JP2005269246A - Light transmission path monitor switching device - Google Patents
Light transmission path monitor switching device Download PDFInfo
- Publication number
- JP2005269246A JP2005269246A JP2004078867A JP2004078867A JP2005269246A JP 2005269246 A JP2005269246 A JP 2005269246A JP 2004078867 A JP2004078867 A JP 2004078867A JP 2004078867 A JP2004078867 A JP 2004078867A JP 2005269246 A JP2005269246 A JP 2005269246A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- monitoring
- transmission line
- wavelength light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Communication System (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
この発明は、主伝送路と予備伝送路を有する冗長構成において、両方の伝送路の損失値を監視し、断線等の障害発生時に光伝送路の切り替えを行う光伝送路監視切替装置に関するものである。 The present invention relates to an optical transmission line monitoring and switching device for monitoring loss values of both transmission lines in a redundant configuration having a main transmission line and a standby transmission line and switching the optical transmission line when a failure such as a disconnection occurs. is there.
図1は、特開2003−229816号に開示されている従来の光伝送路切替装置である。この従来例は、上りと下りの異なる波長の光信号を1芯の伝送路で双方向伝送する装置であり、光送受信装置1と光送受信装置2は、主伝送路12と予備伝送路11の2芯で接続されており、主伝送路12に断線等の障害発生時に予備伝送路11に切り替える装置である。光送受信装置1は、入力された電気信号を特定の波長光に変換する光送信器3と、入力された光信号を電気信号に変換する光電気変換器4と、異なる2つの波長の光を合分波する混合器5と、主伝送路12と予備伝送路11を切り替える光切替器6から構成されている。対向の光送受信装置2も同様の構成となっている。但し、光送信器3と9の送信波長は、それぞれ異なる。
FIG. 1 shows a conventional optical transmission line switching device disclosed in Japanese Patent Laid-Open No. 2003-229816. This conventional example is a device that bi-directionally transmits optical signals of different wavelengths, upstream and downstream, via a single-core transmission line. The optical transmission / reception device 1 and the optical transmission /
図1に示したこの特開2003−229816号公報の動作は以下である。
光送受信器1において、光送信器3に入力された電気信号は、特定の波長λ1の光に変換される。変換された光信号は、混合器5と光切替器6を経て主伝送路12へ送信される。対向の光受信器2においても同様に、光送信器9に入力された電気信号は、特定の波長λ2の光に変換され、混合器8と光切替器7を経て、主伝送路12へ送信される。
主伝送路12に双方向に送信された光信号λ1(右向き)とλ2(左向き)は、それぞれ光送受信器2と1によって受信される。受信された光信号λ1、λ2は、それぞれ光切替器7、6と混合器8、5を経て光/電気変換器10、4によって光電変換される。
以上のように、主伝送路12を通して、1芯の双方向通信が行われる。この時に、主伝送路12に断線等による伝送路の損失過大障害が発生すると、光/電気変換器10および4の受信レベルが低下し、予め設定されたレベルに達すると光切替器7および6に予備回線11に切り替えるための制御信号が伝達され、光切替器7および6は主伝送路12から予備伝送路11に切り替わり、正常な通信が再開される。
In the optical transceiver 1, the electrical signal input to the
Optical signals λ1 (rightward) and λ2 (leftward) transmitted bi-directionally to the
As described above, single-core bidirectional communication is performed through the
しかしながら、上記従来例は、伝送路の損失監視に通信波長光を使用しているため、伝送路が正常にも拘わらず通信ポートの障害で通信波長光が途絶したときに予備回線に切り替わってしまう問題、伝送距離向上のため通信波長光を高出力に設定している結果、MTTF(Mean Time To Fairue)が短くなってしまうという問題、任意のメディアコンバータやWDM(Wavelength Division Multiplexing)伝送装置との相互接続性がない問題があった。 However, in the above conventional example, the communication wavelength light is used for monitoring the loss of the transmission line, so that the communication line light is switched to the protection line when the communication wavelength light is interrupted due to the failure of the communication port even though the transmission line is normal. The problem is that the communication wavelength light is set to a high output to improve the transmission distance, resulting in a short MTTF (Mean Time To Fairue), with any media converter or WDM (Wavelength Division Multiplexing) transmission device There was a problem with lack of interconnectivity.
また、通信を行っている伝送路のみを監視しているため、通信を行っていない予備伝送路の状態については知るすべがなく、例えば主伝送路が断線し、予備伝送路に切り替わった後に、主伝送路が復旧しても主伝送路を監視していないために自動的に切り戻しを行うことが出来ないのも問題点であった。
本発明は、上記課題に鑑みてなされたものであり、伝送路監視用の専用LD(Laser Diode)を搭載し、通信波長光とは別の波長光で主伝送路及び、予備伝送路を監視することで、上記課題を解決することにある。
In addition, since only the transmission line that is performing communication is monitored, there is no way to know the state of the standby transmission line that is not performing communication.For example, after the main transmission line is disconnected and switched to the standby transmission line, Even when the main transmission line is restored, the main transmission line is not monitored, so that it cannot be automatically switched back.
The present invention has been made in view of the above problems, and is equipped with a dedicated LD (Laser Diode) for monitoring the transmission line, and monitors the main transmission line and the standby transmission line with a wavelength light different from the communication wavelength light. This is to solve the above problem.
すなわち、本発明は、監視波長光を送信する監視光送信部と、前記監視光送信部が送信する監視波長光と外部伝送装置が送信する通信波長光を合波させる第1の光合分波部と、前記第1の光合分波部によって合波された光波を2分岐させ主伝送路と予備伝送路に送信する光分配部(以上、監視波長光送信側装置)と、主伝送路と予備伝送路とを伝播したそれぞれの光波をそれぞれ通信波長光と監視波長光とに分波する第2および第3の光合分波部と、前記第2および第3の光合分波部によって分波された監視波長光をそれぞれ光電変換する第1および第2光/電気変換部と、前記第1および第2の光/電気変換部からの電気信号のレベルを予め設定した断線レベルと比較し主伝送路および予備伝送路の断線/非断線を判定するレベル判定部と、前記第2および第3の光合分波部によって分波された何れか一方の通信波長光を前記レベル判定部からの制御信号によって外部伝送装置に導通させる光スイッチ部(以上、監視波長光受信側装置)とから成ることを特徴とする光伝送路監視切替装置である。 That is, the present invention includes a monitoring light transmitter that transmits monitoring wavelength light, and a first optical multiplexing / demultiplexing unit that combines the monitoring wavelength light transmitted by the monitoring light transmitter and the communication wavelength light transmitted by the external transmission device. An optical distribution unit (hereinafter referred to as a monitoring wavelength optical transmission side device) that splits the optical wave combined by the first optical multiplexing / demultiplexing unit into two and transmits it to the main transmission line and the standby transmission line, the main transmission line and the standby Each light wave propagated through the transmission line is demultiplexed by the second and third optical multiplexing / demultiplexing units that demultiplex the communication wavelength light and the monitoring wavelength light, respectively, and the second and third optical multiplexing / demultiplexing units. The first and second optical / electrical converters that photoelectrically convert the monitored wavelength light, respectively, and the level of the electrical signal from the first and second optical / electrical converters is compared with a preset disconnection level. A level determination unit that determines disconnection / non-disconnection of the transmission line and the backup transmission line; An optical switch unit (hereinafter referred to as a monitoring wavelength light receiving side) that conducts either one of the communication wavelength light demultiplexed by the second and third optical multiplexing / demultiplexing units to an external transmission device by a control signal from the level determining unit An optical transmission line monitoring / switching device.
そして、本発明においては、前記監視光送信部は、監視波長光を一定周波数で変調させ、前記第1および第2の光/電気変換部は、該周波数を中心とした電気的な狭帯域のバンドパスフィルタを設けたものであること、前記監視光送信部が送信する監視波長光の消光比を一定に保つために、レーザダイオード内蔵のフォトダイオードが出力するモニタ電流を変調電流にフィードバックさせるものであること、前記監視光送信部は、監視波長として通常通信には使用しない1370nm乃至1450nmの波長帯、または1630nm以上の波長帯を使用するものであることがこのましく、また、前記光スイッチ部は、電源断時に状態を保持するラッチ機能を有するものであることが好ましい光伝送路監視切替装置である。 In the present invention, the monitoring light transmission unit modulates the monitoring wavelength light at a constant frequency, and the first and second optical / electrical conversion units have an electrical narrow band centered on the frequency. A band-pass filter is provided, and the monitor current output from the photodiode built in the laser diode is fed back to the modulation current in order to keep the extinction ratio of the monitoring wavelength light transmitted by the monitoring light transmitter constant. Preferably, the monitoring light transmitter uses a wavelength band of 1370 nm to 1450 nm that is not used for normal communication as a monitoring wavelength, or a wavelength band of 1630 nm or more, and the optical switch The unit is an optical transmission line monitoring switching device that preferably has a latch function for holding the state when the power is turned off.
本発明の光伝送路監視切替装置は、監視用の専用波長を使用しているので、通信波長光の状態とは独立に伝送路を監視することが可能であり、対向に接続される伝送装置の通信方向性も不問であり、監視用のLDの出力を低くすることが可能であるので装置としてのMTTFを大きくすることが可能である。また、主伝送路と予備伝送路を同時に監視しているので、予備伝送路の断線検知や、断線した伝送路が復旧した時に切り戻しを行うことが可能となる。
また、本発明の光伝送路監視切替装置は、監視波長光を一定の周波数で変調させ、受光側で該周波数の狭帯域なバンドパスフィルタを使用しているので、フォトダイオードやプリアンプが発生するノイズを除去することにより、監視波長光を高感度で検出できるので、通常、通信には使用しないファイバ中のOH基の吸収の大きい波長域の波長を監視波長として使用することが可能となり、通信波長数を最大限生かすことが可能となる。
本発明の光伝送路監視切替装置は、変調した監視波長光を送信するLD内蔵のPDによるモニタ電流を変調電流にフィードバックしているので、変調された監視波長光の消光比は一定となり、精度の高い伝送路損失値を検出することが可能となる。
本発明の光伝送路監視切替装置は、監視用の波長として、通常、通信に使用しない波長を使用しているので、監視用の波長を通信波長として使用していない伝送装置との相互接続性がある。
Since the optical transmission line monitoring switching device of the present invention uses a dedicated wavelength for monitoring, it is possible to monitor the transmission line independently of the state of the communication wavelength light, and the transmission device connected oppositely The communication direction is also unquestioned, and the output of the monitoring LD can be lowered, so that the MTTF as a device can be increased. Further, since the main transmission line and the standby transmission line are simultaneously monitored, it is possible to detect disconnection of the standby transmission line and to switch back when the disconnected transmission line is restored.
In addition, the optical transmission line monitoring switching device of the present invention modulates the monitoring wavelength light at a constant frequency and uses a narrow bandpass filter of the frequency on the light receiving side, so that a photodiode or a preamplifier is generated. By removing noise, monitoring wavelength light can be detected with high sensitivity, so it becomes possible to use wavelengths in the wavelength range where absorption of OH groups in fibers that are not used for communications is large, as monitoring wavelengths. It is possible to make the best use of the number of wavelengths.
Since the optical transmission line monitoring switching device of the present invention feeds back the monitoring current from the PD with a built-in LD that transmits the modulated monitoring wavelength light to the modulation current, the extinction ratio of the modulated monitoring wavelength light is constant, and the accuracy It is possible to detect a high transmission line loss value.
Since the optical transmission line monitoring switching device of the present invention normally uses a wavelength that is not used for communication as a monitoring wavelength, it can be interconnected with a transmission device that does not use the monitoring wavelength as a communication wavelength. There is.
以下、本発明の実施の形態について添付の図面を用いて説明する。図2に本発明の光伝送路監視切替装置の機能ブロック図を示し、図3〜図10に個々の機能ブロックの詳細を示す。
図2において、本光伝送路監視切替装置は、監視波長光送信側装置14と監視波長光受信側装置13から構成される。監視波長光送信側装置14は、監視光送信部15と光合分波部16と光分配部17から構成されている。監視波長光受信側装置13は、光合分波部18および19と光/電気変換部20および21とレベル判定部22と光スイッチ部23から構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 2 shows a functional block diagram of the optical transmission line monitoring switching device of the present invention, and FIGS. 3 to 10 show details of individual functional blocks.
In FIG. 2, the present optical transmission line monitoring switching device is composed of a monitoring wavelength light transmitting
以下、各機能ブロックについて、構成要素の機能と動作について説明する
監視波長光送信側装置14の監視光送信部15は、図8に示すようにLD部42とLDドライバ部43から構成されており、LD部42はLDドライバ部43により一定周波数の正弦変調電流で駆動されている。LD部42は、図示していない内蔵されている光出力モニタ用PD(Photo Diode)の出力であるモニタ電流をLDドライバ部43にフィードバックさせ平均光出力を一定に保っている。
Hereinafter, the function and operation of each component will be described for each functional block. The
図9は、LD駆動電流と光出力の関係を説明するための図である。
図9に示しているように、LDの駆動電流は、一定周波数の正弦変調電流であり、その振幅は、下側はLDの閾値電流を下回るように変調をかけているのでLDから出力される光波形の消光比は略無限大となっている。また、LD内蔵のPDのモニタ電流をLDドライバにフィードバックさせAPC(Auto Power Control)をしているのでLDの環境温度の変化や経時劣化によるLDの閾値電流の変化や外部微分量子効率の変化によってLDの平均出力パワーが変化することはない。
従って、周囲環境温度の変化やLDの経時劣化によって消光比が変化することはないので、受光側でこの振幅強度を検出することにより伝送路損失の監視が可能となる。消光比を有限値で一定にする場合は、LDの環境温度によってLDのバイアス電流と変調電流を別々のコントロールしなければならないが、上記方法によるとAPCによって変調電流のみをコントロールするだけで消光比を略無限大で一定に保つことが可能となる。
FIG. 9 is a diagram for explaining the relationship between the LD drive current and the optical output.
As shown in FIG. 9, the drive current of the LD is a sinusoidal modulation current having a constant frequency, and its amplitude is output from the LD because the lower side is modulated so as to be lower than the threshold current of the LD. The extinction ratio of the optical waveform is almost infinite. Also, since the monitor current of the PD built in the LD is fed back to the LD driver and APC (Auto Power Control) is performed, the change in the LD ambient current, the change in the LD threshold current due to the deterioration over time, and the change in the external differential quantum efficiency The average output power of the LD does not change.
Therefore, the extinction ratio does not change due to changes in the ambient environment temperature or deterioration of the LD over time, so that the transmission line loss can be monitored by detecting this amplitude intensity on the light receiving side. In order to make the extinction ratio constant at a finite value, the bias current and modulation current of the LD must be controlled separately depending on the ambient temperature of the LD. According to the above method, the extinction ratio is controlled only by controlling the modulation current by APC. Can be kept almost constant and infinite.
消光比を略無限大としたので波形の立ち上がり時のサイドモード抑圧比が小さくなる。サイドモード抑圧比が小さいとサイドモード成分が大きくなるのでファイバの波長分散の影響による波形の鈍りが懸念されるので、変調周波数を低く設定した。試作では監視波長光の変調周波数は100kHzとした。また、監視用LDの光出力は、該LDのMTTFを十分大きく確保できるよう低出力であることが望ましい。 Since the extinction ratio is almost infinite, the side mode suppression ratio at the rising edge of the waveform is small. When the side mode suppression ratio is small, the side mode component becomes large, and there is a concern that the waveform may become dull due to the influence of chromatic dispersion of the fiber. Therefore, the modulation frequency was set low. In the trial production, the modulation frequency of the monitoring wavelength light was 100 kHz. The optical output of the monitoring LD is preferably low so that the MTTF of the LD can be secured sufficiently large.
次に、監視用波長の選定について説明する。
例えば、CWDM(Coarse WDM)用の波長としては、2002年4月にITU−T(International Telecommunication Union)によって勧告されたG.694.2では1270nmから20nmピッチで1610nmまでの18波長が標準化されている。この中で通信用に適しているファイバ損失の少ない波長域は出来る限り通信に割り当てたいという意味から、通常、通信には使用しないファイバ中のOH基による吸収の多い1.4μm帯を監視用波長として割り当てることが望ましい。作製した試作機では、1430nmのDFBLD(Distributed feedback Laser Diode)を使用したが、本発明に適用可能な監視用波長はこの限りではない。
Next, selection of the monitoring wavelength will be described.
For example, as a wavelength for CWDM (Coarse WDM), G.264 recommended by ITU-T (International Telecommunication Union) in April 2002. In 694.2, 18 wavelengths from 1270 nm to 1610 nm at a 20 nm pitch are standardized. Of these, the wavelength range with low fiber loss that is suitable for communication is intended to be assigned to communication as much as possible. Therefore, the 1.4 μm band, which is normally absorbed by OH groups in fibers not used for communication, is used for monitoring. It is desirable to assign as In the fabricated prototype, a 1430 nm DFBLD (Distributed Feedback Laser Diode) was used, but the monitoring wavelength applicable to the present invention is not limited to this.
図2の監視波長光送信側装置14の光合分波部16、図2の監視波長光受信側装置13の光合分波部18、19は、図3に示すようなWDMカプラで実現される。
WDMカプラ26は、共通ポート28に対して反射ポート29と透過ポート27を具備しており、例えば、図3のように誘電体多層膜フィルタにより特定の波長範囲の光を透過させ、それ以外の波長光を反射させるものである。図4にWDMカプラ26の共通ポート28と透過ポート27間の挿入損失のスペクトルプロファイルを、図5に共通ポート28と反射ポート29間の挿入損失のスペクトルプロファイルを示す。図4と図5共に、B1は透過ポートの波長範囲、B2は透過ポートの挿入損失、B3は透過ポートの挿入損失の平坦度、B4は透過ポートのクロストーク、C1は反射ポートの波長範囲、C2は反射ポートの挿入損失、C3は反射ポートの挿入損失の平坦度、C4は反射ポートのクロストークを示している。
The optical multiplexing / demultiplexing
The WDM coupler 26 is provided with a reflection port 29 and a transmission port 27 with respect to the common port 28. For example, as shown in FIG. It reflects wavelength light. 4 shows a spectral profile of insertion loss between the common port 28 and the transmission port 27 of the WDM coupler 26, and FIG. 5 shows a spectral profile of insertion loss between the common port 28 and the reflection port 29. In FIG. 4 and 5, B1 is the wavelength range of the transmission port, B2 is the insertion loss of the transmission port, B3 is the flatness of the insertion loss of the transmission port, B4 is the crosstalk of the transmission port, C1 is the wavelength range of the reflection port, C2 represents the insertion loss of the reflection port, C3 represents the flatness of the insertion loss of the reflection port, and C4 represents the crosstalk of the reflection port.
透過ポートの波長範囲B1は、伝送路監視用のLDのピーク波長の個体バラツキと、環境温度の変化による波長変動を考慮したものとする必要がある。作製した試作機では、監視波長を1430nmとしたので1424.5〜1437.5nmとした。また、透過ポートの挿入損失B2と平坦度B3は小さい方が望ましい。透過ポートのクロストークB4は、本発明の光伝送路監視切替装置に接続される伝送装置で使用している通信波長光が光/電気変換部20及び21に入力され誤動作が生じないよう設計する必要がある。通信波長光反射ポートの波長範囲C1は、本発明の光伝送路監視切替装置に接続される伝送装置で使用している通信波長をカバーするように設計する必要がある。試作においては、通信波長として広く使用されている波長帯をカバーするように1264〜1384nmと1464〜1618nmとした。反射ポートの挿入損失C2と反射ポートの挿入損失の平坦度C3は、小さい方が望ましい。反射ポートのクロストークC4は、本発明の光伝送路監視切替装置に接続される伝送装置に監視波長光が混入し通信に影響を与えないように設計する必要がある。
The wavelength range B1 of the transmission port needs to take into account individual variations in the peak wavelength of the LD for transmission line monitoring and wavelength fluctuations due to changes in the environmental temperature. In the manufactured prototype, since the monitoring wavelength was 1430 nm, it was set to 1424.5 to 1437.5 nm. Further, it is desirable that the insertion loss B2 and flatness B3 of the transmission port are small. The crosstalk B4 of the transmission port is designed so that the communication wavelength light used in the transmission apparatus connected to the optical transmission line monitoring switching apparatus of the present invention is input to the optical /
監視波長光をWDMカプラで透過で使用している理由を以下で説明する。
誘電体多層膜フィルターは通常、反射ポートクロストークが10dB程度で、透過ポートクロストークは50dB程度と透過ポートクロストークの方が大きい。監視波長としてファイバの損失が大きい波長を使用する場合、監視波長は、本発明の光伝送路監視切替装置に接続される伝送装置の許容伝送ロス以上の損失を受けることになる。例えば、ITU−T G.694.2に規定されているCWDM波長の中で最もファイバの損失が小さい波長1550nmに対して1430nmの損失はdB/km単位で約1.7倍である。仮に、通信波長光が伝送路によって25dBの損失を受けるとすると、監視波長光はその1.7倍の42.5dBの損失を受けることになる。伝送路への送信レベルが、通信波長と監視波長で同じであるとすると、受け側での受信レベル差は、監視波長光に対して通信波長の方が17.5dBも高い計算になる。
The reason why the monitoring wavelength light is used for transmission by the WDM coupler will be described below.
In general, a dielectric multilayer filter has a reflection port crosstalk of about 10 dB and a transmission port crosstalk of about 50 dB, and the transmission port crosstalk is larger. When a wavelength with a large fiber loss is used as the monitoring wavelength, the monitoring wavelength receives a loss that is greater than the allowable transmission loss of the transmission device connected to the optical transmission line monitoring switching device of the present invention. For example, ITU-T G.I. The loss at 1430 nm is about 1.7 times in dB / km with respect to the wavelength 1550 nm at which the fiber loss is the smallest among the CWDM wavelengths defined in 694.2. If the communication wavelength light receives a loss of 25 dB through the transmission line, the monitoring wavelength light receives a loss of 42.5 dB, which is 1.7 times that loss. If the transmission level to the transmission line is the same between the communication wavelength and the monitoring wavelength, the reception level difference on the receiving side is calculated to be 17.5 dB higher at the communication wavelength than at the monitoring wavelength light.
従って、受信側で監視波長の受信レベルを検出する際に、通信波長光のクロストークを十分にとる必要があるので、WDMカプラの透過ポートを監視波長に割り当てている。本発明の光伝送路監視切替装置に接続される伝送装置がWDMの場合、通信波長数が多くなりクロストーク量が大きくなるので、後述する監視波長光を受光する光/電気変換部20、21のフォトダイオードに上記WDMカプラで使用している誘電体多層膜フィルターを組み込むことで通信波長光のクロストークをさらに抑える対処が必要である。
Therefore, when the reception level of the monitoring wavelength is detected on the receiving side, it is necessary to take sufficient crosstalk of the communication wavelength light. Therefore, the transmission port of the WDM coupler is assigned to the monitoring wavelength. When the transmission apparatus connected to the optical transmission line monitoring switching apparatus of the present invention is WDM, the number of communication wavelengths increases and the amount of crosstalk increases, so that the optical /
以下、光合分波部16、18、19の各ポートの接続構成について説明する。
監視波長光送信側装置14(図2)において、光合分波部16のWDMカプラの透過ポート27は、監視光送信部15の監視用LDに接続され、反射ポート29は、本発明の光伝送路監視切替装置と接続される外部伝送装置の光インターフェースに接続され、共通ポート28は、後述する光分配部17の入力ポート32と接続される。
このように接続することで、監視光送信部15からの監視波長光と本発明の光伝送路監視切替装置に接続される伝送装置から出力される通信波長光が光合分波部16によって合波され光分配器17へ出力される。
監視波長光受信側装置13(図2)において、光合分波部18、19のWDMカプラの共通ポート28は、それぞれ主伝送路24と予備伝送路25と接続される。光合分波部18、19の透過ポート27は、それぞれ後述する光/電気変換部20、21と接続され、光合分波部18、19の反射ポート29は、それぞれ後述する光スイッチ部の第1の出力ポート36と第2の出力ポート37と接続される。
Hereinafter, a connection configuration of each port of the optical multiplexing /
In the monitoring wavelength light transmission side device 14 (FIG. 2), the transmission port 27 of the WDM coupler of the optical multiplexing / demultiplexing
By connecting in this way, the monitoring wavelength light from the monitoring
In the monitoring wavelength light receiving device 13 (FIG. 2), the common ports 28 of the WDM couplers of the optical multiplexing /
図2の監視波長光送信側装置14の光分配部17は、図6に示すように入力ポート32に対して、第1の出力ポート33と第2の出力ポート34を具備しており、入力ポート32に入力した光パワーは2分の1に分割され第1及び第2の出力ポート33,34に出力され、逆に、第1または第2の出力ポート33,34から入力された光パワーは、2分の1になり入力ポート32に出力される機能を有する。このような機能を持った光分配器として、良く知られているファイバ融着型の3dBカプラや、自由空間でハーフミラーにより光波を分割する3dBカプラを使用することが可能である。
光分配部17の第1の出力ポート33と第2の出力ポートは、それぞれ主伝送路24と予備伝送路25と接続される。この様に接続することにより、光合分波部16によって合波された監視波長光と、本発明の光伝送路監視切替装置と接続される外部伝送装置の通信波長光が2分岐され、それぞれ主伝送路24と予備伝送路25へ送信される。
2 has a first output port 33 and a
The first output port 33 and the second output port of the
また、光/電気変換部20、21は、図10に示すように、フォトダイオード44とプリアンプ45とバンドパスフィルタ46とログアンプ47とA/Dコンバータ48から構成されている。フォトダイオード44に入力された変調光信号は光電変換され、その電気信号は高インピーダンスのプリアンプ45によって増幅され、監視波長光の変調周波数を中心周波数としたバンドパスフィルタ46を透過することにより、フォトダイオードが発生す暗電流やプリアンプで発生したノイズが除去される。上記バンドパスフィルタ46の透過帯域は、ノイズ除去が目的のため、狭帯域であることが望ましい。
バンドパスフィルタ46を通過した電気信号は、後段のログアンプ47によってリニアー対数変換が行われ、A/Dコンバータ48によってフォトダイオードの受光パワーレベルがデジタル化される。作製した試作機では、受光パワーレベルをSNMP(Simple Network Management Protocol)経由で確認できるようにA/Dコンバータ48によってデジタル化しているが、アナログ信号のまま後述するレベル判定部22で処理することも可能であるので、A/Dコンバータ48は本発明の必須要件ではない。
Further, as shown in FIG. 10, the optical /
The electrical signal that has passed through the band-pass filter 46 is subjected to linear logarithmic conversion by the log amplifier 47 in the subsequent stage, and the received power level of the photodiode is digitized by the A / D converter 48. In the fabricated prototype, the received light power level is digitized by the A / D converter 48 so that it can be confirmed via SNMP (Simple Network Management Protocol). However, it may be processed by the level determination unit 22 described later as an analog signal. As it is possible, the A / D converter 48 is not a requirement of the present invention.
また、光スイッチ部23は、図7に示すように入力ポート36に対して第1の出力ポート37と第2の出力ポート38を具備し、外部の電気的制御信号によって入力ポート36と、第1の出力ポート37もしくは第2の出力ポート38との光学的な導通を切り替えるものである。ミラーの切替は電気的制御信号によって行われるが、電源断時に前状態が保持される光スイッチである必要がある。また、光スイッチは、伝送路を切り替えるためのものであるため、そのスイッチングスピードは数10msecオーダーであることが要求される。図7では、ミラー型の光スイッチで説明しているが、上記機能を満たす光スイッチであればこの限りではない。
Further, as shown in FIG. 7, the
レベル判定部22は、光/電気変換部20および21の受光パワーレベルと予め設定された断線判断レベルと比較することにより、主伝送路24と予備伝送路25の正常/断線を判定し、断線と判断した場合に正常側に切替るための制御信号を光スイッチ部23に送る機能を有する。
The level determination unit 22 determines the normal / disconnection of the main transmission line 24 and the
以上、詳細に説明した通り本発明の光伝送路監視切替装置は、通信波長とは別の監視波長光を搭載しており、監視波長光は、監視波長光送信側装置14の光合分波部16、光分配部17を経て、同じパワーで主伝送路24及び、予備伝送路25に送信され、監視波長光受信側装置13では、主伝送路24及び予備伝送路25からの監視波長光は、それぞれ光合分波部18、19を経て、光/電気変換部20、21によってその受光パワーが電気信号に変換され、レベル判定部22によって主伝送路24および予備伝送路25からの監視波長光の受光レベルが、予め設定された断線レベルに達しているか否かを判別し、断線/非断線を判別し、断線と判断すると非断線側の伝送路に光スイッチ部が切り替えることが可能となっている。また、断線した伝送路についても常に、監視波長光の受光レベルをモニタリングしているため、伝送路が復旧したことも判断でき、例えば、伝送路の切り戻しを行うことも可能となる。一方、本発明の光伝送路監視切替装置に接続された伝送装置の通信波長は、スイッチ部23によって選択された伝送路により片方向もしくは双方向の伝送が可能となっている。
また、本発明の光伝送路監視切替装置に接続される伝送装置の通信波長が、光合分波部16、18、19の反射帯域にあれば、片方向通信、双方向通信、WDMの波長数に拘わらず接続が可能である。
As described above in detail, the optical transmission line monitoring switching device of the present invention is equipped with a monitoring wavelength light different from the communication wavelength, and the monitoring wavelength light is an optical multiplexing / demultiplexing unit of the monitoring wavelength light transmitting
If the communication wavelength of the transmission device connected to the optical transmission line monitoring switching device of the present invention is within the reflection band of the optical multiplexing /
1:光送受信装置、 2:光送受信装置、 3:光送信器、 4:光/電気変換器、 5:混合器、 6:光切替器、 7:光切替器、 8:混合器、 9:光送信器、 10:光/電気変換器、 11:予備伝送路、 12:主伝送路、 13:監視波長光受光側装置、 14:監視波長光送信側装置、 15:監視光送信部、 16:光合分波部、 17:光分配部、 18:光合分波部、 19:光合分波部、 20:光/電気変換器、 21:光/電気変換器、 22:レベル判定部、 23:光スイッチ部、 24:主伝送路、 25:予備伝送路、
26:WDMカプラ、 27:透過ポート、 28:共通ポート、 29:反射ポート、 30:誘電体多層膜フィルタ、
31:3dBカプラ、 32:入力ポート、 33:第1の出力ポート、 34:第2の出力ポート、
35:光スイッチ、 36:入力ポート、 37:第1の出力ポート、 38:第2の出力ポート、 39:ミラー、 40:ミラー、 41:ミラー切替動作部、
42:LD部、 43:LDドライバ部、
44:フォトダイオード、 45:プリアンプ、 46:バンドパスフィルタ
47:ログアンプ、 48:A/Dコンバータ、
B1:透過ポートの波長範囲、 B2:透過ポートの挿入損失、 B3:透過ポートの挿入損失の平坦度、 B4:透過ポートのクロストーク、
C1:反射ポートの波長範囲
C2:反射ポートの挿入損失、 C3:反射ポートの挿入損失の平坦度、 C4:反射ポートのクロストーク
1: Optical transceiver, 2: Optical transceiver, 3: Optical transmitter, 4: Optical / electrical converter, 5: Mixer, 6: Optical switch, 7: Optical switch, 8: Mixer, 9: 10: optical / electrical converter, 11: standby transmission line, 12: main transmission line, 13: monitoring wavelength light receiving side device, 14: monitoring wavelength light transmitting side device, 15: monitoring light transmitting unit, 16 : Optical multiplexing / demultiplexing unit, 17: Optical distributing unit, 18: Optical multiplexing / demultiplexing unit, 19: Optical multiplexing / demultiplexing unit, 20: Optical / electrical converter, 21: Optical / electrical converter, 22: Level determining unit, 23: Optical switch unit, 24: main transmission line, 25: backup transmission line,
26: WDM coupler, 27: transmission port, 28: common port, 29: reflection port, 30: dielectric multilayer filter,
31: 3 dB coupler, 32: input port, 33: first output port, 34: second output port,
35: optical switch, 36: input port, 37: first output port, 38: second output port, 39: mirror, 40: mirror, 41: mirror switching operation unit,
42: LD part, 43: LD driver part,
44: Photodiode, 45: Preamplifier, 46: Band pass filter 47: Log amplifier, 48: A / D converter,
B1: Wavelength range of transmission port, B2: Insertion loss of transmission port, B3: Flatness of insertion loss of transmission port, B4: Crosstalk of transmission port,
C1: Reflection port wavelength range C2: Reflection port insertion loss, C3: Flatness of reflection port insertion loss, C4: Reflection port crosstalk
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004078867A JP2005269246A (en) | 2004-03-18 | 2004-03-18 | Light transmission path monitor switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004078867A JP2005269246A (en) | 2004-03-18 | 2004-03-18 | Light transmission path monitor switching device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005269246A true JP2005269246A (en) | 2005-09-29 |
Family
ID=35093311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004078867A Pending JP2005269246A (en) | 2004-03-18 | 2004-03-18 | Light transmission path monitor switching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005269246A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022319B (en) * | 2007-03-16 | 2010-10-27 | 华为技术有限公司 | Dispatching device and method in optical communication network |
WO2014010151A1 (en) * | 2012-07-11 | 2014-01-16 | 日本電気株式会社 | Wavelength-division multiplex communication device and optical network system |
JP2014187716A (en) * | 2014-06-27 | 2014-10-02 | Miharu Communications Co Ltd | Broadcast system and optical terminal device |
JP2014204420A (en) * | 2013-04-10 | 2014-10-27 | 日本電信電話株式会社 | Optical wavelength division multiplex system |
US9485014B2 (en) | 2012-10-31 | 2016-11-01 | Fujitsu Limited | Transmission apparatus, transmission system, and failure detection method |
-
2004
- 2004-03-18 JP JP2004078867A patent/JP2005269246A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022319B (en) * | 2007-03-16 | 2010-10-27 | 华为技术有限公司 | Dispatching device and method in optical communication network |
US8340516B2 (en) | 2007-03-16 | 2012-12-25 | Huawei Technologies Co., Ltd. | Grooming method and apparatus for optical communication network |
WO2014010151A1 (en) * | 2012-07-11 | 2014-01-16 | 日本電気株式会社 | Wavelength-division multiplex communication device and optical network system |
US9485014B2 (en) | 2012-10-31 | 2016-11-01 | Fujitsu Limited | Transmission apparatus, transmission system, and failure detection method |
JP2014204420A (en) * | 2013-04-10 | 2014-10-27 | 日本電信電話株式会社 | Optical wavelength division multiplex system |
JP2014187716A (en) * | 2014-06-27 | 2014-10-02 | Miharu Communications Co Ltd | Broadcast system and optical terminal device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4043048B2 (en) | Optical multichannel system | |
JP2748908B2 (en) | Optical transmission line characteristic measuring method and apparatus, and optical wavelength multiplex transmission method and apparatus | |
US7326916B2 (en) | Optical submarine transmission system | |
US8606107B2 (en) | Colorless dense wavelength division multiplexing transmitters | |
JP5557399B2 (en) | Spatial division multiplexing apparatus including multi-core fiber and self-homodyne detection method | |
EP3487091B1 (en) | Method and system for establishing at least two bidirectional communication links using coherent detection | |
JP5941150B2 (en) | Configuration for coexisting GPON and XGPON optical communication systems | |
EP3703281B1 (en) | Wavelength converter and method of performing wavelength conversion | |
EP2727271B1 (en) | Optical communication system, device and method for data processing in an optical network | |
CN102177667A (en) | Fault location method and fault location device in passive optical network, and passive optical network having the fault location device | |
US7174108B2 (en) | Transmission device and repeater | |
US6141125A (en) | Intra-node diagnostic signal | |
US7254327B1 (en) | Switching status and performance monitoring technology for wavelength selective switch and optical networks | |
KR101530655B1 (en) | Optical signal transceiving network terminal device having single optical switch for bypass function and optical network ethernet system including the same with single optical fiber line | |
US6639703B1 (en) | Receiver transponder for protected networks | |
CN101179334A (en) | Optical fiber network spare channel switching control device | |
EP0949776A2 (en) | Optical transmitter, multiple wavelength optical transmitter and optical transmission method | |
JP2005269246A (en) | Light transmission path monitor switching device | |
KR100319744B1 (en) | Channel drop monitoring apparatus and method for wavelength division multiplexed chnnels using a wavelength selective detector | |
CN1149774C (en) | Reference wavelength providing equipment for performance monitor in wavelength division multiplexing optical transmission system | |
KR100317133B1 (en) | Bi-directional wavelength division multiplex self-developed fiber optic network with bidirectional add / drop multiplexer | |
JP2014082656A (en) | Optical transmitter and optical transmission system | |
JP2006054929A (en) | Optical wavelength division multiplexing system and apparatus | |
JP3503600B2 (en) | Optical transmitting device and optical receiving device | |
JP2006186538A (en) | Optical transmission apparatus and method of changing optical transmission line |