[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005260453A - Infrared ray image correction apparatus - Google Patents

Infrared ray image correction apparatus Download PDF

Info

Publication number
JP2005260453A
JP2005260453A JP2004067291A JP2004067291A JP2005260453A JP 2005260453 A JP2005260453 A JP 2005260453A JP 2004067291 A JP2004067291 A JP 2004067291A JP 2004067291 A JP2004067291 A JP 2004067291A JP 2005260453 A JP2005260453 A JP 2005260453A
Authority
JP
Japan
Prior art keywords
output
blinking
defect
infrared
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067291A
Other languages
Japanese (ja)
Other versions
JP4305225B2 (en
Inventor
Tsutomu Furukawa
力 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004067291A priority Critical patent/JP4305225B2/en
Publication of JP2005260453A publication Critical patent/JP2005260453A/en
Application granted granted Critical
Publication of JP4305225B2 publication Critical patent/JP4305225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared ray image correction apparatus detecting a blinking defect with high accuracy without being affected by lens shading correction deviation, offset correction deviation and sensitivity correction deviation. <P>SOLUTION: An infrared ray solid-state imaging element images an object the temperature of which is almost constant for an imaging time by closing or opening a shutter so that the temperature is almost constant for the imaging time, an image memory stores a plurality of frames of outputs from the infrared ray solid-state imaging element, a blinking defect detection means calculates an average and a standard deviation of outputs of the infrared ray solid-state imaging element over a plurality of frames for pixels configuring the infrared ray solid-state imaging element, calculates an absolute value subtracting the average from the output of the infrared ray solid-state imaging element by each frame, and regards a blinking defect to be caused in the pixels wherein the absolute value is greater than a constant number multiple of the standard deviation because of the discrimination that the output variation from the average is considerably greater and the output is momentarily fluctuated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、固体撮像素子において発生した点滅欠陥画素を精度よく検出するための点滅欠陥検出方法、この点滅欠陥検出方法により特定・検出された点滅画素についての欠陥補正を含む映像補正方法用いた赤外線画像補正装置に関する。   The present invention relates to a blinking defect detection method for accurately detecting a blinking defect pixel generated in a solid-state imaging device, and an infrared ray using an image correction method including defect correction for the blinking pixel specified and detected by the blinking defect detection method. The present invention relates to an image correction apparatus.

特開2003−298949号公報(図6)に記載の様に、従来固体撮像素子を用いる赤外線撮像装置では、オフセット補正、感度補正、欠陥補正等の処理を固体撮像素子出力に施していた。赤外線領域で被写体を撮像するための撮像素子として、赤外線固体撮像素子10を備え、赤外線画像補正装置14により画像補正を行う赤外線撮像装置12である。赤外線固体撮像素子10に前置されているシャッタ22が開いている状態では、被写体から到来する光線のうち、主として赤外線領域に属する光線が、レンズ16を通り赤外線固体撮像素子10により捕らえられる。図示しないが、赤外線固体撮像素子10は二次元的に配置された多数の画素から構成されており、各画素はそれぞれ赤外線の受光強度に応じた出力を呈する。この各画素出力については、赤外線画像補正装置14は、オフセット補正、感度補正、欠陥補正の順で、補正処理を施していた(例えば、特許文献1参照)。
特開2003−298949号公報
As described in Japanese Patent Application Laid-Open No. 2003-298949 (FIG. 6), in an infrared imaging apparatus using a conventional solid-state imaging device, processing such as offset correction, sensitivity correction, and defect correction has been performed on the output of the solid-state imaging device. An infrared imaging device 12 that includes an infrared solid-state imaging device 10 as an imaging device for imaging a subject in an infrared region and performs image correction by an infrared image correction device 14. In a state in which the shutter 22 placed in front of the infrared solid-state image sensor 10 is open, light rays that mainly belong to the infrared region out of the light rays coming from the subject pass through the lens 16 and are captured by the infrared solid-state image sensor 10. Although not shown, the infrared solid-state imaging device 10 is composed of a large number of pixels arranged two-dimensionally, and each pixel exhibits an output corresponding to the received light intensity of infrared rays. For each pixel output, the infrared image correction device 14 performs correction processing in the order of offset correction, sensitivity correction, and defect correction (see, for example, Patent Document 1).
JP 2003-298949 A

以下に、従来の赤外線画像補正装置14の動作を説明する。まず、画素間には出力値のずれ(出力オフセット)が生じうる。出力オフセットを示すデータを赤外線固体撮像素子10画素配列に従って配列すると、画素間の出力オフセットが画素配列上でどのようなパターンを有しているかがわかる。出力オフセットが画素配列上で有しているパターンをオフセットパターンと呼ぶ。オフセットパターンは、例えば、赤外線撮像装置12の画角のほぼ全体に亘って均一な温度を有する物体を被写体として撮像を行ったときの赤外線固体撮像素子10の出力から、得ることができる。   The operation of the conventional infrared image correction device 14 will be described below. First, an output value shift (output offset) may occur between pixels. When the data indicating the output offset is arranged according to the 10-pixel arrangement of the infrared solid-state imaging device, it can be seen what pattern the output offset between the pixels has on the pixel arrangement. A pattern that the output offset has on the pixel array is called an offset pattern. The offset pattern can be obtained, for example, from the output of the infrared solid-state imaging device 10 when imaging is performed using an object having a uniform temperature over almost the entire angle of view of the infrared imaging device 12 as a subject.

オフセット補正処理とは、画像メモリ20に予め記憶させておいたオフセットパターンに従い、通常使用時における赤外線固体撮像素子10の撮像出力から、画素間の出力オフセットを除去又は抑圧する処理であり、オフセット補正手段18により実行される。なお、オフセット補正処理に使用されるオフセットパターンを、オフセット補正パターンと呼ぶ。また、上掲の均一温度被写体を撮像しその結果得られるオフセット補正パターンを画像メモリ20に記憶させる処理を、キャリブレーションと呼ぶ。キャリブレーション用の均一温度被写体としてはシャッタ22を用いることができる。即ち、シャッタ22を閉じた状態で撮像を行いオフセット補正パターンを得るようにすればよい。シャッタ22を設ければ、任意時点でキャリブレーションを実施できるため、好都合である。   The offset correction process is a process for removing or suppressing the output offset between pixels from the imaging output of the infrared solid-state imaging device 10 during normal use according to the offset pattern stored in advance in the image memory 20. Performed by means 18. The offset pattern used for the offset correction process is called an offset correction pattern. Further, the above-described processing for capturing an image of a uniform temperature subject and storing the offset correction pattern obtained as a result in the image memory 20 is called calibration. The shutter 22 can be used as a uniform temperature subject for calibration. That is, the offset correction pattern may be obtained by capturing an image with the shutter 22 closed. Providing the shutter 22 is advantageous because calibration can be performed at an arbitrary time.

オフセット補正処理を経た各画素撮像出力には、画素間の感度差が残っている。全画面(全画素)に亘り均一な出力特性を実現するため、オフセット補正手段18を経た各画素撮像出力に感度補正係数ΔVave/ΔV(x,y)を乗ずる感度補正処理が、感度補正手段24により実行される。(x,y)は画素の位置、ΔV(x,y)は温度による出力変化分即ちオフセット差分値、ΔVaveはΔV(x,y)の全画面平均値である。なお、ΔV(x,y)は、例えば、任意温度Tを有する物体を被写体としたときのオフセットパターンと、他の任意温度T+ΔTを有する物体を被写体としたときのオフセットパターンから、求めることができる。ΔVaveは、そのようにして求めたΔV(x,y)を全画面(全画素)に亘り平均することにより、得ることができる。ΔV(x,y)、ΔVave更には感度補正係数を導出する処理は、感度補正手段24による処理に先立って感度係数算出固定欠陥検出手段26により実行される。その結果得られた感度補正係数は、感度係数欠陥情報記憶手段28に書き込まれる。   A sensitivity difference between pixels remains in each pixel imaging output that has undergone the offset correction processing. In order to realize uniform output characteristics over the entire screen (all pixels), a sensitivity correction process of multiplying each pixel imaging output that has passed through the offset correction unit 18 by a sensitivity correction coefficient ΔVave / ΔV (x, y) is a sensitivity correction unit 24. It is executed by. (X, y) is a pixel position, ΔV (x, y) is an output change due to temperature, that is, an offset difference value, and ΔVave is an average value of the entire screen of ΔV (x, y). Note that ΔV (x, y) can be obtained from, for example, an offset pattern when an object having an arbitrary temperature T is a subject and an offset pattern when another object having an arbitrary temperature T + ΔT is a subject. . ΔVave can be obtained by averaging ΔV (x, y) thus obtained over the entire screen (all pixels). The process of deriving ΔV (x, y), ΔVave and further the sensitivity correction coefficient is executed by the sensitivity coefficient calculation fixed defect detection means 26 prior to the process by the sensitivity correction means 24. The sensitivity correction coefficient obtained as a result is written in the sensitivity coefficient defect information storage means 28.

オフセット補正処理及び感度補正処理を経た各画素撮像出力には、更に、欠陥補正手段30による欠陥補正処理が施される。欠陥画素には、定常的に同じ異常輝度を出力する固定欠陥画素と、非定常的に異常輝度を出力する点滅欠陥画素とがある。固定欠陥画素に対しては、その画素の出力(異常出力)に代えて代替値を後段に供給する処理であり、代替値としては、その欠陥画素を取り巻く画素の(平均)出力等を利用できる。   Each pixel imaging output that has undergone the offset correction processing and sensitivity correction processing is further subjected to defect correction processing by the defect correction means 30. The defective pixel includes a fixed defective pixel that constantly outputs the same abnormal luminance and a blinking defective pixel that outputs the abnormal luminance irregularly. For a fixed defective pixel, a replacement value is supplied to the subsequent stage instead of the output (abnormal output) of the pixel, and the (average) output of the pixels surrounding the defective pixel can be used as the replacement value. .

この処理を行うためには、欠陥画素を特定・検出する必要がある。感度係数算出固定欠陥検出手段26は、画素の位置(x,y)毎に求めた感度補正係数ΔVave/ΔV(x,y)が所定の閾値を上回っている画素を、異常な感度を有する欠陥画素として、特定する。点滅欠陥画素に対しては、固体撮像素子の画角ほぼ全体に亘りほぼ均一な温度を有する被写体を上記固体撮像素子により撮像し更にその結果得られた撮像出力について固体撮像素子における画素間の出力オフセット及び感度差を補正する処理を、複数フレームに亘り繰り返し実行し、輝度比較器36にて当該複数フレーム中における出力値変動の規模又は頻度が判定基準を上回った画素を以て、点滅欠陥画素として特定する。感度係数欠陥情報記憶手段28は、このようにして特定された欠陥画素の位置(x,y)を記憶する。欠陥補正手段30は、感度係数欠陥情報記憶手段28に欠陥画素位置として記憶されている位置(x,y)の画素について、上掲の欠陥補正処理を実行する。   In order to perform this process, it is necessary to identify and detect defective pixels. Sensitivity coefficient calculation fixed defect detection means 26 detects a pixel having a sensitivity correction coefficient ΔVave / ΔV (x, y) obtained for each pixel position (x, y) exceeding a predetermined threshold, and has a defect having abnormal sensitivity. It is specified as a pixel. For blinking defective pixels, an image of a subject having a substantially uniform temperature over the entire angle of view of the solid-state image sensor is picked up by the solid-state image sensor, and the image output obtained as a result is output between pixels in the solid-state image sensor. The process of correcting the offset and the sensitivity difference is repeatedly executed over a plurality of frames, and the luminance comparator 36 identifies a pixel whose output value variation or frequency in the plurality of frames exceeds a determination criterion as a blinking defective pixel. To do. The sensitivity coefficient defect information storage means 28 stores the position (x, y) of the defective pixel specified in this way. The defect correction unit 30 executes the above-described defect correction process for the pixel at the position (x, y) stored as the defective pixel position in the sensitivity coefficient defect information storage unit 28.

しかしながら、上掲の手法では、欠陥画素のうち点滅欠陥画素を特定する際には、シャッタ22等の固体撮像素子の画角ほぼ全体に亘りほぼ均一な温度を有する被写体を撮像する必要があるが、実際には内部発熱等によりシャッタ22等の被写体が必ずしもほぼ均一な温度になっているとは限らない。また、赤外線撮像装置12の外部にある被写体について、ほぼ均一な温度に設定できたとしても、レンズ16を通して、赤外線固体撮像素子10に撮像する過程で、レンズ16のけられによるシェーディングの影響を受けるため、欠陥補正手段30の出力において、画面全体においてレベル不均一が発生する場合がある。   However, in the above-described method, when a blinking defective pixel is specified among defective pixels, it is necessary to capture a subject having a substantially uniform temperature over almost the entire angle of view of a solid-state imaging device such as the shutter 22. Actually, the subject such as the shutter 22 is not necessarily at a substantially uniform temperature due to internal heat generation or the like. Further, even if the object outside the infrared imaging device 12 can be set to a substantially uniform temperature, it is affected by shading due to the lens 16 being broken in the process of imaging the infrared solid-state imaging device 10 through the lens 16. For this reason, in the output of the defect correction means 30, level unevenness may occur over the entire screen.

更に欠陥補正手段30の出力は、オフセット補正手段18、感度補正手段24を経ているため、画像メモリ(オフセット補正パターン)20及び感度係数欠陥情報記憶手段28の取得時の誤差の影響等により、オフセット補正手段18、感度補正手段24に対して補正ずれが発生し、画面全体において出力レベルが不均一になる場合がある。このため、欠陥補正手段30の出力において画面全体におけるレベル均一性を前提として点滅欠陥を分離検出する上掲の手法では、精度よく点滅欠陥を特定できない場合がある問題がある。   Further, since the output of the defect correction means 30 passes through the offset correction means 18 and the sensitivity correction means 24, the offset is offset by the influence of errors at the time of acquisition of the image memory (offset correction pattern) 20 and the sensitivity coefficient defect information storage means 28. A correction deviation may occur with respect to the correction means 18 and the sensitivity correction means 24, and the output level may become non-uniform throughout the screen. For this reason, there is a problem that the blinking defect may not be identified with high accuracy in the above-described method of separately detecting the blinking defect on the premise of level uniformity in the entire screen in the output of the defect correction means 30.

本願に記載の発明は、この問題点を解決することを課題としてなされたものであり、即ち赤外線撮像装置において使用される固体撮像素子における欠陥画素のうち点滅欠陥画素を特定する際に固体撮像素子の画角ほぼ全体に亘りほぼ均一な温度を有する被写体とする必要がなく、かつ固体撮像素子の画面全体における出力レベルが不均一であっても好適に特定・検出できる赤外線画像補正装置を構成することを目的とする。   The invention described in the present application has been made in order to solve this problem, that is, when a blinking defective pixel is specified among defective pixels in a solid-state image sensor used in an infrared imaging device. An infrared image correction apparatus that does not need to be a subject having a substantially uniform temperature over almost the entire angle of view and that can be suitably specified and detected even when the output level of the entire solid-state imaging device is nonuniform is configured. For the purpose.

この発明による赤外線画像補正装置は、少なくとも赤外線領域を撮像する固体撮像素子の撮像素子出力について、この固体撮像素子から構成される各画素間の出力オフセットを除去するオフセット補正手段と、このオフセット補正後の出力に対し上記各画素間の感度ばらつきを補正する感度補正手段と、この感度補正後の出力に対し欠陥画素を補正する欠陥補正手段と、この欠陥補正後の出力に対しモニタにビデオ信号として出力するビデオ信号生成手段と、を備えた赤外線画像補正装置において、上記固体撮像素子より出力される撮像素子出力を、複数の撮像フレームに亘り所定の画像メモリを有して記憶し、上記固体撮像素子から構成される各画素について、これら複数の撮像フレームに亘る各撮像素子の出力値の平均値、および標準偏差値を算出し、各撮像フレーム毎の夫々の各撮像素子の出力値から平均値を引いた絶対値を算出し、この絶対値が上記標準偏差値の所定の定数倍を超える画素については、点滅欠陥画素として検出する様にしたものである。   An infrared image correction apparatus according to the present invention includes an offset correction unit that removes an output offset between pixels configured from the solid-state image sensor for an image sensor output of a solid-state image sensor that captures at least an infrared region, and after the offset correction. Sensitivity correction means for correcting the sensitivity variation between the pixels with respect to the output, defect correction means for correcting the defective pixel with respect to the output after the sensitivity correction, and a video signal on the monitor for the output after the defect correction. In the infrared image correction apparatus comprising: a video signal generating means for outputting; an image sensor output output from the solid-state image sensor is stored with a predetermined image memory over a plurality of image frames; For each pixel composed of the elements, the average value and the standard deviation of the output values of the imaging elements over the plurality of imaging frames. The absolute value obtained by subtracting the average value from the output value of each imaging device for each imaging frame is calculated, and the pixel whose absolute value exceeds a predetermined constant multiple of the standard deviation value flashes. The pixel is detected as a defective pixel.

非定常的に出力する点滅画素の点滅間隔及びこの点滅画素について、非点滅状態として定常的に出力するノイズ等によるばらつき及び非定常的に点滅状態として出力される際のばらつきについては赤外線固体撮像素子に依存して決まるものが多いため、赤外線固体撮像素子の構成する各画素について、非点滅状態として定常的に出力するノイズ等におけるばらつきと点滅状態として非定常的に出力する際のばらつき、及び赤外線固体撮像素子の点滅画素の点滅間隔が予め分かっていれば、外部設定する点滅欠陥検出条件としての点滅間隔を補うフレーム数N及び閾値αに対して、赤外線固体撮像素子の点滅出力特性に見合い適正に設定することができる。これより、点滅欠陥検出手段において精度よく点滅欠陥画素の特定・検出が可能となる。   Infrared solid-state imaging device for the flashing interval of the non-steady output blinking pixel, the variation due to noise or the like that is output in a non-flashing state and the non-steady flashing state Therefore, for each pixel constituting the infrared solid-state imaging device, there is a variation in noise that is steadily output as a non-flashing state, a variation in non-steady output as a flashing state, and an infrared ray. If the blinking interval of the blinking pixel of the solid-state imaging device is known in advance, the flashing output characteristic of the infrared solid-state imaging device is appropriate for the number of frames N and the threshold value α that compensate for the blinking interval as an externally set blinking defect detection condition Can be set to As a result, the blinking defect detection means can accurately identify and detect blinking defective pixels.

以下、この発明の好適な実施の形態に関し図面に基づき説明する。なお、図6に示した従来技術と同様の構成には同一の符号を付し、重複説明を省略する。更に、実施の形態同士で同様の構成には互いに同一の符号を付し、重複説明を省略する。   Preferred embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the structure similar to the prior art shown in FIG. 6, and duplication description is abbreviate | omitted. Furthermore, the same code | symbol is mutually attached to the same structure in embodiment, and duplication description is abbreviate | omitted.

実施の形態1.
図1は、この発明の実施の形態1による赤外線画像補正装置14aを有する赤外線撮像装置を説明するためのブロック図である。以下に、赤外線画像補正装置14aを詳述するし、実施の形態1の赤外線撮像装置12を説明する。
Embodiment 1 FIG.
FIG. 1 is a block diagram for explaining an infrared imaging device having an infrared image correction device 14a according to Embodiment 1 of the present invention. Hereinafter, the infrared image correction device 14a will be described in detail, and the infrared imaging device 12 of the first embodiment will be described.

この実施の形態においては、点滅欠陥画素の位置を特定・検出するために使用するシャッター22は、固体撮像素子10の画角のほぼ全体に亘りほぼ均一な温度になっている必要はなく、被写体を用いることも可能である。その際、レンズ16のシェーディングによる影響及びオフセット補正手段18、感度補正手段24における画像メモリ(オフセットパターン)20及び感度係数欠陥情報記憶手段28の誤差の影響等によるオフセット補正ずれ、感度補正ずれの影響を受けずに、点滅欠陥画素の位置を特定・検出が可能である。   In this embodiment, the shutter 22 used for specifying and detecting the position of the blinking defective pixel does not need to be at a substantially uniform temperature over almost the entire angle of view of the solid-state imaging device 10. It is also possible to use. At that time, the influence of the shading of the lens 16 and the influence of the offset correction deviation and the sensitivity correction deviation due to the influence of the error of the image memory (offset pattern) 20 and the sensitivity coefficient defect information storage means 28 in the offset correction means 18 and the sensitivity correction means 24. It is possible to identify and detect the position of the blinking defective pixel without receiving.

なぜなら、撮像を行ったときの赤外線固体撮像素子10の出力を複数フレームに亘り画像メモリ20に記憶させ、記憶した複数フレームに亘る赤外線固体撮像素子10の出力から点滅欠陥検出手段38において赤外線固体撮像素子10の構成する各画素に対して、各フレーム毎に撮像素子の出力変動を観測することにより点滅欠陥を検出しているため、赤外線固体撮像素子10のフレーム出力の均一化を図る必要がなく、一方、均一温度被写体の撮像及びその結果についてオフセット補正等を十分長いフレーム数に亘って繰り返し行う等で画面全体における定常的な出力を均一化して、非定常的に異常輝度を呈する欠陥たる点滅欠陥を、瞬間的な出力変動等の形で分離検出できる従来方式とは全く異なるからである。   This is because the output of the infrared solid-state imaging device 10 at the time of imaging is stored in the image memory 20 over a plurality of frames, and the flashing defect detection means 38 uses the stored solid-state output from the infrared solid-state imaging device 10 over the plurality of frames. The blinking defect is detected by observing the output fluctuation of the image sensor for each frame of each pixel constituting the element 10, so that it is not necessary to make the frame output of the infrared solid-state image sensor 10 uniform. On the other hand, imaging of a uniform temperature subject and the result of offset correction etc. are repeated over a sufficiently long number of frames, etc., to uniformize the steady output on the entire screen, and flashing as a defect that exhibits abnormal brightness irregularly This is because the defect is completely different from the conventional method in which the defect can be separated and detected in the form of instantaneous output fluctuation or the like.

点滅欠陥検出手段36による点滅欠陥画素の特定・検出にあたっては、撮像した時間に対して温度がほぼ一定となるシャッター22を閉じた状態、またはシャッター22を開き、撮像した時間に対して温度がほぼ一定となる被写体を撮像した状態で、外部からの点滅欠陥検出設定により赤外線固体撮像素子10に対して撮像を行い、赤外線固体撮像素子10からの出力を複数フレームF1,F2,...,FNに亘り、フレームFk(k=1,..., N)毎に画像メモリ20に記憶させる。被写体の温度は、赤外線撮像装置12のダイナミックレンジ内にある限り、任意の温度で良く任意の静止画となる被写体を用いることが可能である。   When the blinking defect detection means 36 identifies and detects blinking defective pixels, the shutter 22 is in a state where the temperature is substantially constant with respect to the imaged time, or the shutter 22 is opened and the temperature is approximately equal to the imaged time. In a state where a fixed subject is imaged, imaging is performed on the infrared solid-state image sensor 10 by external blinking defect detection setting, and outputs from the infrared solid-state image sensor 10 are output to a plurality of frames F1, F2,. . . , FN are stored in the image memory 20 for each frame Fk (k = 1,..., N). As long as the temperature of the subject is within the dynamic range of the infrared imaging device 12, an arbitrary temperature can be used, and a subject that becomes an arbitrary still image can be used.

点滅欠陥検出手段38において、画像メモリ20に記憶した赤外線固体撮像素子10からの出力をフレームFk(k=1,..., N)毎に繰り返し取込み、複数フレームF1,F2,...,FNに亘る赤外線固体撮像素子10の出力を用いて、赤外線固体撮像素子10の構成する各画素(k1、k2)(k1=1,...,n1)、(k2=1,...,n2)について、複数フレームF1,F2,...,FNに亘る赤外線固体撮像素子10の出力の平均値Vave(k1、k2)、標準偏差Vσ(k1、k2)を求める。赤外線固体撮像素子10の構成する各画素(k1、k2)について、各フレームFk(k=1,...,N)毎の撮像素子の出力Vk(k1、k2)から上記平均値Vave(k1、k2)を引いた絶対値|Vk(k1、k2)−Vave(k1、k2)|を算出し、その値が複数フレームのうち、あるフレームFl:エフエル( 1<l:エル<N)において上記標準偏差Vσ(k1、k2)*αに対して大きくなる場合、その際の当該赤外線固体撮像素子10の出力Vl(k1、k2)が他の複数フレームにおける赤外線固体撮像素子10出力と比較して、平均値Vave(k1、k2)からの出力ばらつきが著しく大きく瞬間的に出力変動したと判断でき、このとき当該画素(k1、k2)については点滅画素としてみなすことが出来る。   In the blinking defect detection means 38, the output from the infrared solid-state imaging device 10 stored in the image memory 20 is repeatedly taken every frame Fk (k = 1,..., N), and a plurality of frames F1, F2,. . . , FN, the pixels (k1, k2) (k1 = 1,..., N1), (k2 = 1,..., N1) constituting the infrared solid-state image sensor 10 are used. , n2) for a plurality of frames F1, F2,. . . , FN, the average value Vave (k1, k2) and standard deviation Vσ (k1, k2) of the output of the infrared solid-state imaging device 10 are obtained. For each pixel (k1, k2) constituting the infrared solid-state image sensor 10, the average value Vave (k1) is calculated from the image sensor output Vk (k1, k2) for each frame Fk (k = 1,..., N). , K2) minus the absolute value | Vk (k1, k2) −Vave (k1, k2) |, and the value is in a certain frame Fl: Fuel (1 <l: L <N) among a plurality of frames. When it becomes larger than the standard deviation Vσ (k1, k2) * α, the output Vl (k1, k2) of the infrared solid-state image sensor 10 at that time is compared with the outputs of the infrared solid-state image sensor 10 in other plural frames. Thus, it can be determined that the output variation from the average value Vave (k1, k2) is remarkably large and the output fluctuates instantaneously. At this time, the pixel (k1, k2) can be regarded as a blinking pixel.

αは、点滅出力時のフレームFlを特定するために、赤外線固体撮像素子10の点滅画素について非点滅状態として定常的に出力するノイズ等によるばらつきと、非定常的に点滅状態として出力される際のばらつきを考慮し調整決定される閾値である。当該閾値α及び赤外線固体撮像素子10の撮像に要するフレーム数Nについては、外部による点滅画素欠陥検出用データ取得の際に、点滅欠陥検出条件設定として同時に行う。   α is a variation due to noise or the like that is regularly output as a non-flashing state for the flashing pixel of the infrared solid-state imaging device 10 in order to specify the frame Fl at the time of flashing output, and when it is output as a non-steady flashing state It is a threshold value that is adjusted and determined in consideration of the variation of. The threshold value α and the number N of frames required for imaging by the infrared solid-state imaging device 10 are simultaneously set as the flashing defect detection condition setting when acquiring the flashing pixel defect detection data from the outside.

非定常的に出力する点滅画素の点滅間隔及び当該点滅画素について、非点滅状態として定常的に出力するノイズ等によるばらつき及び非定常的に点滅状態として出力される際のばらつきについては赤外線固体撮像素子10に依存して決まるものが多いため、赤外線固体撮像素子10の構成する各画素(k1、k2)について、非点滅状態として定常的に出力するノイズ等におけるばらつきと点滅状態として非定常的に出力する際のばらつき及び、赤外線固体撮像素子10の点滅画素の点滅間隔が予め分かっていれば、外部より設定する点滅欠陥検出条件としての点滅間隔を補うフレーム数N及び閾値αに対して、赤外線固体撮像素子10の点滅出力特性に見合い適正に設定することができる。これより、点滅欠陥検出手段36において精度よく点滅欠陥画素の特定・検出が可能となる。   Infrared solid-state imaging device for the blinking interval of blinking pixels that are output non-steadily, and the variation due to noise that is output in a non-flashing state and the variation when the flashing pixels are output as a non-steady blinking state Since there are many things that depend on 10, each pixel (k 1, k 2) that constitutes the infrared solid-state imaging device 10 is output in a non-steady state as a variation in noise or the like that is steadily output as a non-flashing state and a flashing state. If the variation and the blinking interval of the blinking pixel of the infrared solid-state image pickup device 10 are known in advance, the infrared solid state with respect to the number of frames N and the threshold value α to compensate for the blinking interval detection condition set from the outside. The blinking output characteristics of the image sensor 10 can be set appropriately. As a result, the blinking defect detection means 36 can identify and detect blinking defective pixels with high accuracy.

実施の形態2.
図2は、この発明の実施の形態2による赤外線画像補正装置14bを有する赤外線撮像装置を説明するためのブロック図である。以下に、赤外線画像補正装置14bを詳述するし、実施の形態1の赤外線撮像装置12を説明する。
この実施の形態は、実施の形態1に、点滅欠陥特性検出手段40及び点滅欠陥特性表示手段42を追加したものである。
Embodiment 2. FIG.
FIG. 2 is a block diagram for explaining an infrared imaging apparatus having an infrared image correction apparatus 14b according to Embodiment 2 of the present invention. Hereinafter, the infrared image correction device 14b will be described in detail, and the infrared imaging device 12 of the first embodiment will be described.
In this embodiment, a blinking defect characteristic detecting unit 40 and a blinking defect characteristic display unit 42 are added to the first embodiment.

点滅欠陥特性検出手段40は、実施の形態1において、赤外線固体撮像素子10の点滅出力特性が不明のため、外部より赤外線固体撮像素子10の点滅出力特性に見合った点滅欠陥検出条件が設定できない場合に、赤外線固体撮像素子10の点滅画素の出力特性を検出するために実施するもので、撮像時間に対して温度がほぼ一定となるシャッター22を閉じた状態、または、シャッター22を開いて、撮像時間に対して温度がほぼ一定となる被写体を撮像した状態で、外部からの点滅欠陥特性検出設定時に点滅欠陥特性検出条件として撮像フレーム数N‘、点滅欠陥候補検出のための閾値α’の設定を行い実施される。N‘は、赤外線固体撮像素子10において点滅画素が出現し、点滅画素が点滅すると想定される点滅期間に対して十分大きな値に、α’は赤外線固体撮像素子10の点滅画素について、非点滅状態として定常的に出力するノイズ等におけるばらつきと非定常的に点滅状態として出力する際のばらつきを想定してそれぞれ設定する。   In the first embodiment, the blinking defect characteristic detection unit 40 cannot set the blinking defect detection condition corresponding to the blinking output characteristic of the infrared solid-state image sensor 10 from the outside because the blinking output characteristic of the infrared solid-state image sensor 10 is unknown in the first embodiment. In addition, the detection is performed to detect the output characteristics of the blinking pixels of the infrared solid-state imaging device 10, and the imaging is performed by closing the shutter 22 where the temperature is substantially constant with respect to the imaging time or opening the shutter 22. Setting of the number of imaging frames N ′ and the threshold value α ′ for detecting a blinking defect candidate as the blinking defect characteristic detection condition when setting the blinking defect characteristic detection from the outside in a state where an object whose temperature is substantially constant with respect to time is imaged Is carried out. N ′ is a sufficiently large value for the blinking period in which a blinking pixel appears in the infrared solid-state imaging device 10 and the blinking pixel is assumed to blink, and α ′ is a non-flashing state for the blinking pixel of the infrared solid-state imaging device 10. Assuming variations in noise or the like that is steadily output, and variations when output as a non-steady blinking state, respectively.

まず、赤外線固体撮像素子10に対して撮像を行い、赤外線固体撮像素子10からの出力を複数フレームF1,F2,...,FN‘に亘り画像メモリ20に記憶させる。点滅欠陥特性検出40において、画像メモリ20に記憶した赤外線固体撮像素子10からの出力をフレームFk(k=1,...,N’)毎に取込み、各フレームFk(k=1,...,N’)について、赤外線固体撮像素子10の構成する各画素(k1、k2)(k1=1,...,n1)、(k2=1,...,n2)毎の出力値V(k,k1,k2)を記憶し、これらを全てのフレームについて繰り返す。また赤外線固体撮像素子10の構成する各画素(k1、k2)について、複数フレームF1,F2,...,FN‘に亘る赤外線固体撮像素子10の出力より複数フレームF1,F2,...,FN‘に亘る撮像素子の出力の平均値Vave(k1,k2)、標準偏差Vσ(k1,k2)を算出し記憶する。   First, the infrared solid-state image sensor 10 is imaged, and the output from the infrared solid-state image sensor 10 is converted into a plurality of frames F1, F2,. . . , FN ′ are stored in the image memory 20. In the blinking defect characteristic detection 40, the output from the infrared solid-state imaging device 10 stored in the image memory 20 is taken for each frame Fk (k = 1,..., N ′), and each frame Fk (k = 1,. , N ′), the output value V for each pixel (k1, k2) (k1 = 1,..., N1), (k2 = 1,..., N2) constituting the infrared solid-state imaging device 10. Store (k, k1, k2) and repeat for all frames. Further, for each pixel (k1, k2) constituting the infrared solid-state imaging device 10, a plurality of frames F1, F2,. . . , FN ′, the plurality of frames F1, F2,. . . , FN ′, the average value Vave (k1, k2) of the output of the image sensor and the standard deviation Vσ (k1, k2) are calculated and stored.

赤外線固体撮像素子10の構成する各画素(k1、k2)について、各フレームFk(k=1,...,N’)毎の撮像素子の出力Vk(k1、k2)から上記平均値Vave(k1、k2)を引いた絶対値|Vk(k1、k2)−Vave(k1、k2)|を算出し、その値が複数フレームのうち、あるフレームFl:エフエル( 1<l:エル<N‘)において上記標準偏差Vσ(k1、k2)*α‘に対して大きくなる場合、赤外線固体撮像素子10の当該フレームでの出力Vl(k1、k2)が他の複数フレームにおける赤外線固体撮像素子10出力と比較して、平均値Vave(k1、k2)からの出力ばらつきが著しく大きく瞬間的に出力変動したと判断できるため、当該画素(k1、k2)については、点滅欠陥画素候補とみなして、当該画素(k1、k2)について、各フレームFk(k=1,...,N’)に対する出力値(k,k1,k2)、複数フレームF1,F2,...,FN‘に亘る撮像素子の出力の平均値Vave(k1,k2)、及び標準偏差Vσ(k1,k2)を点滅欠陥特性検出情報として、点滅欠陥特性表示手段42に転送する。   For each pixel (k1, k2) constituting the infrared solid-state image sensor 10, the average value Vave () is obtained from the output Vk (k1, k2) of the image sensor for each frame Fk (k = 1,..., N ′). The absolute value | Vk (k1, k2) −Vave (k1, k2) | obtained by subtracting k1, k2) is calculated, and the value is a certain frame Fl: F (1 <l: L <N ′) among a plurality of frames. ) Becomes larger than the standard deviation Vσ (k1, k2) * α ′, the output Vl (k1, k2) of the infrared solid-state image sensor 10 in the corresponding frame becomes the output of the infrared solid-state image sensor 10 in other plural frames. As compared with the above, the output variation from the average value Vave (k1, k2) is remarkably large, and it can be determined that the output fluctuated instantaneously. Therefore, the pixel (k1, k2) is regarded as a blinking defective pixel candidate. Te, for the pixel (k1, k2), each frame Fk (k = 1, ..., N ') output value for (k, k1, k2), a plurality of frames F1, F2,. . . , FN ′, the average value Vave (k1, k2) and standard deviation Vσ (k1, k2) of the output of the image sensor are transferred to the blinking defect characteristic display means 42 as blinking defect characteristic detection information.

点滅欠陥特性表示手段42では、使用者が赤外線固体撮像素子10の点滅欠陥候補の特性を容易に目視確認できるように、点滅欠陥検出手段40より得られた上記点滅欠陥特性検出情報を用いて表示処理し、表示された点滅欠陥特性検出情報をビデオ信号生成手段32に対して重畳し、テレビモニタ34に表示させる。   The blinking defect characteristic display means 42 displays the blinking defect characteristic detection information obtained from the blinking defect detection means 40 so that the user can easily visually check the characteristics of the blinking defect candidate of the infrared solid-state imaging device 10. The flashing defect characteristic detection information that has been processed and displayed is superimposed on the video signal generation means 32 and displayed on the television monitor 34.

点滅欠陥特性表示手段42では、点滅欠陥特性検出手段40において検出した赤外線固体撮像素子10の点滅欠陥候補(k1、k2)(k1 =1,...,n3),(k1 =1,...,n4)について、点滅欠陥特性をグラフ化して表示するものである。
さて、図3は、この発明の実施の形態2による赤外線画像補正装置を有する赤外線撮像装置を説明するためのブロック図である。具体的には、図3に示すように点滅欠陥候補(k1、k2)毎に、横軸に対して外部からの点滅欠陥特性検出の設定時の撮像フレーム数N‘を設定、縦軸に対して各フレームFk(k=1,...,N’)毎の出力値(k,k1,k2)を示すと共に、複数フレームF1,F2,...,FN‘に亘る撮像素子の出力の平均値Vave(k1,k2)、標準偏差Vσ(k1,k2)、及び平均値Vave(k1,k2)からの出力ばらつきが著しく大きいと判断したフレームFlの値及び外部により設定した閾値α‘を表示する。
In the blinking defect characteristic display means 42, blinking defect candidates (k 1, k 2) (k 1 = 1,..., N 3), (k 1 = 1,...) Of the infrared solid-state imaging device 10 detected by the blinking defect characteristic detection means 40. , N4), the blinking defect characteristic is displayed in a graph.
FIG. 3 is a block diagram for explaining an infrared imaging apparatus having an infrared image correction apparatus according to Embodiment 2 of the present invention. Specifically, as shown in FIG. 3, for each blinking defect candidate (k1, k2), the horizontal axis is set to the number of imaging frames N ′ when setting blinking defect characteristic detection from the outside, and the vertical axis is set. Output values (k, k1, k2) for each frame Fk (k = 1,..., N ′) and a plurality of frames F1, F2,. . . , FN ′, the average value Vave (k1, k2), the standard deviation Vσ (k1, k2), and the average value Vave (k1, k2) of the output of the frame Fl determined to be remarkably large. The value and the threshold value α ′ set by the outside are displayed.

また、外部からの点滅欠陥表示切換設定により、点滅欠陥候補(k1、k2)が順次検出した残りの点滅欠陥候補(k1、k2)に切換り、切換った点滅欠陥候補(k1、k2)に対応した点滅欠陥特性について同様にグラフ表示する。尚、残りの点滅欠陥候補(k1、k2)がすべて切換った場合は最初に表示した点滅欠陥候補(k1、k2)に戻り、上記を繰り返すこととする。また、点滅欠陥候補がない場合には点滅欠陥候補がない旨の表示を行う。   Further, the blinking defect candidate (k1, k2) is switched to the remaining blinking defect candidate (k1, k2) sequentially detected by the blinking defect display switching setting from the outside, and the switched blinking defect candidate (k1, k2) is switched to. The corresponding flashing defect characteristics are displayed in the same graph. When all the remaining blinking defect candidates (k1, k2) are switched, the display returns to the first displayed blinking defect candidate (k1, k2) and the above is repeated. If there is no blinking defect candidate, a display indicating that there is no blinking defect candidate is displayed.

これより、検出した上記点滅欠陥候補(k1、k2)について、点滅出力時のばらつき、及び点滅出力時の出力間隔の観測結果を使用者が容易に確認することができ、かつ当該観測結果から、使用者が外部より点滅間隔を補うフレーム数N及び閾値αを赤外線固体撮像素子10の点滅出力特性に見合い適正に設定することができるため、点滅欠陥検出手段36において精度よく点滅欠陥画素の特定・検出が可能となる。
尚、点滅欠陥候補がない場合、もしくは点滅欠陥候補は特定したが、点滅出力時の出力間隔が得られない場合、即ち点滅出力が1回のみしか行われない場合は、点滅出力時の出力間隔が得るための撮像フレーム数N‘が満足していない可能性があるため、外部より撮像フレーム数N‘を更に大きくして、再度点滅欠陥特性検出を行う必要がある。
Thus, for the detected blinking defect candidate (k1, k2), the user can easily confirm the observation result of the variation at the blinking output and the output interval at the blinking output, and from the observation result, Since the user can set the number of frames N and the threshold value α to compensate for the blinking interval from the outside appropriately according to the blinking output characteristics of the infrared solid-state imaging device 10, the blinking defect detection means 36 can specify the blinking defective pixel with high accuracy. Detection is possible.
If there is no blinking defect candidate or the blinking defect candidate is specified but the output interval at the time of blinking output is not obtained, that is, when the blinking output is performed only once, the output interval at the time of blinking output Therefore, there is a possibility that the number of imaging frames N ′ for obtaining the image quality is not satisfied. Therefore, it is necessary to increase the number of imaging frames N ′ from the outside and detect the blinking defect characteristic again.

実施の形態3.
図4は、この発明の実施の形態3による赤外線画像補正装置14cを有する赤外線撮像装置を説明するためのブロック図である。以下に、赤外線画像補正装置14cを詳述するし、実施の形態3の赤外線撮像装置12を説明する。
この実施の形態は、実施の形態2に、点滅欠陥特性検出可否手段44及び点滅欠陥検出可否手段46を追加したものである。
Embodiment 3 FIG.
FIG. 4 is a block diagram for explaining an infrared imaging device having an infrared image correction device 14c according to Embodiment 3 of the present invention. Hereinafter, the infrared image correction device 14c will be described in detail, and the infrared imaging device 12 of the third embodiment will be described.
In this embodiment, a blinking defect characteristic detection availability unit 44 and a blinking defect detection availability unit 46 are added to the second embodiment.

点滅欠陥特性検出可否手段44では、実施の形態2において点滅欠陥特性検出にあたって赤外線固体撮像素子10からの出力を観測し、精度よく点滅欠陥特性検出可能かどうかを判断するもので、シャッター22を閉じた状態、またはシャッター22を開き、被写体を撮像した状態で外部からの点滅欠陥特性検出の設定時に実施される。まず赤外線固体撮像素子10に対して撮像を行い、赤外線固体撮像素子10からの出力を複数フレームF1,F2,...,FN‘に亘り画像メモリ20に記憶させる。 The blinking defect characteristic detection enable / disable means 44 observes the output from the infrared solid-state imaging device 10 in the blinking defect characteristic detection in the second embodiment, and determines whether or not the blinking defect characteristic can be detected with accuracy, and closes the shutter 22. Or when the shutter 22 is opened and the subject is imaged to detect blinking defect characteristics from the outside. First, the infrared solid-state imaging device 10 is imaged, and the output from the infrared solid-state imaging device 10 is converted into a plurality of frames F1, F2,. . . , FN ′ are stored in the image memory 20.

点滅欠陥特性検出可否手段において、画像メモリ20に記憶した赤外線固体撮像素子10からの出力をフレーム毎に取り込み、各フレームFk(k=1,...,N’)について、赤外線固体撮像素子10の構成する各画素(k1、k2)(k1=1,...,n1)、(k2=1,...,n2)毎の出力値V(k,k1,k2)を記憶し、これらを全てのフレームについて繰り返す。赤外線固体撮像素子10の構成する各画素(k1、k2)について、複数フレームF1,F2,...,FN‘に亘る赤外線固体撮像素子10の出力より複数フレームF1,F2,...,FN‘に亘る撮像素子の出力の平均値Vave(k1,k2)、標準偏差Vσ(k1,k2)を算出し記憶する。   The blinking defect characteristic detection enable / disable means captures the output from the infrared solid-state imaging device 10 stored in the image memory 20 for each frame, and for each frame Fk (k = 1,..., N ′), the infrared solid-state imaging device 10. The output value V (k, k1, k2) for each pixel (k1, k2) (k1 = 1,..., N1), (k2 = 1,. Repeat for all frames. For each pixel (k1, k2) constituting the infrared solid-state imaging device 10, a plurality of frames F1, F2,. . . , FN ′, the plurality of frames F1, F2,. . . , FN ′, the average value Vave (k1, k2) of the output of the image sensor and the standard deviation Vσ (k1, k2) are calculated and stored.

ここで、赤外線固体撮像素子10許容出力の上限、下限値をそれぞれSh(high、以下hと略す),Sl(low、以下lと略す)としたとき、当該Vave(k1,k2)についてVave(k1,k2)>Sh、またはVave(k1,k2)<Sl時には、シャッター22または被写体の設定温度が赤外線固体撮像装置12のダイナミックレンジから外れており、赤外線固体撮像素子10出力が定常的に許容出力範囲を超えており点滅欠陥特性検出の際の誤差要因と考えられるため、当該条件に合致した場合は、点滅欠陥特性検出手段40は実施せず、点滅欠陥特性表示手段42に対して、“赤外線固体撮像素子出力異常”を表示する。   Here, when the upper limit and the lower limit of the allowable output of the infrared solid-state imaging device 10 are Sh (high, hereinafter abbreviated as h) and Sl (low, hereinafter abbreviated as l), Vave (k1, k2) is Vave (k1, k2). When k1, k2)> Sh or Vave (k1, k2) <Sl, the set temperature of the shutter 22 or the subject is out of the dynamic range of the infrared solid-state imaging device 12, and the output of the infrared solid-state imaging device 10 is constantly allowed. Since it exceeds the output range and is considered to be an error factor when the blinking defect characteristic is detected, if the condition is met, the blinking defect characteristic detection unit 40 is not implemented and the blinking defect characteristic display unit 42 is “Infrared solid-state image sensor output error” is displayed.

また、上記標準偏差Vσ(k1,k2)が非点滅状態として定常的に出力するノイズを考慮して予め内部設定された閾値Sに対して大きい場合、赤外線固体撮像素子10撮像中にシャッター22または被写体に温度変化があった等で赤外線固体撮像素子10出力が定常的に出力するノイズに対して当該温度変化による出力変動が支配的でばらついており上記同様誤差要因と考えられるため、当該条件に合致した場合も、点滅欠陥特性検出手段40は実施せず、点滅欠陥特性表示手段42に対して、“赤外線固体撮像素子出力異常”を表示する。   In addition, when the standard deviation Vσ (k1, k2) is larger than a threshold value S set in advance in consideration of noise that is constantly output as a non-flashing state, the shutter 22 or Since the output fluctuation due to the temperature change is dominant and varies with respect to the noise that the output of the infrared solid-state imaging device 10 steadily outputs due to a change in the temperature of the subject, etc. Even if they match, the blinking defect characteristic detection means 40 is not implemented, and “abnormality of infrared solid-state image sensor output” is displayed on the blinking defect characteristic display means 42.

但し、固定欠陥画素については、定常的に輝度異常の出力となるため、上記2条件による判定の対象から除いておく。これより、シャッタ−22または被写体の設定温度が赤外線固体撮像装置12のダイナミックレンジから外れている場合、及び赤外線固体撮像素子10撮像中にシャッター22または被写体に温度変化があった場合の影響による点滅欠陥特性誤検出を未然に防ぎ、かつ使用者に対して赤外線固体撮像素子10出力が異常であり、点滅欠陥特性検出ができないことを促すことができる。   However, the fixed defective pixels are constantly output with abnormal brightness, and are thus excluded from the determination targets based on the above two conditions. As a result, the shutter 22 or the subject blinks due to the influence when the set temperature is out of the dynamic range of the infrared solid-state imaging device 12 and when the shutter 22 or the subject has a temperature change during the imaging of the infrared solid-state imaging device 10. It is possible to prevent erroneous detection of defect characteristics and to prompt the user that the output of the infrared solid-state imaging device 10 is abnormal and the blinking defect characteristics cannot be detected.

点滅欠陥検出可否手段46では、実施の形態2において点滅欠陥検出にあたって赤外線固体撮像素子10からの出力を観測し、精度よく点滅欠陥検出可能かどうかを判断するもので、シャッター22を閉じた状態、またはシャッター22を開き、被写体を撮像した状態で、外部からの点滅欠陥検出の設定時に実施される。まず赤外線固体撮像素子10に対して撮像を行い、赤外線固体撮像素子10からの出力を複数フレームF1,F2,...,FNに亘り画像メモリ20に記憶させる。 The blinking defect detection enable / disable means 46 is for observing the output from the infrared solid-state imaging device 10 in the blinking defect detection in the second embodiment and determining whether or not the blinking defect can be detected accurately. Alternatively, the shutter 22 is opened and an image of the subject is imaged, and this is performed when setting blinking defect detection from the outside. First, the infrared solid-state imaging device 10 is imaged, and the output from the infrared solid-state imaging device 10 is converted into a plurality of frames F1, F2,. . . , FN are stored in the image memory 20.

点滅欠陥特性検出可否手段において、画像メモリ20に記憶した赤外線固体撮像素子10からの出力をフレーム毎に取り込み、各フレームFk(k=1,...,N)について、赤外線固体撮像素子10の構成する各画素(k1、k2)(k1=1,...,n1)、(k2=1,...,n2)毎の出力値V(k,k1,k2)を記憶し、これらを全てのフレームについて繰り返す。赤外線固体撮像素子10の構成する各画素(k1、k2)について、複数フレームF1,F2,...,FNに亘る赤外線固体撮像素子10の出力より複数フレームF1,F2,...,FNに亘る撮像素子の出力の平均値Vave(k1,k2)、標準偏差Vσ(k1,k2)を算出し記憶する。 The blinking defect characteristic detection enable / disable means captures the output from the infrared solid-state imaging device 10 stored in the image memory 20 for each frame, and for each frame Fk (k = 1,..., N), The output value V (k, k1, k2) for each pixel (k1, k2) (k1 = 1,..., N1), (k2 = 1,. Repeat for all frames. For each pixel (k1, k2) constituting the infrared solid-state imaging device 10, a plurality of frames F1, F2,. . . , FN, and the plurality of frames F1, F2,. . . , FN, the average value Vave (k1, k2) of the output of the image sensor and the standard deviation Vσ (k1, k2) are calculated and stored.

ここで、赤外線固体撮像素子10許容出力の上限、下限値をそれぞれSh,Slとしたとき、当該Vave(k1,k2)についてVave(k1,k2)>Sh、またはVave(k1,k2)<Sl時には、シャッター22または被写体の設定温度が赤外線固体撮像装置12のダイナミックレンジから外れており、赤外線固体撮像素子10出力が定常的に許容出力範囲を超えており点滅欠陥検出の際の誤差要因と考えられるため、当該条件に合致した場合は、点滅欠陥検出手段38は実施せず、点滅欠陥特性表示手段42に対して、“赤外線固体撮像素子出力異常”を表示する。 Here, when the upper limit and the lower limit of the allowable output of the infrared solid-state imaging device 10 are Sh and Sl, respectively, Vave (k1, k2)> Sh or Vave (k1, k2) <Sl for the Vave (k1, k2). Sometimes, the set temperature of the shutter 22 or subject is out of the dynamic range of the infrared solid-state imaging device 12, and the output of the infrared solid-state imaging device 10 regularly exceeds the allowable output range, which is considered as an error factor when detecting a blinking defect. Therefore, if the condition is met, the blinking defect detecting means 38 is not executed, and “infrared solid-state image sensor output abnormality” is displayed on the blinking defect characteristic display means 42.

また、上記標準偏差Vσ(k1,k2)が非点滅状態として定常的に出力するノイズを考慮して予め内部設定された閾値Sに対して大きい場合、赤外線固体撮像素子10撮像中にシャッター22または被写体に温度変化があった等で赤外線固体撮像素子10出力が定常的に出力するノイズに対して当該温度変化による出力変動が支配的で上記同様誤差要因と考えられるため、当該条件に合致した場合についても、点滅欠陥検出手段38は実施せず、点滅欠陥特性表示手段42に対して、“赤外線固体撮像素子出力異常”を表示する。 In addition, when the standard deviation Vσ (k1, k2) is larger than a threshold value S set in advance in consideration of noise that is constantly output as a non-flashing state, the shutter 22 or The output fluctuation due to the temperature change is dominant with respect to the noise that the output of the infrared solid-state imaging device 10 outputs steadily due to the temperature change of the subject, etc. In this case, the blinking defect detection means 38 is not implemented, and the blinking defect characteristic display means 42 displays “infrared solid-state image sensor output abnormality”.

但し、固定欠陥画素については、定常的に輝度異常の出力となるため、上記2条件による判定の対象から除いておく。これより、シャッタ−22または被写体の設定温度が赤外線固体撮像装置12のダイナミックレンジから外れている場合、及び赤外線固体撮像素子10撮像中にシャッター22または被写体に温度変化があった場合の影響による点滅欠陥誤検出を未然に防ぎ、かつ使用者に対して赤外線固体撮像素子10出力が異常であり、点滅欠陥検出ができないことを促すことができる。 However, the fixed defective pixels are constantly output with abnormal brightness, and are thus excluded from the determination targets based on the above two conditions. As a result, the shutter 22 or the subject blinks due to the influence when the set temperature is out of the dynamic range of the infrared solid-state imaging device 12 and when the shutter 22 or the subject has a temperature change during the imaging of the infrared solid-state imaging device 10. It is possible to prevent erroneous detection of defects and to prompt the user that the output of the infrared solid-state imaging device 10 is abnormal and that the blinking defect cannot be detected.

実施の形態4.
図5は、この発明の実施の形態1による赤外線画像補正装置14dを有する赤外線撮像装置を説明するためのブロック図である。以下に、赤外線画像補正装置14dを詳述するし、実施の形態1の赤外線撮像装置12を説明する。
この実施の形態は、実施の形態3に、点滅欠陥検出条件記憶手段48、点滅欠陥検出条件内部/外部切換手段50を追加したものである。
Embodiment 4 FIG.
FIG. 5 is a block diagram for explaining an infrared imaging device having the infrared image correction device 14d according to the first embodiment of the present invention. Hereinafter, the infrared image correction device 14d will be described in detail, and the infrared imaging device 12 of the first embodiment will be described.
In this embodiment, a blinking defect detection condition storage unit 48 and a blinking defect detection condition internal / external switching unit 50 are added to the third embodiment.

点滅欠陥検出条件記憶手段48は、外部による点滅欠陥検出設定時に点滅欠陥検出条件として、外部により設定された撮像フレーム数N、点滅欠陥検出のための閾値αを記憶するものである。当該記憶される値は外部による当該設定がある都度、更新記憶される。点滅欠陥検出条件外部/内部切換手段50は、外部による点滅欠陥検出設定時に使用する点滅欠陥検出条件として、外部による点滅欠陥検出外部/内部条件の設定に基づき、外部設定された点滅欠陥検出条件、または当該記憶した点滅欠陥検出条件を選択し使用するものである。 The blinking defect detection condition storage means 48 stores the number of imaging frames N set by the outside and the threshold value α for detecting the blinking defect as the blinking defect detection condition when the blinking defect detection is set by the outside. The stored value is updated and stored whenever the external setting is made. The blinking defect detection condition external / internal switching means 50 is an externally set blinking defect detection condition based on the setting of an external blinking defect detection external / internal condition as a blinking defect detection condition used at the time of external blinking defect detection setting. Alternatively, the stored blinking defect detection condition is selected and used.

これにより、使用者が赤外線撮像装置12を初めて使用するため点滅欠陥特性の検出結果のテレビモニタ34による目視確認が初めてで、点滅欠陥検出設定時に設定する赤外線固体撮像素子10出力に見合った点滅欠陥検出条件設定が初めての場合は、外部による点滅欠陥検出外部の設定に基づき、外部設定を使用する必要があるが、赤外線撮像装置12の点滅欠陥検出条件は電源投入毎にほぼ再現され、当該赤外線固体撮像素子10出力に見合った点滅欠陥検出条件が点滅欠陥検出条件記憶手段48に記憶されているため、次回以降赤外線撮像装置12を使用する場合には、外部による点滅欠陥検出条件の設定が不要となり、使用者の操作の負担を軽減することができる。 Accordingly, since the user uses the infrared imaging device 12 for the first time, the visual confirmation by the television monitor 34 of the detection result of the blinking defect characteristic is the first time, and the blinking defect corresponding to the output of the infrared solid-state imaging device 10 set when the blinking defect detection is set. When the detection condition is set for the first time, it is necessary to use the external setting based on the external setting of the flashing defect detection. However, the flashing defect detection condition of the infrared imaging device 12 is almost reproduced every time the power is turned on. Since the blinking defect detection condition corresponding to the output of the solid-state imaging device 10 is stored in the blinking defect detection condition storage means 48, when the infrared imaging device 12 is used after the next time, it is not necessary to set the blinking defect detection condition by the outside. Thus, the burden on the user's operation can be reduced.

この発明の実施の形態1による赤外線画像補正装置を有する赤外線撮像装置を説明するためのブロック図である。It is a block diagram for demonstrating the infrared imaging device which has the infrared image correction apparatus by Embodiment 1 of this invention. この発明の実施の形態2による赤外線画像補正装置を有する赤外線撮像装置を説明するためのブロック図である。It is a block diagram for demonstrating the infrared imaging device which has the infrared image correction apparatus by Embodiment 2 of this invention. この発明の実施の形態2による点滅欠陥表示手段を説明するための図である。It is a figure for demonstrating the blink defect display means by Embodiment 2 of this invention. この発明の実施の形態3による赤外線画像補正装置を有する赤外線撮像装置を説明するためのブロック図である。It is a block diagram for demonstrating the infrared imaging device which has the infrared image correction apparatus by Embodiment 3 of this invention. この発明の実施の形態4による赤外線画像補正装置を有する赤外線撮像装置を説明するためのブロック図である。It is a block diagram for demonstrating the infrared imaging device which has the infrared image correction apparatus by Embodiment 4 of this invention. 従来技術に係る固体撮像装置を用いる赤外線撮像装置の一例を示すブロック図である。It is a block diagram which shows an example of the infrared imaging device using the solid-state imaging device concerning a prior art.

符号の説明Explanation of symbols

10 赤外線固体撮像素子、12 赤外線撮像装置、14 赤外線画像補正装置、16 レンズ、18 オフセット補正手段、 20 画像メモリ、22 シャッタ、24 感度補正手段、26 感度係数算出、固定欠陥検出手段、28 感度係数欠陥情報記憶手段、30 欠陥補正手段、32 ビデオ信号生成手段、34 テレビモニタ、36 輝度比較器、38 点滅欠陥検出手段、40 点滅欠陥特性検出手段、42 点滅欠陥特性表示手段、44点滅欠陥特性検出可否手段、46 点滅欠陥検出可否判定手段、48 点滅欠陥検出条件記憶手段、50 点滅欠陥検出条件外部/内部切換手段。   DESCRIPTION OF SYMBOLS 10 Infrared solid-state image sensor, 12 Infrared imaging device, 14 Infrared image correction apparatus, 16 Lens, 18 Offset correction means, 20 Image memory, 22 Shutter, 24 Sensitivity correction means, 26 Sensitivity coefficient calculation, Fixed defect detection means, 28 Sensitivity coefficient Defect information storage means, 30 Defect correction means, 32 Video signal generation means, 34 TV monitor, 36 Luminance comparator, 38 Flashing defect detection means, 40 Flashing defect characteristic detection means, 42 Flashing defect characteristic display means, 44 Flashing defect characteristic detection Availability means, 46 blinking defect detection availability judgment means, 48 blinking defect detection condition storage means, 50 blinking defect detection condition external / internal switching means.

Claims (4)

少なくとも赤外線領域を撮像する固体撮像素子の撮像素子出力について、この固体撮像素子から構成される各画素間の出力オフセットを予め記憶する画像メモリと、通常使用時における上記固体撮像素子の撮像素子出力から上記画像メモリに記憶した上記各画素間の出力オフセットを除去するオフセット補正手段と、上記各画素間の感度ばらつきを補正するための感度係数及び固定欠陥である欠陥画素位置情報を検出する感度係数算出固定欠陥検出手段と、点滅欠陥である欠陥画素位置情報を検出する輝度比較器と、上記検出した感度係数及び上記固定欠陥及び点滅欠陥の欠陥画素位置情報を記憶する感度係数欠陥情報記憶手段と、上記オフセット補正後の出力に対し上記感度係数を用いて上記各画素間の感度ばらつきを補正する感度補正手段と、この感度補正後の出力に対し、上記固定欠陥及び点滅欠陥の欠陥画素位置情報により欠陥画素を補正する欠陥補正手段と、この欠陥画素の補正後の出力をビデオ信号として出力するビデオ信号生成手段とを備えた赤外線画像補正装置において、
上記固体撮像素子より出力される撮像素子出力を、複数の撮像フレームに亘り上記画像メモリに記憶し、上記固体撮像素子から構成される各画素について、これら複数の撮像フレームに亘る各撮像素子の出力値の平均値、および標準偏差値を算出し、各撮像フレーム毎の夫々の各撮像素子の出力値から平均値を引いた絶対値を算出し、この絶対値が上記標準偏差値の所定の定数倍を超える画素については、点滅欠陥画素として検出する様にした点滅欠陥検出手段を備えることを特徴とする赤外線画像補正装置。
For an image sensor output of a solid-state image sensor that captures at least an infrared region, an image memory that stores in advance an output offset between each pixel composed of the solid-state image sensor, and an image sensor output of the solid-state image sensor during normal use Offset correction means for removing the output offset between the pixels stored in the image memory, sensitivity coefficient for correcting sensitivity variations between the pixels, and sensitivity coefficient calculation for detecting defective pixel position information that is a fixed defect Fixed defect detection means, a luminance comparator for detecting defective pixel position information that is a blinking defect, sensitivity coefficient defect information storage means for storing the detected sensitivity coefficient and defective pixel position information of the fixed defect and blinking defect, A sensitivity correction method for correcting variations in sensitivity among the pixels using the sensitivity coefficient with respect to the output after the offset correction. And a defect correction means for correcting the defective pixel based on the defective pixel position information of the fixed defect and the blinking defect with respect to the output after the sensitivity correction, and a video signal generation for outputting the output after the correction of the defective pixel as a video signal. And an infrared image correction apparatus comprising:
The imaging device output output from the solid-state imaging device is stored in the image memory over a plurality of imaging frames, and for each pixel configured from the solid-state imaging device, the output of each imaging device over the plurality of imaging frames An average value and a standard deviation value are calculated, and an absolute value obtained by subtracting the average value from an output value of each imaging element for each imaging frame is calculated, and this absolute value is a predetermined constant of the standard deviation value. An infrared image correction apparatus comprising: a blinking defect detection unit configured to detect a pixel exceeding twice as a blinking defective pixel.
更に、上記固体撮像素子より出力される点滅欠陥出力特性を検出する点滅欠陥特性検出手段と、この点滅欠陥特性検出情報を表示する点滅欠陥特性表示手段とを備え、
使用者がモニタ装置にて目視観測し、観測される出力特性に基づいて点滅欠陥画素の特定検出のために設定する撮像するフレーム数の値及び定数倍する定数値を、適正に設定することにより、点滅欠陥画素を精度よく検出する様にしたことを特徴とする請求項1記載の赤外線画像補正装置。
Furthermore, a blinking defect characteristic detecting means for detecting a blinking defect output characteristic output from the solid-state imaging device, and a blinking defect characteristic display means for displaying the blinking defect characteristic detection information are provided.
By appropriately setting the value of the number of frames to be imaged and the constant value to be multiplied by a constant set by the user visually observing with the monitor device and setting for specific detection of the blinking defective pixel based on the observed output characteristics 2. The infrared image correction apparatus according to claim 1, wherein a blinking defective pixel is detected with high accuracy.
更に、上記固体撮像素子より出力される撮像素子出力値を観測し、点滅欠陥特性検出可否を判断する点滅欠陥特性検出可否手段を備え、
異常と判断される場合には、上記モニタ装置にて赤外線撮像出力異常を表示することにより、使用者に対して赤外線撮像出力異常を促すと共に、点滅欠陥検出及び点滅欠陥出力特性の検出を行わないことにより、未然に上記撮像素子出力の異常の影響による点滅欠陥検出または点滅欠陥出力特性の誤検出を防止する様にしたことを特徴とする請求項1または請求項2記載の赤外線画像補正装置。
Furthermore, the image sensor output value output from the solid-state image sensor is observed, and a blinking defect characteristic detection availability determining unit for determining whether or not the blinking defect characteristic can be detected is provided.
When the abnormality is determined, the infrared imaging output abnormality is displayed on the monitor device to prompt the user to detect the infrared imaging output abnormality, and the blinking defect detection and the blinking defect output characteristic are not detected. 3. The infrared image correction apparatus according to claim 1, wherein the detection of the blinking defect or the erroneous detection of the blinking defect output characteristic due to the influence of the abnormality of the imaging element output is prevented beforehand.
更に、外部による点滅欠陥検出設定時に、この点滅欠陥検出条件を記憶する点滅欠陥検出条件記憶手段と、点滅欠陥検出設定時に使用する点滅欠陥検出条件として、外部により設定された点滅欠陥検出条件、または上記点滅欠陥検出条件記憶手段にて記憶した点滅欠陥検出条件のいづれかを選択する点滅欠陥検出条件外部/内部切換手段を備え、
上記点滅欠陥検出時の点滅欠陥検出条件について、使用者がその出力に基づいて適正に設定した後、上記赤外線画像補正装置が内部記憶することにより、次回以降、赤外線画像補正装置使用時に使用者が点滅欠陥検出条件の設定を不要とすることにより、上記使用者の操作の負担を軽減する様にしたことを特徴とする請求項3記載の赤外線画像補正装置。
Further, when the defect detection setting for flashing is set externally, the flashing defect detection condition storage means for storing the flashing defect detection condition, and the flashing defect detection condition set by the outside as the flashing defect detection condition used when setting the flashing defect detection, or A blinking defect detection condition external / internal switching means for selecting one of the blinking defect detection conditions stored in the blinking defect detection condition storage means;
About the blinking defect detection condition at the time of the above-mentioned blinking defect detection, after the user sets appropriately based on the output, the infrared image correction device stores it internally so that the user can use the infrared image correction device from the next time onward. 4. The infrared image correction apparatus according to claim 3, wherein the user's operation burden is reduced by making the setting of the blinking defect detection condition unnecessary.
JP2004067291A 2004-03-10 2004-03-10 Infrared image correction device Expired - Fee Related JP4305225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067291A JP4305225B2 (en) 2004-03-10 2004-03-10 Infrared image correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067291A JP4305225B2 (en) 2004-03-10 2004-03-10 Infrared image correction device

Publications (2)

Publication Number Publication Date
JP2005260453A true JP2005260453A (en) 2005-09-22
JP4305225B2 JP4305225B2 (en) 2009-07-29

Family

ID=35085775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067291A Expired - Fee Related JP4305225B2 (en) 2004-03-10 2004-03-10 Infrared image correction device

Country Status (1)

Country Link
JP (1) JP4305225B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074644A (en) * 2008-09-19 2010-04-02 Konica Minolta Medical & Graphic Inc Abnormal pixel determination method, defective pixel determination method based on abnormal pixel determination, radiograph detector, abnormal pixel determination system and defective pixel determination system
JP2010074240A (en) * 2008-09-16 2010-04-02 Canon Inc Image capturing apparatus and defective pixel detection method
JP2011040893A (en) * 2009-08-07 2011-02-24 Canon Inc Device for correcting defective pixel data, imaging device, and method of correcting defective pixel data
JP2011066835A (en) * 2009-09-18 2011-03-31 Sony Corp Imaging apparatus and method of the same, electronic equipment, and program
JP2013247416A (en) * 2012-05-24 2013-12-09 Mitsubishi Electric Corp Defect detection method, image correction method, and infrared imaging device
US20140132279A1 (en) * 2012-11-12 2014-05-15 Kabushiki Kaisha Toshiba Apparatus and method for inspecting infrared solid-state image sensor
KR101450258B1 (en) 2014-06-18 2014-10-13 엘아이지넥스원 주식회사 Method for correcting time variant defect of infrared detector
KR101450259B1 (en) 2014-06-18 2014-10-13 엘아이지넥스원 주식회사 Apparatus for correcting time variant defect of infrared detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351963A (en) * 1998-06-11 1999-12-24 Fujitsu Ltd Infrared imaging apparatus
JP2001008107A (en) * 1999-06-18 2001-01-12 Canon Inc Image processor, image processing system, its method, and storage medium
JP2003298949A (en) * 2002-04-05 2003-10-17 Mitsubishi Electric Corp Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351963A (en) * 1998-06-11 1999-12-24 Fujitsu Ltd Infrared imaging apparatus
JP2001008107A (en) * 1999-06-18 2001-01-12 Canon Inc Image processor, image processing system, its method, and storage medium
JP2003298949A (en) * 2002-04-05 2003-10-17 Mitsubishi Electric Corp Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074240A (en) * 2008-09-16 2010-04-02 Canon Inc Image capturing apparatus and defective pixel detection method
JP2010074644A (en) * 2008-09-19 2010-04-02 Konica Minolta Medical & Graphic Inc Abnormal pixel determination method, defective pixel determination method based on abnormal pixel determination, radiograph detector, abnormal pixel determination system and defective pixel determination system
JP2011040893A (en) * 2009-08-07 2011-02-24 Canon Inc Device for correcting defective pixel data, imaging device, and method of correcting defective pixel data
US8754964B2 (en) 2009-08-07 2014-06-17 Canon Kabushiki Kaisha Defective pixel data correcting apparatus, image capturing apparatus, and method for correcting defective pixel data
JP2011066835A (en) * 2009-09-18 2011-03-31 Sony Corp Imaging apparatus and method of the same, electronic equipment, and program
CN102025895A (en) * 2009-09-18 2011-04-20 索尼公司 Imaging apparatus and method, electronic device, and program
JP2013247416A (en) * 2012-05-24 2013-12-09 Mitsubishi Electric Corp Defect detection method, image correction method, and infrared imaging device
US20140132279A1 (en) * 2012-11-12 2014-05-15 Kabushiki Kaisha Toshiba Apparatus and method for inspecting infrared solid-state image sensor
US9404963B2 (en) * 2012-11-12 2016-08-02 Kabushiki Kaisha Toshiba Apparatus and method for inspecting infrared solid-state image sensor
KR101450258B1 (en) 2014-06-18 2014-10-13 엘아이지넥스원 주식회사 Method for correcting time variant defect of infrared detector
KR101450259B1 (en) 2014-06-18 2014-10-13 엘아이지넥스원 주식회사 Apparatus for correcting time variant defect of infrared detector

Also Published As

Publication number Publication date
JP4305225B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4995193B2 (en) X-ray diagnostic imaging equipment
JP3587433B2 (en) Pixel defect detection device for solid-state imaging device
KR101656173B1 (en) Method and apparatus for detecting faulty pixel in thermal camera
US8804011B2 (en) Imaging device
JP3995511B2 (en) Flashing defect detection method, image correction method, and solid-state imaging device
US8648941B2 (en) Image processor, method of controlling the same, and storage medium
US8026964B2 (en) Method and apparatus for correcting defective imager pixels
JP4305225B2 (en) Infrared image correction device
JP4544027B2 (en) Solid-state imaging device and blinking defect detection method
KR100874670B1 (en) Image Processor, Image Processing Unit, and Defective Pixel Correction Methods
JP4288954B2 (en) Defect detection circuit and defect detection method
JP5970960B2 (en) Defect detection method, image correction method, and infrared imaging apparatus
WO2014010375A1 (en) Image pick-up device
JP2008311834A (en) Defective pixel correcting device and method
JP2006166194A (en) Pixel defect detection circuit and pixel defect detection method
US20100231763A1 (en) Defective pixel detector for a digital video camera and associated methods
JP2008283620A (en) Solid-state imaging apparatus
JP2006148748A (en) Pixel defect correcting device and pixel defect correcting method
JP2000041187A (en) Pixel defect correction device
JP2007243778A (en) Imaging apparatus
JP2013115547A (en) Imaging apparatus and control method of the same
JP2015061137A (en) Imaging apparatus, control method of the same, and program
JP2002112118A (en) Defective pixel detector for solid-state image pickup element
JP2004120621A (en) Pixel defect detecting apparatus of imaging element, its detecting method, and imaging apparatus for microscope
US20180184029A1 (en) Image capturing apparatus and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R151 Written notification of patent or utility model registration

Ref document number: 4305225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees