[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005264344A - Low shrinkage heat adhesive fiber and non-woven fabric by using the same - Google Patents

Low shrinkage heat adhesive fiber and non-woven fabric by using the same Download PDF

Info

Publication number
JP2005264344A
JP2005264344A JP2004073975A JP2004073975A JP2005264344A JP 2005264344 A JP2005264344 A JP 2005264344A JP 2004073975 A JP2004073975 A JP 2004073975A JP 2004073975 A JP2004073975 A JP 2004073975A JP 2005264344 A JP2005264344 A JP 2005264344A
Authority
JP
Japan
Prior art keywords
fiber
heat
sheath
core
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073975A
Other languages
Japanese (ja)
Inventor
Susumu Nakano
享 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004073975A priority Critical patent/JP2005264344A/en
Publication of JP2005264344A publication Critical patent/JP2005264344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low shrinkage heat adhesive fiber capable of easily producing a non-woven fabric without having the reduction of joined points and lack of dimensional stability caused by the shrink of the heat-adhesive fiber, and a non-woven fabric prepared by using the same. <P>SOLUTION: This low shrinkage heat adhesive fiber having a sheath/core structure consists of thermoplastic polymers, wherein, the core part has ≥60°C lower melting point than that of the sheath part, and has ≤5 & dry shrinkage at 180°C and ≤10 mm fiber length. The non-woven fabric is produced by using the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、不織布の製造の際に母材繊維の接着に用いる低収縮性の熱接着繊維と、それを用いて製造した不織布に関する。   The present invention relates to a low-shrinkable heat-bonding fiber used for bonding a base fiber in the production of a nonwoven fabric and a nonwoven fabric produced using the same.

不織布の製造に用いる低収縮性熱接着繊維として、特に芯鞘構造を有する複合繊維からなる低収縮性熱接着繊維として、例えば、紡糸速度を高速にして製造する低収縮性熱接着繊維が知られている(特許文献1、特許文献2)。   As a low-shrinkage heat-bonding fiber used for the production of nonwoven fabrics, particularly as a low-shrinkage heat-bonding fiber composed of a composite fiber having a core-sheath structure, for example, a low-shrinkage heat-bonding fiber manufactured at a high spinning speed is known. (Patent Document 1, Patent Document 2).

しかしながら、このような従来の低収縮性熱接着繊維においては、鞘部に配している接着成分の融点が低いため、高温で延伸、熱固定を行うと繊維同士の融着が生じ、収縮が充分に低い熱接着繊維を製造することは困難であった。このため、不織布の製造に際し、母材繊維と熱接着繊維を混繊後加熱接着する際、熱接着繊維が大幅に収縮して接着繊維が局在化することがあり、接着点が減少して接着強力が低下したり、不織布の寸法が安定しないなどの問題があった。
特開平7−3534号公報 特許第3275974号
However, in such a conventional low-shrinkable heat-bonding fiber, the melting point of the adhesive component disposed in the sheath portion is low, so that when the fiber is stretched and heat-set at a high temperature, the fibers are fused with each other and shrinkage occurs. It has been difficult to produce sufficiently low thermal bonding fibers. For this reason, in the production of non-woven fabrics, when heat-bonding the base fiber and the heat-bonding fiber after mixing, the heat-bonding fiber may shrink significantly and the bonding fiber may be localized, reducing the bonding point. There was a problem that the adhesive strength was lowered and the dimensions of the nonwoven fabric were not stable.
Japanese Patent Laid-Open No. 7-3534 Japanese Patent No. 3275974

本発明の課題は、上記のような従来技術における問題点を解決し、熱接着繊維の収縮による接着点の減少や接着強力が低下したりすることを回避し、寸法安定性に優れた不織布を容易に製造できる低収縮性熱接着繊維、およびそれを用いて製造した不織布を提供することにある。   An object of the present invention is to solve the problems in the prior art as described above, avoid a decrease in adhesion point and a decrease in adhesive strength due to shrinkage of the thermal bonding fiber, and a nonwoven fabric excellent in dimensional stability. An object of the present invention is to provide a low-shrinkage heat-bonding fiber that can be easily produced, and a nonwoven fabric produced using the same.

上記課題を解決するために、本発明に係る低収縮性熱接着繊維は、熱可塑性ポリマから成る芯鞘構造を有する繊維であり、芯部が鞘部よりも60℃以上融点が低く、180℃における乾熱収縮率が5%以下であり、かつ繊維長が10mm以下であることを特徴とするものからなる。   In order to solve the above problems, the low shrinkable heat-bonding fiber according to the present invention is a fiber having a core-sheath structure made of a thermoplastic polymer, and the core part has a melting point of 60 ° C. or more lower than that of the sheath part, and 180 ° C. It has a dry heat shrinkage ratio of 5% or less and a fiber length of 10 mm or less.

また、本発明に係る不織布は、このような低収縮性熱接着繊維を用いて製造されたものであり、該低収縮性熱接着繊維を3重量%以上含むものである。   Moreover, the nonwoven fabric which concerns on this invention is manufactured using such a low shrinkable heat | fever adhesive fiber, and contains 3 weight% or more of this low shrinkable heat | fever adhesive fiber.

本発明によれば、不織布の製造に際し、母材繊維と熱接着繊維を混繊後加熱接着する際、芯鞘構造のうち芯成分の熱融着成分のみを溶融流動させて接着点を形成し、鞘成分は溶融させずに残して母材繊維を繋ぐネットワーク構造を作ることが可能になるとともに、相対的に鞘成分側の融点を高めて高温熱処理を可能とし、乾熱収縮率を低く抑えているから、熱接着繊維全体としての低収縮性を確保することが可能となる。したがって、不織布製造の際の収縮による接着点の減少を回避でき、寸法安定性に優れた不織布を容易に製造することが可能になる。   According to the present invention, in the production of the nonwoven fabric, when the base fiber and the heat-bonding fiber are mixed and heat-bonded, only the heat-fusion component of the core component in the core-sheath structure is melted and flown to form an adhesion point. The sheath component can be left unmelted to create a network structure that connects the base fiber, and the melting point on the sheath component side can be relatively increased to enable high-temperature heat treatment, and the dry heat shrinkage rate is kept low. Therefore, it becomes possible to ensure low shrinkage as the whole heat-bonding fiber. Accordingly, it is possible to avoid a decrease in the adhesion point due to shrinkage during the production of the nonwoven fabric, and it is possible to easily produce a nonwoven fabric excellent in dimensional stability.

以下に、本発明について、望ましい実施の形態とともに詳細に説明する。
本発明に係る低収縮性熱接着繊維は、熱可塑性ポリマから成る芯鞘構造を有する複合繊維であって、芯部の融点は鞘部の融点よりも60℃以上低い。つまり、相対的に、鞘部の融点は芯部の融点よりも60℃以上と、大幅に高い。そして、この複合繊維全体の180℃における乾熱収縮率は5%以下と小さく抑えられており、繊維長は10mm以下となるようにカットされている。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
The low shrinkable heat-bonding fiber according to the present invention is a composite fiber having a core-sheath structure made of a thermoplastic polymer, and the melting point of the core part is 60 ° C. or more lower than the melting point of the sheath part. That is, the melting point of the sheath is relatively higher than the melting point of the core, which is 60 ° C. or higher. And the dry heat shrinkage rate in 180 degreeC of this whole composite fiber is restrained small with 5% or less, and the fiber length is cut so that it may become 10 mm or less.

このような本発明に係る低収縮性熱接着繊維は例えば次のように製造される。
例えば、鞘成分としてのホモポリエチレンテレフタレートと芯成分としてのイソフタル酸を40モル%共重合したポリエステルを公知の複合紡糸により芯鞘型に複合化し、紡糸して複合繊維の未延伸糸を得る。該未延伸糸を、鞘成分に熱接着成分を配置させていると採用できない高温、例えば90℃で液浴延伸し、その後例えば145℃で弛緩熱処理を行い、その後に例えば6mmにカットする。融点の高い鞘部に対しては高温熱処理を施すことができるため、180℃での乾熱収縮率を3%にすることができる。
Such a low shrinkable thermal bonding fiber according to the present invention is produced, for example, as follows.
For example, polyester obtained by copolymerizing 40 mol% of homopolyethylene terephthalate as a sheath component and isophthalic acid as a core component is compounded into a core-sheath type by a known composite spinning, and is spun to obtain an undrawn yarn of a composite fiber. The undrawn yarn is subjected to liquid bath drawing at a high temperature, for example, 90 ° C., which cannot be adopted when a thermal adhesive component is disposed in the sheath component, and then subjected to relaxation heat treatment at, for example, 145 ° C., and then cut into, for example, 6 mm. Since the high-temperature heat treatment can be performed on the sheath portion having a high melting point, the dry heat shrinkage at 180 ° C. can be 3%.

このように、本発明の熱接着繊維とするため鞘成分を高温熱処理で軟化しない熱可塑性ポリマで構成した断面の実質的に芯鞘構造とすることで高温熱処理が可能となり、熱接着繊維として低収縮化が可能になる。また、10mm以下の短繊維とすることで、熱接着成分となる熱可塑性ポリマ(芯成分)が母材繊維との接着時に加熱により溶融流動し、母材繊維との接着点を多くすることが可能となる。   As described above, the sheath component has a substantially core-sheath structure composed of a thermoplastic polymer that is not softened by high-temperature heat treatment in order to obtain the heat-bonded fiber of the present invention, so that high-temperature heat treatment is possible. Shrinkage becomes possible. In addition, by using short fibers of 10 mm or less, the thermoplastic polymer (core component) serving as a heat-bonding component melts and flows by heating when bonded to the base fiber, and increases the number of points of bonding with the base fiber. It becomes possible.

本発明においては、熱可塑性ポリマの芯成分の熱融着成分のみを溶融流動させて接着点を形成し、鞘成分は溶融させず、母材繊維を繋ぐネットワーク構造を作る必要から、鞘成分の融点を芯成分の熱可塑性ポリマより少なくとも60℃高い融点とすることで目的を達成できる。   In the present invention, only the heat fusion component of the core component of the thermoplastic polymer is melt-flowed to form an adhesion point, the sheath component is not melted, and it is necessary to create a network structure that connects the base material fibers. The object can be achieved by setting the melting point to a melting point that is at least 60 ° C. higher than the thermoplastic polymer of the core component.

熱接着させるための加熱温度は、通常、熱接着成分より少なくとも20℃以上高い温度とされ、熱接着成分を溶融流動させて接着点を形成させる。そのため、芯成分の融点と熱接着成分の融点の差が60℃未満では、熱接着時に鞘成分も軟化変形して母材繊維を繋ぐネットワーク構造を形成できなくなるおそれがあるので好ましくない。   The heating temperature for heat bonding is usually at least 20 ° C. higher than the heat bonding component, and the heat bonding component is melted and flown to form an adhesion point. Therefore, if the difference between the melting point of the core component and the melting point of the thermal bonding component is less than 60 ° C., the sheath component may be softened and deformed at the time of thermal bonding, so that it may not be possible to form a network structure that connects the base material fibers.

本発明においては、鞘成分の融点を芯成分の融点より60℃以上高くすることで、短時間のうちに高温で熱成形できる。ただし、融点が高すぎると溶融紡糸温度を高くする必要が生じ、熱接着成分の熱分解を生じて熱劣化を生じ、接着点の耐久性が低下するおそれがあるので、より好ましい範囲としては60℃以上100℃以下である。   In the present invention, thermoforming can be performed at a high temperature within a short time by making the melting point of the sheath component 60 ° C. or more higher than the melting point of the core component. However, if the melting point is too high, it is necessary to increase the melt spinning temperature, which may cause thermal degradation of the thermal bonding component, resulting in thermal degradation, and the durability of the bonding point may be reduced. It is 100 degreeC or more in the range of ℃

本発明に係る低収縮性熱接着繊維においては、180℃における繊維の乾熱収縮率は5%以下であり、繊維の長さは10mm以下である。繊維長を10mm以下にすることにより、母材繊維と熱接着繊維を混繊後、加熱接着時に熱接着繊維の短繊維の両端から熱接着成分が溶融流動化し、それによって母材繊維との接着点を多くすることができ、接着強力を保持できる。また、収縮率が低いので混繊状態を保ち得る。繊維長が10mmより長いと、母材繊維と熱接着繊維を混繊後、加熱接着時に短繊維の両端から熱接着成分が溶融流動化しても接着点が少なくなり接着強力が低下するので、好ましくない。また、180℃における繊維の乾熱収縮率が5%よりも高い場合には、不織布に皺が入りやすくなり、欠点になるおそれが生じる。   In the low shrinkable heat-bonding fiber according to the present invention, the dry heat shrinkage rate of the fiber at 180 ° C. is 5% or less, and the fiber length is 10 mm or less. By making the fiber length 10 mm or less, the base fiber and the heat-bonding fiber are mixed, and then the heat-bonding component melts and flows from both ends of the short fiber of the heat-bonding fiber at the time of heat bonding, thereby bonding to the base fiber. The number of points can be increased and the adhesive strength can be maintained. Further, since the shrinkage rate is low, the mixed fiber state can be maintained. If the fiber length is longer than 10 mm, the base fiber and the heat-bonded fiber are mixed, and then the adhesive point decreases and the adhesive strength decreases even if the heat-bonding component melts and flows from both ends of the short fiber during heat bonding. Absent. Moreover, when the dry heat shrinkage rate of the fiber at 180 ° C. is higher than 5%, wrinkles easily enter the nonwoven fabric, which may cause a defect.

本発明に係る低収縮性熱接着繊維の鞘成分は、熱可塑性ポリマで形成し、延伸工程で高温熱処理することにより結晶化させて収縮率を低下させることができる。配向度を充分保持できないと、物理特性が低下し、母材繊維と熱接着繊維を開繊積層してウエッブとする際、熱接着繊維が伸張されて収縮率が高くなり、加熱接着時、熱接着繊維が局在化し、接着点が収縮し、接着強力が低下するなど問題が生じやすくるので、好ましくない。本発明では、結晶化により配向度を充分保持して物理的特性が良好なものとなり形態保持性に優れたものとなる。   The sheath component of the low shrinkable heat-bonding fiber according to the present invention can be formed of a thermoplastic polymer and crystallized by a high-temperature heat treatment in a stretching process to reduce the shrinkage rate. If the degree of orientation cannot be maintained sufficiently, the physical properties will deteriorate, and when the base fiber and the heat-bonded fiber are spread and laminated to form a web, the heat-bonded fiber is stretched and the shrinkage ratio is increased. This is not preferable because the adhesive fibers are localized, the adhesion point shrinks, and the adhesive strength is reduced. In the present invention, the degree of orientation is sufficiently maintained by crystallization, the physical properties are good, and the form retainability is excellent.

本発明に係る低収縮性熱接着繊維の熱接着成分は、芯成分として構成でき、少なくとも160℃以下の融点を持つ低融点熱可塑性ポリマからなることが好ましい。このような低融点熱可塑性ポリマとして、オレフィン系では、ポリエチレン、ポリプロピレン、ポリブテン等、及びそれらとエチレンや酢酸ビニルとの共重合体などが挙げられ、ポリエステル系では、ポリブチレンテレフタレートまたは、エチレンイソフタレート、ブチレンイソフタレート、ヘキサメチレンテレフタレートなどの構成単位を10〜60モル%含有するポリエチレンテレフタレート共重合体、ポリブチレンテレフタレート共重合体、ポリエチレンナフタレート共重合体、ポリヘキサメチレンテレフタレート共重合体などが挙げられる。   The heat-bonding component of the low-shrinkable heat-bonding fiber according to the present invention is preferably composed of a low-melting thermoplastic polymer that can be configured as a core component and has a melting point of at least 160 ° C. Examples of such a low-melting point thermoplastic polymer include polyethylene, polypropylene, polybutene, and the like, and copolymers thereof with ethylene and vinyl acetate. In the case of polyester, polybutylene terephthalate or ethylene isophthalate. Polyethylene terephthalate copolymer, polybutylene terephthalate copolymer, polyethylene naphthalate copolymer, polyhexamethylene terephthalate copolymer containing 10 to 60 mol% of structural units such as butylene isophthalate and hexamethylene terephthalate. It is done.

本発明に係る低収縮性熱接着繊維を構成する鞘成分は、少なくとも220℃以上の融点を持ち高温熱処理で配向結晶化できる熱可塑性ポリマであることが好ましい。このような熱可塑性ポリマとしては、オレフィン系、ナイロン系、ポリエステル系等があり、芯成分との複合化が可能ならば特に限定されないが、芯成分がポリエステル系の場合、鞘成分も好ましくはポリエステル系であり、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレートなどの繰り返し単位を少なくとも90モル%以上であるポリエステルである。   The sheath component constituting the low-shrinkage thermobonding fiber according to the present invention is preferably a thermoplastic polymer having a melting point of at least 220 ° C. and capable of orientational crystallization by high-temperature heat treatment. Such thermoplastic polymers include olefins, nylons, polyesters, and the like, and are not particularly limited as long as they can be combined with the core component, but when the core component is a polyester, the sheath component is also preferably polyester. Examples thereof include polyesters having at least 90 mol% of repeating units such as polybutylene terephthalate, polyethylene terephthalate, and polyethylene naphthalate.

したがって、本発明に係る低収縮性熱接着繊維の好ましい形態として、例えば、芯部に含まれるポリエステルの酸成分のうち10〜60モル%がイソフタル酸であり、鞘部に含まれるポリエステルがポリエチレンテレフタレートである形態を挙げることができる。また、後述の実施例に示すように、芯成分と鞘成分の重量比が、芯/鞘=5/5〜8/2の範囲にあることが好ましい。   Therefore, as a preferable form of the low shrinkable heat-bonding fiber according to the present invention, for example, 10 to 60 mol% of the acid component of the polyester contained in the core is isophthalic acid, and the polyester contained in the sheath is polyethylene terephthalate. The form which is can be mentioned. Moreover, as shown in the below-mentioned Example, it is preferable that the weight ratio of a core component and a sheath component exists in the range of core / sheath = 5 / 5-8 / 2.

不織布を製造する方法は、従来から知られているいずれの方法を用いてもよいが、本発明に係る低収縮性熱接着繊維は繊維長が短いため、とくに抄造法が好ましい。   As a method for producing the nonwoven fabric, any conventionally known method may be used. However, since the low shrinkable heat-bonding fiber according to the present invention has a short fiber length, a papermaking method is particularly preferable.

例えば、抄造による製造では、繊維をまず離解することが必要である。離解をする前に予め水溶液中に分散剤を均一に分散するなどが、離解を促進する上で好ましく、また、離解後のもつれを防止するのに効果的である。その後、攪拌を行う。   For example, in manufacturing by papermaking, it is necessary to first disaggregate the fibers. It is preferable to uniformly disperse the dispersant in the aqueous solution before the disaggregation in advance to promote the disaggregation, and it is effective to prevent the entanglement after the disaggregation. Then, stirring is performed.

攪拌については、繊維がもつれないためにも、離解のための攪拌は速やかに行うことが好ましい。次に離解した繊維を分散する場合、繊維のもつれを防ぐため、繊維の分散を保持し、できるだけ緩やかな攪拌のもとに行う。予め離解したスラリーが必要であれば、さらに水を加えて濃度を下げ、ついで速やかに粘剤を加え分散を保持する。このようにして均一に分散したスラリーを調製する。このように調製したスラリーを抄造し、好ましい形態のウエッブにすることができる。このウエッブを連続的に高圧水流で3次元交絡してもよい。そのウエッブの繊維同士を接着させ不織布の強力を上げるためウエッブボンディングを、熱を加えて行う。熱をかけるドライヤーには、ヤンキードライヤー、エアードライヤー、多筒式のシリンダードライヤーなどを用いて行うことができる。その後、巻取機で不織布を巻き取る。   As for stirring, it is preferable to perform stirring for disaggregation promptly in order to prevent the fibers from being tangled. Next, when the disaggregated fibers are dispersed, in order to prevent the fibers from being entangled, the dispersion of the fibers is maintained and the stirring is performed as gently as possible. If a slurry that has been disaggregated in advance is necessary, water is further added to lower the concentration, and then a viscosity is quickly added to maintain dispersion. In this way, a uniformly dispersed slurry is prepared. The slurry thus prepared can be made into a preferred form of web. This web may be continuously three-dimensionally entangled with a high-pressure water stream. Web bonding is performed by applying heat to bond the fibers of the web and increase the strength of the nonwoven fabric. As the dryer for applying heat, a Yankee dryer, an air dryer, a multi-cylinder cylinder dryer, or the like can be used. Then, a nonwoven fabric is wound up with a winder.

以下に本発明を実施例により更に詳細に説明する。なお実施例における各物性値の測定と評価は、次の方法で行った。
(1)融点(軟化点)
パーキンエルマー社製の示差走査熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。明確な融点を持たないイソフタル酸共重合ポリエステルについては軟化点を測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the measurement and evaluation of each physical property value in the examples were performed by the following methods.
(1) Melting point (softening point)
A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used, and the temperature was increased at a rate of 20 ° C./min. The softening point of the isophthalic acid copolyester having no clear melting point was measured.

(2)繊維長及び乾熱収縮率
単繊維を滑沢紙に貼り付け規定の加重2gかけて原長(A)を測定する。その後、熱風乾燥機で180℃にて20分間の熱処理を行った後、処理長(B)を測定する。乾熱収縮率は次式により求める。
乾熱収縮率(%)=〔((A)−(B))/(A)〕×100
(A):繊維長
(B):処理長(熱処理後の繊維長)
(3)接着強力
熱接着繊維40%と常法によって得られた単糸繊度6.6デシテックス、繊維長51mmの中空断面糸(ポリエチレンテレフタレート)をエアー開繊で混繊して作製したウエッブを熱処理し、それを厚さ5mm、横5cm、縦15cmの短冊状に切断し、テンシロン引張試験機にて強力を測定した。
(2) Fiber length and dry heat shrinkage rate A single fiber is affixed to a lubricant paper, and the original length (A) is measured with a prescribed weight of 2 g. Then, after performing heat processing for 20 minutes at 180 degreeC with a hot air dryer, processing length (B) is measured. The dry heat shrinkage is obtained by the following equation.
Dry heat shrinkage (%) = [((A) − (B)) / (A)] × 100
(A): Fiber length (B): Treatment length (fiber length after heat treatment)
(3) Adhesive strength 40% heat bonded fiber and single-fiber fineness of 6.6 decitex obtained by conventional methods, hollow cross-section yarn (polyethylene terephthalate) with a fiber length of 51 mm is mixed by air opening to heat-treat the web Then, it was cut into strips having a thickness of 5 mm, a width of 5 cm, and a length of 15 cm, and the strength was measured with a Tensilon tensile tester.

実施例1
芯部にイソフタル酸を共重合した軟化点110℃のポリエステルを、鞘部に融点220℃のホモポリエチレンテレフタレートを重量比60/40に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で95℃で延伸し、その後145℃で弛緩熱処理を行い繊維長8mmに切断した。その短繊維を使用して上記の方法で不織布とし接着強力を測定した。その結果を表1に示す。該不織布には、皺などもなく表面仕上がりも綺麗であった。
Example 1
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 110 ° C. copolymerized with isophthalic acid in the core and a homopolyethylene terephthalate having a melting point of 220 ° C. in the sheath are arranged in a weight ratio of 60/40 Was spun into. The obtained undrawn yarn was drawn at 95 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 145 ° C. and cut into a fiber length of 8 mm. The short fiber was used to make a nonwoven fabric by the above method, and the adhesive strength was measured. The results are shown in Table 1. The nonwoven fabric had no wrinkles and the surface finish was beautiful.

実施例2
芯部にイソフタル酸を共重合した軟化点150℃のポリエステルを、鞘部に融点230℃のホモポリエチレンテレフタレートを重量比70/30に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で90℃で延伸し、その後150℃で弛緩熱処理を行い繊維長5mmに切断した。その短繊維を使用して上記の方法で不織布とし接着強力を測定した。その結果を表1に示す。該不織布には、皺などもなく表面仕上がりも綺麗であった。
Example 2
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 150 ° C. copolymerized with isophthalic acid is disposed in the core and homopolyethylene terephthalate having a melting point of 230 ° C. is disposed in the sheath at a weight ratio of 70/30 Was spun into. The obtained undrawn yarn was drawn at 90 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 150 ° C. to cut the fiber length to 5 mm. The short fiber was used to make a nonwoven fabric by the above method, and the adhesive strength was measured. The results are shown in Table 1. The nonwoven fabric had no wrinkles and the surface finish was beautiful.

実施例3
芯部にイソフタル酸を共重合した軟化点160℃のポリエステルを、鞘部に融点230℃のホモポリエチレンテレフタレートを重量比50/50に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で95℃で延伸し、その後160℃で弛緩熱処理を行い繊維長4mmに切断した。その短繊維を使用して上記の方法で不織布とし接着強力を測定した。その結果を表1に示す。該不織布には、皺などもなく表面仕上がりも綺麗であった。
Example 3
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 160 ° C. copolymerized with isophthalic acid in the core and a homopolyethylene terephthalate having a melting point of 230 ° C. in the sheath are arranged at a weight ratio of 50/50 Was spun into. The obtained undrawn yarn was drawn at 95 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 160 ° C. and cut into a fiber length of 4 mm. The short fiber was used to make a nonwoven fabric by the above method, and the adhesive strength was measured. The results are shown in Table 1. The nonwoven fabric had no wrinkles and the surface finish was beautiful.

比較例1
鞘部にイソフタル酸を共重合した軟化点110℃のポリエステルを、芯部に融点220℃のホモポリエチレンテレフタレートを重量比50/50に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で90℃で延伸し、その後145℃で弛緩熱処理を行ったところ単繊維同士が接着しトウが硬くなり切断不可能であった。
Comparative Example 1
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 110 ° C. obtained by copolymerizing isophthalic acid in a sheath portion and homopolyethylene terephthalate having a melting point of 220 ° C. in a core portion is arranged at a weight ratio of 50/50 Was spun into. When the obtained undrawn yarn was drawn at 90 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 145 ° C., the single fibers were bonded to each other and the tow became hard and could not be cut.

比較例2
芯部にイソフタル酸を共重合した軟化点110℃のポリエステルを、鞘部に融点230℃のホモポリエチレンテレフタレートを重量比50/50に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で60℃で延伸し、その後55℃で弛緩熱処理を行い繊維長8mmに切断した。その短繊維を使用して上記の方法で不織布とし接着強力を測定した。その結果を表1に示す。実施例1より収縮率が高く接着強力が低かった。該不織布には、皺が発生し表面に凸凹が発生した。接着強力、不織布の表面仕上がりともに満足できるものではなかった。
Comparative Example 2
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 110 ° C. copolymerized with isophthalic acid in the core and a homopolyethylene terephthalate having a melting point of 230 ° C. in the sheath are arranged in a weight ratio of 50/50 Was spun into. The obtained undrawn yarn was drawn at 60 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 55 ° C. to cut the fiber length to 8 mm. The short fiber was used to make a nonwoven fabric by the above method, and the adhesive strength was measured. The results are shown in Table 1. The shrinkage ratio was higher than that of Example 1, and the adhesive strength was low. The nonwoven fabric was wrinkled and uneven on the surface. Neither the adhesive strength nor the surface finish of the nonwoven fabric was satisfactory.

比較例3
芯部にイソフタル酸を共重合した軟化点110℃のポリエステルを、鞘部に融点230℃のホモポリエチレンテレフタレートを重量比50/50に配すように公知の複合紡糸で芯鞘構造を有する複合繊維に紡糸した。得られた未延伸糸を液浴延伸で90℃で延伸し、その後145℃で弛緩熱処理を行い繊維長24mmに切断した。その短繊維を使用して上記の方法で不織布とし接着強力を測定した。その結果を表1に示す。実施例1より接着強力が低く満足できるものではなかった。ただし、該不織布の表面は綺麗であった。
Comparative Example 3
A composite fiber having a core-sheath structure by a known composite spinning, in which a polyester having a softening point of 110 ° C. copolymerized with isophthalic acid in the core and a homopolyethylene terephthalate having a melting point of 230 ° C. in the sheath are arranged in a weight ratio of 50/50 Was spun into. The obtained undrawn yarn was drawn at 90 ° C. by liquid bath drawing and then subjected to relaxation heat treatment at 145 ° C. and cut into a fiber length of 24 mm. The short fiber was used to make a nonwoven fabric by the above method, and the adhesive strength was measured. The results are shown in Table 1. The adhesive strength was lower than in Example 1 and was not satisfactory. However, the surface of the nonwoven fabric was clean.

Figure 2005264344
Figure 2005264344

本発明の低収縮性熱接着繊維は、熱接着繊維の収縮による接着点の減少の回避し、寸法安定性に優れた不織布を容易に製造するために用いることができるが、その適用範囲はこれらに限られるものではない。   The low shrinkable heat-bonded fiber of the present invention can be used to avoid the reduction of the adhesion point due to shrinkage of the heat-bonded fiber and to easily produce a nonwoven fabric excellent in dimensional stability. It is not limited to.

Claims (5)

熱可塑性ポリマからなる芯鞘構造を有する繊維であり、芯部が鞘部よりも60℃以上融点が低く、180℃における乾熱収縮率が5%以下であり、かつ繊維長が10mm以下であることを特徴とする低収縮性熱接着繊維。   It is a fiber having a core-sheath structure made of a thermoplastic polymer, the core has a melting point of 60 ° C. or more lower than that of the sheath, the dry heat shrinkage at 180 ° C. is 5% or less, and the fiber length is 10 mm or less. A low shrinkable heat-bonding fiber. ポリエステル系ポリマからなる、請求項1に記載の低収縮性熱接着繊維。   The low shrinkable heat-bonding fiber according to claim 1, comprising a polyester polymer. 芯部に含まれるポリエステルの酸成分のうち10〜60モル%がイソフタル酸であり、鞘部に含まれるポリエステルがポリエチレンテレフタレートである、請求項2に記載の低収縮性熱接着繊維。   The low shrinkable heat-bonding fiber according to claim 2, wherein 10 to 60 mol% of the acid component of the polyester contained in the core is isophthalic acid, and the polyester contained in the sheath is polyethylene terephthalate. 芯成分と鞘成分の重量比が芯/鞘=5/5〜8/2である、請求項1〜3のいずれかに記載の低収縮性熱接着繊維。   The low shrinkable heat-bonding fiber according to any one of claims 1 to 3, wherein a weight ratio of the core component to the sheath component is core / sheath = 5/5 to 8/2. 請求項1〜4のいずれかに記載の低収縮性熱接着繊維を3重量%以上含む不織布。   A non-woven fabric comprising 3% by weight or more of the low shrinkable heat-bonding fiber according to any one of claims 1 to 4.
JP2004073975A 2004-03-16 2004-03-16 Low shrinkage heat adhesive fiber and non-woven fabric by using the same Pending JP2005264344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073975A JP2005264344A (en) 2004-03-16 2004-03-16 Low shrinkage heat adhesive fiber and non-woven fabric by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073975A JP2005264344A (en) 2004-03-16 2004-03-16 Low shrinkage heat adhesive fiber and non-woven fabric by using the same

Publications (1)

Publication Number Publication Date
JP2005264344A true JP2005264344A (en) 2005-09-29

Family

ID=35089187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073975A Pending JP2005264344A (en) 2004-03-16 2004-03-16 Low shrinkage heat adhesive fiber and non-woven fabric by using the same

Country Status (1)

Country Link
JP (1) JP2005264344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045241A (en) * 2006-08-17 2008-02-28 Toray Ind Inc Heat-adhesive conjugate fiber and fiber assembly
JP2020525658A (en) * 2017-05-11 2020-08-27 カール・フロイデンベルク・カーゲーCarl Freudenberg KG Textile sheet-like structure for electrical insulation
KR102451661B1 (en) * 2021-11-22 2022-10-06 주식회사 디아이티그린 Thermal screen and method for manufacturing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045241A (en) * 2006-08-17 2008-02-28 Toray Ind Inc Heat-adhesive conjugate fiber and fiber assembly
JP2020525658A (en) * 2017-05-11 2020-08-27 カール・フロイデンベルク・カーゲーCarl Freudenberg KG Textile sheet-like structure for electrical insulation
JP7216015B2 (en) 2017-05-11 2023-01-31 カール・フロイデンベルク・カーゲー Textile sheet-like structure for electrical insulation
KR102451661B1 (en) * 2021-11-22 2022-10-06 주식회사 디아이티그린 Thermal screen and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
JPH0351313A (en) Heat-bonding extremely thin conjugate fiber and woven or nonwoven fabric thereof
KR20100016585A (en) Wet-laid non-woven fabric and filter
KR101758204B1 (en) Twisted Composite Yarn Based Nanofibers and Method for Manufacturing the Same
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JP2011137267A (en) Wet-laid staple fiber nonwoven fabric
JP6345938B2 (en) Thermal adhesive long fiber
JP4856435B2 (en) Thermal adhesive composite fiber and method for producing the same
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JP2005264344A (en) Low shrinkage heat adhesive fiber and non-woven fabric by using the same
JP2010209500A (en) Short-cut polyester conjugate fiber
JP5277077B2 (en) Fabric manufacturing method
JPH01260051A (en) Fiber web
JP3839613B2 (en) Joined composite staple fiber and method for producing the same
JP7448194B2 (en) Polyester core-sheath composite fiber
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP2023136326A (en) Spun-bonded nonwoven fabric and interfacing fusible made thereof
JP2534256B2 (en) Method for producing heat-fusible composite fiber
JP2870712B2 (en) Heat-fusible conjugate fiber with excellent durability and hydrophilicity
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JP2019210591A (en) Non-woven fabric for sash and manufacturing method thereof
JPS6059121A (en) Heat-bondable conjugate fiber and production thereof
JP2000096417A (en) Filament nonwoven fabric for forming, its production and container-shaped article using the nonwoven fabric
JPS60259664A (en) Fiber sheet like article
JP2001207333A (en) Highly shrinkable polyester-based fiber and fibrous sheet using the same
JP2011074506A (en) Thermally adhesive conjugated fiber for wet nonwoven fabric