[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005265093A - Double row obliquely contacting ball bearing and rotating shaft support structure - Google Patents

Double row obliquely contacting ball bearing and rotating shaft support structure Download PDF

Info

Publication number
JP2005265093A
JP2005265093A JP2004080160A JP2004080160A JP2005265093A JP 2005265093 A JP2005265093 A JP 2005265093A JP 2004080160 A JP2004080160 A JP 2004080160A JP 2004080160 A JP2004080160 A JP 2004080160A JP 2005265093 A JP2005265093 A JP 2005265093A
Authority
JP
Japan
Prior art keywords
diameter
small
shoulder
track
ball bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004080160A
Other languages
Japanese (ja)
Inventor
Hiroshi Jo
宏 城
Yozo Taniguchi
陽三 谷口
Akiyuki Suzuki
章之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2004080160A priority Critical patent/JP2005265093A/en
Publication of JP2005265093A publication Critical patent/JP2005265093A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a bearing function by allowing relative displacement of an outer ring 2 and an inner ring 3 with making the outer ring 2 and the inner ring 3 unseparatable in a double row obliquely contacting ball bearing 1 having double row balls 4A, 4B put between a large diameter raceway part 2a and a small diameter raceway part 2b provided on an inner circumference surface of the outer ring and a large diameter raceway part 3a and a small diameter raceway part 3b provided on an outer circumference surface of the inner ring 3, and having contact angles θ1, θ2 in same direction . <P>SOLUTION: A first and a second allowance part 3f, 3g allowing balls 4A, 4B of each row to roll in an axial direction are provided on an inner end side of the large diameter raceway part 3a of the inner ring 3 and an outer end side of the small diameter raceway part 3b of the inner ring 3 and a first and a second regulation part (a first and a second curved inclined surface 3h, 3i) regulating movement of balls 4A, 4B of each row in the axial direction to less than predetermined amount are provided on end parts of each allowance part 3f, 3g. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、互いの接触角の傾きを同じ向きにした複列斜接玉軸受およびこの複列斜接玉軸受を用いた回転軸支持構造に関する。   The present invention relates to a double-row oblique contact ball bearing in which the inclinations of the contact angles are the same, and a rotary shaft support structure using the double-row oblique contact ball bearing.

例えば自動車等の車両に搭載されるトランスミッションやデファレンシャル等では、それらの適宜の回転軸をハウジングの内周に二つの円すいころ軸受を介して支持している(例えば特許文献1参照。)。しかし、円すいころ軸受は、外輪および内輪と円すいころとの接触面積が大きく、かつ内輪の大鍔部との間ですべりが生じるため、回転抵抗が比較的大きい。   For example, in transmissions, differentials, and the like mounted on vehicles such as automobiles, their appropriate rotating shafts are supported on the inner periphery of the housing via two tapered roller bearings (see, for example, Patent Document 1). However, since the tapered roller bearing has a large contact area between the outer ring and the inner ring and the tapered roller, and slip occurs between the large flanges of the inner ring, the rotational resistance is relatively large.

そこで、円すいころ軸受に比べて回転抵抗の小さい玉軸受を用いることが考えられるが、アキシアル荷重やラジアル荷重の負荷容量の大きな複列斜接玉軸受を用いるのが好ましい。この複列斜接玉軸受には、互いの接触角の傾きを同じ向きにしたタンデム型と呼ばれるものがある。このタンデム型の複列斜接玉軸受の一例を図5に示す。外輪81と内輪91とを軸方向に非分離とするために、外輪81の大径肩部84の内径を大径軌道部82の底部の内径より僅かに小さくするとともに中径肩部85の内径を小径軌道部83の底部の内径より僅かに小さくし、さらに、内輪91の中径肩部94の外径を大径軌道部92の底部の外径より僅かに大きくするとともに小径肩部95の外径を小径軌道部93の底部の外径より僅かに大きくしている。つまり、外輪81の大径肩部84および中径肩部85と、内輪91の中径肩部94および小径肩部95とが、各列の玉80A,80Bを軸方向不動とするための引っ掛かりになって、外輪81と内輪91とが軸方向に非分離となる。   Therefore, it is conceivable to use a ball bearing having a smaller rotational resistance than a tapered roller bearing, but it is preferable to use a double row oblique contact ball bearing having a large load capacity for an axial load or a radial load. Among these double row oblique contact ball bearings, there is a so-called tandem type in which the inclinations of the contact angles are the same. An example of this tandem double row oblique contact ball bearing is shown in FIG. In order to make the outer ring 81 and the inner ring 91 non-separable in the axial direction, the inner diameter of the large diameter shoulder portion 84 of the outer ring 81 is made slightly smaller than the inner diameter of the bottom portion of the large diameter track portion 82 and the inner diameter of the medium diameter shoulder portion 85. Is slightly smaller than the inner diameter of the bottom portion of the small-diameter track portion 83, and the outer diameter of the medium-diameter shoulder portion 94 of the inner ring 91 is slightly larger than the outer diameter of the bottom portion of the large-diameter track portion 92 and the small-diameter shoulder portion 95 The outer diameter is slightly larger than the outer diameter of the bottom of the small-diameter track portion 93. That is, the large-diameter shoulder portion 84 and the medium-diameter shoulder portion 85 of the outer ring 81 and the medium-diameter shoulder portion 94 and the small-diameter shoulder portion 95 of the inner ring 91 are hooked to make the balls 80A and 80B in each row immovable in the axial direction. Thus, the outer ring 81 and the inner ring 91 are not separated in the axial direction.

近年では、トランスミッションやデファレンシャルのハウジングを軽量化のために鉄系金属に替えて軽合金(例えばアルミニウム合金やマグネシウム合金等)で形成することがあるが、回転軸を強度や剛性の関係より鉄系金属にしているので、回転軸の支持に用いる複列斜接玉軸受に定位置予圧を付与している場合、ハウジングと回転軸との線膨張係数の差により、高温時に複列斜接玉軸受の予圧が抜ける傾向となる。このような予圧抜けは、図5に示すように、外輪81と内輪91とを軸方向に引き離す矢印向きの力F1,F2が働くことによって発生するので、甚だしい場合には二列の玉80A,80Bが外輪81の大径肩部84および中径肩部85と、内輪91の中径肩部94および小径肩部95との各端縁に乗り上げる現象が起こって、玉80A,80Bの転動動作を阻害するおそれがある。
特開平8−74845号(図7)
In recent years, transmission and differential housings are sometimes made of light alloys (for example, aluminum alloys and magnesium alloys) instead of ferrous metals to reduce the weight. Because it is made of metal, when a pre-position preload is applied to the double row oblique contact ball bearing used to support the rotary shaft, the double row oblique contact ball bearing at high temperatures due to the difference in linear expansion coefficient between the housing and the rotary shaft There is a tendency for the preload to be lost. As shown in FIG. 5, such preload loss occurs due to the action of the forces F1 and F2 in the direction of the arrows that separate the outer ring 81 and the inner ring 91 in the axial direction. The phenomenon that 80B rides on the respective edges of the large-diameter shoulder portion 84 and the medium-diameter shoulder portion 85 of the outer ring 81 and the medium-diameter shoulder portion 94 and the small-diameter shoulder portion 95 of the inner ring 91 causes rolling of the balls 80A and 80B. Operation may be hindered.
JP-A-8-74845 (FIG. 7)

本発明は、互いの接触角の傾きを同じ向きにした複列斜接玉軸受において、外輪と内輪とを非分離としたうえで、それらの軸方向での相対変位を許容し、外輪と内輪とを軸方向に引き離す向きの力が働いたときには、玉の円周方向での転動動作を保障し、軸受機能を確保することを解決すべき課題としている。   In the double row oblique contact ball bearing in which the inclination of the contact angle is the same, the outer ring and the inner ring are not separated from each other, and relative displacement in the axial direction thereof is allowed. As a problem to be solved, it is necessary to ensure the rolling function in the circumferential direction of the ball and to ensure the bearing function when a force in the direction of pulling them apart in the axial direction is applied.

本発明は、外輪の内周面に設けた大径と小径の軌道部それぞれと、内輪の外周面に設けた大径と小径の軌道部それぞれとの間に複数の玉を介装し、互いの接触角の傾きを同じ向きにしてなる複列斜接玉軸受であって、上記内輪において、その大径軌道部の内端側と小径軌道部の外端側とのそれぞれに玉の軸方向への転動を許容する第1、第2許容部を設けるとともに、各許容部の端部に玉の軸方向への所定量以上の移動を制限する第1、第2制限部を設けたことを特徴とする。   The present invention interposes a plurality of balls between each of the large and small diameter track portions provided on the inner peripheral surface of the outer ring and each of the large and small diameter track portions provided on the outer peripheral surface of the inner ring. A double row oblique contact ball bearing having the same inclination of the contact angle of the ball, and in the inner ring, the axial direction of the ball on each of the inner end side of the large diameter raceway portion and the outer end side of the small diameter raceway portion Provided with first and second permissible portions that allow rolling to the end, and provided with first and second restricting portions that restrict movement of the ball in the axial direction by a predetermined amount or more at the end portions of the permissible portions. It is characterized by.

本発明によると、外輪と内輪とを軸方向に引き離す向きの力が働いたとき、各列の玉が内輪の第1、第2許容部上を軸方向に転動して、外輪と内輪とを軸方向に所定量だけ引き離せるようになる。この状態でも、各列の玉が円周方向に円滑に転動できるので、ラジアル荷重を受けることができる。しかも、所定量以上の玉の軸方向への移動が第1、第2制限部で制限されるから、外輪と内輪とが分離せずに済む。   According to the present invention, when a force is applied to pull the outer ring and the inner ring apart in the axial direction, the balls in each row roll in the axial direction on the first and second permissible portions of the inner ring, and the outer ring and the inner ring Can be separated in the axial direction by a predetermined amount. Even in this state, the balls in each row can smoothly roll in the circumferential direction, so that a radial load can be received. In addition, since the movement of the ball in the axial direction over a predetermined amount is restricted by the first and second restricting portions, the outer ring and the inner ring do not need to be separated.

本発明は、外輪と内輪とを非分離とすることができて、しかも、それらの軸方向での相対変位を許容し、外輪と内輪とを軸方向に引き離す向きの力が働いたときに、玉の円周方向での転動動作を保障し、軸受機能を確保することができる。   In the present invention, the outer ring and the inner ring can be separated from each other, and the relative displacement in the axial direction is allowed, and when the force in the direction of separating the outer ring and the inner ring in the axial direction is applied, The rolling motion in the circumferential direction of the ball is ensured, and the bearing function can be secured.

以下、本発明を図面に示す最良の実施形態に基づいて説明する。図1は、複列斜接玉軸受の上半分を示す断面図、図2は、外輪と内輪を軸方向に引き離したときの状態を示す図である。   Hereinafter, the present invention will be described based on the best embodiment shown in the drawings. FIG. 1 is a cross-sectional view showing the upper half of the double row oblique contact ball bearing, and FIG. 2 is a view showing a state when the outer ring and the inner ring are pulled apart in the axial direction.

図に示す複列斜接玉軸受1は、外輪2、内輪3、二列の玉4A,4B、二つの保持器5,6を備えた構成であり、二列の玉4A,4Bの直径を同一にし、一方列の玉4Aのピッチ円直径D1を他方列の玉4Bのピッチ円直径D2より大きくし、さらに、二列の玉4A,4Bの接触角θ1,θ2を同一にし、互いの接触角θ1,θ2の傾きを同じ向きにしている。このような構成の複列斜接玉軸受1を、タンデム型と言う。但し、二列の玉4A,4Bの直径、接触角θ1,θ2が異なる場合もタンデム型の複列斜接玉軸受と言う。   The double-row oblique contact ball bearing 1 shown in the figure has a configuration including an outer ring 2, an inner ring 3, two rows of balls 4A and 4B, and two cages 5 and 6, and the diameter of the two rows of balls 4A and 4B. The pitch circle diameter D1 of the balls 4A in one row is made larger than the pitch circle diameter D2 of the balls 4B in the other row, and the contact angles θ1 and θ2 of the balls 4A and 4B in the two rows are made the same so The angles θ1 and θ2 are inclined in the same direction. The double row oblique contact ball bearing 1 having such a configuration is referred to as a tandem type. However, even when the diameters and contact angles θ1 and θ2 of the two rows of balls 4A and 4B are different, they are called tandem double row oblique contact ball bearings.

外輪2は、内周面が軸方向に階段状に縮径された形状であり、具体的に、軸方向に並ぶ大径軌道部2aおよび小径軌道部2bを有し、大径軌道部2aの外端側に大径肩部2cが、また、小径軌道部2bの外端側に小径肩部2dが、さらに、大径軌道部2aと小径軌道部2bとの間に中径肩部2eが、それぞれ設けられている。大径肩部2cの内径は大径軌道部2aの底部の内径と同じである。小径肩部2dの内径は小径軌道部2bの底部の内径より小さい。中径肩部2eの内径は、小径肩部2dの内径より大きくかつ小径軌道部2bの底部の内径より僅かに小さい。大径軌道部2aは大径肩部2cと中径肩部2eとの段差部分に設けられる湾曲斜面からなり、小径軌道部2bは中径肩部2eと小径肩部2dとの段差部分に設けられる湾曲斜面からなる。   The outer ring 2 has a shape in which the inner peripheral surface has a diameter reduced stepwise in the axial direction, and specifically includes a large-diameter track portion 2a and a small-diameter track portion 2b arranged in the axial direction. A large-diameter shoulder portion 2c is formed on the outer end side, a small-diameter shoulder portion 2d is formed on the outer end side of the small-diameter track portion 2b, and a medium-diameter shoulder portion 2e is further interposed between the large-diameter track portion 2a and the small-diameter track portion 2b. , Each provided. The inner diameter of the large-diameter shoulder 2c is the same as the inner diameter of the bottom of the large-diameter track 2a. The inner diameter of the small-diameter shoulder portion 2d is smaller than the inner diameter of the bottom portion of the small-diameter track portion 2b. The inner diameter of the medium diameter shoulder 2e is larger than the inner diameter of the small diameter shoulder 2d and slightly smaller than the inner diameter of the bottom of the small diameter track 2b. The large-diameter track portion 2a is formed of a curved slope provided at the step portion between the large-diameter shoulder portion 2c and the medium-diameter shoulder portion 2e, and the small-diameter track portion 2b is provided at the step portion between the medium-diameter shoulder portion 2e and the small-diameter shoulder portion 2d. It consists of a curved slope.

内輪3は、外周面が軸方向に階段状に縮径された形状であり、具体的に、軸方向に並ぶ大径軌道部3aおよび小径軌道部3bを有し、大径軌道部3aの外端側に大径肩部3cが、また、小径軌道部3bの外端側に小径肩部3dが、さらに、大径軌道部3aと小径軌道部3bとの間に中径肩部3eが、それぞれ設けられている。大径肩部3cの外径は大径軌道部3aの底部の外径より大きい。小径肩部3dの外径は中径肩部3eの外径より小さくかつ小径軌道部3bの底部の外径より僅かに大きい。中径肩部3eの外径は、大径肩部3cの外径より小さくかつ大径軌道部3aの底部の外径より僅かに大きい。大径軌道部3aは大径肩部3cと中径肩部3eとの段差部分に設けられる湾曲斜面からなり、小径軌道部3bは中径肩部3eと小径肩部3dとの段差部分に設けられる湾曲斜面からなる。   The inner ring 3 has a shape in which the outer peripheral surface is reduced in a stepped shape in the axial direction, and specifically includes a large-diameter track portion 3a and a small-diameter track portion 3b arranged in the axial direction. A large-diameter shoulder 3c is formed on the end side, a small-diameter shoulder 3d is disposed on the outer end side of the small-diameter track portion 3b, and a medium-diameter shoulder portion 3e is disposed between the large-diameter track portion 3a and the small-diameter track portion 3b. Each is provided. The outer diameter of the large-diameter shoulder 3c is larger than the outer diameter of the bottom of the large-diameter track 3a. The outer diameter of the small diameter shoulder portion 3d is smaller than the outer diameter of the medium diameter shoulder portion 3e and slightly larger than the outer diameter of the bottom portion of the small diameter track portion 3b. The outer diameter of the medium diameter shoulder 3e is smaller than the outer diameter of the large diameter shoulder 3c and slightly larger than the outer diameter of the bottom of the large diameter track 3a. The large-diameter track portion 3a is formed of a curved slope provided at the step portion between the large-diameter shoulder portion 3c and the medium-diameter shoulder portion 3e, and the small-diameter track portion 3b is provided at the step portion between the medium-diameter shoulder portion 3e and the small-diameter shoulder portion 3d. It consists of a curved slope.

外輪2の大径軌道部2aと内輪3の大径軌道部3aとの間に介装されてピッチ円直径D1が大きくなった列の玉4Aを大径列の玉と言う。また、外輪2の小径軌道部2bと内輪3の小径軌道部3aとの間に介装されてピッチ円直径D2が小さくなった列の玉4Bを小径列の玉と言う。これら大径列の玉4Aおよび小径列の列4Bは、例えば冠型保持器と呼ばれる保持器5,6で別々に保持され、玉一つずつが円周方向等間隔に配置されている。   The balls 4A in a row that are interposed between the large-diameter track portion 2a of the outer ring 2 and the large-diameter track portion 3a of the inner ring 3 and whose pitch circle diameter D1 is increased are referred to as large-diameter rows. Further, the balls 4B in a row that are interposed between the small-diameter track portion 2b of the outer ring 2 and the small-diameter track portion 3a of the inner ring 3 and have a smaller pitch circle diameter D2 are referred to as small-diameter rows. The large diameter row 4A and the small diameter row 4B are separately held by, for example, cages 5 and 6 called crown type cages, and each ball is arranged at equal intervals in the circumferential direction.

このようなタンデム型の複列斜接玉軸受1において、内輪3の中径肩部3eおよび小径肩部3dに、各列の玉4A,4Bの軸方向への転動を許容する第1、第2の許容部3f,3gを設けている。   In such a tandem type double row oblique contact ball bearing 1, first, which allows the middle diameter shoulder 3 e and the small diameter shoulder 3 d of the inner ring 3 to roll the balls 4 A and 4 B in each row in the axial direction, Second permission portions 3f and 3g are provided.

中径肩部3eの第1許容部3fは、大径軌道部3aの底部の外径と同じ外径で大径軌道部3aへ向けて連続した円周面からなる。小径肩部3dの第2許容部3gは、小径軌道部3bの底部の外径と同じ外径で小径軌道部3bへ向けて連続する円周面からなる。両許容部3f,3gは、いずれも、回転軸線に沿う方向に沿って所定の長さに設定されている。   The first allowable portion 3f of the medium-diameter shoulder portion 3e is formed of a circumferential surface having the same outer diameter as that of the bottom portion of the large-diameter track portion 3a and continuing toward the large-diameter track portion 3a. The second allowable portion 3g of the small-diameter shoulder portion 3d is formed of a circumferential surface that has the same outer diameter as that of the bottom of the small-diameter track portion 3b and continues toward the small-diameter track portion 3b. Both the allowing portions 3f and 3g are set to a predetermined length along the direction along the rotation axis.

中径肩部3eと第1許容部3fとの段差部分には、小径列の玉4Bの曲率と略同一の曲率を有する第1湾曲斜面3hが形成されている。小径肩部3dとその許容部3gとの段差部分には、大径列の玉4Aの曲率と略同一の曲率を有する第2湾曲斜面3iが形成されている。これらの湾曲斜面3h,3iが各列の玉4A,4Bの軸方向への所定量以上の移動を制限する第1、第2制限部となる。   A first curved slope 3h having a curvature substantially the same as the curvature of the balls 4B in the small diameter row is formed at the step portion between the medium diameter shoulder 3e and the first allowance 3f. A second curved slope 3i having a curvature substantially the same as the curvature of the balls 4A in the large-diameter row is formed at a step portion between the small-diameter shoulder 3d and the allowable portion 3g. These curved slopes 3h and 3i serve as first and second restricting portions that restrict movement of the balls 4A and 4B in each row by a predetermined amount or more in the axial direction.

以上説明した複列斜接玉軸受1は、外輪2の中径肩部2eに小径列の玉4Bを軸方向で引っ掛かける一方で、大径列の玉4Aを内輪3の大径軌道部3aおよび第1許容部3f内に、また、小径列の玉4Bを内輪3の小径軌道部3bおよび第2許容部3g内にそれぞれ入れて第1、第2湾曲斜面3h,3iで軸方向への転動範囲を規制しているので、軸受構成要素が非分離となる。しかも、図2に示すように、外輪2と内輪3とを軸方向に引き離すような力F1,F2が働いたとき、各列の玉4A,4Bが内輪3の第1、第2許容部3f,3g上を軸方向に転動して、外輪2と内輪3とを軸方向に所定量だけ引き離せるようになる。この状態でも、各列の玉4A,4Bが円周方向に円滑に転動できるので、ラジアル荷重を受けることができる。   In the double row oblique contact ball bearing 1 described above, the small diameter ball 4B is hooked in the axial direction on the medium diameter shoulder 2e of the outer ring 2, while the large diameter ball 4A is connected to the large diameter raceway portion of the inner ring 3. 3a and the first permissible portion 3f, and the balls 4B in a small diameter row are placed in the small diameter raceway portion 3b and the second permissible portion 3g of the inner ring 3, respectively, and axially enter the first and second curved slopes 3h and 3i. Since the rolling range is restricted, the bearing components are not separated. In addition, as shown in FIG. 2, when forces F1 and F2 that pull the outer ring 2 and the inner ring 3 apart in the axial direction are applied, the balls 4A and 4B in each row are the first and second allowable portions 3f of the inner ring 3. , 3g roll in the axial direction so that the outer ring 2 and the inner ring 3 can be separated by a predetermined amount in the axial direction. Even in this state, the balls 4A and 4B in each row can smoothly roll in the circumferential direction, so that a radial load can be received.

このような構成の複列斜接玉軸受1の組み立ては、内輪3の大径軌道部3aおよび小径軌道部3bの外周に保持器5で保持された大径列の玉4Aおよび保持器6で保持された小径列の玉4Bを取り付け、この組品に対し外輪2を焼き嵌めすることにより行う。   The double-row oblique contact ball bearing 1 having such a configuration is assembled by using the large-diameter rows of balls 4A and the cage 6 held by the cage 5 on the outer circumferences of the large-diameter raceway portion 3a and the small-diameter raceway portion 3b of the inner ring 3. This is done by attaching the balls 4B of the small-diameter rows that are held and shrink-fitting the outer ring 2 to this assembly.

ところで、上述したタンデム型の複列斜接玉軸受1は、図3に示すように、トランスミッションに用いることができる。トランスミッションのツーピース構造のハウジング10,11内にギヤ13付きの回転軸12を、図1に示すタンデム型の複列斜接玉軸受1と円すいころ軸受14とを介して回転自在に支持している。複列斜接玉軸受1と円すいころ軸受14とは、正面組み合わせで組み込まれており、これらの軸受1,14に定位置予圧を付与している。   By the way, the tandem type double row oblique contact ball bearing 1 described above can be used in a transmission as shown in FIG. A rotary shaft 12 with a gear 13 is rotatably supported in the two-piece housings 10 and 11 of the transmission via a tandem double row oblique contact ball bearing 1 and a tapered roller bearing 14 shown in FIG. . The double-row oblique contact ball bearing 1 and the tapered roller bearing 14 are assembled in a front combination, and a fixed position preload is applied to these bearings 1 and 14.

具体的に、この定位置予圧は、複列斜接玉軸受1の外輪2の背面をハウジング10の径方向内向きの段部10aに当接し、複列深溝玉軸受1の内輪3の背面および円すいころ軸受14の内輪14bの背面をギヤ13の両側面に当接した状態において、円すいころ軸受14の外輪14aの背面とハウジング11の径方向内向きの段部11aとの間に、予め寸法を調整した間座15を挟むことにより行う。   Specifically, this fixed position preload is obtained by bringing the back surface of the outer ring 2 of the double row oblique contact ball bearing 1 into contact with the radially inwardly stepped portion 10a of the housing 10 and the back surface of the inner ring 3 of the double row deep groove ball bearing 1 and In a state where the back surface of the inner ring 14 b of the tapered roller bearing 14 is in contact with both side surfaces of the gear 13, the dimension is previously set between the back surface of the outer ring 14 a of the tapered roller bearing 14 and the step portion 11 a radially inward of the housing 11. This is performed by sandwiching the spacer 15 adjusted in the above.

このような構造において、ハウジング10,11を軽合金(例えばアルミニウム合金やマグネシウム合金等)とし、回転軸12を鉄系金属としている場合、それらの線膨張係数の差により、高温時に各軸受1,14に付与している予圧が抜ける傾向となるので、常温時における予圧と高温時における予圧抜けの程度とを考慮して経験的に適宜設定している。   In such a structure, when the housings 10 and 11 are made of a light alloy (for example, an aluminum alloy or a magnesium alloy) and the rotating shaft 12 is made of an iron-based metal, the bearings 1 and 1 are heated at high temperatures due to a difference in their linear expansion coefficients. Since the preload applied to No. 14 tends to be released, it is appropriately set empirically in consideration of the preload at normal temperature and the degree of preload loss at high temperature.

ここで、仮に、高温時において予圧抜けが発生したときには、複列斜接玉軸受1の外輪2と内輪3とを軸方向に引き離す力が働くが、このとき、上述したように複列斜接玉軸受1の内輪3の第1、第2許容部3f,3g上を各列の玉4A,4Bが軸方向に転動するので、従来例のような玉乗り上げの発生を防止できる。したがって、この状態でも、各列の玉4A,4Bが円周方向に円滑に転動できるので、ラジアル荷重を受けることができるとともに、回転軸12の回転を安定的に支持できる。   Here, if a preload loss occurs at a high temperature, a force that separates the outer ring 2 and the inner ring 3 of the double row oblique contact ball bearing 1 in the axial direction works. At this time, as described above, the double row oblique contact Since the balls 4A and 4B in each row roll in the axial direction on the first and second permissible portions 3f and 3g of the inner ring 3 of the ball bearing 1, it is possible to prevent the occurrence of ball climbing as in the conventional example. Therefore, even in this state, the balls 4A and 4B in each row can smoothly roll in the circumferential direction, so that a radial load can be received and the rotation of the rotary shaft 12 can be stably supported.

この他、上述したタンデム型の複列斜接玉軸受1は、図4に示すように、デファレンシャルのサイドギヤの支持に用いることができる。   In addition, the tandem double-row oblique contact ball bearing 1 described above can be used to support a differential side gear as shown in FIG.

図に示すように、リングギヤ20付きのデフケース21をハウジング22に、図1に示すタンデム型の複列斜接玉軸受1と円すいころ軸受23とを介して回転自在に支持している。   As shown in the figure, a differential case 21 with a ring gear 20 is rotatably supported on a housing 22 via a tandem double row oblique contact ball bearing 1 and a tapered roller bearing 23 shown in FIG.

デフケース21は、ケース本体24と蓋状部材25とからなるツーピース構造となっていて、その内部には、不図示の二つのピニオンギヤおよび二つのサイドギヤなどが収納配置されている。ケース本体24には、一方側のアクスルシャフト26が挿通される円筒形のボス部24aが形成されている。蓋状部材25には他方側のアクスルシャフト27が挿通される円筒形のボス部25aが形成されている。両ボス部24a,25aは同軸上に設けられる。蓋状部材25の外径側にリングギヤ20がボルト止めされている。   The differential case 21 has a two-piece structure composed of a case main body 24 and a lid-like member 25, in which two pinion gears, two side gears (not shown) are accommodated and arranged. The case body 24 is formed with a cylindrical boss portion 24a through which the axle shaft 26 on one side is inserted. The lid-like member 25 is formed with a cylindrical boss portion 25a through which the other axle shaft 27 is inserted. Both boss portions 24a and 25a are provided coaxially. The ring gear 20 is bolted to the outer diameter side of the lid-like member 25.

ハウジング22には、デフケース21のケース本体24と蓋状部材25それぞれのボス部24a,25aが挿通される円筒部22a,22bが同軸に設けられている。   The housing 22 is provided with cylindrical portions 22a and 22b through which the boss portions 24a and 25a of the case main body 24 and the lid-like member 25 of the differential case 21 are inserted.

ハウジング22の一方円筒部22aとデフケース21の一方ボス部24aとの間に上記円すいころ軸受23が、また、他方円筒部22bとデフケース21の他方ボス部25aとの間に上記タンデム型の複列斜接玉軸受1が組み込まれている。これら両軸受1,23を正面組み合わせとする。   The tapered roller bearing 23 is provided between the one cylindrical portion 22a of the housing 22 and the one boss portion 24a of the differential case 21, and the tandem type double row is provided between the other cylindrical portion 22b and the other boss portion 25a of the differential case 21. The oblique contact ball bearing 1 is incorporated. These both bearings 1 and 23 are a front combination.

そして、円すいころ軸受23の外輪23aの背面をハウジング22の一方円筒部22aに設けてある段部側面22cに当接させ、内輪23bの背面をデフケース21のケース本体24におけるボス部24aに設けてある段部側面24bに当接させている。複列斜接玉軸受1の外輪2の背面をハウジング22の他方円筒部22bの段部側面22dに当接させ、内輪3の背面を蓋状部材25の外側面25bに当接させている。この状態で、両軸受1,23とデフケース21とハウジング22との寸法を調整することにより両軸受1,23に定位置予圧を付与している。   The back surface of the outer ring 23 a of the tapered roller bearing 23 is brought into contact with the stepped side surface 22 c provided on the one cylindrical portion 22 a of the housing 22, and the back surface of the inner ring 23 b is provided on the boss portion 24 a of the case main body 24 of the differential case 21. It is made to contact | abut to a certain step part side surface 24b. The back surface of the outer ring 2 of the double row oblique contact ball bearing 1 is brought into contact with the stepped side surface 22 d of the other cylindrical portion 22 b of the housing 22, and the back surface of the inner ring 3 is brought into contact with the outer surface 25 b of the lid-like member 25. In this state, by adjusting the dimensions of the bearings 1, 23, the differential case 21, and the housing 22, a fixed position preload is applied to the bearings 1, 23.

以上の構成において、デフケース21と両軸受1,23の軌道輪材料とをそれらの強度確保のために鉄系金属とする一方、ハウジング22をその軽量化のために軽合金(例えばアルミニウム合金やマグネシウム合金等)としている。この場合、鉄系金属と軽合金との線膨張係数に差があるので、高温時にデフケース21とハウジング22との熱膨張率の差により、両軸受1,23に付与している予圧が抜ける傾向となるが、その場合でも、複列斜接玉軸受1の各列の玉4A,玉4Bが円周方向に転動できるので、デファレンシャルに動作障害が発生することを防止できる。   In the above configuration, the differential case 21 and the bearing ring materials of the two bearings 1 and 23 are made of an iron-based metal to ensure their strength, while the housing 22 is made of a light alloy (for example, an aluminum alloy or magnesium for weight reduction). Alloy). In this case, since there is a difference in the linear expansion coefficient between the ferrous metal and the light alloy, the preload applied to the bearings 1 and 23 tends to be released due to the difference in the thermal expansion coefficient between the differential case 21 and the housing 22 at high temperatures. However, even in that case, since the balls 4A and the balls 4B of each row of the double row oblique contact ball bearing 1 can roll in the circumferential direction, it is possible to prevent the occurrence of an operational failure in the differential.

なお、図3および図4において、円すいころ軸受14,23を、図1に示すタンデム型の複列斜接玉軸受1としたものも本発明に含む。この場合、円すいころ軸受14,23を用いる場合に比べて回転抵抗の軽減に効果的である。また、本発明の複列斜接玉軸受1の使用対象は、上記以外に四輪駆動車両に搭載されるトランスファの適宜の回転軸支持部分等に用いることができる。   3 and 4, the tapered roller bearings 14 and 23 are replaced with the tandem double row oblique contact ball bearing 1 shown in FIG. 1. In this case, it is more effective in reducing rotational resistance than when the tapered roller bearings 14 and 23 are used. Moreover, the use object of the double row oblique contact ball bearing 1 of this invention can be used for the appropriate rotating shaft support part etc. of the transfer mounted in a four-wheel drive vehicle other than the above.

本発明の最良の形態に係る複列斜接玉軸受の上半分を示す断面図Sectional drawing which shows the upper half of the double row oblique contact ball bearing which concerns on the best form of this invention 図1の外輪と内輪とを軸方向に引き離したときの状態を示す図The figure which shows a state when the outer ring and inner ring of FIG. 1 are pulled apart in the axial direction 図1に示す複列斜接玉軸受の使用例を示す断面図Sectional drawing which shows the usage example of the double row oblique contact ball bearing shown in FIG. 図1に示す複列斜接玉軸受の他の使用例を示す断面図Sectional drawing which shows the other usage example of the double row oblique contact ball bearing shown in FIG. 従来例のタンデム型の複列斜接玉軸受の上半分を示す断面図Sectional view showing the upper half of a conventional tandem double row oblique contact ball bearing

符号の説明Explanation of symbols

1…複列斜接玉軸受、2…外輪、2a…大径軌道部、2b…小径軌道部、2c…大径肩部、2d…小径肩部、2e…中径肩部、3…内輪、3a…大径軌道部、3b…小径軌道部、3c…大径肩部、3d…小径肩部、3e…中径肩部、3f…第1許容部、3g…第2許容部、3h…第1湾曲斜面(第1制限部)、3i…第2湾曲斜面(第2制限部)、4A…大径列の玉、4B…小径列の玉。   DESCRIPTION OF SYMBOLS 1 ... Double row oblique contact ball bearing, 2 ... Outer ring, 2a ... Large diameter track part, 2b ... Small diameter track part, 2c ... Large diameter shoulder part, 2d ... Small diameter shoulder part, 2e ... Medium diameter shoulder part, 3 ... Inner ring, 3a: Large diameter raceway part, 3b ... Small diameter raceway part, 3c ... Large diameter shoulder part, 3d ... Small diameter shoulder part, 3e ... Medium diameter shoulder part, 3f ... First allowance part, 3g ... Second allowance part, 3h ... First 1 curved slope (first restriction portion), 3i... 2 curved slope (second restriction portion), 4A .large diameter row ball, 4B .small diameter row ball.

Claims (5)

外輪の内周面に設けた大径と小径の軌道部それぞれと、内輪の外周面に設けた大径と小径の軌道部それぞれとの間に複数の玉を介装し、互いの接触角の傾きを同じ向きにしてなる複列斜接玉軸受であって、
上記内輪において、その大径軌道部の内端側と小径軌道部の外端側とのそれぞれに玉の軸方向への転動を許容する第1、第2許容部を設けるとともに、各許容部の端部に玉の軸方向への所定量以上の移動を制限する第1、第2制限部を設けたことを特徴とする複列斜接玉軸受。
A plurality of balls are interposed between the large-diameter and small-diameter track portions provided on the inner peripheral surface of the outer ring and the large-diameter and small-diameter track portions provided on the outer peripheral surface of the inner ring, respectively. A double row oblique contact ball bearing with the same inclination,
In the inner ring, first and second permissible portions that allow the balls to roll in the axial direction are provided on the inner end side of the large-diameter raceway portion and the outer end side of the small-diameter raceway portion, respectively. A double row oblique contact ball bearing characterized in that first and second restricting portions for restricting the movement of the ball in the axial direction by a predetermined amount or more are provided at the end portion of the ball.
上記内輪において、
その大径軌道部の外端に、当該大径軌道部の底部の外径より大きい大径肩部を、また、大径軌道部と小径軌道部との間に、上記大径肩部の外径より小さくかつ大径軌道部の底部の外径より大きい中径肩部を、小径軌道部の外端に、上記中径肩部の外径より小さくかつ小径軌道部の底部の外径より大きい小径肩部を、それぞれ設け、
上記中径肩部に、大径軌道部の底部の外径と同じ外径で大径軌道部と連続する円周面を上記第1許容部として設け、この中径肩部と当該第1許容部との段差部分を上記第1制限部となし、
上記小径肩部に、小径軌道部の底部の外径と同じ外径で小径軌道部と連続する円周面を上記第2許容部として設け、この小径肩部と当該第2許容部との段差部分を上記第2制限部となしたことを特徴とする請求項1に記載の複列斜接玉軸受。
In the inner ring,
A large-diameter shoulder that is larger than the outer diameter of the bottom of the large-diameter track portion is provided at the outer end of the large-diameter track portion, and the large-diameter track portion is disposed between the large-diameter track portion and the small-diameter track portion. A medium-diameter shoulder that is smaller than the diameter and larger than the outer diameter of the bottom of the large-diameter track portion is smaller than the outer diameter of the medium-diameter shoulder portion and larger than the outer diameter of the bottom of the small-diameter track portion at the outer end of the small-diameter track portion. Each has a small diameter shoulder,
A circumferential surface that is the same as the outer diameter of the bottom of the large-diameter track portion and that is continuous with the large-diameter track portion is provided as the first allowance portion on the medium-diameter shoulder portion. The step portion with the part is the first restriction part,
A circumferential surface continuous with the small-diameter track portion having the same outer diameter as the bottom diameter of the small-diameter track portion is provided as the second allowance portion on the small-diameter shoulder portion, and a step between the small-diameter shoulder portion and the second allowance portion The double row oblique contact ball bearing according to claim 1, wherein the portion is the second restricting portion.
上記内輪において、
その大径軌道部を、大径肩部と中径肩部との段差部分に設けた湾曲斜面により構成し、その小径軌道部を、中径肩部と小径肩部との段差部分に設けた湾曲斜面により構成したことを特徴とする請求項2に記載の複列斜接玉軸受。
In the inner ring,
The large-diameter track portion is configured by a curved slope provided in the step portion between the large-diameter shoulder portion and the medium-diameter shoulder portion, and the small-diameter track portion is provided in the step portion between the medium-diameter shoulder portion and the small-diameter shoulder portion. The double row oblique contact ball bearing according to claim 2, wherein the double row oblique contact ball bearing is configured by a curved slope.
上記外輪において、
その大径軌道部の外端に、当該大径軌道部の底部の内径と略同じ内径の大径肩部を、また、その小径軌道部の外端に、当該小径軌道部の底部の内径より小さい小径肩部を、さらに、上記大径軌道部と小径軌道部との間に、小径肩部の内径より大きくかつ小径軌道部の底部の内径より小さい中径肩部を、それぞれ設け、
上記大径軌道部を、大径肩部と中径肩部との段差部分に設けられる湾曲斜面により構成し、
上記小径軌道部を、小径肩部と中径肩部との段差部分に設けられる湾曲斜面により構成した、ことを特徴とする請求項1から3のいずれかに記載の複列斜接玉軸受。
In the outer ring,
A large-diameter shoulder having an inner diameter that is substantially the same as the inner diameter of the bottom of the large-diameter track portion at the outer end of the large-diameter track portion, and an inner diameter of the bottom portion of the small-diameter track portion at the outer end of the small-diameter track portion A small small-diameter shoulder is further provided between the large-diameter track and the small-diameter track, and a medium-diameter shoulder that is larger than the inner diameter of the small-diameter shoulder and smaller than the inner diameter of the bottom of the small-diameter track,
The large-diameter track portion is constituted by a curved slope provided at a step portion between the large-diameter shoulder portion and the medium-diameter shoulder portion,
The double-row oblique contact ball bearing according to any one of claims 1 to 3, wherein the small-diameter track portion is configured by a curved slope provided at a step portion between a small-diameter shoulder portion and a medium-diameter shoulder portion.
金属からなる回転軸を当該金属よりも線膨張係数の大きな金属からなるハウジングの内周に二つの斜接型転がり軸受を介して支持し、この二つの斜接型転がり軸受を正面組み合わせとした回転軸支持構造であって、
上記両斜接型転がり軸受において、それぞれの外輪の背面を上記ハウジングに設けられる二つの径方向内向きの段部の径方向に沿う各側面にそれぞれ当接させる一方で、それぞれの内輪の背面を回転軸に設けられる径方向外向きの段部の径方向に沿う各側面にそれぞれ当接させた状態で定位置予圧を付与し、
上記両斜接型転がり軸受のうちの少なくとも一方の斜接型転がり軸受を請求項1から4のいずれかに記載の複列斜接玉軸受としたことを特徴とする回転軸支持構造。
A rotating shaft made of metal is supported on the inner circumference of a housing made of a metal having a larger linear expansion coefficient than the metal via two oblique contact type rolling bearings, and the two oblique contact type rolling bearings are combined as a frontal combination. A shaft support structure,
In the oblique contact type rolling bearing, the back surface of each outer ring is brought into contact with the respective side surfaces along the radial direction of two radially inwardly provided step portions provided on the housing, while the back surface of each inner ring is A fixed position preload is applied in a state of being in contact with each side surface along the radial direction of the radially outward step portion provided on the rotating shaft,
5. The rotating shaft support structure according to claim 1, wherein at least one of the oblique contact type rolling bearings is the double row oblique contact ball bearing according to any one of claims 1 to 4.
JP2004080160A 2004-03-19 2004-03-19 Double row obliquely contacting ball bearing and rotating shaft support structure Withdrawn JP2005265093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080160A JP2005265093A (en) 2004-03-19 2004-03-19 Double row obliquely contacting ball bearing and rotating shaft support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080160A JP2005265093A (en) 2004-03-19 2004-03-19 Double row obliquely contacting ball bearing and rotating shaft support structure

Publications (1)

Publication Number Publication Date
JP2005265093A true JP2005265093A (en) 2005-09-29

Family

ID=35089866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080160A Withdrawn JP2005265093A (en) 2004-03-19 2004-03-19 Double row obliquely contacting ball bearing and rotating shaft support structure

Country Status (1)

Country Link
JP (1) JP2005265093A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010048A1 (en) * 2006-03-04 2007-09-06 Schaeffler Kg Multi-row axially preloaded angular contact ball bearing and method for its production
JP2012241853A (en) * 2011-05-23 2012-12-10 Nsk Ltd Tandem angular type ball bearing and outer ring assembly for tandem angular type ball bearing
FR2982000A1 (en) * 2011-10-27 2013-05-03 Peugeot Citroen Automobiles Sa Arrangement for assembling rotary shaft on casing of e.g. speed-reduction gear in transmission of automobile, has expansive spindle tightened to allow automatic alignment of axes of bearings of upper and lower casing parts
JP2014035033A (en) * 2012-08-09 2014-02-24 Nsk Ltd Tandem type multi row angular contact ball bearing
JP2014040870A (en) * 2012-08-23 2014-03-06 Nsk Ltd Tandem type double row angular ball bearing
CN115342117A (en) * 2022-08-16 2022-11-15 杭州鑫凯传动机械有限公司 Universal joint cross shaft

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010048A1 (en) * 2006-03-04 2007-09-06 Schaeffler Kg Multi-row axially preloaded angular contact ball bearing and method for its production
JP2012241853A (en) * 2011-05-23 2012-12-10 Nsk Ltd Tandem angular type ball bearing and outer ring assembly for tandem angular type ball bearing
FR2982000A1 (en) * 2011-10-27 2013-05-03 Peugeot Citroen Automobiles Sa Arrangement for assembling rotary shaft on casing of e.g. speed-reduction gear in transmission of automobile, has expansive spindle tightened to allow automatic alignment of axes of bearings of upper and lower casing parts
JP2014035033A (en) * 2012-08-09 2014-02-24 Nsk Ltd Tandem type multi row angular contact ball bearing
JP2014040870A (en) * 2012-08-23 2014-03-06 Nsk Ltd Tandem type double row angular ball bearing
CN115342117A (en) * 2022-08-16 2022-11-15 杭州鑫凯传动机械有限公司 Universal joint cross shaft
CN115342117B (en) * 2022-08-16 2024-02-06 杭州鑫凯传动机械有限公司 Universal joint cross shaft

Similar Documents

Publication Publication Date Title
JP5375969B2 (en) Rotation support device for pinion shaft
JP4862458B2 (en) Double-row rolling bearing for pinion shaft support and rolling bearing device provided with the same
EP1777079B1 (en) Wheel drive unit
JP5227417B2 (en) Pinion bearing unit
JP6047999B2 (en) Rotating support device
JP4557223B2 (en) Drive wheel bearing device
JP4715745B2 (en) Oblique contact type double row ball bearing and pinion shaft support bearing device
JP2005265093A (en) Double row obliquely contacting ball bearing and rotating shaft support structure
EP2957432B1 (en) Hub-bearing having a light alloy rotor-hub
JP6171444B2 (en) Rolling bearing device and pinion shaft support device for vehicle
WO2012033043A1 (en) Reduction device
JP4952021B2 (en) Hub unit mounting structure
US8950289B2 (en) Controlled axial biasing unit
US20060018582A1 (en) Bearing having thermal compensating capability
JP2007320351A (en) Bearing device for wheel
JP2005265094A (en) Double row obliquely contacting ball bearing and pinion shaft support bearing device
JP5939086B2 (en) Rolling bearing device
JP7440349B2 (en) Rolling bearing unit for wheel support
JP2017083012A (en) Wheel supporting double row rolling bearing unit
JP2008045674A (en) Wheel bearing device
JP2007303653A (en) Bearing device for wheel with brake rotor
JP2005163923A (en) Differential device
JP4940847B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2006038020A (en) Rolling bearing device and double raw ball bearing to be used for the same
JP2005255165A (en) Driving wheel roller bearing unit and wheel driving unit manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081215