[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005254054A - Method and system for anaerobic digestion of organic sludge - Google Patents

Method and system for anaerobic digestion of organic sludge Download PDF

Info

Publication number
JP2005254054A
JP2005254054A JP2004065745A JP2004065745A JP2005254054A JP 2005254054 A JP2005254054 A JP 2005254054A JP 2004065745 A JP2004065745 A JP 2004065745A JP 2004065745 A JP2004065745 A JP 2004065745A JP 2005254054 A JP2005254054 A JP 2005254054A
Authority
JP
Japan
Prior art keywords
sludge
digestion
digested
digester
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065745A
Other languages
Japanese (ja)
Other versions
JP3808475B2 (en
Inventor
Masakazu Sawai
正和 澤井
Shuichiro Hatakeyama
修一郎 畠山
Takayoshi Morooka
隆良 諸岡
Masaki Kanzawa
正樹 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004065745A priority Critical patent/JP3808475B2/en
Publication of JP2005254054A publication Critical patent/JP2005254054A/en
Application granted granted Critical
Publication of JP3808475B2 publication Critical patent/JP3808475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic digestion method for organic sludge which enables efficiency improvement of operations from a digestion process to a dehydration process, such as improvement of a digestion rate and reduction of the amount of sludge subjected to final treatment in comparison with conventional anaerobic digestion methods, without increasing water treatment load mainly in a sewage treatment plant. <P>SOLUTION: In addition to a process for discharging a part of digested sludge in a digestion tank 2 and dehydrating it with a centrifugal dehydrator 4 to discard it, a series of processes for pulling out a part of the digested sludge from the digestion tank 2 to concentrate the sludge with a centrifugal thickener 5 and heating the concentrated sludge in a heating tower 6 to circulate the sludge to the digestion tank 2 is installed, and the sludge is anaerobically digested at high temperature and high concentration in the digestion tank 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば下水処理場から排出される生汚泥や生物性汚泥並びに食品工場や化学工場から排出される有機性高濃度汚泥など(以下、有機性汚泥という)の嫌気性菌による嫌気性消化方法と同消化システムに関し、とくに高温高濃度で消化する方法と同消化システムに関する。   The present invention provides anaerobic digestion by anaerobic bacteria such as raw sludge and biological sludge discharged from sewage treatment plants and organic high-concentration sludge discharged from food factories and chemical factories (hereinafter referred to as organic sludge). The present invention relates to a method and the same digestion system, and more particularly, to a method for digesting at a high temperature and high concentration and the same digestion system.

この種の先行技術に、例えば、加温塔内で消化汚泥と濃縮汚泥とに加熱空気を接触させて同汚泥を加温し、これらの加温汚泥を高温消化槽へ供給して嫌気性消化する方法で、前記加温塔から排出される空気をガス熱交換器または消化ガス燃焼炉の少なくとも一方へ供給し、前記加熱空気として熱回収し、前記加温塔へ供給する有機性汚泥の消化方法が提案されている(例えば、特許文献1参照)。   In this type of prior art, for example, heated sludge is brought into contact with digested sludge and concentrated sludge in a heating tower to heat the sludge, and these heated sludge is supplied to a high-temperature digester and subjected to anaerobic digestion. In this method, the air discharged from the heating tower is supplied to at least one of a gas heat exchanger or a digestion gas combustion furnace, the heat is recovered as the heated air, and the organic sludge is supplied to the heating tower. A method has been proposed (see, for example, Patent Document 1).

その他、有機性固形分を含有した廃水を沈殿槽で沈殿分離したのち、その有機性固形分の少ない上澄み液を嫌気性処理装置にて嫌気性処理するとともに、前記沈殿槽で沈殿分離した有機性固形物を含む沈殿固形物濃縮液を、高温で可溶化した後、この可溶化した可溶化処理液を嫌気性処理装置に導入する高濃度有機性廃水の嫌気性消化方法が提案されている(例えば、特許文献2参照)。
特開平11−319895号公報(段落番号0005、図1〜図3) 特開平9−1179号公報(段落番号0014、0021、図1)
In addition, after separating and separating waste water containing organic solids in a sedimentation tank, the supernatant liquid with a small amount of organic solids is anaerobically treated with an anaerobic treatment device, An anaerobic digestion method for high-concentration organic wastewater has been proposed in which a precipitated solid concentrate containing solids is solubilized at a high temperature, and then the solubilized solubilization treatment liquid is introduced into an anaerobic treatment apparatus ( For example, see Patent Document 2).
JP-A-11-319895 (paragraph number 0005, FIGS. 1 to 3) Japanese Patent Laid-Open No. 9-1179 (paragraph numbers 0014 and 0021, FIG. 1)

しかしながら、上記した先行技術の消化方法では、いずれも以下のような点で解決すべき課題が残されている。すなわち、
前者の場合、汚泥に加熱空気を直接に接触させるので、排気の際に脱臭処理を行う必要がある。また、加温過程では、消化槽からの消化汚泥は濃縮されずに加温されるので、かなりの熱量を必要とする。
However, the above prior art digestion methods still have problems to be solved in the following points. That is,
In the former case, since heated air is brought into direct contact with the sludge, it is necessary to perform a deodorizing process when exhausting. In the heating process, the digested sludge from the digester is heated without being concentrated, and therefore requires a considerable amount of heat.

後者の場合、沈殿槽で上澄み液と沈殿固形物液とに分離し、上澄み液は嫌気性消化処理を行い、沈殿固形物液は高温条件で可溶化した後に嫌気性消化を行うから、消化工程が複雑で、消化処理に多くの日数がかかる。   In the latter case, the supernatant is separated into the supernatant liquid and the precipitated solid liquid in the precipitation tank, the supernatant liquid is subjected to anaerobic digestion, and the precipitated solid liquid is subjected to anaerobic digestion after being solubilized under high temperature conditions. Is complicated and takes many days to digest.

本発明は上述の点に鑑みなされたもので、従来の嫌気性消化方法に比べて消化率を向上し、最終処理すべき汚泥の量を減らせるなど、主に下水処理場において水処理の負荷を増やさずに、消化工程から脱水工程にかけての作業の効率化を図れる有機性汚泥の、高温高濃度嫌気性消化方法と嫌気性消化システムを提供することを目的としている。   The present invention has been made in view of the above-mentioned points, and the load of water treatment mainly in a sewage treatment plant, such as improving the digestibility compared with conventional anaerobic digestion methods and reducing the amount of sludge to be finally treated. The purpose is to provide a high-temperature, high-concentration anaerobic digestion method and an anaerobic digestion system for organic sludge that can improve the efficiency of the work from the digestion process to the dehydration process without increasing the amount.

上記の目的を達成するために本発明にかかる嫌気性消化方法は、有機性汚泥を消化槽に投入しメタン醗酵により嫌気性消化する方法において、前記消化槽内の消化汚泥の一部を引き抜き脱水処理して廃棄する工程とは別に、前記消化槽から消化汚泥の一部を抜き出して濃縮し、この濃縮汚泥を加温して前記消化槽に循環する一連の工程を設けて前記消化槽にて高温・高濃度で嫌気性消化することを特徴としている。   In order to achieve the above object, the anaerobic digestion method according to the present invention is a method in which organic sludge is introduced into a digestion tank and anaerobic digestion is performed by methane fermentation. Separately from the step of processing and discarding, a part of the digested sludge is extracted from the digestion tank and concentrated, and the digestion tank is provided with a series of steps for heating and circulating the concentrated sludge to the digestion tank. It is characterized by anaerobic digestion at high temperature and high concentration.

従来はあらかじめ汚泥を加温して消化槽に投入していたが、本発明の有機性汚泥の嫌気性消化方法によれば、消化槽内に常温で汚泥を投入した後に、消化槽内の消化汚泥の一部を抜き出し、濃縮つまり水分を除去してから加温し、加温・高濃度汚泥を再び消化槽に循環するので、消化槽内の汚泥の温度を、高温メタン生成菌による嫌気性消化に必要な53℃前後まで容易に加温できるとともに、汚泥の濃度もかなり高くなる。したがって、消化速度が従来の中温(40℃前後)メタン生成菌による嫌気性消化の2倍程度まで向上し作業効率が大幅にアップする。   Conventionally, sludge is heated in advance and put into the digestion tank. However, according to the organic sludge anaerobic digestion method of the present invention, the sludge is put into the digestion tank at room temperature and then digested in the digestion tank. A part of the sludge is extracted, concentrated, that is, water is removed and then heated, and the heated / high-concentration sludge is circulated to the digester again, so the temperature of the sludge in the digester is anaerobic due to high-temperature methane-producing bacteria It can be easily heated up to around 53 ° C. required for digestion, and the concentration of sludge becomes considerably high. Therefore, the digestion rate is improved to about twice that of conventional anaerobic digestion with medium temperature (around 40 ° C.) methanogen, and the working efficiency is greatly improved.

請求項2に記載のように、前記消化槽には無加温のある固形濃度(例えば3%)の濃縮汚泥を投入し、消化槽内の消化汚泥の一部を抜き出して濃縮機により前記固形濃度より数%増加するように例えば固形濃度5%まで濃縮した後、加温装置により濃縮した汚泥を100℃近く(例えば90℃)まで加温して前記消化槽に循環させるとともに、前記消化槽内に循環させる汚泥の量を、同汚泥の温度が高温メタン菌に嫌気性消化が可能な温度に保たれるよう例えば53℃前後に決定することができる。   As described in claim 2, concentrated digested sludge having a non-heated solid concentration (for example, 3%) is introduced into the digestion tank, a part of the digested sludge in the digestion tank is extracted, and the solids are extracted by a concentrator. After concentrating to a solid concentration of, for example, 5% so as to increase by several percent from the concentration, the sludge concentrated by a heating device is heated to near 100 ° C. (eg, 90 ° C.) and circulated through the digester, and the digester The amount of sludge circulated inside can be determined, for example, at around 53 ° C. so that the temperature of the sludge is maintained at a temperature at which high-temperature methane bacteria can be anaerobically digested.

このようにすれば、従来は投入される汚泥の固形濃度が例えば3%前後であれば、メタン醗酵にて有機物が消化され、消化槽から引き抜かれる汚泥の有機物濃度が2%前後と低かったが、消化汚泥の一部を抜き出し、濃縮して例えば90℃前後まで加温して循環させることで、消化槽内の汚泥は高濃度に濃縮かつ高温になるので、高濃度・高温度で消化され、消化速度が大幅に向上し、また引き抜かれる消化汚泥の固形濃度も4%近くまで上昇するため、脱水効率が非常に高くなって作業効率がアップする。   In this way, conventionally, if the solid concentration of the sludge to be introduced is about 3%, for example, the organic matter is digested by methane fermentation, and the organic matter concentration of the sludge drawn out from the digester is as low as about 2%. By extracting a part of the digested sludge, concentrating it, heating it to around 90 ° C and circulating it, the sludge in the digestion tank is concentrated to a high concentration and becomes high temperature, so it is digested at a high concentration and high temperature. The digestion rate is greatly improved, and the solid concentration of the digested sludge to be extracted is increased to nearly 4%, so that the dehydration efficiency becomes very high and the working efficiency is improved.

請求項3に記載のように、前記加温装置で必要な熱量は前記消化槽で発生する消化ガスの燃焼熱により発生させられる。   As described in claim 3, the amount of heat necessary for the heating device is generated by the combustion heat of digestion gas generated in the digester.

このようにすれば、補助燃料が不要で、経済的である。   In this way, auxiliary fuel is unnecessary and economical.

請求項4記載の有機性汚泥の嫌気性消化システムは、有機性汚泥を消化槽でメタン醗酵により嫌気性消化し、消化した汚泥を引き抜いて遠心脱水機により脱水した汚泥ケーキを焼却するなどして廃棄する消化システムにおいて、前記消化槽の下流側に消化汚泥の一部を加温するための加温塔を設け、この加温塔と前記消化槽との間に前記消化汚泥を濃縮するための濃縮機を介設するとともに、前記加温塔で加温した汚泥を前記消化槽へ循環するための循環路を設けたことを特徴としている。   The organic sludge anaerobic digestion system according to claim 4 is an anaerobic digestion of organic sludge by methane fermentation in a digestion tank, and the digested sludge is pulled out and the sludge cake dehydrated by a centrifugal dehydrator is incinerated. In the digestion system to be discarded, a heating tower for heating a part of the digested sludge is provided on the downstream side of the digestion tank, and the digested sludge is concentrated between the heating tower and the digestion tank. A concentrator is interposed, and a circulation path for circulating the sludge heated in the heating tower to the digester is provided.

上記構成を有する本発明の消化システムによれば、請求項1に記載の消化方法をスムーズに実施できる。   According to the digestion system of this invention which has the said structure, the digestion method of Claim 1 can be implemented smoothly.

請求項5に記載のように、前記消化槽で発生する消化ガスの燃焼炉と、この燃焼熱により過熱水蒸気を発生する熱交換器とを設けることにより、前記加温塔内で濃縮した消化汚泥を過熱水蒸気にて直接接触させて加温し、凝縮させず水蒸気の状態で熱交換器に戻すことができる。   The digested sludge concentrated in the heating tower by providing a digestion gas combustion furnace generated in the digestion tank and a heat exchanger that generates superheated steam by the combustion heat as described in claim 5 Can be heated by direct contact with superheated steam and returned to the heat exchanger in the form of steam without condensation.

このようにすれば、過熱水蒸気を熱媒体とし、濃縮消化汚泥に直接接触で顕熱を与えて水分は与えないので、高効率の加温ができ、かつ汚泥の濃度を低下させることもない。また、汚泥を加温する水蒸気は熱交換器と加温塔との閉回路を循環するので、脱臭する必要がない。   In this way, superheated steam is used as a heat medium, and sensible heat is given to the concentrated digested sludge by direct contact and moisture is not given. Therefore, highly efficient heating can be achieved and the sludge concentration is not lowered. Moreover, since the water vapor | steam which heats sludge circulates through the closed circuit of a heat exchanger and a heating tower, it is not necessary to deodorize.

請求項6に記載のように、前記消化槽内の消化汚泥の一部を引き抜き脱水処理するための前記遠心脱水機を前記濃縮機と兼用することができる。   As described in claim 6, the centrifugal dehydrator for extracting and dewatering part of the digested sludge in the digester can also be used as the concentrator.

請求項6記載の嫌気性消化システムによれば、従来から使用している遠心脱水機を濃縮機としても使用できるため、設備費が低減される。具体的には、例えば昼間は凝集剤を引き抜き汚泥の固形物量の1%程度投入し、遠心脱水して消化汚泥を廃棄処理し、夜間には循環させる汚泥を凝集剤を使わずに遠心脱水機で濃縮し、加温塔で加温して消化槽へ戻す。なお、濃縮後に生じる分離液に固形物量の0.5%程度の凝集剤を投入し、水処理する。   According to the anaerobic digestion system of the sixth aspect, since the centrifugal dehydrator that has been used conventionally can be used as a concentrator, the equipment cost is reduced. Specifically, for example, the flocculant is drawn out during the day, and about 1% of the solid content of the sludge is thrown in. Centrifugal dehydration is performed to dispose of the digested sludge. Concentrate with, warm in a heating tower and return to digester. In addition, a flocculant having a solid content of about 0.5% is added to the separation liquid generated after concentration, and water treatment is performed.

請求項7に記載のように、前記濃縮機にて消化汚泥の一部を濃縮して分離液を除去することにより、前記消化槽に汚泥の一時貯留槽としての機能をもたせることができる。   As described in claim 7, by concentrating a part of the digested sludge with the concentrator and removing the separation liquid, the digester can have a function as a temporary storage tank for sludge.

このようにすれば、前記消化槽を汚泥の一時貯留槽として使用することができる。   If it does in this way, the said digestion tank can be used as a temporary storage tank of sludge.

本発明にかかる消化方法および消化システムは上記の構成からなるので、下記のような優れた効果を有する。すなわち、
1) 高温度・高濃度で汚泥を嫌気性消化するので、消化速度が従来の中温(40℃前後)メタン生成菌による嫌気性消化の2倍程度まで向上し、消化率が従来の40%前後から60%以上になるため、最終処分すべき汚泥の量が大幅に減少する。
Since the digestion method and digestion system according to the present invention are configured as described above, they have the following excellent effects. That is,
1) Because sludge is anaerobically digested at high temperature and high concentration, digestion rate is improved to about twice that of conventional anaerobic digestion with medium temperature (around 40 ° C) methanogen, and digestibility is around 40% Therefore, the amount of sludge to be finally disposed of is greatly reduced.

2) 消化槽から抜き出した汚泥を高温を維持しながら直接濃縮機に供給することで、無薬注での濃縮が可能になる。   2) By supplying the sludge extracted from the digester directly to the concentrator while maintaining a high temperature, concentration without chemical injection becomes possible.

3) 上記2)の濃縮ろ液中には多少のSS分が流出するが、SS回収装置を付帯させることで、水処理に返送させる固形物量を減少させることができる。また、SS回収装置に少量の凝集剤を添加することで、SS分を効率的に回収できる。   3) Although some SS flows out in the concentrated filtrate of 2) above, the amount of solid matter returned to the water treatment can be reduced by attaching an SS recovery device. Moreover, SS can be efficiently recovered by adding a small amount of an aggregating agent to the SS recovery device.

4) 汚泥循環ラインにおいて汚泥を濃縮(減量化)してから加温するので、加温に必要な熱量が少なくて済み経済的である。   4) Since sludge is concentrated (reduced) in the sludge circulation line and then heated, it requires less heat and is economical.

5) 汚泥循環ラインにおいて濃縮機により汚泥の一部を濃縮して分離液を除去することにより、消化槽に汚泥の一時貯留槽としての機能をもたせられるので、脱水機以降の汚泥処理工程において予備機を設置しなくてもプラントの安定した運転が容易になる。   5) In the sludge circulation line, a part of the sludge is concentrated by a concentrator and the separated liquid is removed, so that the digester can function as a temporary sludge storage tank. Even if no machine is installed, stable operation of the plant becomes easy.

6) 消化槽を高温だけでなく高濃度に維持できるので、1槽当たりの汚泥処理能力を高められ、年々の汚泥発生量の増加に設備の増設なしに対応することも可能である。   6) Since the digestion tank can be maintained at a high concentration as well as high temperature, the sludge treatment capacity per tank can be increased, and it is possible to cope with the increase in the amount of sludge generation year by year without the addition of facilities.

以下、本発明にかかる有機性汚泥の嫌気性消化方法と消化システムについて最良の実施形態を図面に基づいて説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiment of an organic sludge anaerobic digestion method and digestion system according to the present invention will be described with reference to the drawings.

図1は本発明にかかる有機性汚泥の嫌気性消化システムの第1実施例を示すフローシートである。図に示すように、本例の消化システム1は消化槽2を備えており、この消化槽2の上流側には、消化処理するための汚泥を受け入れる汚泥受入れラインAが、また下流側に、消化槽2から消化汚泥を引き抜いて処理する汚泥引抜きラインBが接続される。   FIG. 1 is a flow sheet showing a first embodiment of an organic sludge anaerobic digestion system according to the present invention. As shown in the figure, the digestion system 1 of this example includes a digestion tank 2, and on the upstream side of the digestion tank 2, a sludge receiving line A for receiving sludge for digestion treatment is provided on the downstream side. The sludge extraction line B for extracting and treating the digested sludge from the digester 2 is connected.

汚泥受入れラインAには、水処理工程で分離された汚泥を貯留する汚泥貯留槽3が設けられ、ここで濃度3%、常温(例えば10℃)の汚泥が消化槽2へポンプで送られて投入される。そして、汚泥引抜きラインBには、遠心脱水機4が設けられており、定期的に消化槽2から定量ずつ引き抜いた消化汚泥を凝集剤を1重量%ずつ添加し、脱水する。分離液は水処理工程に戻され、脱水された汚泥ケーキ(脱水ケーキ)は本例では焼却して廃棄
処理される。
The sludge receiving line A is provided with a sludge storage tank 3 for storing the sludge separated in the water treatment process. Here, sludge having a concentration of 3% and room temperature (for example, 10 ° C.) is pumped to the digestion tank 2. It is thrown. In the sludge extraction line B, a centrifugal dehydrator 4 is provided, and the digested sludge periodically extracted from the digestion tank 2 is added by 1% by weight of the flocculant and dehydrated. The separated liquid is returned to the water treatment step, and the dewatered sludge cake (dehydrated cake) is incinerated in this example and discarded.

上記ラインA・Bとは別に、本発明の特徴部分である、消化槽2内の汚泥を濃縮して加温することにより高温・高濃縮に保つための汚泥循環ラインCを設けている。この汚泥循環ラインCは、消化槽2を含み、遠心濃縮機5および加温塔6をこの順に循環路7にて一連に接続して構成されている。また、加温塔6には、汚泥の加温に必要な熱量を供給するために熱量供給ラインDが接続されている。本例では、消化槽2で発生する消化ガス(主にメタンガス)を燃焼して間接的に水蒸気を発生させ、この水蒸気を熱媒体として加温塔6に導入し、消化汚泥と直接接触させて熱交換する構成とし、補助燃料を用いずに消化汚泥を高温(90℃)にする。   Apart from the lines A and B, a sludge circulation line C for maintaining the high temperature and high concentration by concentrating and heating the sludge in the digestion tank 2, which is a characteristic part of the present invention, is provided. This sludge circulation line C includes a digester 2 and is configured by connecting a centrifugal concentrator 5 and a heating tower 6 in series in this order through a circulation path 7. In addition, a heat supply line D is connected to the heating tower 6 in order to supply heat necessary for heating sludge. In this example, the digestion gas (mainly methane gas) generated in the digestion tank 2 is burned to indirectly generate water vapor, and this water vapor is introduced into the heating tower 6 as a heat medium and directly brought into contact with the digested sludge. Heat exchange is used, and digested sludge is heated to a high temperature (90 ° C.) without using auxiliary fuel.

熱量供給ラインDは熱交換器8を備え、この熱交換器8で発生させる過熱蒸気を加温塔6へ供給する蒸気供給管10aと加温塔6からの過熱蒸気を熱交換器8に戻す蒸気戻し管10bとからなる閉回路で、両者間を交互に接続する。熱交換器8には消化ガス燃焼炉9が併設され、消化槽2から排出される消化ガスが消化ガス供給管11により消化ガス燃焼炉9に供給され、同時に押込送風機(図示せず)から空気供給管14により燃焼用空気が供給される。また、熱交換器8から燃焼排ガスが排出されるが、この排出路12は煙突13に接続される。   The heat quantity supply line D includes a heat exchanger 8, and the superheated steam generated from the heat exchanger 8 is supplied to the heating tower 6 and the superheated steam from the heating tower 6 is returned to the heat exchanger 8. A closed circuit composed of the steam return pipe 10b connects the two alternately. The heat exchanger 8 is provided with a digestion gas combustion furnace 9, and digestion gas discharged from the digestion tank 2 is supplied to the digestion gas combustion furnace 9 through a digestion gas supply pipe 11, and at the same time, air is supplied from a forced blower (not shown). Combustion air is supplied through the supply pipe 14. Further, combustion exhaust gas is discharged from the heat exchanger 8, and the discharge path 12 is connected to the chimney 13.

上記のようにして本実施例の有機性汚泥の消化システム1が構成されるが、以下にその使用態様を消化方法と併せて説明する。   The organic sludge digestion system 1 of the present embodiment is configured as described above, and the use mode thereof will be described below together with the digestion method.

図1に示すように、本例の消化システム1では、汚泥受入れラインAにおいて汚泥貯留槽3から濃縮汚泥(固形濃度3%、有機物濃度80%、10℃)が43.5m3/hのペースで連続的に消化槽2へ投入される。一方、消化槽2内では53℃前後の高温でかつ固形濃度3.7%の高濃度で、高温メタン菌により嫌気性消化される。そして、汚泥引抜きラインBにおいて消化槽2内の消化汚泥(固形濃度3.7%、有機物濃度61.5%、53℃)が18m3/hずつ引き抜かれ、凝集剤が固形物量の1%添加されて遠心脱水機4により脱水される。分離液は水処理工程へ戻され、脱水ケーキは焼却して廃棄処理される。本例では、消化率を60%に仮定して上記数値を表示しているが、実際には60%以上になると推測される。 As shown in FIG. 1, in the digestion system 1 of this example, the concentrated sludge (solid concentration 3%, organic matter concentration 80%, 10 ° C.) from the sludge storage tank 3 in the sludge receiving line A is 43.5 m 3 / h. Is continuously fed into the digester 2. On the other hand, the digestion tank 2 is anaerobically digested by high-temperature methane bacteria at a high temperature of around 53 ° C. and a solid concentration of 3.7%. And in the sludge extraction line B, the digested sludge in the digestion tank 2 (solid concentration 3.7%, organic matter concentration 61.5%, 53 ° C.) is withdrawn by 18 m 3 / h, and the flocculant is added 1% of the solid amount. Then, it is dehydrated by the centrifugal dehydrator 4. The separated liquid is returned to the water treatment process, and the dehydrated cake is incinerated and disposed of. In this example, the above numerical value is displayed on the assumption that the digestibility is 60%, but it is estimated that it is actually 60% or more.

そして、汚泥循環ラインCにおいては、消化槽2内の消化汚泥(固形濃度3.7%、有機物濃度61.5%、53℃)を98m3/hずつ抜き出し、ポンプで遠心濃縮機5へ搬送する。遠心濃縮機5では、凝集剤を添加せず(つまり無薬注で)濃縮する。この作業により、分離液(53℃)が25.5m3/hずつ生ずる。この分離液はSS(固形分)が含有されているので、ここで固形物量の0.1%程度の凝集剤を分離液に添加し、SSを除去したのちに分離液を水処理工程へ戻す。 In the sludge circulation line C, the digested sludge in the digestion tank 2 (solid concentration 3.7%, organic matter concentration 61.5%, 53 ° C.) is withdrawn 98 m 3 / h at a time and conveyed to the centrifugal concentrator 5 by a pump. To do. In the centrifugal concentrator 5, the flocculant is not added (that is, without chemical injection) and concentrated. By this work, a separation liquid (53 ° C.) is generated at a rate of 25.5 m 3 / h. Since this separation liquid contains SS (solid content), a flocculant of about 0.1% of the solid amount is added to the separation liquid here, and after removing SS, the separation liquid is returned to the water treatment step. .

遠心濃縮機5で濃縮された循環汚泥(固形濃度5.0%、有機物濃度61.5%、53℃)が、72.5m3/hずつ加温塔6へポンプで搬送される。加温塔6内では、循環汚泥をスプレーして噴霧し、熱交換器8から供給管10aにより供給した過熱水蒸気(550℃)と直接接触させて90℃に加温する。このときの必要熱量は、2682500kcal/hになる。この熱量は、戻し管10bで熱交換器8へ戻される過熱水蒸気の温度が120℃に低下することによる、温度差に相当する。消化ガス燃焼炉9には、消化ガスが652.5m3N/h供給され、同時に燃焼用空気が5640m3N/h供給されることにより燃焼し、熱交換器8を通って燃焼排ガスが6292.5m3N/h排出されることにより、3192000kcal/hの熱量が戻し管10bの過熱水蒸気(120℃)に付与され、過熱水蒸気の温度が550℃に上昇する。 The circulating sludge concentrated in the centrifugal concentrator 5 (solid concentration 5.0%, organic matter concentration 61.5%, 53 ° C.) is pumped to the heating tower 6 by 72.5 m 3 / h. In the heating tower 6, the circulating sludge is sprayed and sprayed, and is heated to 90 ° C. by direct contact with superheated steam (550 ° C.) supplied from the heat exchanger 8 through the supply pipe 10 a. The amount of heat required at this time is 2682500 kcal / h. This amount of heat corresponds to a temperature difference caused by the temperature of the superheated steam returned to the heat exchanger 8 through the return pipe 10b being reduced to 120 ° C. The biogas combustion furnace 9, digestion gas is 652.5m 3 N / h supplied at the same time the combustion air and burned by being 5640m 3 N / h supplied, the flue gas passes through the heat exchanger 8 6292 By discharging 5 m 3 N / h, a heat amount of 3192000 kcal / h is imparted to the superheated steam (120 ° C.) of the return pipe 10b, and the temperature of the superheated steam rises to 550 ° C.

加温塔6で加温された循環汚泥(固形濃度5.0%、有機物濃度61.5%、90℃)は、72.5m3/hずつポンプにより循環路7にて消化槽2へ搬送され、汚泥貯留槽3からの濃縮汚泥(固形濃度3%、有機物濃度80%、10℃、43.5m3/h)とともに消化槽2に投入される。このとき、両汚泥を併せた見かけ投入汚泥は、固形濃度4.25%、有機物濃度66.4%、60℃、投入量116m3/hになる。 Circulating sludge (solid concentration 5.0%, organic matter concentration 61.5%, 90 ° C.) heated in the heating tower 6 is conveyed to the digester 2 in the circulation path 7 by a pump at a rate of 72.5 m 3 / h. Then, the concentrated sludge from the sludge storage tank 3 (solid concentration 3%, organic matter concentration 80%, 10 ° C., 43.5 m 3 / h) is put into the digestion tank 2. At this time, the apparent input sludge combined with both sludges has a solid concentration of 4.25%, an organic matter concentration of 66.4%, 60 ° C., and an input amount of 116 m 3 / h.

上記実施例にかかる消化システム1および消化方法には、次のようなメリットがある。すなわち、
上記遠心濃縮機5は、消化汚泥を濃縮する作用のほかに、分離液(離脱液)を抽出させる分離槽の作用を有する。消化槽2内の汚泥を53℃前後の高温で、かつ固形濃度3.7%の高濃度に保って高温・高濃度消化するので、消化効率が略2倍に向上して消化時間が短縮されるとともに、消化率が従来の40〜50%から60%以上に向上する。さらに上記遠心濃縮機5にて汚泥循環ラインCにおいて消化汚泥の一部を濃縮して分離液を除去することにより、消化槽2に汚泥の一時貯留槽としての機能をもたせることができる。
The digestion system 1 and digestion method according to the above embodiment have the following merits. That is,
The centrifugal concentrator 5 has an action of a separation tank for extracting a separation liquid (detachment liquid) in addition to the action of concentrating the digested sludge. Digestion efficiency is almost doubled and digestion time is shortened because digestion in the digestion tank 2 is digested at a high temperature of around 53 ° C and at a solid concentration of 3.7%, maintaining a high concentration of 3.7%. In addition, the digestibility is improved from the conventional 40-50% to 60% or more. Further, by concentrating a part of the digested sludge in the sludge circulation line C and removing the separation liquid in the centrifugal concentrator 5, the digester tank 2 can have a function as a temporary sludge storage tank.

図2は本発明の別の実施例にかかる有機性汚泥の嫌気性消化システムを示すフローシートである。図2に示すように、本実施例の消化システム1’が上記実施例と相違するところは、脱水機4と濃縮機5とを1台の濃縮・脱水兼用機4’として、汚泥の濃縮と脱水を1台の装置で行うようにしたことである。この兼用機4’には遠心脱水機を使用する。その他の構成については共通するので、共通の部材については同一の符号を用いて図2に示し、詳しい説明は省略する。   FIG. 2 is a flow sheet showing an anaerobic digestion system for organic sludge according to another embodiment of the present invention. As shown in FIG. 2, the digestion system 1 ′ of the present embodiment is different from the above-described embodiment in that the dehydrator 4 and the concentrator 5 are used as a single concentration / dehydration combined machine 4 ′ and sludge is concentrated. That is, the dehydration is performed by one apparatus. A centrifugal dehydrator is used for this combined machine 4 '. Since other configurations are common, common members are denoted by the same reference numerals in FIG. 2, and detailed description thereof is omitted.

本例の消化システム1’では、昼間は脱水機として使用するために、凝集剤を消化槽2から引き抜いた汚泥の固形物量の1%添加する。夜間は濃縮機として使用するために、凝集剤を添加せずに濃縮する。その他の使用態様については上記実施例と共通しているので、説明を省略する。とくに、既設の遠心脱水機4を備えた下水処理場などでは、濃縮機5を新規に導入して設置せずに、本発明の上記高温・高濃度消化システム1’を実施できる。   In the digestion system 1 ′ of this example, in order to use it as a dehydrator in the daytime, 1% of the solid matter amount of the sludge extracted from the digester 2 is added to the flocculant. Concentrate without adding a flocculant for use as a concentrator at night. Since other usage modes are the same as those in the above embodiment, description thereof is omitted. In particular, in a sewage treatment plant equipped with an existing centrifugal dehydrator 4, the high-temperature / high-concentration digestion system 1 ′ of the present invention can be implemented without newly installing the concentrator 5.

以上に本発明の有機性汚泥の消化システムに関する二つの実施例を示したが、本発明は例えば下記のように実施することもできる。   Two examples of the organic sludge digestion system of the present invention have been described above, but the present invention can also be implemented as follows, for example.

熱交換器8と消化ガス燃焼炉9に代えてボイラを設け、このボイラにより水蒸気を発生させて加温塔6に導入し、濃縮汚泥に対し水蒸気を噴霧して加温することができる。この場合、水蒸気が凝縮し、水分が濃縮汚泥に混入されるので、固形物濃度が僅かに低下するが、大きく影響されない。   It replaces with the heat exchanger 8 and the digestion gas combustion furnace 9, a boiler is provided, water vapor | steam is generated with this boiler, it introduce | transduces into the heating tower 6, and water vapor | steam can be sprayed and heated with respect to concentrated sludge. In this case, since water vapor is condensed and water is mixed into the concentrated sludge, the solids concentration is slightly reduced, but is not greatly affected.

本発明にかかる有機性汚泥の嫌気性消化システムの第1実施例を示すフローシートである。It is a flow sheet which shows the 1st example of the anaerobic digestion system of organic sludge concerning the present invention. 本発明にかかる有機性汚泥の嫌気性消化システムの第2実施例を示すフローシートである。It is a flow sheet which shows the 2nd example of an anaerobic digestion system of organic sludge concerning the present invention.

符号の説明Explanation of symbols

1・1’消化システム
2 消化槽
3 汚泥貯留槽
4 遠心脱水機
4’濃縮・脱水兼用機
5 遠心濃縮機
6 加温塔
7 循環路
8 熱交換器
9 消化ガス燃焼炉
10a蒸気供給管
10b蒸気戻し管
11 消化ガス供給管
12 排出路
13 煙突
14 空気供給管
1. 1 'Digestion System 2 Digestion Tank 3 Sludge Storage Tank 4 Centrifugal Dehydrator 4' Concentration / Dehydration Combined Machine 5 Centrifugal Concentrator 6 Heating Tower 7 Circulation Path 8 Heat Exchanger 9 Digestion Gas Combustion Furnace 10a Steam Supply Pipe 10b Steam Return pipe 11 Digestion gas supply pipe 12 Discharge passage 13 Chimney 14 Air supply pipe

Claims (7)

有機性汚泥を消化槽に投入しメタン醗酵により嫌気性消化する方法において、
前記消化槽内の消化汚泥の一部を引き抜き脱水処理して廃棄する工程とは別に、
前記消化槽から消化汚泥の一部を抜き出して濃縮し、この濃縮汚泥を加温して前記消化槽に循環する一連の工程を設けて前記消化槽にて高温・高濃度で嫌気性消化することを特徴とする有機性汚泥の嫌気性消化方法。
In a method of anaerobic digestion by introducing organic sludge into the digester and methane fermentation,
Apart from the process of drawing out part of the digested sludge in the digester and dewatering it,
Extracting and concentrating a portion of the digested sludge from the digestion tank, providing a series of steps for heating the concentrated sludge and circulating it to the digestion tank, and performing anaerobic digestion at a high temperature and high concentration in the digestion tank An anaerobic digestion method for organic sludge.
前記消化槽には無加温のある固形濃度の濃縮汚泥を投入し、消化槽内の消化汚泥の一部を抜き出して濃縮機により前記固形濃度より数%増加するように濃縮した後、加温装置により濃縮した汚泥を100℃近くまで加温して前記消化槽に循環させるとともに、前記消化槽内に循環させる汚泥の量を、同汚泥の温度が高温メタン菌に嫌気性消化が可能な温度に保たれるように決定する請求項1記載の有機性汚泥の嫌気性消化方法。   The digestion tank is filled with unheated solid sludge having a solid concentration, a part of the digested sludge in the digestion tank is extracted and concentrated by a concentrator to increase the solid concentration by several percent, and then heated. The sludge concentrated by the apparatus is heated to nearly 100 ° C. and circulated in the digester, and the amount of sludge circulated in the digester is the temperature at which the sludge can be anaerobically digested by high-temperature methane bacteria. The method for anaerobic digestion of organic sludge according to claim 1, wherein the method is determined so as to be maintained at a low temperature. 前記加温装置で必要な熱量を前記消化槽で発生する消化ガスの燃焼熱により発生させる請求項1又は2記載の有機性汚泥の嫌気性消化方法。   The method for anaerobic digestion of organic sludge according to claim 1 or 2, wherein a heat amount necessary for the heating device is generated by combustion heat of digestion gas generated in the digester. 有機性汚泥を消化槽でメタン醗酵により嫌気性消化し、消化した汚泥を引き抜いて遠心脱水機により脱水した汚泥ケーキを焼却するなどして廃棄する消化システムにおいて、
前記消化槽の下流側に消化汚泥の一部を加温するための加温塔を設け、この加温塔と前記消化槽との間に前記消化汚泥を濃縮するための濃縮機を介設するとともに、前記加温塔で加温した汚泥を前記消化槽へ循環するための循環路を設けたことを特徴とする有機性汚泥の嫌気性消化システム。
In the digestion system where organic sludge is anaerobically digested by methane fermentation in the digestion tank, the digested sludge is pulled out and discarded by incineration of the sludge cake dehydrated with a centrifugal dehydrator,
A heating tower for heating a part of the digested sludge is provided on the downstream side of the digestion tank, and a concentrator for concentrating the digested sludge is interposed between the heating tower and the digester. In addition, an anaerobic digestion system for organic sludge characterized in that a circulation path for circulating the sludge heated in the heating tower to the digester is provided.
前記消化槽で発生する消化ガスの燃焼炉と、この燃焼熱により過熱水蒸気を発生させる熱交換器とを設け、前記加温塔内で濃縮した消化汚泥を過熱水蒸気に直接接触させて加温した後、凝縮させず水蒸気の状態で熱交換器に戻すようにした請求項4記載の有機性汚泥の嫌気性消化システム。   A digestion gas combustion furnace generated in the digestion tank and a heat exchanger that generates superheated steam by this combustion heat are provided, and the digested sludge concentrated in the heating tower is heated by direct contact with the superheated steam. 5. The organic sludge anaerobic digestion system according to claim 4, wherein the system is returned to the heat exchanger in a steam state without being condensed. 前記消化槽内の消化汚泥の一部を引き抜き脱水処理するための前記遠心脱水機を前記濃縮機に兼用する請求項4又は5記載の有機性汚泥の嫌気性消化システム。   The anaerobic digestion system for organic sludge according to claim 4 or 5, wherein the centrifugal dehydrator for extracting and dewatering a part of the digested sludge in the digestion tank is also used as the concentrator. 前記濃縮機にて消化汚泥の一部を濃縮して分離液を除去することにより、前記消化槽に汚泥の一時貯留槽としての機能をもたせた請求項4記載の有機性汚泥の嫌気性消化システム。   The organic sludge anaerobic digestion system according to claim 4, wherein the digester is provided with a function as a temporary sludge storage tank by concentrating a part of the digested sludge with the concentrator and removing the separation liquid. .
JP2004065745A 2004-03-09 2004-03-09 Anaerobic digestion system for organic sludge Expired - Fee Related JP3808475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065745A JP3808475B2 (en) 2004-03-09 2004-03-09 Anaerobic digestion system for organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065745A JP3808475B2 (en) 2004-03-09 2004-03-09 Anaerobic digestion system for organic sludge

Publications (2)

Publication Number Publication Date
JP2005254054A true JP2005254054A (en) 2005-09-22
JP3808475B2 JP3808475B2 (en) 2006-08-09

Family

ID=35080319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065745A Expired - Fee Related JP3808475B2 (en) 2004-03-09 2004-03-09 Anaerobic digestion system for organic sludge

Country Status (1)

Country Link
JP (1) JP3808475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224100A (en) * 1988-03-03 1989-09-07 Pub Works Res Inst Ministry Of Constr Treatment of organic sludge
JPH0663598A (en) * 1992-08-11 1994-03-08 Ebara Infilco Co Ltd Anaerobic treatment of organic waste
JPH09155384A (en) * 1995-12-05 1997-06-17 Kurita Water Ind Ltd Anaerobic treatment process for organic discharge
JPH1085784A (en) * 1996-09-19 1998-04-07 Ebara Corp Anaerobic sludge digestion method enabling redigestion of hard-to-decomposable organic substance in anaerobic digested sludge
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224100A (en) * 1988-03-03 1989-09-07 Pub Works Res Inst Ministry Of Constr Treatment of organic sludge
JPH0663598A (en) * 1992-08-11 1994-03-08 Ebara Infilco Co Ltd Anaerobic treatment of organic waste
JPH09155384A (en) * 1995-12-05 1997-06-17 Kurita Water Ind Ltd Anaerobic treatment process for organic discharge
JPH1085784A (en) * 1996-09-19 1998-04-07 Ebara Corp Anaerobic sludge digestion method enabling redigestion of hard-to-decomposable organic substance in anaerobic digested sludge
JP2005238103A (en) * 2004-02-26 2005-09-08 Jfe Engineering Kk Treatment method for organic waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor

Also Published As

Publication number Publication date
JP3808475B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CN105180170B (en) A kind of MSW cooperates with burning electricity generation system
RU2531400C2 (en) Method and installation for obtaining non-rotting sediment and energy
JP4510782B2 (en) Sludge recycling method and apparatus.
JP5394340B2 (en) Ammonia removal equipment
JP2024539357A (en) A system that produces biogas using a mixture of treated digestive liquid and dried organic matter.
KR20100055192A (en) Sludge drying system
KR101123854B1 (en) Wet-dry serial parallel anaerobic digestion apparatus and method for treating organic waste
JP2004008912A (en) Method and apparatus for treating organic waste
KR101553370B1 (en) System and Method for methane power generation using excrement and waste water
US7718064B2 (en) Integrated clean biomass to energy system
JP4292610B2 (en) Organic wastewater treatment equipment
JP2011036781A (en) Sludge digestion system
JP4409928B2 (en) Organic waste treatment methods
CN102976569A (en) Water source heat pump-sludge digestion integrated system
JP3808475B2 (en) Anaerobic digestion system for organic sludge
US11185816B2 (en) Process and plant for the thermal abatement of malodorous emission from a purification plant with energy recovery from said abatement
JP2003117526A (en) Biogasification treating method for organic waste
CN110776238A (en) Steam heat source sludge drying system and sludge drying method thereof
JP3781216B2 (en) Anaerobic sludge digestion method and device enabling re-digestion of persistent organic substances in anaerobic digested sludge
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP2005254165A (en) Method for treating organic waste water and its treatment apparatus
JP5284323B2 (en) Ammonia removal equipment
JP5364661B2 (en) Ammonia removal method and removal system in methane production
JPS58114800A (en) Treatment for sludge
JP2006150158A (en) Method for treating digestive liquid in methane fermentation treatment system for organic waste such as livestock waste and apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Ref document number: 3808475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees