JP2005252120A - Printed wiring board and method for manufacturing the same - Google Patents
Printed wiring board and method for manufacturing the same Download PDFInfo
- Publication number
- JP2005252120A JP2005252120A JP2004063389A JP2004063389A JP2005252120A JP 2005252120 A JP2005252120 A JP 2005252120A JP 2004063389 A JP2004063389 A JP 2004063389A JP 2004063389 A JP2004063389 A JP 2004063389A JP 2005252120 A JP2005252120 A JP 2005252120A
- Authority
- JP
- Japan
- Prior art keywords
- printed wiring
- wiring board
- treatment
- manufacturing
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、鉛フリーはんだ処理等の高温処理によって発生する、電子部品の実装不良や層間剥離等の不具合を防止できるプリント配線板とその製造方法に関する。 The present invention relates to a printed wiring board that can prevent defects such as mounting defects of electronic components and delamination that occur due to high-temperature processing such as lead-free solder processing, and a manufacturing method thereof.
電子部品のはんだ付け等の高温処理時に問題となるものとして、プリント配線板の絶縁層に含まれている水分の膨張による電子部品の実装不良(パッド浮等)や、導体と絶縁層との界面剥離等が挙げられ、特に、吸湿し易いビルドアップ多層プリント配線板やフレキシブル基板(リジッドフレキ基板も含む)等においては、その脱湿手段が重要な要素となっている。 Problems that occur during high-temperature processing such as soldering of electronic components include poor mounting of electronic components (pad floating, etc.) due to expansion of moisture contained in the insulating layer of the printed wiring board, and the interface between the conductor and the insulating layer. In particular, in a build-up multilayer printed wiring board or a flexible substrate (including a rigid flexible substrate) that easily absorbs moisture, the dehumidifying means is an important factor.
このような問題を解決する手段として、導体面積の大きい電源及びグランド層にメッシュ状の開口部を設け、はんだ付け等の高温処理時に膨張した水分を当該開口部を通して外部に放出することによって、当該電源やグランド層と、隣接する絶縁層との界面剥離等の発生を防止する方法が既に知られている(例えば特許文献1参照)。 As means for solving such a problem, a mesh-shaped opening is provided in a power source and ground layer having a large conductor area, and moisture expanded during high-temperature processing such as soldering is discharged to the outside through the opening, thereby A method of preventing the occurrence of interface peeling between a power supply or ground layer and an adjacent insulating layer is already known (for example, see Patent Document 1).
また、上記した吸湿し易いビルドアップ多層プリント配線板やフレキシブル基板等においては、電子部品を実装する前にベーキング処理を行ない、予めプリント配線板の含水率(ここでいう含水率とは、プリント配線板の重量に対する含水量の割合)を下げておくという手段も知られている。 In addition, in the above-described build-up multilayer printed wiring board or flexible board that easily absorbs moisture, the electronic circuit board is baked before mounting, and the moisture content of the printed wiring board (the moisture content here is the printed wiring). It is also known to reduce the ratio of the water content to the weight of the plate.
しかし近年では、電子部品の実装に鉛フリーはんだが使用されるようになり、当該鉛フリーはんだは、従来使用されていた錫−鉛系はんだと比較して実装温度が高い(例えば、約245〜260℃)ことから、以下のような問題が発生してきた。 However, in recent years, lead-free solder has been used for mounting electronic components, and the lead-free solder has a higher mounting temperature than conventional tin-lead solder (for example, about 245 to 245). 260 ° C.), the following problems have occurred.
まず第一に、錫−鉛系のはんだを使用していたときには、プリント配線板の含水率を0.3重量%程度とすることで上記不具合を回避することができていたので、従来は、吸湿し易いビルドアップ多層プリント配線板やフレキシブル基板等にのみ脱湿処理を行なっていたが、鉛フリーはんだを使用する場合には、当該含水率では上記不具合を回避することができなかった。 First of all, when the tin-lead solder was used, the above problem could be avoided by setting the moisture content of the printed wiring board to about 0.3% by weight. Dehumidification treatment was performed only on build-up multilayer printed wiring boards and flexible boards that easily absorb moisture. However, when lead-free solder was used, the above-mentioned problems could not be avoided with the moisture content.
第二に、プリント配線板の表面処理として、金めっきやはんだ等を施すものに関しては、実装パッド等の表面が酸化することがないため、ベーキングによる脱湿処理が可能であるが、プリフラックスを施すものに関しては、実装パッド等の表面が酸化してしまうため、ベーキングによる脱湿処理が不可能であった。
本発明は上記不具合を解消すべくなされたもので、その目的とするところは、鉛フリーはんだで電子部品を実装する場合においても、実装不良等の不具合が発生することのないプリント配線板とその製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a printed wiring board that does not cause problems such as mounting defects even when mounting electronic components with lead-free solder, and its An object is to provide a manufacturing method.
上記目的を達成すべく請求項1に係る本発明は、鉛フリーはんだで電子部品を実装するプリント配線板であって、当該プリント配線板の含水率が、0.2重量%以下であることを特徴とするプリント配線板である。 In order to achieve the above object, the present invention according to claim 1 is a printed wiring board on which electronic components are mounted with lead-free solder, and the moisture content of the printed wiring board is 0.2% by weight or less. It is the printed wiring board characterized.
これにより、鉛フリーはんだで部品実装を行なった場合においても、電子部品の実装不良や層間剥離等の不具合が発生しないプリント配線板とすることができる。 Thereby, even when component mounting is performed with lead-free solder, a printed wiring board can be obtained in which defects such as mounting failure of electronic components and delamination do not occur.
また、請求項2に係る本発明は、鉛フリーはんだで電子部品を実装するプリント配線板の製造方法であって、当該電子部品の実装前に、プリント配線板を脱湿処理して含水率を0.2重量%以下とすることを特徴とするプリント配線板である。 The present invention according to claim 2 is a method of manufacturing a printed wiring board in which electronic components are mounted with lead-free solder, and the moisture content is reduced by dehumidifying the printed wiring board before mounting the electronic components. A printed wiring board characterized by being 0.2% by weight or less.
これにより、鉛フリーはんだで部品実装を行なった場合においても、電子部品の実装不良や層間剥離等の不具合が発生しないプリント配線板を容易に得ることができる。 Thereby, even when components are mounted using lead-free solder, it is possible to easily obtain a printed wiring board in which defects such as mounting defects of electronic components and delamination do not occur.
また、請求項3に係る本発明は、請求項2に係る発明の脱湿処理を、配線パターン表面に表面処理膜を形成した後、ベーキング処理することにより行なうことを特徴とするプリント配線板の製造方法である。 According to a third aspect of the present invention, there is provided a printed wiring board characterized in that the dehumidifying treatment according to the second aspect is performed by performing a baking treatment after forming a surface treatment film on the surface of the wiring pattern. It is a manufacturing method.
これにより、実装パッド等の表面を酸化させずに容易に脱湿処理することができる。 Thereby, dehumidification can be easily performed without oxidizing the surface of the mounting pad or the like.
また、請求項4に係る本発明は、請求項2に係る発明の脱湿処理を、常温の真空乾燥処理により行なうことを特徴とするプリント配線板の製造方法である。 According to a fourth aspect of the present invention, there is provided a method for producing a printed wiring board, wherein the dehumidifying process according to the second aspect is performed by a vacuum drying process at room temperature.
これにより、表面処理としてプリフラックス処理を施したプリント配線板においても、実装パッド等の表面を酸化させずに容易に脱湿処理をすることができる。 Thereby, even in a printed wiring board that has been subjected to a preflux treatment as a surface treatment, it is possible to easily perform a dehumidification treatment without oxidizing the surface of a mounting pad or the like.
また、請求項5に係る本発明は、請求項4に係る発明の常温の真空乾燥処理を、還元ガス雰囲気内で行なうことを特徴とするプリント配線板の製造方法である。 According to a fifth aspect of the present invention, there is provided a printed wiring board manufacturing method, wherein the room temperature vacuum drying process of the fourth aspect of the invention is performed in a reducing gas atmosphere.
これにより、長時間放置して、実装パッド等の表面に酸化膜が形成されたプリント配線板に対して、脱湿処理と当該酸化膜の除去を同時に行なうことができる。 Accordingly, it is possible to perform the dehumidification process and the removal of the oxide film at the same time on the printed wiring board in which the oxide film is formed on the surface of the mounting pad or the like by leaving it for a long time.
本発明プリント配線板に、鉛フリーはんだを用いて電子部品を実装すれば、従来生じていた、電子部品の実装不良や層間剥離等の不具合の発生を容易に防止することができ、また、本発明の製造方法によれば、上記不具合の発生を防止できるプリント配線板を容易に得ることができる。 If electronic components are mounted on the printed wiring board of the present invention using lead-free solder, it is possible to easily prevent the occurrence of defects such as defective mounting of electronic components and delamination, which have occurred in the past. According to the manufacturing method of the invention, it is possible to easily obtain a printed wiring board capable of preventing the occurrence of the above-mentioned problems.
本発明の実施の形態を、図1乃至図3を用いて簡単に説明する。 An embodiment of the present invention will be briefly described with reference to FIGS.
図1は第一の実施形態で、ベーキング処理により脱湿処理する本発明プリント配線板の製造例を示す概略工程説明図であり、まず、図1(a)に示したように、配線パターンやソルダーレジスト等が形成されたプリント配線板の当該ソルダーレジストから露出した配線パターン(実装パッド等)表面に、金めっき膜やはんだ膜の表面処理膜を形成する。 FIG. 1 is a schematic process explanatory view showing a manufacturing example of the printed wiring board of the present invention to be dehumidified by baking treatment in the first embodiment. First, as shown in FIG. A surface treatment film of a gold plating film or a solder film is formed on the surface of the wiring pattern (mounting pad or the like) exposed from the solder resist of the printed wiring board on which the solder resist or the like is formed.
次に、図1(b)に示したように、上記金めっき等が形成されたプリント配線板の外形加工を行なった後、図1(c)に示したように、オーブン等を用いたベーキング処理により、当該プリント配線板の脱湿処理(温度:120〜150℃、時間:1.5〜2.5h)を行なって、含水率を0.2重量%以下のプリント配線板を得る。 Next, as shown in FIG. 1 (b), after the outer shape of the printed wiring board on which the gold plating or the like is formed, the baking is performed using an oven or the like as shown in FIG. 1 (c). By the treatment, the printed wiring board is subjected to dehumidification treatment (temperature: 120 to 150 ° C., time: 1.5 to 2.5 h) to obtain a printed wiring board having a moisture content of 0.2% by weight or less.
そして図1(d)に示したように、この得られたプリント配線板に、鉛フリーはんだ(例えば、実装温度が245〜260℃)を用いたリフロー処理(予備加熱:175〜180℃、120±10秒、本加熱:230℃以上(ピーク温度260℃)、60±5秒)によって、部品実装を行なう。 And as shown in FIG.1 (d), the reflow process (preheating: 175-180 degreeC, 120) which used lead-free solder (For example, mounting temperature is 245-260 degreeC) to this obtained printed wiring board. Component mounting is performed by ± 10 seconds, main heating: 230 ° C. or higher (peak temperature 260 ° C., 60 ± 5 seconds).
このように、配線パターン(実装パッド等)の表面が金めっき膜やはんだ膜で保護されているプリント配線板に対しては、ベーキングによる酸化の懸念がないため、ベーキング処理により、容易に含水率を0.2重量%以下にすることができる。 In this way, there is no fear of oxidation due to baking for printed wiring boards whose surface of the wiring pattern (mounting pads, etc.) is protected by a gold plating film or solder film. Can be made 0.2 wt% or less.
続いて図2は第二の実施形態で、常温の真空乾燥処理により脱湿処理する本発明プリント配線板の製造例を示す概略工程説明図であり、まず、図2(a)に示したように、配線パターンやソルダーレジスト等が形成されたプリント配線板の外形加工を行なった後、図2(b)に示したように当該プリント配線板にプリフラックス処理を施す。 Next, FIG. 2 is a schematic process explanatory view showing a manufacturing example of the printed wiring board of the present invention to be dehumidified by vacuum drying at room temperature in the second embodiment. First, as shown in FIG. Further, after the outer shape of the printed wiring board on which the wiring pattern, solder resist, etc. are formed, the pre-flux treatment is performed on the printed wiring board as shown in FIG.
次に、図2(c)に示したように、常温の真空乾燥処理(真空度:0.1MPa以下、処理時間:0.5〜16時間)を行なって、含水率を0.2重量%以下のプリント配線板を得る。 Next, as shown in FIG. 2 (c), a vacuum drying treatment at normal temperature (vacuum degree: 0.1 MPa or less, treatment time: 0.5 to 16 hours) is performed, and the water content is 0.2% by weight. The following printed wiring board is obtained.
そして図2(d)に示したように、この得られたプリント配線板に、鉛フリーはんだ(例えば、実装温度が245〜260℃)を用いたリフロー処理(予備加熱:175〜180℃、120±10秒、本加熱:230℃以上(ピーク温度260℃)、60±5秒)によって、部品実装を行なう。 And as shown in FIG.2 (d), the reflow process (preheating: 175-180 degreeC, 120) which used the lead-free solder (For example, mounting temperature is 245-260 degreeC) to this obtained printed wiring board. Component mounting is performed by ± 10 seconds, main heating: 230 ° C. or higher (peak temperature 260 ° C., 60 ± 5 seconds).
このように、プリフラックス処理を施したプリント配線板に対しては、脱湿処理として常温の真空乾燥処理を用いることにより、実装パッド等の表面を酸化させることなく、容易に含水率を0.2重量%以下にすることができる。 As described above, the printed wiring board subjected to the preflux treatment is easily subjected to a moisture content of 0. 0% without oxidizing the surface of the mounting pad or the like by using a vacuum drying treatment at room temperature as the dehumidification treatment. It can be 2% by weight or less.
図3は、常温の真空乾燥処理を還元ガス雰囲気内で行なう場合の本発明プリント配線板の製造例を示す概略工程説明図であり、図3(c)に示したように、常温の真空乾燥処理を還元ガス雰囲気内で行なう以外は図2と基本的に同一である。 FIG. 3 is a schematic process explanatory view showing a manufacturing example of the printed wiring board of the present invention when the vacuum drying process at room temperature is performed in a reducing gas atmosphere. As shown in FIG. This is basically the same as FIG. 2 except that the treatment is performed in a reducing gas atmosphere.
このように、還元ガス雰囲気内で常温の真空乾燥処理を行なうことにより、脱湿処理と同時に酸化膜を除去することができるので、プリフラックス処理したプリント配線板を長期間自然放置したことによって、実装パッド等の表面が酸化してしまった場合等に特に有利である。 Thus, by performing vacuum drying at room temperature in a reducing gas atmosphere, the oxide film can be removed at the same time as the dehumidification treatment. This is particularly advantageous when the surface of the mounting pad or the like has been oxidized.
試験例1
絶縁層がFR−4からなる4層プリント配線板(以降これをサンプル1と呼ぶこととする)と、SEM−3からなる両面(2層)プリント配線板(以降これをサンプル2と呼ぶこととする)を用いて、含水率による不具合発生状況を試験観察した。
Test example 1
A four-layer printed wiring board (hereinafter referred to as sample 1) having an insulating layer of FR-4, and a double-sided (two-layer) printed wiring board (hereinafter referred to as sample 2) made of SEM-3. The occurrence of defects due to moisture content was tested and observed.
まず、上記サンプル1、2をベーキング処理(温度:120℃、処理時間:2時間)して絶対乾燥状態(含水率0重量%)とし、次いで、当該絶対乾燥状態のサンプルに対して加湿処理(温度:40℃、湿度:90%)を行なうことによって、各サンプルで含水率が0.2重量%(7日間の加湿処理)のものと0.3重量%(30日間の加湿処理)のものを用意した。 First, the samples 1 and 2 are baked (temperature: 120 ° C., treatment time: 2 hours) to obtain an absolute dry state (water content 0% by weight), and then the humidified treatment ( By performing a temperature of 40 ° C. and a humidity of 90%, each sample has a moisture content of 0.2% by weight (7 days of humidification) and 0.3% by weight (30 days of humidification). Prepared.
次いで、0時間、24時間、48時間、96時間常温放置(温度:25℃、湿度:60%)した各含水率のサンプル1、2に対してリフロー処理(予備加熱:180℃、125秒、本加熱:230℃以上(ピーク温度260℃)、60秒)を行ない、層間剥離(デラミネーション)やミーズリング等の不具合発生状況を観察した。この結果は表1のとおりであった。 Next, reflow treatment (preheating: 180 ° C., 125 seconds) was performed on samples 1 and 2 having respective moisture contents that were allowed to stand at room temperature (temperature: 25 ° C., humidity: 60%) for 0 hours, 24 hours, 48 hours, and 96 hours. Main heating: 230 ° C. or higher (peak temperature 260 ° C., 60 seconds) was performed, and the occurrence of defects such as delamination and measling was observed. The results are shown in Table 1.
表1の結果から分かるように、サンプル1、2とも、含水率が0.2重量%の場合には不具合が発生せず、含水率が0.3重量%の場合には、いずれのサンプルにおいても不具合が発生することが確認できた。従って、鉛フリーはんだ処理等の高温処理を施す際に、プリント配線板の含水率を少なくとも0.2重量%以下とすることによって、上記不具合の発生を防止することが確認できた。 As can be seen from the results in Table 1, in both samples 1 and 2, no trouble occurred when the moisture content was 0.2% by weight, and in any sample when the moisture content was 0.3% by weight, It was confirmed that the problem occurred. Therefore, it was confirmed that when the high-temperature treatment such as lead-free soldering is performed, the occurrence of the above-described problems can be prevented by setting the moisture content of the printed wiring board to at least 0.2% by weight or less.
試験例2
プリフラックス処理後、上記試験例1と同様の加湿処理を行なって、含水率を0.3重量%とし、次いで、上記試験例1と同様のリフロー処理を行なって、強制的に実装パッドを酸化させたサンプルに対して、還元ガス雰囲気内(ガス種:Ar−H2ガス(Ar:95%、H2:5%)、ガス圧力:1L/min)で、常温の真空乾燥処理(真空度:0.1MPa、処理時間:16時間)を行なった。その結果、含水率が0.18重量%で、且つ実装パッド上での共晶はんだの濡れ広がり性が良好であることが確認できた。従って、当該処理にて脱湿処理と同時に酸化膜も除去されたことが確認できた。
Test example 2
After the preflux treatment, the same humidification treatment as in Test Example 1 is performed to set the moisture content to 0.3% by weight, and then the reflow treatment as in Test Example 1 is performed to forcibly oxidize the mounting pad. A vacuum drying treatment (vacuum degree) at room temperature in a reducing gas atmosphere (gas type: Ar—H 2 gas (Ar: 95%, H 2 : 5%), gas pressure: 1 L / min) : 0.1 MPa, treatment time: 16 hours). As a result, it was confirmed that the moisture content was 0.18% by weight and the eutectic solder wettability on the mounting pad was good. Therefore, it was confirmed that the oxide film was removed simultaneously with the dehumidifying process.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063389A JP2005252120A (en) | 2004-03-08 | 2004-03-08 | Printed wiring board and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063389A JP2005252120A (en) | 2004-03-08 | 2004-03-08 | Printed wiring board and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005252120A true JP2005252120A (en) | 2005-09-15 |
Family
ID=35032297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004063389A Pending JP2005252120A (en) | 2004-03-08 | 2004-03-08 | Printed wiring board and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005252120A (en) |
-
2004
- 2004-03-08 JP JP2004063389A patent/JP2005252120A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009088429A (en) | Printed wiring board, method of manufacturing the same, and semiconductor device | |
JPH0423485A (en) | Printed wiring board and manufacture thereof | |
KR101565965B1 (en) | Manufacturing method of printed circuit board for heating fine line camera molule | |
KR20080114052A (en) | Open-area making process of multi-layer printed circuit board using laser-cutting | |
JP2011044681A (en) | Ceramic substrate, and manufacturing method therefor | |
JP2001274539A (en) | Electrode joining method for printed wiring board loaded with electronic device | |
US9814135B2 (en) | Printed wiring board and method for manufacturing the same | |
JP2005252120A (en) | Printed wiring board and method for manufacturing the same | |
JP2002359459A (en) | Electronic component mounting method, printed wiring board, and mounting structure | |
JP2003179330A (en) | Multi-layer printed wiring board and manufacturing method therefor | |
JPH05327187A (en) | Printed circuit board and manufacture thereof | |
JP2001332851A (en) | Method for manufacturing printed wiring board and land part thereof, and method for mounting the same | |
US9920415B2 (en) | Mitigation and elimination of tin whiskers | |
KR101138537B1 (en) | Method for opening laser mask of ultra thin core and printed-circuit-board fabricated using the same | |
KR101175909B1 (en) | Surface treatment method of printed circuit board, and printed circuit board | |
JP3100796B2 (en) | Method for manufacturing multilayer ceramic substrate | |
JP2003249746A (en) | Printed wiring board | |
JP7430494B2 (en) | Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same | |
JP2002190664A (en) | Semiconductor device using printed-wiring board | |
JPH09246720A (en) | Multilayer printed wiring board and manufacture thereof | |
JP5077661B2 (en) | Composite board and printed wiring board | |
JPH05235522A (en) | Method of forming polyimide film | |
JPH04393A (en) | Method for washing flux after soldering | |
JP2007067147A (en) | Printed circuit board and its manufacturing method | |
JPH11145605A (en) | Printed wiring board |