JP2005253657A - Aorta blood flow measuring method - Google Patents
Aorta blood flow measuring method Download PDFInfo
- Publication number
- JP2005253657A JP2005253657A JP2004068858A JP2004068858A JP2005253657A JP 2005253657 A JP2005253657 A JP 2005253657A JP 2004068858 A JP2004068858 A JP 2004068858A JP 2004068858 A JP2004068858 A JP 2004068858A JP 2005253657 A JP2005253657 A JP 2005253657A
- Authority
- JP
- Japan
- Prior art keywords
- aortic
- blood flow
- waveform
- aorta
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 21
- 210000000709 aorta Anatomy 0.000 title abstract description 28
- 230000000747 cardiac effect Effects 0.000 claims abstract description 29
- 230000036581 peripheral resistance Effects 0.000 claims abstract description 15
- 230000001839 systemic circulation Effects 0.000 claims abstract description 6
- 230000036772 blood pressure Effects 0.000 claims description 6
- 230000000004 hemodynamic effect Effects 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract description 7
- 210000005259 peripheral blood Anatomy 0.000 abstract description 2
- 239000011886 peripheral blood Substances 0.000 abstract description 2
- 238000009795 derivation Methods 0.000 abstract 3
- 210000000038 chest Anatomy 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 238000000691 measurement method Methods 0.000 description 8
- 210000001765 aortic valve Anatomy 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本発明は、大動脈血流測定方法、詳しくは、非侵襲的に大動脈血流波形及び心拍出量を測定する大動脈血流測定方法に関する。 The present invention relates to an aortic blood flow measurement method, and more particularly to an aortic blood flow measurement method for noninvasively measuring an aortic blood flow waveform and cardiac output.
心拍出量を測定する方法としては、血流中に既知の熱量あるいは色素を加えて血流温度変化や色素濃度変化から血流量を算出する熱希釈法、色素希釈法、超音波を用いて大動脈の断面積変化と血流速の変化から大動脈血流を求める方法、インピーダンスプレチスモグラフィーで得られる胸部のインピーダンス変化から心拍出量を算出する方法などがある。 Methods for measuring cardiac output include thermodilution, dye dilution, and ultrasound to calculate blood flow from changes in blood flow temperature and dye concentration by adding a known amount of heat or dye into the bloodstream. There are a method for obtaining the aortic blood flow from the change in the cross-sectional area of the aorta and the change in the blood flow velocity, and a method for calculating the cardiac output from the change in the impedance of the chest obtained by impedance plethysmography.
しかし、熱希釈法や色素希釈法では、ある一定時間(例えば1分間)の平均的な心拍出量しか得られず、1回ごとの拍出量や瞬時の大動脈血流を測定することはできない。また、侵襲的な測定であるため、患者にとって大きな負担となる。超音波は非侵襲的なものであるが、測定には熟練技術を要し、安静状態での短時間の計測しかできないという問題がある。 However, the thermodilution method and the dye dilution method can only obtain an average cardiac output for a certain period of time (for example, 1 minute), and it is not possible to measure each stroke volume or instantaneous aortic blood flow. Can not. Moreover, since it is invasive measurement, it becomes a big burden for a patient. Ultrasonic waves are non-invasive, but measurement requires skill, and there is a problem that only a short time measurement in a resting state is possible.
非侵襲的で最も簡便な方法が胸部のインピーダンス変化から心拍出量を算出する方法であるが、胸部のインピーダンス変化から直接的に大動脈血流波形が得られるわけではない。現状では、インピーダンス波形の一次微分波の大きさと、心音図等を用いて測定される左室駆出時間との積から1回分の拍出量を算出(推定)するようにしているため、運動などして血行動態が変化したときに正しく追従できない場合がある。また、1回拍出量、1分間の心拍出量は求められても、1心拍中の大動脈血流変化など血行動態の詳細な状態までは観測できない。 The non-invasive and simplest method is to calculate the cardiac output from the impedance change of the chest, but the aortic blood flow waveform cannot be obtained directly from the impedance change of the chest. At present, the stroke volume for one stroke is calculated (estimated) from the product of the magnitude of the first derivative wave of the impedance waveform and the left ventricular ejection time measured using a heart sound chart, etc. When the hemodynamics changes, it may not be able to follow correctly. Even if the stroke volume and the cardiac output for 1 minute are obtained, it is not possible to observe the detailed state of hemodynamics such as aortic blood flow change during one heartbeat.
本発明は、上記のような従来の血流、心拍出量測定の問題点に鑑みなされたものであり、非侵襲的でかつ簡便な測定で瞬時の大動脈血流、1回拍出量、1分間の心拍出量を得るとともに、大動脈と末梢血管の血行動態の様子を同時に観測できる大動脈血流測定方法を提供することを目的とする。 The present invention has been made in view of the problems of conventional blood flow and cardiac output measurement as described above, and is a non-invasive and simple measurement for instantaneous aortic blood flow, stroke volume, An object of the present invention is to provide an aortic blood flow measurement method capable of obtaining a cardiac output for one minute and simultaneously observing hemodynamics of the aorta and peripheral blood vessels.
本発明の大動脈血流測定方法は、体循環を大動脈コンプライアンスCと総末梢抵抗Rで構成される簡易回路でモデル化し、インピーダンスプレチスモグラフィー等で得られる大動脈容積脈波と大動脈容積脈波の一次微分波を用い、拡張期において大動脈容積脈波をCR積で除した波形と大動脈容積脈波の一次微分波との和が零になる方程式を解くことによりCR積を求め、大動脈容積脈波をCR積で除した波形と大動脈容積脈波の一次微分波との和から大動脈血流波形を得ることを特徴とする。 In the method for measuring aortic blood flow according to the present invention, systemic circulation is modeled by a simple circuit composed of aortic compliance C and total peripheral resistance R, and aortic volume pulse wave and primary volume of aortic volume pulse wave obtained by impedance plethysmography or the like. Using the differential wave, the CR product is obtained by solving the equation in which the sum of the waveform obtained by dividing the aortic volume pulse wave by the CR product in the diastole and the first-order differential wave of the aortic volume pulse wave is zero. The aortic blood flow waveform is obtained from the sum of the waveform divided by the CR product and the first derivative wave of the aortic volume pulse wave.
本発明の大動脈血流測定方法によると、大動脈弁が閉鎖している拡張期には心臓から大動脈に送出される血流が零になることを利用してCR積を求め、大動脈容積脈波をCR積で除した波形と大動脈容積脈波の一次微分波との和から大動脈血流波形を得るようにしたため、瞬時の大動脈血流を測定することができる。 According to the aortic blood flow measurement method of the present invention, the CR product is obtained by using the fact that the blood flow sent from the heart to the aorta becomes zero in the diastole when the aortic valve is closed, and the aortic volume pulse wave is obtained. Since the aortic blood flow waveform is obtained from the sum of the waveform divided by the CR product and the first derivative wave of the aortic volume pulse wave, instantaneous aortic blood flow can be measured.
前記CR積は、拡張期における大動脈容積脈波をCR積で除した波形の面積と拡張期における大動脈容積脈波の一次微分波の波形面積との和が零になる方程式を解くことにより求める。このようなCR積の求め方によると、雑音の影響を軽減させることができるため、CR積を正確に求めることができる。 The CR product is obtained by solving an equation in which the sum of the waveform area obtained by dividing the aortic volume pulse wave in the diastole by the CR product and the waveform area of the first-order differential wave in the diastole is zero. According to such a method for obtaining the CR product, the influence of noise can be reduced, so that the CR product can be obtained accurately.
前記得られた大動脈血流波形の収縮期における波形面積又は1心周期分の波形面積から1回拍出量を求め、かつ、該求めた1回拍出量と心拍数との積から1分間の心拍出量を求める。 The stroke volume is determined from the waveform area in the systolic phase of the obtained aortic blood flow waveform or the waveform area for one cardiac cycle, and the product of the determined stroke volume and heart rate is used for one minute. Find your cardiac output.
前記大動脈容積脈波と同時刻に測定された平均血圧値を前記心拍出量で除することにより総末梢抵抗Rを求め、かつ、該求めた総抹消抵抗RでCR積を除することにより大動脈コンプライアンスCを求める。これにより、運動中、手術中、手術前後、あるいは投薬前後の大動脈血流、1回拍出量、1分間の心拍出量が測定できるようになるとともに、血行動態の様子を観測できるようになる。 By dividing the average blood pressure value measured at the same time as the aortic volume pulse wave by the cardiac output, the total peripheral resistance R is obtained, and the CR product is divided by the obtained total resistance R Obtain aortic compliance C. This makes it possible to measure aortic blood flow, stroke volume, and cardiac output for 1 minute during exercise, surgery, before and after surgery, and before and after medication, and to observe the state of hemodynamics. Become.
以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
心臓から駆出された血液が大動脈を通じ末梢へ流れてゆく体循環は、図2に示す簡易的な電気回路モデルを用い、図3に示す生体回路と電気回路との対比を行うことによって次のように簡単化される。 The systemic circulation in which blood ejected from the heart flows to the periphery through the aorta uses the simple electrical circuit model shown in FIG. 2 to compare the biological circuit and electrical circuit shown in FIG. To be simplified.
心臓は血液(Coに蓄積された電荷)を送出するために心筋を収縮(Coを小さく)させる。心筋の収縮に伴い心臓の内圧(Coの両端電圧)は上昇し、心臓内圧が大動脈圧(Cの両端電圧)を超えると大動脈弁が開き(ダイオードが導通し)、血液が大動脈へと流れ込む。 The heart contracts the myocardium (reduces Co) to deliver blood (charge accumulated in Co). As the myocardium contracts, the internal pressure of the heart (the voltage at both ends of Co) increases. When the internal pressure exceeds the aortic pressure (the voltage at both ends of C), the aortic valve opens (the diode conducts), and blood flows into the aorta.
大動脈に流入した血流(電流F)は、収縮期において、大動脈の容積(Cの電荷)を増加させ大動脈圧(Cの両端電圧)を上昇させると同時に、上昇した大動脈圧と総末梢抵抗(R)に応じ末梢へと流出してゆく。つまり、大動脈に流入した血流(電流F)は、大動脈の血液を蓄積させる血流(電流F1)と、末梢へ流出する血流(電流F2)とに分配される。 In the systole, the blood flow (current F) flowing into the aorta increases the volume of the aorta (charge of C) and increases the aortic pressure (voltage across the C). At the same time, the increased aortic pressure and total peripheral resistance ( In response to R), it flows out to the periphery. That is, the blood flow (current F) flowing into the aorta is divided into a blood flow (current F1) that accumulates blood in the aorta and a blood flow (current F2) that flows out to the periphery.
その後、心臓内の血液が減少し心臓内圧が大動脈圧よりも低くなった時点で大動脈弁が閉鎖する(ダイオードが非導通となる)。大動脈弁閉鎖以降の拡張期においては、大動脈に流入する血流はなくなり、大動脈の血液の減少に応じた血流が末梢へと流出してゆく(F=F1+F2=0⇒−F1=F2)。 Thereafter, when the blood in the heart decreases and the intracardiac pressure becomes lower than the aortic pressure, the aortic valve closes (the diode becomes non-conductive). In the diastole after the aortic valve closure, the blood flow flowing into the aorta disappears, and the blood flow corresponding to the decrease in blood in the aorta flows out to the periphery (F = F1 + F2 = 0⇒−F1 = F2).
以上が1心周期内の仕組みで、これが繰り返し行われ、心臓から全身に血液が循環する。この仕組みを踏まえ、以下のようにして大動脈血流を求める。 The above is the mechanism within one cardiac cycle. This is repeated, and blood circulates from the heart to the whole body. Based on this mechanism, aortic blood flow is obtained as follows.
まず、大動脈血流は、大動脈の血液を蓄積させるのに寄与する血流と末梢へと流出する血流に分配されるため、
F=F1+F2 (1)
となる。大動脈の血液を蓄積させるのに寄与する大動脈蓄積血流(F1)は、大動脈血液の時間変化分、つまり大動脈容積脈波(ΔV)の一次微分波で表され、
F1=dV/dt (2)
となる。一方、末梢へと流出してゆく末梢流出血流(F2)は、オームの法則から大動脈の圧脈波(ΔP)を総末梢抵抗(R)で除したものとなり、大動脈容積脈波(ΔV)は、圧脈波(ΔP)と大動脈コンプライアンス(C)との積で表されるため(圧脈波(ΔP)は大動脈容積脈波(ΔV)を大動脈コンプライアンス(C)で除したものになるため)、
F2=ΔP/R=ΔV/CR (3)
となる。上記式(1)、(2)、(3)の関係から、大動脈血流波形(F)と大動脈容積脈波(ΔV)との関係は、
F=(dV/dt)+(ΔV/CR) (4)
となる。
First, the aortic blood flow is divided into the blood flow that contributes to the accumulation of blood in the aorta and the blood flow that flows out to the periphery,
F = F1 + F2 (1)
It becomes. The aortic blood flow (F1) that contributes to the accumulation of aortic blood is represented by the time-dependent change of the aortic blood, that is, the first derivative wave of the aortic volume pulse wave (ΔV),
F1 = dV / dt (2)
It becomes. On the other hand, the peripheral outflow blood flow (F2) flowing out to the periphery is obtained by dividing the aortic pressure pulse wave (ΔP) by the total peripheral resistance (R) from Ohm's law, and the aortic volume pulse wave (ΔV). Is expressed by the product of the pressure pulse wave (ΔP) and the aortic compliance (C) (the pressure pulse wave (ΔP) is obtained by dividing the aortic volume pulse wave (ΔV) by the aortic compliance (C)). ),
F2 = ΔP / R = ΔV / CR (3)
It becomes. From the relationship of the above equations (1), (2), (3), the relationship between the aortic blood flow waveform (F) and the aortic volume pulse wave (ΔV) is
F = (dV / dt) + (ΔV / CR) (4)
It becomes.
大動脈容積脈波(ΔV)は、インピーダンスプレチスモグラフィーで得られる胸部の基礎インピーダンスZoとインピーダンス変化ΔZから、以下の式に基づき導出する。 The aortic volume pulse wave (ΔV) is derived from the chest basic impedance Zo and impedance change ΔZ obtained by impedance plethysmography based on the following equation.
ΔV=−ρ(L/Zo)2ΔZ (5)
ρ:血液の粘性抵抗[Ω・cm]
L:インピーダンス測定電極間距離[cm]
Zo:胸部基礎インピーダンス[Ω](胸部インピーダンスの直流分で胸部体組織 のインピーダンスを表す)
ΔZ:胸部インピーダンス変化[Ω](胸部インピーダンスの交流分で血液による 胸部のインピーダンス変化を表す)
これにより、胸部インピーダンスから大動脈血流波形を求める式、
F=−ρ(L/Zo)2{(dZ/dt)+(ΔZ/CR)} (6)
が導出される。
ΔV = −ρ (L / Zo) 2 ΔZ (5)
ρ: Viscous resistance of blood [Ω · cm]
L: Distance between impedance measurement electrodes [cm]
Zo: Thoracic basic impedance [Ω] (represents the impedance of the thoracic body tissue by the direct current component of the chest impedance)
ΔZ: Chest impedance change [Ω] (represents the change in chest impedance due to blood in the alternating amount of chest impedance)
This gives the equation for determining the aortic blood flow waveform from the chest impedance,
F = −ρ (L / Zo) 2 {(dZ / dt) + (ΔZ / CR)} (6)
Is derived.
ここで最も問題となるのはCR(大動脈コンプライアンスCと総末梢抵抗Rとの積)が未知数であることだが、これについては上記の拡張期における血流の関係、つまり、拡張期においては大動脈に流入する血流がなくなり大動脈の血液の減少に応じた血流が末梢へと流出する関係(F=F1+F2=0⇒−F1=F2)を用いて、拡張期に成り立つ以下の方程式、
−(dV/dt)dia=ΔVdia/CR (7)
(添え字のdiaはdiastolicの略で、拡張期区間の波形であることを示す)
を解くことによってCRを求める。インピーダンス波形からは、拡張期における胸部インピーダンス波形ΔZとその一次微分波dZ/dtを用い、以下の式から算出する。
The biggest problem here is that CR (product of aortic compliance C and total peripheral resistance R) is an unknown number, but this is related to the blood flow relationship in the diastole, that is, in the aorta during diastole. Using the relationship (F = F1 + F2 = 0⇒−F1 = F2) where the blood flow inflow disappears and the blood flow according to the decrease in the aortic blood flows to the periphery, the following equation holds for the diastole:
− (DV / dt) dia = ΔV dia / CR (7)
(The subscript dia is an abbreviation for diastolic and indicates the waveform of the diastole section.)
Find CR by solving From the impedance waveform, the chest impedance waveform ΔZ in the diastole and its first derivative wave dZ / dt are used to calculate from the following equation.
−(dZ/dt)dia=ΔZdia/CR (8)
拡張期における上記方程式(7)、(8)は理論的には成り立つが、実際には反射波が存在したり、測定波形に雑音が含まれたりするため、容積脈波ΔV(ΔZ)とその一次微分波dV/dt(dZ/dt)との振幅比を拡張期の多点で求め平均化したり、
CR=Σ{|ΔVdia|/|(dV/dt)dia|}/M (9)
CR=Σ{|ΔZdia|/|(dZ/dt)dia|}/M (10)
(M:平均化に用いたサンプルの数)
容積脈波ΔV(ΔZ)とその一次微分波dV/dt(dZ/dt)の拡張期における面積比で求めたりする。
− (DZ / dt) dia = ΔZ dia / CR (8)
The above equations (7) and (8) in the diastole are theoretically valid, but actually there are reflected waves and noise is included in the measured waveform, so the volume pulse wave ΔV (ΔZ) and its Obtain and average the amplitude ratio with the first derivative wave dV / dt (dZ / dt) at multiple points in the diastole,
CR = Σ {| ΔV dia | / | (dV / dt) dia |} / M (9)
CR = Σ {| ΔZ dia | / | (dZ / dt) dia |} / M (10)
(M: number of samples used for averaging)
The volume pulse wave ΔV (ΔZ) and the primary differential wave dV / dt (dZ / dt) are obtained by the area ratio in the expansion period.
CR=S{ΔVdia}/S{(dV/dt)dia}
=|∫{ΔVdia}dt|/|∫{(dV/dt)dia}dt| (11)
CR=S{ΔZdia}/S{(dZ/dt)dia}
=|∫{ΔZdia}dt|/|∫{(dZ/dt)dia}dt| (12)
(S{*}は*の面積を示し、∫{*}dtは*の積分を示す)
図4は、以上の大動脈血流波形の合成に関する考え方を図示したものである。
CR = S {ΔV dia } / S {(dV / dt) dia }
= | ∫ {ΔV dia } dt | / | ∫ {(dV / dt) dia } dt | (11)
CR = S {ΔZ dia } / S {(dZ / dt) dia }
= | ∫ {ΔZ dia } dt | / | ∫ {(dZ / dt) dia } dt | (12)
(S {*} indicates the area of *, and ∫ {*} dt indicates the integral of *)
FIG. 4 illustrates the concept regarding the synthesis of the aortic blood flow waveform described above.
以上の手順で得られた大動脈血流波形の収縮期における波形面積(血流波形の収縮期における積分)、あるいは、心電図の心拍間隔から求められる1心周期分の波形面積(血流波形の1心周期分の積分)から、1回の拍出量SV(Stroke Volumeの略)は、
SV=S{Fsys}=∫{Fsys}dt (13)
≒S{Fcycle}=∫{Fcycle}dt (14)
(添え字のsysはsystolicの略で、収縮期区間の波形であることを示し、
添え字のcycleは1心周期分の波形であることを示す)
となる。厳密にいえば、上記式(13)から得られるSVと上記式(14)から得られるSVは異なるが、拡張期には大動脈に流入する血流がなくなり、大動脈血流波形は殆ど零となるため、実際にはいずれの方法でSVを得ても殆ど差異はない。
The waveform area in the systolic phase of the aortic blood flow waveform obtained by the above procedure (integration in the systolic phase of the blood flow waveform) or the waveform area for one cardiac cycle obtained from the heartbeat interval of the electrocardiogram (1 of the blood flow waveform) From the integration of the heart cycle), the stroke volume SV (abbreviation of Stroke Volume) is
SV = S {F sys } = ∫ {F sys } dt (13)
≈ S {F cycle } = ∫ {F cycle } dt (14)
(The subscript sys is an abbreviation for systolic.
(The subscript cycle indicates the waveform for one cardiac cycle)
It becomes. Strictly speaking, the SV obtained from the above equation (13) is different from the SV obtained from the above equation (14), but the blood flow flowing into the aorta disappears in the diastole and the aortic blood flow waveform becomes almost zero. Therefore, there is almost no difference in actually obtaining SV by any method.
1分間の心拍出量CO(Cardiac Outputの略)は、1回の拍出量SVと心拍数HRとの積で表され、
CO=SV・HR (15)
となる。
One minute cardiac output CO (abbreviation of Cardiac Output) is represented by the product of one stroke output SV and heart rate HR,
CO = SV · HR (15)
It becomes.
また、大動脈血流測定と同時に血圧の測定を行ない、大動脈容積脈波(実際には胸部インピーダンス波形)と同時刻に測定された平均血圧Pmeanを上記式(15)で得られた心拍出量COで除することによって総末梢抵抗Rが得られる。 The blood pressure is measured simultaneously with the measurement of the aortic blood flow, and the average blood pressure P mean measured at the same time as the aortic volume pulse wave (actually the chest impedance waveform) is obtained from the cardiac output obtained by the above equation (15). The total peripheral resistance R is obtained by dividing by the amount CO.
R=Pmean/CO (16)
さらに、大動脈血流の合成の過程の上記式(11)、(12)で求めたCRを上記式(16)で求めた総末梢抵抗Rで除することによって大動脈コンプライアンスCが得られる。
R = P mean / CO (16)
Further, the aortic compliance C is obtained by dividing the CR obtained by the above equations (11) and (12) in the process of synthesizing the aortic blood flow by the total peripheral resistance R obtained by the above equation (16).
C=CR/R (17)
以上により、大動脈血流を測定し、1回拍出量SVと1分間の心拍出量COを得ると同時に、血行動態のパラメータである大動脈コンプライアンスCと総末梢抵抗Rを得る。
C = CR / R (17)
As described above, the aortic blood flow is measured, and the stroke volume SV and the cardiac output CO for 1 minute are obtained. At the same time, the aortic compliance C and the total peripheral resistance R, which are hemodynamic parameters, are obtained.
図1は、上述したような本実施形態に係る大動脈血流測定方法の手順を分かり易く説明するためのフローチャートである。 FIG. 1 is a flowchart for easily explaining the procedure of the aortic blood flow measurement method according to this embodiment as described above.
図1において、本実施形態に係る大動脈血流測定方法は、まず、胸部インピーダンス信号の測定を行ない、基礎インピーダンスZoとインピーダンス変化ΔZを求める(ステップ1)。次に、大動脈容積脈波ΔV及び一次微分波dV/dtを導出する(ステップ2)。次に、CR積を振幅比又は面積比から導出する(ステップ3)。次に、大動脈血流波形Fを導出する(ステップ4)。次に、各パラメータ(大動脈血流F、1回拍出量SV、1分間の心拍出量CO、総末梢抵抗R、大動脈コンプライアンスC)を導出する(ステップ5)。 In FIG. 1, the aortic blood flow measurement method according to the present embodiment first measures a chest impedance signal to obtain a basic impedance Zo and an impedance change ΔZ (step 1). Next, the aortic volume pulse wave ΔV and the first-order differential wave dV / dt are derived (step 2). Next, the CR product is derived from the amplitude ratio or area ratio (step 3). Next, the aortic blood flow waveform F is derived (step 4). Next, each parameter (aortic blood flow F, stroke volume SV, cardiac output CO for 1 minute, total peripheral resistance R, aortic compliance C) is derived (step 5).
なお、上記実施形態では、大動脈容積脈波(ΔV)をインピーダンスプレチスモグラフィーで得るようにしたが、本発明はこれに限定されるものではなく、例えば、超音波による血管断層像から大動脈容積脈波(ΔV)を得るようにしてもよい。 In the above embodiment, the aortic volume pulse wave (ΔV) is obtained by impedance plethysmography. However, the present invention is not limited to this, and for example, the aortic volume pulse is obtained from a vascular tomogram obtained by ultrasound. A wave (ΔV) may be obtained.
以上説明したように、本実施形態の大動脈血流測定方法は、体循環を大動脈コンプライアンスCと総末梢抵抗Rで構成される簡易回路でモデル化し、インピーダンスプレチスモグラフィー等で得られる大動脈容積脈波ΔVと大動脈容積脈波の一次微分波F1(=dV/dt)を用い、拡張期において大動脈容積脈波ΔVをCR積で除した波形F2と大動脈容積脈波の一次微分波F1との和Fが零になる方程式を解くことによりCR積を求め、大動脈容積脈波をCR積で除した波形F2と大動脈容積脈波の一次微分波F1との和Fから大動脈血流波形を得る。 As described above, the aortic blood flow measurement method according to the present embodiment models the systemic circulation with a simple circuit composed of the aortic compliance C and the total peripheral resistance R, and obtains an aortic volume pulse wave obtained by impedance plethysmography or the like. The sum F of the waveform F2 obtained by dividing the aortic volume pulse wave ΔV by the CR product in the diastole and the primary differential wave F1 of the aortic volume pulse wave using ΔV and the primary differential wave F1 (= dV / dt) of the aortic volume pulse wave A CR product is obtained by solving an equation in which A is zero, and an aortic blood flow waveform is obtained from the sum F of the waveform F2 obtained by dividing the aortic volume pulse wave by the CR product and the first derivative wave F1 of the aortic volume pulse wave.
本実施形態の大動脈血流測定方法によると、大動脈弁が閉鎖している拡張期には心臓から大動脈に送出される血流Fが零になることを利用してCR積を求め、大動脈容積脈波をCR積で除した波形F2と大動脈容積脈波の一次微分波F1との和Fから大動脈血流波形を得るようにしたため、瞬時の大動脈血流を測定することができる。 According to the aortic blood flow measuring method of the present embodiment, the CR product is obtained by utilizing the fact that the blood flow F delivered from the heart to the aorta becomes zero in the diastole when the aortic valve is closed, and the aortic volume pulse Since the aortic blood flow waveform is obtained from the sum F of the waveform F2 obtained by dividing the wave by the CR product and the first derivative wave F1 of the aortic volume pulse wave, the instantaneous aortic blood flow can be measured.
また、本実施形態の大動脈血流測定方法において、拡張期における大動脈容積脈波をCR積で除した波形の面積と拡張期における大動脈容積脈波の一次微分波の波形面積との和が零になる方程式を解くことによってCR積を求めた場合、雑音の影響を軽減させることができ、CR積を正確に求めることができる。 In the aortic blood flow measurement method of the present embodiment, the sum of the area of the waveform obtained by dividing the aortic volume pulse wave in the diastole by the CR product and the waveform area of the first derivative wave of the aortic volume pulse wave in the diastole is zero. When the CR product is obtained by solving the following equation, the influence of noise can be reduced, and the CR product can be obtained accurately.
また、大動脈血流波形の収縮期における波形面積又は1心周期分の波形面積から1回拍出量を求め、また、1回拍出量SVと心拍数HRとの積から1分間の心拍出量COを求めることができる。 Further, the stroke volume is obtained from the waveform area in the systole of the aortic blood flow waveform or the waveform area for one cardiac cycle, and the heartbeat for one minute is calculated from the product of the stroke volume SV and the heart rate HR. The output CO can be obtained.
また、本実施形態では、大動脈容積脈波と同時刻に測定された平均血圧値Pmeanを心拍出量COで除することにより総末梢抵抗Rを求め、また、総抹消抵抗RでCR積を除することにより大動脈コンプライアンスCを求めている。これにより、運動中、手術中、手術前後、あるいは投薬前後の大動脈血流、1回拍出量、1分間の心拍出量が測定できるようになるとともに、血行動態の様子を観測できるようになる。 In this embodiment, the total peripheral resistance R is obtained by dividing the mean blood pressure value P mean measured at the same time as the aortic volume pulse wave by the cardiac output CO, and the CR product is calculated by the total erasure resistance R. The aortic compliance C is obtained by removing. This makes it possible to measure aortic blood flow, stroke volume, and cardiac output for 1 minute during exercise, surgery, before and after surgery, and before and after medication, and to observe the state of hemodynamics. Become.
図5〜図8は、本発明の実施形態に従って大動脈血流の測定を行った結果を示す。図5,6(図5は、運動負荷中の波形、図6は、負荷後の安静時波形、横軸スケールは1秒)に示すように、100ms以内(50〜100ms)で急峻に上昇してピークに達し、ピークから大動脈弁閉鎖点までは立ち上がりに比べ緩やかな傾きで下降し、大動脈弁の閉鎖点以降の拡張期においてはほとんど流量が零となる大動脈血流波形が得られ、下記文献1,2,3等に示されている直接的(侵襲的)に測定された大動脈血流波形と酷似した波形が測定された。また、図5に示すように運動負荷中の大動脈血流波形も安定して得られ、図7,8に示すように運動中の1回拍出量、1分間の心拍出量も連続的に得られた。 5 to 8 show the results of measuring aortic blood flow according to an embodiment of the present invention. As shown in FIGS. 5 and 6 (FIG. 5 shows a waveform during exercise load, FIG. 6 shows a resting waveform after the load, and the horizontal axis is 1 second), it rises sharply within 100 ms (50 to 100 ms). From the peak to the aortic valve closure point, the aortic blood flow waveform descends with a gentler slope than the rise, and the flow rate is almost zero in the diastole after the aortic valve closure point. A waveform very similar to the aortic blood flow waveform measured directly (invasively) shown in 1, 2, 3, etc. was measured. Further, as shown in FIG. 5, an aortic blood flow waveform during exercise load can be obtained stably, and as shown in FIGS. Was obtained.
(文献1)松崎益徳、「心機能を知る」、文光堂、第145頁図3
(文献2)林紘三郎、「バイオメカニクス」、コロナ社、第124頁図5.5
(文献3)H.J.METCALF、三重大学バイオメカ研究グループ、「バイオフィジックス 入門」、コロナ社、第87頁図4.9
(Reference 1) Masanori Matsuzaki, “Knowing the Heart Function”, Bunkodo, page 145, FIG. 3
(Reference 2) Saburo Hayashi, “Biomechanics”, Corona, page 124, figure 5.5.
(Reference 3) HJMETCALF, Mie University Biomechanics Research Group, “Introduction to Biophysics”, Corona, page 87, Figure 4.9
C 大動脈コンプライアンス
R 総末梢抵抗
ΔV 大動脈容積脈波
F1 大動脈容積脈波の一次微分波
F2 大動脈容積脈波をCR積で除した波形
F F1とF2との和
SV 1回拍出量
HR 心拍数
CO 1分間の心拍出量
Pmean 平均血圧値
C Aortic compliance R Total peripheral resistance ΔV Aortic volume pulse wave F1 Primary differential wave of aortic volume pulse wave F2 Waveform of aortic volume pulse wave divided by CR product F Sum of F1 and F2 SV Stroke volume HR
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004068858A JP3961500B2 (en) | 2004-03-11 | 2004-03-11 | Aorta blood flow data processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004068858A JP3961500B2 (en) | 2004-03-11 | 2004-03-11 | Aorta blood flow data processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005253657A true JP2005253657A (en) | 2005-09-22 |
JP3961500B2 JP3961500B2 (en) | 2007-08-22 |
Family
ID=35079974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004068858A Expired - Fee Related JP3961500B2 (en) | 2004-03-11 | 2004-03-11 | Aorta blood flow data processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3961500B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511217A (en) * | 2005-10-21 | 2009-03-19 | スクラバル,ファルコ | Apparatus and process for electrical measurement of body function and condition |
EP2347715A2 (en) * | 2008-10-02 | 2011-07-27 | Kwang Tae Kim | Cerebrovascular analysis system |
JP2012504036A (en) * | 2008-10-10 | 2012-02-16 | カーディアック ペースメイカーズ, インコーポレイテッド | System and method for determining cardiac output using pulmonary artery pressure measurements |
JP2012520741A (en) * | 2009-03-18 | 2012-09-10 | エドワーズ ライフサイエンシーズ コーポレイション | Direct measurement of arterial pressure blockage |
JP2012521223A (en) * | 2009-03-20 | 2012-09-13 | エドワーズ ライフサイエンシーズ コーポレイション | Obliteration monitoring |
US8632470B2 (en) | 2008-11-19 | 2014-01-21 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
US8725260B2 (en) | 2008-02-11 | 2014-05-13 | Cardiac Pacemakers, Inc | Methods of monitoring hemodynamic status for rhythm discrimination within the heart |
JP2015080545A (en) * | 2013-10-22 | 2015-04-27 | 国立大学法人東北大学 | Evaluation of arteriosclerotic level by aortic bloodstream waveform analysis |
JP2015173768A (en) * | 2014-03-14 | 2015-10-05 | 日本光電工業株式会社 | Cardiopulmonary function evaluation device and cardiopulmonary function evaluation method |
JP2020531207A (en) * | 2017-08-30 | 2020-11-05 | インリア・インスティテュート・ナショナル・ドゥ・ルシェルチェ・アン・インフォマティック・エ・アン・アートマティックInria Institut National De Recherche En Informatique Et En Automatique | Cardiac device |
JP2022051721A (en) * | 2020-09-22 | 2022-04-01 | ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェン | Medical equipment for evaluating pulsation signal |
-
2004
- 2004-03-11 JP JP2004068858A patent/JP3961500B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009511217A (en) * | 2005-10-21 | 2009-03-19 | スクラバル,ファルコ | Apparatus and process for electrical measurement of body function and condition |
US8725260B2 (en) | 2008-02-11 | 2014-05-13 | Cardiac Pacemakers, Inc | Methods of monitoring hemodynamic status for rhythm discrimination within the heart |
EP2347715A2 (en) * | 2008-10-02 | 2011-07-27 | Kwang Tae Kim | Cerebrovascular analysis system |
EP2347715A4 (en) * | 2008-10-02 | 2012-10-10 | Kwang Tae Kim | Cerebrovascular analysis system |
JP2012504036A (en) * | 2008-10-10 | 2012-02-16 | カーディアック ペースメイカーズ, インコーポレイテッド | System and method for determining cardiac output using pulmonary artery pressure measurements |
US8632470B2 (en) | 2008-11-19 | 2014-01-21 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
JP2012520741A (en) * | 2009-03-18 | 2012-09-10 | エドワーズ ライフサイエンシーズ コーポレイション | Direct measurement of arterial pressure blockage |
JP2012521223A (en) * | 2009-03-20 | 2012-09-13 | エドワーズ ライフサイエンシーズ コーポレイション | Obliteration monitoring |
JP2015080545A (en) * | 2013-10-22 | 2015-04-27 | 国立大学法人東北大学 | Evaluation of arteriosclerotic level by aortic bloodstream waveform analysis |
JP2015173768A (en) * | 2014-03-14 | 2015-10-05 | 日本光電工業株式会社 | Cardiopulmonary function evaluation device and cardiopulmonary function evaluation method |
JP2020531207A (en) * | 2017-08-30 | 2020-11-05 | インリア・インスティテュート・ナショナル・ドゥ・ルシェルチェ・アン・インフォマティック・エ・アン・アートマティックInria Institut National De Recherche En Informatique Et En Automatique | Cardiac device |
US11957437B2 (en) | 2017-08-30 | 2024-04-16 | Inria Institut National De Recherche En Informatique Et En Automatique | Cardiac device |
JP2022051721A (en) * | 2020-09-22 | 2022-04-01 | ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェン | Medical equipment for evaluating pulsation signal |
JP7216166B2 (en) | 2020-09-22 | 2023-01-31 | ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェン | Medical device for evaluating heartbeat signals |
Also Published As
Publication number | Publication date |
---|---|
JP3961500B2 (en) | 2007-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5351017B2 (en) | Analysis and use of cardiographic measurements | |
US7422562B2 (en) | Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis | |
JP5465252B2 (en) | System and method for determining cardiac output using pulmonary artery pressure measurements | |
US20150025328A1 (en) | System and method for monitoring cardiac output, flow balance, and performance parameters | |
US6558334B2 (en) | Apparatus for diagnosing lesion severity, and method therefor | |
US20080300494A1 (en) | Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis | |
US20200008686A1 (en) | Monitoring cardiac blood flow balance relationship between the right and left heart chambers and cardiac regulation | |
WO2005055825A1 (en) | Arterial pressure-based, automatic determination of a cardiovascular parameter | |
JP2010046512A (en) | Method and system for measuring cardiac parameter | |
JP2009543609A (en) | Method and apparatus for continuous assessment of cardiovascular parameters using arterial pressure propagation time and waveform | |
JP3961500B2 (en) | Aorta blood flow data processing method | |
US20160029901A1 (en) | System and Method for Determining Arterial Compliance and Stiffness | |
US20160302672A1 (en) | System and Method for Determining Arterial Compliance and Stiffness | |
US6986741B2 (en) | Method for measurement of systolic and diastolic time intervals | |
Seo et al. | Carotid arterial blood pressure waveform monitoring using a portable ultrasound system | |
WO2007134394A1 (en) | Cardiac measurement system and method | |
JP2023528682A (en) | Estimation of hemodynamic parameters | |
JP2004121866A (en) | Organism condition measuring system | |
Chio et al. | Development and validation of a noninvasive method to estimate cardiac output using cuff sphygmomanometry | |
JP6626611B2 (en) | Peripheral vascular resistance estimation method | |
KR102236814B1 (en) | Method, apparatus and program for obtaining information of cardiovascular system using heart sound | |
Seo | A non-invasive central arterial pressure waveform estimation system using ultrasonography for real-time monitoring | |
RU2371084C1 (en) | Method for determining total elasticity of peripheral vascular bed of main arteries | |
JP6304749B2 (en) | Circulatory monitoring device | |
Guala et al. | P47 Abnormal Flow Pattern in Marfan Patients is Related to Aortic Geometric Features: A 4D Flow MRI Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070516 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |