[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005263610A - Titanium oxide-coated activated carbon - Google Patents

Titanium oxide-coated activated carbon Download PDF

Info

Publication number
JP2005263610A
JP2005263610A JP2004116215A JP2004116215A JP2005263610A JP 2005263610 A JP2005263610 A JP 2005263610A JP 2004116215 A JP2004116215 A JP 2004116215A JP 2004116215 A JP2004116215 A JP 2004116215A JP 2005263610 A JP2005263610 A JP 2005263610A
Authority
JP
Japan
Prior art keywords
activated carbon
titanium oxide
coated
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116215A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHITAKE KK
Original Assignee
ISHITAKE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHITAKE KK filed Critical ISHITAKE KK
Priority to JP2004116215A priority Critical patent/JP2005263610A/en
Publication of JP2005263610A publication Critical patent/JP2005263610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium oxide-coated activated carbon which can adsorb and decompose a harmful substance and can extend its application in painting by changing black color of activated carbon into grayish white color to gray color by coating with titanium oxide. <P>SOLUTION: The surface of activated carbon is coated with titanium oxide with a polymer emulsion or a polymer emulsion and an inorganic binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、活性炭の黒色を灰白色〜灰色化して彩色を可能にすることで、その用途を拡大することを目的とした酸化チタン被膜活性炭に関する。  The present invention relates to a titanium oxide-coated activated carbon intended to expand its application by turning the black color of activated carbon from grayish white to gray to enable coloring.

酸化チタンのコーティング技術としては、特開2003−226512において、活性炭の表面に蒸着法により光触媒酸化チタンの被膜を形成させる方法がある。この方法においては、高真空下における活性炭表面への蒸着操作であるので、均質な蒸着物を得ることを考えると、装置の面で大量生産には向かないことが予想される。特開2003−190262では、有機物の表面に酸化チタンゲルあるいはチタンアルコキシドの溶液をコーティングあるいは含浸後、焼成して有機物の炭化と酸化チタンの被膜を同時に生成させる方法が開示されている。また、酸化チタンを担持させる技術として、特開2003−62469では、光触媒能を有する無機微粒子を合成炭酸カルシウム表面に直接、担持固定する方法が提供されている。しかし、この担持物で活性炭表面を被膜した例は報告されていない。  As a technique for coating titanium oxide, JP-A-2003-226512 includes a method of forming a photocatalytic titanium oxide film on the surface of activated carbon by vapor deposition. Since this method is a vapor deposition operation on the activated carbon surface under a high vacuum, it is expected that it is not suitable for mass production in view of obtaining a homogeneous vapor deposition. Japanese Patent Laid-Open No. 2003-190262 discloses a method in which a surface of an organic substance is coated or impregnated with a solution of titanium oxide gel or titanium alkoxide and then baked to simultaneously produce a carbonized organic substance and a titanium oxide film. As a technique for supporting titanium oxide, Japanese Patent Application Laid-Open No. 2003-62469 provides a method for directly supporting and fixing inorganic fine particles having photocatalytic activity on the surface of synthetic calcium carbonate. However, no example of coating the activated carbon surface with this support has been reported.

発明が解決しようとする課題Problems to be solved by the invention

活性炭はガスや色素に対して強力な吸着作用を示す。それゆえ、水の浄化や悪臭の吸着、食品や化学品製造における脱色など、工業的規模で大量に使用されている。一般でも、活性炭は悪臭の除去を目的とした脱臭剤や有害なガスや臭いを吸着する空気清浄器、水道水の塩素や不純物を吸着する浄水器など、広範に利用されている。  Activated carbon exhibits a strong adsorption action for gases and pigments. Therefore, it is used in large quantities on an industrial scale, such as water purification, malodor adsorption, and decolorization in food and chemical production. In general, activated carbon is widely used such as deodorizers for the purpose of removing malodors, air purifiers that adsorb harmful gases and odors, and water purifiers that adsorb chlorine and impurities in tap water.

しかしながら、活性炭は黒色であるがゆえに、その用途先は人の目に直接ふれない部分で使用されていることが多い。近年、シックハウス症候群が問題視され、炭塗料がその対策の一つとして注目されている。水性塗料用のエマルションに活性炭や木炭、竹炭などの炭化物粉末を加えると黒色の塗料となる。これに着色顔料を加えても暗色系の色になり、淡色系の色を出すことは困難であった。また、壁材などに炭や活性炭が含まれている製品があり、炭の黒色ゆえに部屋を明るくするためには、その表面に通気性のよいクロスを貼るなどの必要があった。紙や布に付着または混入させた場合には、黒色が強調された製品になった。
本発明者は上記の課題を解決すべく、活性炭の黒色を淡色化する被膜方法を鋭意研究し、本発明を完成するに至った。
However, since activated carbon is black, its application destination is often used in parts that are not directly touched by human eyes. In recent years, sick house syndrome has been regarded as a problem, and charcoal paint has attracted attention as one of the countermeasures. Add black powder such as activated carbon, charcoal, bamboo charcoal to the emulsion for water-based paints. Even if a color pigment is added to this, it becomes a dark color and it is difficult to produce a light color. In addition, there are products in which charcoal or activated carbon is included in the wall material, etc., and in order to brighten the room because of the black color of charcoal, it was necessary to affix a breathable cloth on the surface. When attached to paper or cloth, it became a product with an emphasis on black.
In order to solve the above-mentioned problems, the present inventor diligently studied a coating method for lightening the black color of activated carbon, and completed the present invention.

課題を解決するための手段Means for solving the problem

活性炭は、木炭、ヤシ殻炭、石炭、合成樹脂などの炭化物を、750〜1050℃の高温下で水蒸気、炭酸ガス(燃焼ガス)、酸素(空気)などの酸化性ガスと接触させ、一部の炭素をガス化して除く賦活化工程を経て活性化したものである。粉末活性炭は、比表面積が700〜1850m/g、平均細孔径が12〜40Åの多孔質体である。Activated carbon is made by bringing carbides such as charcoal, coconut shell charcoal, coal, and synthetic resin into contact with an oxidizing gas such as water vapor, carbon dioxide (combustion gas), oxygen (air) at a high temperature of 750 to 1050 ° C. The carbon is activated through an activation process that removes carbon by gasification. Powdered activated carbon is a porous body having a specific surface area of 700 to 1850 m 2 / g and an average pore diameter of 12 to 40 mm.

一般的に、多孔質の表面を被膜すると、吸着性能が低下するといわれている。本発明では、活性炭の被膜用主材として、隠蔽性が強く、白色系顔料である酸化チタンを選択した。被膜作製においては、活性炭の強力な吸着性を損なわないように、最初に少量の高分子エマルションを添加して、活性炭の表面を覆い、細孔を保護して、次に添加する酸化チタンの微粒子が細孔を塞がないようにした。高分子エマルションの添加量が少ないため、酸化チタンで被膜された活性炭を乾燥したあと、高分子は膜形成までには至らないことが予測された。使用した高分子が活性炭本来の吸着性能を損なわないことは、後述するガス吸着試験において、本発明品が活性炭と同等以上の吸着力を示すことから確かめられた。Generally, it is said that the adsorption performance decreases when a porous surface is coated. In the present invention, titanium oxide, which is a white pigment, has a strong concealing property as the main material for the activated carbon coating. In coating production, first add a small amount of polymer emulsion to cover the surface of the activated carbon, protect the pores, and then add the fine particles of titanium oxide so as not to impair the strong adsorptivity of the activated carbon. So as not to block the pores. Since the amount of the polymer emulsion added was small, it was predicted that the polymer would not reach film formation after drying the activated carbon coated with titanium oxide. The fact that the polymer used did not impair the adsorption performance of the activated carbon was confirmed in the gas adsorption test described later, because the product of the present invention exhibits an adsorption power equal to or higher than that of activated carbon.

また、酸化チタンを担持する無機質バインダーについても併せて検討した。難水溶性の炭酸カルシウムや硫酸バリウムを被膜形成過程で生成させることで、酸化チタンを担持し、活性炭の表面に被膜を形成した。
製造した酸化チタン被膜活性炭は灰白色〜灰色を呈し、着色顔料で彩色すると、淡色系の着色物が得られ、活性炭特有の強力な吸着性をもち、酸化チタン・アナターゼ型配合の被膜活性炭は、吸着した有機化合物を分解した。
In addition, an inorganic binder supporting titanium oxide was also examined. By forming poorly water-soluble calcium carbonate and barium sulfate in the film formation process, titanium oxide was supported and a film was formed on the surface of the activated carbon.
The produced titanium oxide-coated activated carbon is grayish white to gray, and when colored with a coloring pigment, a light-colored colored product is obtained, which has a strong adsorption characteristic peculiar to activated carbon. The organic compound was decomposed.

以下に、本発明の実施の形態について説明する。本発明では、活性炭、酸化チタン、高分子エマルションまたは高分子エマルションと無機質バインダー、を構成要素とする。  Embodiments of the present invention will be described below. In the present invention, activated carbon, titanium oxide, a polymer emulsion or a polymer emulsion and an inorganic binder are used as components.

本発明に使用する活性炭は、顆粒状から粉末状のものまで粒子の大きさは特に限定しないが、酸化チタン被膜活性炭において微細な粒子が要求される場合は、粒子系が150μm以下のものが好ましい。また、用いる活性炭は含水していてもよい。本発明の被膜方法は活性炭のみにとどまらず、竹炭や木炭の粉末にも適用することができる。The activated carbon used in the present invention is not particularly limited in particle size from granular to powder, but when fine particles are required in the titanium oxide-coated activated carbon, the particle system is preferably 150 μm or less. . Moreover, the activated carbon to be used may contain water. The coating method of the present invention can be applied not only to activated carbon but also to powder of bamboo charcoal or charcoal.

被膜の主材として用いる酸化チタンは白色顔料の一つである。酸化チタンには結晶形の違いがあり、ルチル型は白色顔料として多用されており、アナターゼ型は白色顔料としての用途のほか、光触媒として、近年、注目を集めている。結晶形がルチル型の場合は平均粒子径10〜1000nm、なかでも100〜800nmが望ましく、酸化チタン自体、もしくは酸化チタンの表面を他の金属や珪素化合物などでコーティングしたものでもよい。一方、結晶形がアナターゼ型のものは、その平均粒子径は1〜100nmの範囲内のものが光触媒効果を高めるためには好ましく、ルチル型とアナターゼ型を混合して用いる場合は、その混合比は100:1〜50の範囲内がよい。酸化チタンの活性炭に対する使用量は、活性炭100重量部に対し50〜500重量部の範囲内で使用することが好ましく、また、後述の無機質バインダー100重量部に対しては、酸化チタン60〜400重量部の使用が好ましい。Titanium oxide used as the main material of the coating is one of white pigments. Titanium oxide has a difference in crystal form. The rutile type is frequently used as a white pigment, and the anatase type has recently attracted attention as a photocatalyst in addition to its use as a white pigment. When the crystal form is a rutile type, the average particle diameter is preferably 10 to 1000 nm, particularly preferably 100 to 800 nm, and titanium oxide itself or the surface of titanium oxide may be coated with another metal or a silicon compound. On the other hand, when the crystal form is anatase type, those having an average particle diameter in the range of 1 to 100 nm are preferable for enhancing the photocatalytic effect, and when the rutile type and anatase type are used in combination, the mixing ratio Is preferably in the range of 100: 1 to 50. The amount of titanium oxide used relative to the activated carbon is preferably 50 to 500 parts by weight with respect to 100 parts by weight of the activated carbon, and 60 to 400 parts by weight of titanium oxide with respect to 100 parts by weight of the inorganic binder described below. The use of parts is preferred.

無機質バインダーとしては水に難溶性のものが好ましく、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸三カルシウム、リン酸マグネシウムなどが挙げられるが、理化学的性状を考えると、炭酸カルシウムや硫酸バリウムが好ましい。これらは活性炭100重量部に対し50〜300重量部の範囲内で用いるほうがよい。As the inorganic binder, those which are hardly soluble in water are preferable, and examples thereof include calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, tricalcium phosphate, and magnesium phosphate. In view of physicochemical properties, calcium carbonate and sulfuric acid are preferable. Barium is preferred. These are preferably used within a range of 50 to 300 parts by weight with respect to 100 parts by weight of activated carbon.

また、本発明で使用する高分子エマルションの樹脂としては、水性アクリル樹脂、水性酢酸ビニール樹脂、水性エステル樹脂、水性ウレタン樹脂、水性エポキシ樹脂、水性アクリルスチレン共重合樹脂、水性エチレン酢酸ビニール共重合樹脂、水性アクリルシリコン共重合樹脂など、一般に使用されている水性樹脂を単独もしくは複数組み合わせて用いてもよい。高分子エマルションの使用量は活性炭100重量部に対し5〜100重量部が好ましい。
これらの水性樹脂のなかでも、殊に、水性アクリルスチレン樹脂は耐水性に優れていることが分かった。
In addition, as the resin of the polymer emulsion used in the present invention, aqueous acrylic resin, aqueous vinyl acetate resin, aqueous ester resin, aqueous urethane resin, aqueous epoxy resin, aqueous acrylic styrene copolymer resin, aqueous ethylene vinyl acetate copolymer resin In addition, a commonly used aqueous resin such as an aqueous acrylic silicon copolymer resin may be used alone or in combination. The amount of the polymer emulsion used is preferably 5 to 100 parts by weight with respect to 100 parts by weight of the activated carbon.
Among these aqueous resins, it has been found that the aqueous acrylic styrene resin is particularly excellent in water resistance.

以下に、酸化チタンを用いた活性炭表面の被膜形成法を詳述する。
一つは混練り法で、活性炭粉末を混練りしながら高分子エマルションを添加し、活性炭の表面に高分子を付着させる。次に酸化チタンを加えて混練りすると、活性炭の表面に酸化チタンが接着し、粉末化される。これを乾燥すると、活性炭表面が酸化チタンで被膜された活性炭の粉末を得ることができる。
Below, the coating-film formation method of the activated carbon surface using a titanium oxide is explained in full detail.
One is a kneading method in which a polymer emulsion is added while kneading activated carbon powder, and the polymer is adhered to the surface of the activated carbon. Next, when titanium oxide is added and kneaded, the titanium oxide adheres to the surface of the activated carbon and is powdered. When this is dried, activated carbon powder whose activated carbon surface is coated with titanium oxide can be obtained.

もう一つの方法は、活性炭を水に懸濁し、攪拌下、高分子エマルションを添加して活性炭の表面に高分子を付着させる。次いで、酸化チタンを加えると、活性炭表面に添加した酸化チタンの一部が接着していることが顕微鏡観察により確認された。この懸濁液に、攪拌下、水酸化カルシウムを加えると、懸濁液のpHは11以上になる。この懸濁液に、pHが7になるまで二酸化炭素を加えて中和する。生成した炭酸カルシウムが無機質バインダーとして酸化チタンを担持し、活性炭の表面を被膜する。生成物をデカンテーションやろ過などの手段で分離し、乾燥、粉末化すると、表面が酸化チタンと炭酸カルシウムで被膜された活性炭が得られる。In another method, activated carbon is suspended in water, and a polymer emulsion is added with stirring to attach the polymer to the surface of the activated carbon. Subsequently, when titanium oxide was added, it was confirmed by microscopic observation that a part of the titanium oxide added to the activated carbon surface was adhered. When calcium hydroxide is added to this suspension with stirring, the pH of the suspension becomes 11 or more. The suspension is neutralized by adding carbon dioxide until the pH is 7. The generated calcium carbonate carries titanium oxide as an inorganic binder and coats the surface of the activated carbon. When the product is separated by means such as decantation or filtration, dried and pulverized, activated carbon whose surface is coated with titanium oxide and calcium carbonate is obtained.

この被膜形成法で、水酸化カルシウムの替わりに塩化カルシウムを使用する場合は、炭酸ナトリウムなどの炭酸アルカリ金属塩と反応させて炭酸カルシウムを合成する。この反応では、アルカリ金属の塩化物が副生成物として共存するので、被膜物をデカンテーションやろ過などで分離し、水で洗浄したあと乾燥すると、表面が酸化チタンと炭酸カルシウムで被膜された活性炭を得ることができる。In this film formation method, when calcium chloride is used instead of calcium hydroxide, it is reacted with an alkali metal carbonate such as sodium carbonate to synthesize calcium carbonate. In this reaction, since alkali metal chloride coexists as a by-product, activated carbon whose surface is coated with titanium oxide and calcium carbonate when the coating is separated by decantation or filtration, washed with water, and dried. Can be obtained.

また、無機質バインダーとして、炭酸カルシウムのほかに硫酸バリウムを使用することもできる。この場合、水酸化バリウムと等モルの硫酸を使用し、これらの中和反応により容易に硫酸バリウムを合成することができ、上述した活性炭の酸化チタン被膜形成法における無機質バインダーとして組み込むことができる。
上記の酸化チタン被膜活性炭の製造では、被膜形成操作のあと生成物が沈殿するので、デカンテーションにより上澄液を除去した残りの湿潤状態、もしくは、ろ過した未乾燥ケーキの状態でも使用でき、水性塗料などに添加する場合には好都合である。
In addition to calcium carbonate, barium sulfate can be used as the inorganic binder. In this case, barium hydroxide and equimolar sulfuric acid are used, and barium sulfate can be easily synthesized by these neutralization reactions, and can be incorporated as an inorganic binder in the above-described method for forming a titanium oxide film on activated carbon.
In the production of the above-mentioned titanium oxide-coated activated carbon, the product precipitates after the film formation operation, so it can be used in the remaining wet state after removing the supernatant by decantation, or in the state of a filtered undried cake. It is convenient when added to paints.

本発明の製造で、市販活性炭(粒子径の表示が150μm以下)を使用し、得られた酸化チタン被膜活性炭を走査型電子顕微鏡で観察した。生成物の長径は5〜30μmの不定形のものが主体であり、酸化チタンが活性炭の表面に付着していることを確認した。また、乾燥工程で噴霧乾燥機を使用すると、直径が5〜25μmを主体とする球形の酸化チタン被膜活性炭が得られた。使用した活性炭そのものの走査型電子顕微鏡観察では、その形状は破砕状であり、長径は70μm以下のものが殆どで、その主体は長径が30μm以下のものであった。In the production of the present invention, commercially available activated carbon (particle size display is 150 μm or less) was used, and the obtained titanium oxide coated activated carbon was observed with a scanning electron microscope. The major axis of the product was mainly an indefinite shape of 5 to 30 μm, and it was confirmed that titanium oxide was adhered to the surface of the activated carbon. Moreover, when a spray dryer was used in the drying process, spherical titanium oxide-coated activated carbon mainly having a diameter of 5 to 25 μm was obtained. In the scanning electron microscope observation of the used activated carbon itself, the shape was crushed, the major axis was mostly 70 μm or less, and the major axis was 30 μm or less.

本発明の酸化チタン被膜活性炭は、表1、表2、表3に示すように、各種ガスに対して優れた吸着作用をもつことが確かめられた。また、酸化チタンの使用においては、活性炭の黒色を隠蔽する目的のみであれば酸化チタンのルチル型を使用すればよい。一方、酸化チタン被膜活性炭に吸着された物質を光化学的に分解する目的を兼ね備えるものであれば、酸化チタンのアナターゼ型を被膜に共存させる。活性炭の表面が無機質バインダーで担持された酸化チタン・アナターゼ型の存在により、活性炭に吸着された有機化合物は光の作用で酸化され、分解する。表4で示すように、ホルムアルデヒドに対する繰り返し吸着試験では、活性炭の場合は吸着作用が漸次低下していくが、酸化チタン・アナターゼ型を共存させた酸化チタン被膜活性炭では吸着力の持続が確認された。As shown in Table 1, Table 2, and Table 3, it was confirmed that the titanium oxide-coated activated carbon of the present invention has an excellent adsorption action for various gases. In addition, in the use of titanium oxide, a rutile type of titanium oxide may be used for the purpose of hiding the black color of activated carbon. On the other hand, if the substance adsorbed on the titanium oxide-coated activated carbon has the purpose of photochemical decomposition, the anatase type of titanium oxide coexists in the film. Due to the presence of the titanium oxide / anatase type in which the surface of the activated carbon is supported by an inorganic binder, the organic compound adsorbed on the activated carbon is oxidized and decomposed by the action of light. As shown in Table 4, in the repeated adsorption test for formaldehyde, the adsorption action gradually decreased in the case of activated carbon, but the adsorption power persisted in the titanium oxide coated activated carbon coexisting with the titanium oxide / anatase type. .

酸化チタン・アナターゼ型が配合された酸化チタン被膜活性炭においては、光の作用により活性炭表面に直接接着した高分子の分解が危惧される。しかし、酸化チタンそのものは無機質バインダーにより担持されているので、被膜が脱落する恐れはなく、高分子化合物も分解しにくいと考えられる。  In the titanium oxide-coated activated carbon in which the titanium oxide / anatase type is blended, there is a risk of decomposition of the polymer directly adhered to the activated carbon surface by the action of light. However, since titanium oxide itself is supported by an inorganic binder, it is considered that the coating film is not likely to fall off and the polymer compound is hardly decomposed.

以下に本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

(実施例1)約50%含水活性炭(粒子径150μm以下)30gに、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)3gを水3cmで希釈したものを加え、1時間混練した。つぎに、酸化チタン・ルチル型(主粒子径300〜500nm)の粉末30gを加え、2時間混練した。これを送風乾燥機に移して乾燥し、酸化チタン被膜活性炭の粉末50.9gを得た。この生成物を150μmのふるいにかけ、得られた粉末を走査型電子顕微鏡で観察した。生成物は、長径が5〜30μmの不定形のものが主体であり、活性炭の表面に酸化チタンの粒子が付着していることを確認した。Example 1 To 30 g of about 50% hydrous activated carbon (particle size 150 μm or less), 3 g of a polymer emulsion (aqueous acrylic styrene copolymer resin having a nonvolatile content of about 50%) diluted with 3 cm 3 of water was added for 1 hour. Kneaded. Next, 30 g of titanium oxide / rutile type powder (main particle size: 300 to 500 nm) was added and kneaded for 2 hours. This was transferred to an air dryer and dried to obtain 50.9 g of titanium oxide-coated activated carbon powder. The product was passed through a 150 μm sieve and the resulting powder was observed with a scanning electron microscope. It was confirmed that the product was mainly an indefinite shape having a major axis of 5 to 30 μm, and titanium oxide particles were adhered to the surface of the activated carbon.

(実施例2)10,000cmの水に、50%含水活性炭200gを加え、攪拌しながら、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)40gを水200cmで希釈した液を注加後、400rpmで0.5時間攪拌した。これに、酸化チタン・ルチル型(主粒子径300〜500nm)200gを水100cm中で分散したものを加え、30分間攪拌した。つぎに水酸化カルシウム74gを加え、20分間攪拌後、ドライアイス(固体の二酸化炭素)の粉砕物100gを加えて攪拌を続けた。20分後、再度、ドライアイスの粉砕物100gを加えて攪拌した。その20分後、液のpHは7に中和された。この懸濁液を室温で放置、上澄みをデカンテーションで除いたあと、沈殿物をろ過器に移し、ろ過した。得られた固体を送風乾燥して480gの固体を得た。これを粉砕し、ふるいにかけて、再度乾燥して、酸化チタン被膜活性炭の微細粉末442gを得た。(Example 2) 200 g of 50% hydrous activated carbon was added to 10,000 cm 3 of water, and 40 g of a polymer emulsion (aqueous acrylic styrene copolymer resin having a nonvolatile content of about 50%) was diluted with 200 cm 3 of water while stirring. After pouring the solution, the mixture was stirred at 400 rpm for 0.5 hour. To this was added a dispersion of 200 g of titanium oxide / rutile type (main particle size 300 to 500 nm) in 100 cm 3 of water, followed by stirring for 30 minutes. Next, 74 g of calcium hydroxide was added and stirred for 20 minutes, and then 100 g of crushed dry ice (solid carbon dioxide) was added and stirring was continued. After 20 minutes, 100 g of crushed dry ice was added and stirred again. Twenty minutes later, the pH of the solution was neutralized to 7. The suspension was allowed to stand at room temperature, and the supernatant was removed by decantation. Then, the precipitate was transferred to a filter and filtered. The obtained solid was blown and dried to obtain 480 g of a solid. This was pulverized, sieved and dried again to obtain 442 g of fine powder of activated carbon coated with titanium oxide.

(実施例3)10,000cmの水に、50%含水活性炭400gを加え、攪拌しながら、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)30gを水300cmで希釈した液を注加後、400rpmで30分間攪拌した。これに、酸化チタン・ルチル型(主粒子径300〜500nm)300gおよび酸化チタン・アナターゼ型(平均粒子径約7nm)30gを加え、引き続き1時間攪拌した。つぎに水酸化カルシウム118gを加え、30分間攪拌後、ドライアイスの粉砕物200gを加えて攪拌を続けた。20分後、再度、ドライアイスの粉砕物200gを加えて攪拌した。その20分後、液のpHは7に中和された。この懸濁液を室温に放置後、上澄みをデカンテーションで除き、残りの懸濁液を噴霧乾燥機にて乾燥し、酸化チタン被膜活性炭の微細粉末585gを得た。得られた生成物は走査型電子顕微鏡で観察した。生成物は球状を示し、直径は5〜25μmのものが主体であり、炭酸カルシウムに担持された酸化チタン層の内側に、活性炭の粒子が存在していることを確認した。(Example 3) 400 g of 50% hydrous activated carbon was added to 10,000 cm 3 of water, and 30 g of a polymer emulsion (aqueous acrylic styrene copolymer resin having a nonvolatile content of about 50%) was diluted with 300 cm 3 of water while stirring. After pouring the liquid, it was stirred at 400 rpm for 30 minutes. To this, 300 g of titanium oxide / rutile type (main particle diameter 300 to 500 nm) and 30 g of titanium oxide / anatase type (average particle diameter of about 7 nm) were added, followed by stirring for 1 hour. Next, 118 g of calcium hydroxide was added and stirred for 30 minutes, and then 200 g of crushed dry ice was added and stirring was continued. After 20 minutes, 200 g of dry ice pulverized product was added again and stirred. Twenty minutes later, the pH of the solution was neutralized to 7. After leaving this suspension at room temperature, the supernatant was removed by decantation, and the remaining suspension was dried with a spray dryer to obtain 585 g of fine powder of activated carbon coated with titanium oxide. The obtained product was observed with a scanning electron microscope. The product was spherical and had a diameter of 5 to 25 μm, and it was confirmed that activated carbon particles were present inside the titanium oxide layer supported on calcium carbonate.

(実施例4)300cmの水に、50%含水活性炭20gを加え、攪拌しながら、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)2gを水30cmで希釈した液を注加後、400rpmで10分間攪拌した。これに、酸化チタン・ルチル型(主粒子径300〜500nm)15gを加え、引き続き30分間攪拌した。つぎに塩化カルシウム・2水和物16g/水100cm溶液を加え、10分間攪拌後、炭酸ナトリウム11g/水100cm溶液を加えて攪拌した。10分後、液のpHは7に中和された。この懸濁液を室温で放置、上澄みをデカンテーションで除いたあと、沈殿物をろ過し、水で洗浄、乾燥したあと150μmのふるいにかけ、酸化チタン被膜活性炭の粉末38.8gを得た。Of water (Example 4) 300 cm 3, 50% water activated charcoal 20g was added, with stirring, a solution obtained by diluting the polymer emulsion (nonvolatile content of about 50% of the aqueous acrylic-styrene copolymer resin) 2 g water 30 cm 3 After the addition, the mixture was stirred at 400 rpm for 10 minutes. To this was added 15 g of titanium oxide / rutile type (main particle size: 300 to 500 nm), followed by stirring for 30 minutes. Next, 16 g of calcium chloride dihydrate 16 g / 100 cm 3 of water was added and stirred for 10 minutes, and then 11 g of sodium carbonate / 100 cm 3 of water was added and stirred. After 10 minutes, the pH of the solution was neutralized to 7. The suspension was allowed to stand at room temperature, and the supernatant was removed by decantation. The precipitate was filtered, washed with water, dried and passed through a 150 μm sieve to obtain 38.8 g of titanium oxide-coated activated carbon powder.

(実施例5)400cmの水に、50%含水活性炭20gを加え、攪拌しながら、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)1.4gを50cmで希釈した液を注加後、400rpmで10分間攪拌した。これに、酸化チタン・ルチル型(主粒子径300〜500nm)15gおよび酸化チタン・アナターゼ型(平均粒子径7nm)2gを加え、引き続き10分間攪拌した。つぎに塩化カルシウム・2水和物11.8gを加え、10分間攪拌後、炭酸ナトリウム8.5gを加えて攪拌した。10分後、液のpHは7に中和された。この懸濁液を室温で放置、上澄みをデカンテーションで除いたあと、沈殿物をろ過し、水で洗浄、乾燥したあと150μmのふるいにかけ、酸化チタン被膜活性炭の粉末35.5gを得た。(Example 5) 20 g of 50% hydrous activated carbon was added to 400 cm 3 of water, and 1.4 g of a polymer emulsion (aqueous acrylic styrene copolymer resin having a nonvolatile content of about 50%) was diluted with 50 cm 3 while stirring. Was added and stirred at 400 rpm for 10 minutes. To this, 15 g of titanium oxide / rutile type (main particle diameter 300 to 500 nm) and 2 g of titanium oxide / anatase type (average particle diameter 7 nm) were added, followed by stirring for 10 minutes. Next, 11.8 g of calcium chloride dihydrate was added, and after stirring for 10 minutes, 8.5 g of sodium carbonate was added and stirred. After 10 minutes, the pH of the solution was neutralized to 7. The suspension was allowed to stand at room temperature, and the supernatant was removed by decantation. The precipitate was filtered, washed with water, dried and passed through a 150 μm sieve to obtain 35.5 g of titanium oxide-coated activated carbon powder.

(実施例6)400cmの水に、50%含水活性炭20gを加え、攪拌しながら、高分子エマルション(不揮発分約50%の水性アクリルスチレン共重合樹脂)4.0gを50cmで希釈した液を注加後、400rpmで10分間攪拌した。これに、酸化チタン・ルチル型(主粒子径300〜500nm)15gを加え、引き続き10分間攪拌した。つぎに水酸化バリウム・8水和物20gを加え、10分間攪拌後、硫酸6.2gを水62cmで希釈した液を徐々に加えて攪拌した。硫酸希釈液の添加がおわると、液のpHは約7に中和された。この懸濁液を室温で放置、上澄みをデカンテーションで除いたあと、沈殿物をろ過し、乾燥したあと150μmのふるいにかけ、酸化チタン被膜活性炭の粉末40.2gを得た。得られた生成物は走査型電子顕微鏡で観察した。生成物の長径は5〜30μmの不定形のものが主体であり、硫酸バリウムに担持された酸化チタンが活性炭の表面に付着していることを確認した。(Example 6) A solution obtained by diluting 4.0 g of a polymer emulsion (aqueous acrylic styrene copolymer resin having a nonvolatile content of about 50%) with 50 cm 3 while adding 20 g of 50% hydrous activated carbon to 400 cm 3 of water and stirring. Was added and stirred at 400 rpm for 10 minutes. To this was added 15 g of titanium oxide / rutile type (main particle size: 300 to 500 nm), followed by stirring for 10 minutes. Next, 20 g of barium hydroxide octahydrate was added, and after stirring for 10 minutes, a solution obtained by diluting 6.2 g of sulfuric acid with 62 cm 3 of water was gradually added and stirred. When the addition of the diluted sulfuric acid solution was finished, the pH of the solution was neutralized to about 7. The suspension was allowed to stand at room temperature, and the supernatant was removed by decantation. Then, the precipitate was filtered, dried, and passed through a 150 μm sieve to obtain 40.2 g of titanium oxide-coated activated carbon powder. The obtained product was observed with a scanning electron microscope. It was confirmed that the major axis of the product was mainly an indefinite shape of 5 to 30 μm, and titanium oxide supported on barium sulfate was adhered to the surface of the activated carbon.

(試験例1)酸化チタン被膜活性炭の耐熱試験:実施例3の粉末1gを蒸発皿に入れ、加熱器に移して加熱した。100℃、150℃、および200℃における被膜の状態を顕微鏡で100倍および400倍にて観察した。
その結果、100℃および150℃においては被膜物の脱落はなく、200℃においても被膜の脱落はわずかであった。これらの温度範囲で樹脂の焦げ付きはみられず、白色の酸化チタンが活性炭の表面を被膜している様子が観察された。
(Test Example 1) Heat resistance test of activated carbon coated with titanium oxide: 1 g of the powder of Example 3 was placed in an evaporating dish, transferred to a heater and heated. The state of the film at 100 ° C., 150 ° C., and 200 ° C. was observed with a microscope at 100 times and 400 times.
As a result, the film did not fall off at 100 ° C. and 150 ° C., and the film fell off slightly even at 200 ° C. In these temperature ranges, no burning of the resin was observed, and it was observed that white titanium oxide coated the surface of the activated carbon.

(試験例2)酸化チタン被膜活性炭の耐水試験:実施例3および実施例6の粉末各1gを50cmのガラス製サンプル管に入れ、それぞれに蒸留水20cm加えて室温で放置した。径時的に酸化チタン被膜活性炭の被膜の状態を顕微鏡で100倍および400倍にて観察した。
その結果、10日間放置しても被膜物の脱落はなく、白色の酸化チタンが活性炭の表面を被膜している様子が観察された。
Test Example 2 Water Resistance Test of Titanium Oxide Coated Activated Carbon: 1 g of each of the powders of Examples 3 and 6 was put in a 50 cm 3 glass sample tube, 20 cm 3 of distilled water was added to each and left at room temperature. The state of the coating of the titanium oxide-coated activated carbon over time was observed with a microscope at 100 times and 400 times.
As a result, even when left for 10 days, the coating did not fall off, and it was observed that white titanium oxide coated the surface of the activated carbon.

(試験例3)酸化チタン被膜活性炭のガス吸着試験:実施例2の酸化チタン被膜活性炭840mg(活性炭として、計算値200mg)、実施例3の酸化チタン被膜活性炭705mg(活性炭として、計算値200mg)および比較用の活性炭(実施例に使用した活性炭を120℃、1時間乾燥したもの)200mgを、それぞれガラスシャーレに広げ、各シャーレをテドラーバッグ(5,000cm)中に移して密閉した。ガス源として、ホルムアルデヒドは5%ホルムアルデヒド溶液、キシレンは40%キシレン/エタノール溶液およびアンモニアは3.5%アンモニア水を用い、それぞれマイクロシリンジで2×10−3cmを、乾燥空気で膨らませたテドラーバッグの注入口に付けたゴム管より注入した。初期ガス濃度(0時間)はブランク試験の値(計算値とほぼ一致)を採用した。各試験は対応するガス検知管を用いて、径時的にガス濃度を測定した。
その結果は以下に示すように、ホルムアルデヒド、キシレンおよびアンモニアのいずれの場合も、酸化チタン被膜活性炭は比較用の活性炭より高い吸着性を示した。
(Test Example 3) Gas adsorption test of titanium oxide-coated activated carbon: 840 mg of titanium oxide-coated activated carbon of Example 2 (calculated value of 200 mg as activated carbon), 705 mg of titanium oxide-coated activated carbon of Example 3 (calculated value of 200 mg as activated carbon) and 200 mg of activated carbon for comparison (activated carbon used in Examples dried at 120 ° C. for 1 hour) was spread on a glass petri dish, and each petri dish was transferred into a Tedlar bag (5,000 cm 3 ) and sealed. As gas sources, 5% formaldehyde solution for formaldehyde, 40% xylene / ethanol solution for xylene, and 3.5% ammonia water for ammonia, 2 × 10 −3 cm 3 were each inflated with dry air using a microsyringe, and a Tedlar bag. It injected from the rubber tube attached to the injection port. As the initial gas concentration (0 hour), the blank test value (substantially coincident with the calculated value) was adopted. Each test measured the gas concentration over time using the corresponding gas detector tube.
As a result, as shown below, in any of formaldehyde, xylene and ammonia, the titanium oxide-coated activated carbon showed higher adsorptivity than the activated carbon for comparison.

Figure 2005263610
Figure 2005263610

Figure 2005263610
Figure 2005263610

Figure 2005263610
Figure 2005263610

(試験例4)酸化チタン被膜活性炭のホルムアルデヒド吸着分解試験:実施例3の酸化チタン被膜活性炭352mg(活性炭として、計算値100mg)、および比較用の活性炭(実施例に使用した活性炭を120℃、1時間乾燥したもの)100mgをそれぞれガラスシャーレに広げ、各シャーレをテドラーバッグ(5,000cm)中に移し、密閉後、乾燥空気を導入してバッグを膨らませた。ガス源として5%ホルムアルデヒド溶液を使用し、マイクロシリンジで2×10−3cmを採取し、試験品が入ったテドラーバッグの注入口に付けたゴム管より注入した。初期ガス濃度(0時間)はブランク試験の値(計算値とほぼ一致)を採用した。
実施例3が入ったテドラーバッグは、紫外ランプ(殺菌ランプGL6)および可視光ランプ(昼光色蛍光灯15W)を試料から15cmの位置で同時に外部照射した。一方、活性炭の入ったテドラーバッグには光を照射しなかった。8時間目および24時間目に、5%ホルムアルデヒド溶液2×10−3cmをマイクロシリンジで各テドラーバッグ内に注入し、そのつど乾燥空気を注入してバッグを膨らませた。バッグ内のホルムアルデヒド濃度はガス検知管を用いて測定した。
その結果、実施例3の試料はホルムアルデヒドの吸着および分解を繰り返していることが、その吸着形態の類似性より示唆された。一方、活性炭の場合は、ホルムアルデヒドを注入する毎に吸着力は漸次低下していった。
(Test Example 4) Formaldehyde adsorption decomposition test of titanium oxide-coated activated carbon: 352 mg of titanium oxide-coated activated carbon of Example 3 (calculated value: 100 mg as activated carbon), and activated carbon for comparison (activated carbon used at 120 ° C., 1 ° C. 100 mg each was dried on a glass petri dish, each petri dish was transferred into a Tedlar bag (5,000 cm 3 ), and after sealing, dry air was introduced to inflate the bag. Using a 5% formaldehyde solution as a gas source, 2 × 10 −3 cm 3 was collected with a microsyringe and injected from a rubber tube attached to the inlet of a Tedlar bag containing the test product. As the initial gas concentration (0 hour), the blank test value (substantially coincident with the calculated value) was adopted.
The Tedlar bag containing Example 3 was externally irradiated with an ultraviolet lamp (sterilization lamp GL6) and a visible light lamp (daylight fluorescent lamp 15W) at a position 15 cm from the sample at the same time. On the other hand, the Tedlar bag containing activated carbon was not irradiated with light. At 8 hours and 24 hours, 2 × 10 −3 cm 3 of a 5% formaldehyde solution was injected into each Tedlar bag with a microsyringe, and inflated with dry air each time. The formaldehyde concentration in the bag was measured using a gas detector tube.
As a result, it was suggested from the similarity of the adsorption form that the sample of Example 3 repeated adsorption and decomposition of formaldehyde. On the other hand, in the case of activated carbon, the adsorptive power gradually decreased every time formaldehyde was injected.

Figure 2005263610
Figure 2005263610

発明の効果The invention's effect

本発明の酸化チタン被膜活性炭は大量生産が可能であり、低コストで製造できる。性能面では、活性炭の黒色が酸化チタンの被膜により灰白色〜灰色になっているので彩色が容易であること、また、耐熱性と耐水性があり、活性炭特有の強力な吸着作用や吸着物の分解性を示すことから、広い分野で利用が可能である。その用途として、環境素材分野では、水性塗料、壁用ボード、壁紙などに添加すると、揮発性有機化合物の吸着、分解によりシックハウス症候群の対策として効果が期待される。  The titanium oxide-coated activated carbon of the present invention can be mass-produced and manufactured at a low cost. In terms of performance, the black color of the activated carbon is grayish white to gray due to the titanium oxide coating, so it is easy to color, and it has heat resistance and water resistance. It can be used in a wide range of fields. As its application, in the field of environmental materials, when added to water-based paints, wall boards, wallpaper, etc., it is expected to be effective as a countermeasure against sick house syndrome due to adsorption and decomposition of volatile organic compounds.

Claims (11)

活性炭表面を、高分子エマルション、または高分子エマルションと無機質バインダーを使用して、酸化チタンで被膜することを特徴とする酸化チタン被膜活性炭。A titanium oxide-coated activated carbon, wherein the activated carbon surface is coated with titanium oxide using a polymer emulsion or a polymer emulsion and an inorganic binder. 活性炭に高分子エマルションを添加、混練りしたあと、酸化チタンを加えてさらに混練りし、活性炭表面に酸化チタン被膜を形成した請求項1に記載の酸化チタン被膜活性炭。The titanium oxide-coated activated carbon according to claim 1, wherein after adding a polymer emulsion to activated carbon and kneading, titanium oxide is added and further kneaded to form a titanium oxide film on the activated carbon surface. 活性炭を水に懸濁攪拌下、高分子エマルションを添加して活性炭に付着させ、これに酸化チタンを加えたあと、カルシウム化合物、続いて炭酸化合物を加えて炭酸カルシウムの生成反応を起こし、生成した炭酸カルシウムが酸化チタンを担持して活性炭の表面を被膜する請求項1に記載の酸化チタン被膜活性炭。Activated carbon suspended in water, a polymer emulsion was added to adhere to the activated carbon, and after adding titanium oxide to this, a calcium compound was added followed by a carbonate compound to cause a calcium carbonate formation reaction. The titanium oxide-coated activated carbon according to claim 1, wherein the calcium carbonate carries titanium oxide and coats the surface of the activated carbon. 活性炭を水に懸濁攪拌下、高分子エマルションを添加して活性炭に付着させ、これに酸化チタンを加えたあと、水酸化バリウム、続いて硫酸を加えて硫酸バリウムの生成反応を起こし、生成した硫酸バリウムが酸化チタンを担持して活性炭の表面を被膜する請求項1に記載の酸化チタン被膜活性炭。Activated carbon suspended in water, polymer emulsion was added and adhered to the activated carbon. After adding titanium oxide to this, barium hydroxide followed by sulfuric acid was added to cause the formation reaction of barium sulfate. The titanium oxide-coated activated carbon according to claim 1, wherein the barium sulfate carries titanium oxide and coats the surface of the activated carbon. 酸化チタンがルチル型であり、その平均粒子径が100〜1000nmである請求項1、2、3および4に記載の酸化チタン被膜活性炭。Titanium oxide is a rutile type, The average particle diameter is 100-1000 nm, The titanium oxide coating activated carbon of Claim 1, 2, 3 and 4. 酸化チタンが、平均粒子径100〜1000nmのルチル型と平均粒子径が1〜100nmのアナターゼ型の混合物であり、ルチル型とアナターゼ型の混合比が100:1〜50である請求項1、3および4に記載の酸化チタン被膜活性炭。The titanium oxide is a mixture of a rutile type having an average particle size of 100 to 1000 nm and an anatase type having an average particle size of 1 to 100 nm, and the mixing ratio of the rutile type and the anatase type is 100: 1 to 50. And activated carbon coated with titanium oxide according to 4 above. 酸化チタンが、活性炭100重量部に対し、50〜500重量部である請求項1、2、3および4に記載の酸化チタン被膜活性炭。The titanium oxide-coated activated carbon according to claim 1, 2, 3, and 4, wherein the titanium oxide is 50 to 500 parts by weight with respect to 100 parts by weight of the activated carbon. 無機質バインダーが生成炭酸カルシウムであり、活性炭100重量部に対し、50〜300重量部であり、カルシウム化合物と炭酸化合物の組み合わせが、水酸化カルシウムと二酸化炭素、もしくは塩化カルシウムと炭酸ナトリウムからなる請求項1および3に記載の酸化チタン被膜活性炭。The inorganic binder is produced calcium carbonate, 50 to 300 parts by weight with respect to 100 parts by weight of activated carbon, and the combination of the calcium compound and the carbonate compound comprises calcium hydroxide and carbon dioxide, or calcium chloride and sodium carbonate. The titanium oxide-coated activated carbon according to 1 and 3. 無機質バインダーが生成硫酸バリウムであり、活性炭100重量部に対し、50〜300重量部である請求項1および4に記載の酸化チタン被膜活性炭。5. The titanium oxide-coated activated carbon according to claim 1, wherein the inorganic binder is produced barium sulfate and is 50 to 300 parts by weight with respect to 100 parts by weight of the activated carbon. 酸化チタンが、生成炭酸カルシウムまたは生成硫酸バリウムのいずれかの100重量部に対し、60〜400重量部である請求項1、3および4に記載の酸化チタン被膜活性炭。5. The titanium oxide-coated activated carbon according to claim 1, 3 or 4, wherein the titanium oxide is 60 to 400 parts by weight with respect to 100 parts by weight of either the produced calcium carbonate or the produced barium sulfate. 高分子エマルションの高分子が水性アクリルスチレン共重合樹脂であり、活性炭100重量部に対し、5〜100重量部である請求項1、2、3および4に記載の酸化チタン被膜活性炭。The titanium oxide-coated activated carbon according to claim 1, 2, 3 and 4, wherein the polymer of the polymer emulsion is an aqueous acrylic styrene copolymer resin and is 5 to 100 parts by weight with respect to 100 parts by weight of the activated carbon.
JP2004116215A 2004-03-15 2004-03-15 Titanium oxide-coated activated carbon Pending JP2005263610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116215A JP2005263610A (en) 2004-03-15 2004-03-15 Titanium oxide-coated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116215A JP2005263610A (en) 2004-03-15 2004-03-15 Titanium oxide-coated activated carbon

Publications (1)

Publication Number Publication Date
JP2005263610A true JP2005263610A (en) 2005-09-29

Family

ID=35088530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116215A Pending JP2005263610A (en) 2004-03-15 2004-03-15 Titanium oxide-coated activated carbon

Country Status (1)

Country Link
JP (1) JP2005263610A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116417A1 (en) * 2008-03-18 2009-09-24 日本たばこ産業株式会社 Adsorbent for main cigarette smoke components and cigarette filter
WO2014088039A1 (en) 2012-12-07 2014-06-12 株式会社マンダム Body odor suppressing agent
JP2016000705A (en) * 2014-06-11 2016-01-07 株式会社マンダム Stick type body odor inhibiting composition
JP2016000703A (en) * 2014-06-11 2016-01-07 株式会社マンダム Liquid body odor suppressing agent
JP2016000704A (en) * 2014-06-11 2016-01-07 株式会社マンダム Body odor suppressing agent
US9301884B2 (en) 2012-12-05 2016-04-05 Kimberly-Clark Worldwide, Inc. Liquid detection system having a signaling device and an absorbent article with graphics
JP2020116550A (en) * 2019-01-28 2020-08-06 株式会社イリス Coating method of titanium oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280313A (en) * 1988-09-14 1990-03-20 Kuraray Chem Corp Colored active carbon
JPH04256436A (en) * 1991-02-05 1992-09-11 Kuraray Chem Corp Colored activated carbon
JPH10272368A (en) * 1997-03-31 1998-10-13 Mitsubishi Chem Corp Production of activated carbon
JP2003342530A (en) * 2002-05-30 2003-12-03 Ishitake:Kk Aqueous coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280313A (en) * 1988-09-14 1990-03-20 Kuraray Chem Corp Colored active carbon
JPH04256436A (en) * 1991-02-05 1992-09-11 Kuraray Chem Corp Colored activated carbon
JPH10272368A (en) * 1997-03-31 1998-10-13 Mitsubishi Chem Corp Production of activated carbon
JP2003342530A (en) * 2002-05-30 2003-12-03 Ishitake:Kk Aqueous coating composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116417A1 (en) * 2008-03-18 2009-09-24 日本たばこ産業株式会社 Adsorbent for main cigarette smoke components and cigarette filter
JP5138765B2 (en) * 2008-03-18 2013-02-06 日本たばこ産業株式会社 Cigarette mainstream smoke component adsorbent and cigarette filter
US9486011B2 (en) 2008-03-18 2016-11-08 Japan Tobacco Inc. Cigarette mainstream smoke component adsorbent and cigarette filter
US9301884B2 (en) 2012-12-05 2016-04-05 Kimberly-Clark Worldwide, Inc. Liquid detection system having a signaling device and an absorbent article with graphics
WO2014088039A1 (en) 2012-12-07 2014-06-12 株式会社マンダム Body odor suppressing agent
JPWO2014088039A1 (en) * 2012-12-07 2017-01-05 株式会社マンダム Body odor suppressor
US9737467B2 (en) 2012-12-07 2017-08-22 Mandom Corporation Body odor suppressing agent
JP2016000705A (en) * 2014-06-11 2016-01-07 株式会社マンダム Stick type body odor inhibiting composition
JP2016000703A (en) * 2014-06-11 2016-01-07 株式会社マンダム Liquid body odor suppressing agent
JP2016000704A (en) * 2014-06-11 2016-01-07 株式会社マンダム Body odor suppressing agent
JP2020116550A (en) * 2019-01-28 2020-08-06 株式会社イリス Coating method of titanium oxide
JP7233686B2 (en) 2019-01-28 2023-03-07 株式会社イリス Titanium oxide coating method

Similar Documents

Publication Publication Date Title
TWI489946B (en) A composition containing copper and titanium, and a method for producing the same
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
CN107109086A (en) Composition and its application including frustule
JP2005263610A (en) Titanium oxide-coated activated carbon
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
JP2006089858A (en) Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP5127134B2 (en) Deodorant comprising tubular titanium oxide particles
JP2789157B2 (en) Titanium oxide powder and method for producing the same
WO2018074270A1 (en) White deodorant, chemical product with deodorant function, method for using white deodorant and method for manufacturing white deodorant
CN105457635A (en) Photocatalytic filter for degrading mixed gas and manufacturing method thereof
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
JP2002212461A (en) Production method for zinc-carrying inorganic powder
JP2000302422A (en) Coating composition for forming photocatalyst film
JP2006289356A (en) Functional hyperfine particulate material for photocatalyst, its manufacturing method and its product
JP4580197B2 (en) Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same
JP2002186861A (en) Porous photocatalyst and method for manufacturing the same
JP2003170061A (en) Porous photocatalyst
JP3851443B2 (en) Photocatalyst and photocatalytic composition containing the same
JP2018039947A (en) Method for producing emulsion clear coating material
JPH09164188A (en) Deodorizing spray
JP4849862B2 (en) Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member
JP2005194176A (en) Spherical carbon particle and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720