / fail judgment device 22 through the amplifier 24, whereby the influence of the drift component can be removed. As a drift component removal method, a drift correction value is stored in the drift memory 23B, and this drift correction value is subtracted from the addition result output from the second adder 21 by the subtractor 23A. Can be taken.
The third feature of the present invention is that the drift correction value stored in the drift memory 23B is the drift correction value acquired by mastering. A method for obtaining the drift correction value by mastering will be described below.

図2に示す曲線P1は平衡期間T2の終了時点で第2加算器21の加算出力値をゼロリセットし、検査を開始した状態の第2加算器21の加算値を示す。この加算出力曲線P1には実質的にドリフト値P2と洩れ量P3(ここでは被検査体9A、9Bに洩れが有るものと仮定している)とを含む。
洩れによって発生する差圧P3は検査期間T3の開始時点からある一定の増加率で上昇する直線で表される。これに対し、空気を加圧したことによる断熱変化によって発生するドリフト量P2は検査期間T3の開始直後は内部空気温度と被検査体の温度差のため指数関数的に上昇するが、終局的には飽和し、一定値を維持する。
A curve P1 shown in FIG. 2 indicates the addition value of the second adder 21 in a state where the addition output value of the second adder 21 is reset to zero at the end of the equilibrium period T2 and the inspection is started. The added output curve P1 substantially includes a drift value P2 and a leakage amount P3 (here, it is assumed that the inspection objects 9A and 9B have leakage).
The differential pressure P3 generated by leakage is represented by a straight line that rises at a certain increase rate from the start of the inspection period T3. On the other hand, the drift amount P2 generated by the adiabatic change caused by pressurizing the air increases exponentially due to the temperature difference between the internal air temperature and the object to be inspected immediately after the start of the inspection period T3. Saturates and maintains a constant value.

従って、このドリフト量P2が一定値に収束した状態で洩れ量を測定すれば真の洩れ量を測定することができる。つまり、検査期間T3を終了する時点で第2加算器21の加算出力D1を測定しておき、その時点から更に測定状態を維持し、所定の時間、例えば数10秒間程度経過した時点で加算値D2を測定し、その測定時点から検査期間T3と同じ期間T3(数秒程度)を経過後に再び加算値D3を測定する。この測定によりD3−D2は洩れによる圧力変化値である。よってD3−D2の減算結果が判定値NGより大きいか小さいかによって洩れの有無を判定すればドリフトに影響されずに正しい判定を下すことができる。   Therefore, if the leak amount is measured in a state where the drift amount P2 converges to a constant value, the true leak amount can be measured. That is, the addition output D1 of the second adder 21 is measured at the end of the inspection period T3, the measurement state is further maintained from that point, and the addition value is obtained when a predetermined time, for example, about several tens of seconds elapses. D2 is measured, and after the same period T3 (about several seconds) as the inspection period T3 has elapsed from the measurement time point, the added value D3 is measured again. By this measurement, D3-D2 is a pressure change value due to leakage. Therefore, if the presence or absence of leakage is determined based on whether the subtraction result of D3-D2 is larger or smaller than the determination value NG, a correct determination can be made without being affected by drift.

然し乍ら、この検査方法を採った場合には検査時間が数10秒ずつ必要であることから、実際の検査に利用することはできない。このため、一般にはΔD3=D3−D2を演算し、この洩れ量ΔD3を第1測定値D1から減算すると残りはドリフト値となる。つまり、ドリフト値Dは、
D=D1−ΔD3 ………(1)
で求められる。このドリフト値Dをドリフト補正値として記録しておくことにより次回以降の検査では第1測定値D1からドリフト補正値Dを除去すれば短時間にドリフト値を除去した洩れ量を算出することができ、正しい判定を行うことができる。この測定値D1、D2及びD3を測定し、ドリフト値Dを求める作業を一般にマスタリングと称している。マスタリングは周囲温度が大きく変わった場合などに適宜実行し、環境の変化に応じてドリフト補正値を更新する。
However, when this inspection method is adopted, since the inspection time is several tens of seconds, it cannot be used for actual inspection. For this reason, in general, when ΔD3 = D3−D2 is calculated and the leakage amount ΔD3 is subtracted from the first measured value D1, the remainder becomes a drift value. That is, the drift value D is
D = D1−ΔD3 (1)
Is required. By recording this drift value D as a drift correction value, the leakage amount from which the drift value has been removed can be calculated in a short time if the drift correction value D is removed from the first measurement value D1 in the next and subsequent inspections. The correct judgment can be made. The operation of measuring the measured values D1, D2, and D3 and obtaining the drift value D is generally called mastering. Mastering is performed as appropriate when the ambient temperature changes significantly, and the drift correction value is updated according to changes in the environment.

上述したように、マスタリングによって取得したドリフト補正値はドリフト量が一定値に収束した状態で求めた洩れ量を基に算出するから、そのドリフト補正値は信頼性が高い。この信頼性の高いドリフト補正値をドリフト記憶器23Bに記憶しておくことにより検査の信頼性を高めることができる。   As described above, since the drift correction value acquired by mastering is calculated based on the leakage amount obtained in a state where the drift amount converges to a constant value, the drift correction value is highly reliable. By storing this highly reliable drift correction value in the drift memory 23B, the reliability of the inspection can be improved.

この発明による洩れ検査装置は例えば食品を収納するパッケージ或は薬品を収納するパッケージに洩れが有るか否かを検査することに活用することができる。   The leak inspection apparatus according to the present invention can be used for inspecting whether there is a leak in a package for storing food or a package for storing medicine.

この発明による洩れ検査装置の実施形態を説明するためのブロック図。The block diagram for demonstrating embodiment of the leak inspection apparatus by this invention. この発明に用いるマスタリングを説明するためのグラフ。The graph for demonstrating the mastering used for this invention. 極く一般に用いられている洩れ検査装置を説明するためのブロック図。The block diagram for demonstrating the leak test | inspection apparatus used very generally. 図3に示した洩れ検査の動作を説明するためのグラフ。The graph for demonstrating the operation | movement of the leak test | inspection shown in FIG. 先に提案した洩れ検査装置を説明するためのブロック図。The block diagram for demonstrating the leak inspection apparatus proposed previously. 図5に示した洩れ検査装置に用いることができる良否判定表示器の一例を説明するための図。The figure for demonstrating an example of the quality determination indicator which can be used for the leak test | inspection apparatus shown in FIG. 従来の技術の他の例を示すブロック図。The block diagram which shows the other example of a prior art.

符号の説明Explanation of symbols

1 空圧源 14 第1良否判定装置
2 管路 15、25 表示器
3 調整弁 19 第1加算器
4 三方電磁弁 21 第2加算器
6A、6B、6A′、6B′ 分岐路 22 第2良否判定装置
7、7′ 分岐路 23 ドリフト補正手段
8A〜8C 遮断弁 23A 減算器
9A、9B 被検査体 23B ドリフト記憶器
11 基準タンク 26 インバータ
12A、12B 差圧検出器
13、24 増幅器
1 Pneumatic pressure source 14 First pass / fail judgment device
2 pipeline 15, 25 indicator
3 Control valve 19 First adder
4 Three-way solenoid valve 21 Second adder 6A, 6B, 6A ', 6B' Branch path 22 Second pass / fail judgment device
7, 7 'Branch 23 Drift correction means
8A-8C Shut-off valve 23A Subtractor
9A, 9B Inspected object 23B Drift memory
11 Reference tank 26 Inverter
12A, 12B Differential pressure detector
13, 24 Amplifier

Claims (3)

A.空圧源から与えられる空気圧を三方に分岐する三方分岐管と、
B.この三方分岐管によって分岐された各管路に接続された遮断弁と、
C.この遮断弁を通じて取出された空気圧の一つの管路に接続した標準タンクと、
D.上記遮断弁を通じて取出された空気圧の二本の管路に接続した一対の被検査体と、
E.この一対の被検査体に連通する管路と上記基準タンクに通ずる管路との間のそれぞれに差渡されて標準タンクと各被検査体との間に発生する圧力差をそれぞれ検出する一対の差圧検出器と、
F.この一対の差圧検出器の検出出力を逆極性で加算する第1加算器と、
G.この加算器の加算結果により、上記各被検査体の洩れの有無を判定する第1良否判定装置と、
H.上記一対の差圧検出器の検出出力を同極性で加算する第2加算器と、
I.この第2加算器の加算結果より、ドリフト補正値を減算するドリフト補正手段と、
J.このドリフト補正手段でドリフト補正した補正結果により上記各被検査体の洩れの有無を判定する第2良否判定装置と、
K.上記空圧源と三方分岐管との間に接続され、空圧源から与えられる空気圧を三方分岐管側に与える第1の状態と、空圧源側を閉じ三方分岐管を大気に解放する第2の状態に切換る三方電磁弁と、
L.この三方電磁弁を上記第1の状態に切換え、上記遮断弁をそれぞれ開の状態にして上記基準タンク及び各被検査体のそれぞれに空気圧を与える加圧モードと、上記遮断弁を閉じこの状態で上記差圧検出器の検出出力を計測して各被検査体の洩れの有無を判定する検査モードと、三方電磁弁を上記第2の状態に切換え、上記基準タンク及び各被検査体に与えられた空気を大気に放出させる排気モード切換制御する制御器と、
によって構成した洩れ検査装置。
A. A three-way branch pipe that branches the air pressure supplied from the air pressure source in three directions;
B. A shutoff valve connected to each pipe branched by the three-way branch pipe;
C. A standard tank connected to one line of air pressure taken through this shut-off valve;
D. A pair of objects to be inspected connected to two pipes of air pressure taken out through the shutoff valve;
E. A pair of pipes communicating with the pair of objects to be inspected and a pipe line communicating with the reference tank to detect a pressure difference generated between the standard tank and each object to be inspected. A differential pressure detector;
F. A first adder for adding the detection outputs of the pair of differential pressure detectors in reverse polarity;
G. A first pass / fail judgment device for judging the presence / absence of leakage of each object to be inspected based on the addition result of the adder;
H. A second adder for adding the detection outputs of the pair of differential pressure detectors with the same polarity;
I. Drift correction means for subtracting the drift correction value from the addition result of the second adder;
J. et al. A second pass / fail judgment device for judging the presence or absence of leakage of each object to be inspected based on a correction result obtained by drift correction by the drift correction means;
K. A first state in which the air pressure source is connected to the three-way branch pipe and the air pressure supplied from the air pressure source is applied to the three-way branch pipe side; and the air pressure source side is closed and the three-way branch pipe is released to the atmosphere. A three-way solenoid valve that switches to the state of 2,
L. The three-way solenoid valve is switched to the first state, the shut-off valve is opened, the pressurizing mode for supplying air pressure to the reference tank and each object to be inspected, and the shut-off valve is closed. An inspection mode in which the detection output of the differential pressure detector is measured to determine the presence or absence of leakage of each object to be inspected, and the three-way solenoid valve is switched to the second state to be applied to the reference tank and each object to be inspected. A controller for controlling the exhaust mode to release the discharged air to the atmosphere;
Leakage inspection device configured by
請求項1記載の洩れ検査装置において、上記ドリフト補正手段は校正モードで取得したドリフト補正値を記憶するドリフト記憶装置と、このドリフト記憶器に記憶したドリフト補正値を上記第2加算器の加算出力値から差し引く引算器と、によって構成したことを特徴とする洩れ検査装置。   2. The leak inspection apparatus according to claim 1, wherein the drift correction means stores a drift correction value acquired in the calibration mode, and the drift correction value stored in the drift storage is added to the second adder. A leak inspection apparatus comprising: a subtracter that subtracts from a value. 請求項1又は2記載の洩れ検査装置の何れかにおいて、
上記ドリフト記憶器に記憶するドリフト補正値は上記一対の被検査体と基準タンクに空気圧を印加し、検査時のタイミングにほぼ等しい第1タイミングで上記第2加算器から得られる初期加算値と、上記第1タイミングからドリフトが収束すると見られる時間が経過した第2タイミングで上記第2加算器から得られる真の洩れに相当する測定値との差の値としたことを特徴とする洩れ検査装置。
In either of the leak inspection apparatuses of Claim 1 or 2,
The drift correction value stored in the drift storage device applies an air pressure to the pair of inspected objects and the reference tank, and an initial addition value obtained from the second adder at a first timing substantially equal to the timing at the time of inspection, A leak inspection apparatus characterized in that a difference value from a measured value corresponding to a true leak obtained from the second adder is obtained at a second timing when a time at which the drift is expected to converge from the first timing is passed. .
JP2004092123A 2004-03-26 2004-03-26 Leak inspection device Ceased JP2005274528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092123A JP2005274528A (en) 2004-03-26 2004-03-26 Leak inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092123A JP2005274528A (en) 2004-03-26 2004-03-26 Leak inspection device

Publications (1)

Publication Number Publication Date
JP2005274528A true JP2005274528A (en) 2005-10-06

Family

ID=35174341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092123A Ceased JP2005274528A (en) 2004-03-26 2004-03-26 Leak inspection device

Country Status (1)

Country Link
JP (1) JP2005274528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759900A (en) * 2014-01-14 2014-04-30 江苏真美包装科技有限公司 Detection method for PVC medicine packaging materials
CN109340785A (en) * 2018-09-05 2019-02-15 曾光龙 Organic waste gas incineration disposal system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759900A (en) * 2014-01-14 2014-04-30 江苏真美包装科技有限公司 Detection method for PVC medicine packaging materials
CN109340785A (en) * 2018-09-05 2019-02-15 曾光龙 Organic waste gas incineration disposal system

Similar Documents

Publication Publication Date Title
JP2854534B2 (en) Test method and apparatus for hollow body
JPH11118657A (en) Drift correction value calculator and leakage detector equipped with calculator
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
EP2023114A1 (en) Leak inspection method and leak inspector
TW200938824A (en) Method for detecting fault in leakage inspector, leakage inspector
WO1984003769A1 (en) Pressure change detection type leakage water inspection device
JPWO2017104643A1 (en) Leak inspection apparatus and method
JP5049199B2 (en) External pressure detection type leak inspection device and leak inspection method using the same
JP2004061201A (en) Method and system for leakage test
JP2017059200A (en) Method for inspecting gas supply system
JP2012255687A (en) Pressure leakage measuring method
JP3771167B2 (en) Air leak test method and apparatus
JP2005274528A (en) Leak inspection device
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JP7309058B2 (en) Leak test condition design method, leak test condition design device, leak test method, and leak test device
JP4087773B2 (en) Leak inspection device calibration method, leak inspection device
JP3422348B2 (en) Leak inspection method and device
JPH0222666Y2 (en)
JP3186644B2 (en) Gas leak inspection method
JP2000162084A (en) Method and apparatus for inspection of leak
JP3382727B2 (en) Leak test equipment
JP2021196229A (en) Air leak test device
JP2000121486A (en) Leak inspection method and leak inspection device
JPH06300657A (en) Leak detector
JPH11237300A (en) Drum can leakage inspection device due to differential pressure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061003

A977 Report on retrieval

Effective date: 20080725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A045 Written measure of dismissal of application

Effective date: 20090924

Free format text: JAPANESE INTERMEDIATE CODE: A045