[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005243743A - Long wavelength band surface emission semiconductor laser - Google Patents

Long wavelength band surface emission semiconductor laser Download PDF

Info

Publication number
JP2005243743A
JP2005243743A JP2004048597A JP2004048597A JP2005243743A JP 2005243743 A JP2005243743 A JP 2005243743A JP 2004048597 A JP2004048597 A JP 2004048597A JP 2004048597 A JP2004048597 A JP 2004048597A JP 2005243743 A JP2005243743 A JP 2005243743A
Authority
JP
Japan
Prior art keywords
type
semiconductor laser
layer
wavelength
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004048597A
Other languages
Japanese (ja)
Other versions
JP4722404B2 (en
Inventor
Yoshitaka Ooiso
義孝 大礒
Manabu Mitsuhara
学 満原
Kouta Asaka
航太 浅香
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004048597A priority Critical patent/JP4722404B2/en
Publication of JP2005243743A publication Critical patent/JP2005243743A/en
Application granted granted Critical
Publication of JP4722404B2 publication Critical patent/JP4722404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long wavelength band surface emission semiconductor laser that has a drastically large optical output and low consumption electric power while satisfying a single transverse mode condition. <P>SOLUTION: The surface emission semiconductor laser is formed by stacking on a substrate (11) a first reflection mirror (12) of a semiconductor multilayer film, a second reflection mirror (13) of an n-type semiconductor multuilayer film, an n-type spacer layer (14), an active layer (15), a p-type spacer layer (16), tunnel joints (17, 18) formed of a p-type semiconductor layer and an n-type semiconductor layer, a third reflection mirror (19) of an n-type semiconductor multilayer film, and a fourth reflection mirror (26) of a semiconductor multilayer film in sequence. The p-type semiconductor layer (17) forming the tunnel joint is made of an In<SB>x</SB>Ga<SB>1-x</SB>As material that is doped with carbon (C) or beryllium (Be), establishing an In-composition ratio of 0≤x≤0.53. The side wall of the active layer (15) has an embedding structure covered with a semi-insulating material (20). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信産業分野で利用される面出射形の半導体レーザに関し、特に長波長帯面発光半導体レーザに関する。   The present invention relates to a surface emitting semiconductor laser used in the field of optical communication industry, and more particularly to a long wavelength band surface emitting semiconductor laser.

長波長帯(1.2〜1.6μm)面発光半導体レーザ(VCSEL: Vertical-Cavity Surface-Emitting Lasers)の一般的な構造は、次の2種類の構造に大別される。その一つのタイプは、非特許文献1等で見られるように、GaInNAs活性層の上下にGaAs/AlGaAsの半導体多層膜反射鏡を積層した後、電流と光の閉じ込め層を形成するために選択酸化を行う構造のものである。他のタイプは、非特許文献2等でみられように、InP基板に格子整合するAlInGaAsもしくはInGaAsP系に活性層をGaAs/AlGaAsの半導体多層膜反射鏡、もしくは誘電体多層膜で形成し、トンネル接合部を一部残して電流狭窄を行う構造のものである。   The general structure of a long-wavelength (1.2 to 1.6 μm) surface-emitting semiconductor laser (VCSEL) is roughly classified into the following two types. One type is selective oxidation to form a current and light confinement layer after laminating a GaAs / AlGaAs semiconductor multilayer reflector above and below a GaInNAs active layer, as seen in Non-Patent Document 1, etc. It is the structure of performing. In other types, as seen in Non-Patent Document 2, etc., an active layer is formed of a GaAs / AlGaAs semiconductor multilayer reflector or a dielectric multilayer film on an AlInGaAs or InGaAsP system lattice-matched to an InP substrate, and a tunnel is formed. In this structure, current confinement is performed while leaving a part of the junction.

しかしながら、上記のように、横方向の光と電流の閉じ込めを、選択酸化して形成、もしくは部分的にトンネル接合を作製して形成された面発光半導体レーザは、横方向の閉じ込めが、光と電流の両者とも小さすぎるため、閾値電流の上昇を招き、このため長波長帯で必須である単一横モードを満たす条件が、発光径が3〜5μmと比較的小さくなり、結果的に大きな光出力を得られ難いという、光出力では必ずしも満足したものが得られていない。   However, as described above, the surface light emitting semiconductor laser formed by selectively oxidizing the lateral light and current confinement or partially forming the tunnel junction has the lateral confinement of light and current. Since both of the currents are too small, the threshold current increases, and the condition for satisfying the single transverse mode, which is essential in the long wavelength band, is relatively small with an emission diameter of 3 to 5 μm. It is difficult to obtain an output, and a satisfactory optical output is not always obtained.

一方、非特許文献3等で見られる面発光半導体レーザでは、埋込み構造を有しているため、上記の難点を解消しているが、反射鏡であるp型半導体層の光吸収と低抵抗化の両立が難しいという別の難点があり、素子抵抗、閾値電流、光出力の点で実用化に至る特性が得られていない。また、その埋込み層の作製において半絶縁性の鉄(Fe)をドーパントとして用いた半絶縁性半導体の埋込み成長を行う際に高い再成長温度を要するため、p型のドーピング種であるZnがFeと相互拡散を起こし、結果的にリーク電流の上昇が生じて、閾値電流の上昇を招くという欠点がある。   On the other hand, the surface-emitting semiconductor lasers found in Non-Patent Document 3 and the like have an embedded structure, which eliminates the above-mentioned difficulties. However, light absorption and low resistance of the p-type semiconductor layer, which is a reflecting mirror, are eliminated. There is another difficulty that it is difficult to achieve both, and characteristics that have been put to practical use have not been obtained in terms of element resistance, threshold current, and light output. In addition, since a high regrowth temperature is required when performing the buried growth of a semi-insulating semiconductor using semi-insulating iron (Fe) as a dopant in the fabrication of the buried layer, the p-type doping species Zn is changed to Fe. Interdiffusion, resulting in an increase in leakage current and an increase in threshold current.

これに対し、トンネル接合を用いて作製される面発光半導体レーザは、素子抵抗の低減化の目的でトンネル確率を増大させるために、p型半導体を高濃度ドーピングする必要がある。このため、Znに代わり、比較的高濃度ドーピングが可能なカーボン(C)もしくはベリリウム(Be)が用いられ、InPに格子整合し、且つ発振波長に対して透過するという3つの条件を満たす材料として、非特許文献2等でみられるようにp型半導体としてのAlInGaAsを用いるのが一般的となっている。しかしながら、この構造の場合は、ドーパント種をCもしくはBeとした結果、埋込み構造を形成する際に、ドーパントの拡散を抑制でき、所望のドーピングプロファイルが得られやすいという利点が得られたものの、Alを含んだ材料系では、自然酸化膜の除去が難しく、埋込み層を形成する際に異常成長が起きやすいという解決すべき点がある。   On the other hand, a surface emitting semiconductor laser manufactured using a tunnel junction needs to be highly doped with a p-type semiconductor in order to increase the tunnel probability for the purpose of reducing element resistance. Therefore, instead of Zn, carbon (C) or beryllium (Be) that can be doped at a relatively high concentration is used as a material that satisfies the three conditions of lattice matching with InP and transmission with respect to the oscillation wavelength. As seen in Non-Patent Document 2, etc., it is common to use AlInGaAs as a p-type semiconductor. However, in the case of this structure, as a result of changing the dopant species to C or Be, when forming the buried structure, the diffusion of the dopant can be suppressed and the desired doping profile can be easily obtained. In the material system containing the material, it is difficult to remove the natural oxide film, and there is a problem that abnormal growth tends to occur when the buried layer is formed.

G. Steinle, et al. “Data transmission up to 10Gblt/s with 1.3 μm wavelength InGaAsN VCSELs” Electronics Letters, 10th May 2001, Vol.37 No.10 pp.632-634G. Steinle, et al. “Data transmission up to 10Gblt / s with 1.3 μm wavelength InGaAsN VCSELs” Electronics Letters, 10th May 2001, Vol.37 No.10 pp.632-634 N. Nishiyama, et. al. “High efficiency long wavelength VCSEL on InP grown by MOCVD” Electronics Letters, 8th March 2003, Vol.39 No.5, pp.437-439N. Nishiyama, et. Al. “High efficiency long wavelength VCSEL on InP grown by MOCVD” Electronics Letters, 8th March 2003, Vol.39 No.5, pp.437-439 Y. Ohiso, et. al. “Single Transverse Mode Operation of 1.55-μm Buried Heterostructure Vertical-Cavity Surface-Emitting Lasers” IEEE Photonics Technology Letters, June 2002, Vol.14, No.6, pp. 738-740Y. Ohiso, et. Al. “Single Transverse Mode Operation of 1.55-μm Buried Heterostructure Vertical-Cavity Surface-Emitting Lasers” IEEE Photonics Technology Letters, June 2002, Vol.14, No.6, pp. 738-740 Yoshitaka Ohiso, et. al. “1.55-μm Buried-Heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs Substrate” IEEE Journal of Quantum Electronics,September 2001, Vol. 37, No.9 p.1194-1202Yoshitaka Ohiso, et. Al. “1.55-μm Buried-Heterostructure VCSELs with InGaAsP / InP-GaAs / AlAs DBRs on a GaAs Substrate” IEEE Journal of Quantum Electronics, September 2001, Vol. 37, No.9 p.1194-1202

本発明の目的は、上述した従来技術の課題を解決し、単一横モード条件を満たしながら飛躍的に光出力の向上が可能となる長波長帯面発光半導体レーザを提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a long-wavelength surface emitting semiconductor laser capable of dramatically improving the light output while satisfying the single transverse mode condition.

上記目的を達成するため、本発明の長波長帯面発光半導体レーザは、基板上(11)に、光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なる2種類の材料からなる第1反射鏡(12)と、光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なる2種類の材料からなるn型の第2反射鏡(13)と、n型第1スペーサ層(14)と、活性層(15)と、p型第2スペーサ層(16)と、p型半導体層とn型半導体層からなるトンネル接合部分(17,18)と、光学波長の1/4に相当する膜厚で交互に積層された2種類の材料からなるn型の第3反射鏡(19)と、光学波長の1/4に相当する膜厚で交互に積層された2種類の材料からなる第4反射鏡(26)を順次積層して構成された面発光半導体レーザであって、上記トンネル接合部分を構成する上記p型半導体層(17)が、カーボン(C)でドーピングされた、In組成比xが0≦x<0.53となる、InGa1−xAsの材料で構成され、かつ上記活性層(15)の側面が半絶縁性材料(20)で覆われた埋込み構造を有することを特徴とする。 In order to achieve the above object, the long-wavelength surface emitting semiconductor laser of the present invention comprises two types of different refractive indexes which are alternately stacked on a substrate (11) with a film thickness corresponding to ¼ of the optical wavelength. A first reflecting mirror (12) made of a material, and an n-type second reflecting mirror (13) made of two kinds of materials having different refractive indexes, which are alternately laminated with a film thickness corresponding to ¼ of the optical wavelength, , An n-type first spacer layer (14), an active layer (15), a p-type second spacer layer (16), and a tunnel junction portion (17, 18) comprising a p-type semiconductor layer and an n-type semiconductor layer, The n-type third reflecting mirror (19) made of two kinds of materials alternately laminated with a film thickness corresponding to ¼ of the optical wavelength, and alternately with a film thickness corresponding to ¼ of the optical wavelength. A surface emitting semiconductor laser comprising a fourth reflecting mirror (26) made of two kinds of laminated materials in sequence. I, the p-type semiconductor layer constituting the tunnel junction (17), doped with carbon (C), an In composition ratio x is 0 ≦ x <0.53, In x Ga 1-x It is made of an As material and has a buried structure in which the side surface of the active layer (15) is covered with a semi-insulating material (20).

また、上記トンネル接合部分を構成するp型半導体層(17)を、Beでドーピングされた、In組成比xが0≦x<0.53となる、InGa1−xAsの材料で構成することを特徴とすることもできる。 Further, the p-type semiconductor layer (17) constituting the tunnel junction portion is made of a material of In x Ga 1-x As doped with Be and having an In composition ratio x of 0 ≦ x <0.53. It can also be characterized.

さらに、上記光学波長が1.55μm帯の場合に、上記トンネル接合部分を構成するp型半導体層(17)を、In組成比xが0.15<x<0.25となる、InGa1−xAsの材料で構成することを特徴とすることができる。 Further, in the case where the optical wavelength is in the 1.55 μm band, the p-type semiconductor layer (17) constituting the tunnel junction portion is formed of In x Ga having an In composition ratio x of 0.15 <x <0.25. It can be characterized by comprising 1-x As material.

上記のように、本発明の長波長帯面発光半導体レーザは、第3の反射鏡としてp型半導体層を用いずにn型半導体多層膜(19)を用い、p型スペーサ層(16)とそのn型半導体多層膜(19)の間にトンネル接合部分(17,18)を導入し、かつ埋込み構造を有することにより、単一横モード条件を満たしながら飛躍的に光出力を増加させることに特徴を有する。   As described above, the long-wavelength surface emitting semiconductor laser of the present invention uses the n-type semiconductor multilayer film (19) as the third reflecting mirror without using the p-type semiconductor layer, and the p-type spacer layer (16). By introducing the tunnel junction portion (17, 18) between the n-type semiconductor multilayer film (19) and having a buried structure, the light output is dramatically increased while satisfying the single transverse mode condition. Has characteristics.

さらに、本発明の長波長帯面発光半導体レーザは、埋込み再成長の際FeとZnの相互拡散を防いでリーク電流を無くすために、トンネル接合(17,18)を構成するp型の高濃度の半導体層(17)はAlフリーの材料であるInGaAsを用い、ドーパント種としてカーボン(C)もしくはベリリウム(Be)を用いることを特徴としている。   Furthermore, the long-wavelength surface emitting semiconductor laser of the present invention has a high concentration of p-type that forms a tunnel junction (17, 18) in order to prevent mutual diffusion of Fe and Zn during buried regrowth and to eliminate leakage current. The semiconductor layer (17) is characterized by using InGaAs, which is an Al-free material, and using carbon (C) or beryllium (Be) as a dopant species.

(作用)
次に、本発明の作用を詳細に説明する。
上記のように、本発明の構造は、半導体埋込み構造を用いているため、面発光半導体レーザの横方向の光と電流の閉じ込めが強くなり、安定した単一横モードのレーザ発振が得られる。一方、本発明の構造は、従来の埋込み構造で問題であった電気抵抗と内部損失の主な要因であったp型反射鏡を用いずに、n型反射鏡を用いるため、低抵抗、低光損失の反射鏡が作製可能となり、同時に埋込み構造をとるため、屈折率導波型構造が形成され、単一横モード発振条件をみたす発光径が大きくなり、大幅に光出力の増加が実現できる。
(Function)
Next, the operation of the present invention will be described in detail.
As described above, since the structure of the present invention uses a semiconductor buried structure, the lateral light and current confinement of the surface emitting semiconductor laser becomes strong, and a stable single transverse mode laser oscillation can be obtained. On the other hand, the structure of the present invention uses an n-type reflecting mirror instead of a p-type reflecting mirror, which is the main cause of electrical resistance and internal loss, which is a problem with the conventional buried structure. Reflective mirrors can be fabricated, and at the same time a buried structure is formed, so that a refractive index waveguide structure is formed, the emission diameter satisfying the single transverse mode oscillation condition is increased, and the light output can be significantly increased. .

また、本発明の構造は、従来p型半導体を形成するために用いていたドーパントZnの代わりに、高濃度が可能なドーパントであるカーボン(C)もしくはベリリウム(Be)を用いることにより、低抵抗な素子の実現とZn拡散を伴わない埋込み成長が可能であるため、リーク電流を限りなく無くすことが可能となり、低閾値電流のレーザ発振が実現可能となる。   In addition, the structure of the present invention has a low resistance by using carbon (C) or beryllium (Be), which is a dopant capable of high concentration, instead of the dopant Zn conventionally used for forming a p-type semiconductor. Since it is possible to realize a simple element and to perform buried growth without Zn diffusion, it is possible to eliminate the leakage current as much as possible and to realize laser oscillation with a low threshold current.

更に、本発明の構造は、トンネル接合を形成する材料をAlフリーにすることにより、埋込み成長の際の異常成長が抑制可能となる。   Furthermore, the structure of the present invention can suppress abnormal growth during buried growth by making the material forming the tunnel junction Al-free.

また、従来InP基板に格子整合するIn0.53Ga0.47AsにCドーピングしたp型のキャリア濃度は、成長温度、成長時のV族とIII族のモル比であるV/III比、成長後のアニール条件を検討しても1−3×1019cm−3程度であり、高いトンネル確率を得るためには十分でなかった。これに対し、本発明の構造では、トンネル接合部分のp型半導体層をInP基板に対して、引っ張り歪を有するInGa1−xAs(0≦x<0.53)を用いるようにしているので、従来の格子整合するIn0.53Ga0.47Asに比べて、Gaの組成比が大きくなるため、MOCVD結晶成長中にCの取り込みが大きくなり、(5−10)×1019cm−3の高濃度ドーピングが容易となるとともに、かつバンドギャップが大きくなり、半導体の吸収端の波長がより短波側となるため、発振波長(1.2〜1.6μm)に対して吸収係数が飛躍的に小さくなり、面発光半導体レーザの光出力向上が達成できる。 In addition, the p-type carrier concentration of C-doped In 0.53 Ga 0.47 As lattice-matched to the conventional InP substrate is the growth temperature, the V / III ratio which is the molar ratio of the V group and the III group during growth, Even if the annealing conditions after the growth were examined, it was about 1-3 × 10 19 cm −3 , which was not sufficient to obtain a high tunnel probability. In contrast, in the structure of the present invention, In x Ga 1-x As (0 ≦ x <0.53) having tensile strain is used for the p-type semiconductor layer at the tunnel junction portion with respect to the InP substrate. Therefore, since the Ga composition ratio is larger than that of the conventional lattice-matched In 0.53 Ga 0.47 As, C incorporation is increased during MOCVD crystal growth, and (5-10) × 10 19 The high concentration doping of cm −3 is facilitated, the band gap is increased, and the wavelength at the absorption edge of the semiconductor is on the short wavelength side, so that the absorption coefficient with respect to the oscillation wavelength (1.2 to 1.6 μm) As a result, the optical output of the surface emitting semiconductor laser can be improved.

図1に、本発明に係わるInGa1−xAs(0≦x<0.53)のInの組成比xと、Cドーピングされたp型キャリア濃度の最大値ρと、トンネル電流Jpと、レーザ発振波長1.55μmに対する吸収係数αとの関係をグラフで示す。 FIG. 1 shows the In composition ratio x of In x Ga 1-x As (0 ≦ x <0.53) according to the present invention, the maximum value p of the C-doped p-type carrier concentration, the tunnel current Jp, The relationship between the absorption coefficient α and the laser oscillation wavelength of 1.55 μm is shown in a graph.

p型キャリア濃度の最大値ρはInの組成比xが小さくなるほど高濃度にドーピングされる。一方、トンネル電流Jpは高濃度ドーピングするほど大きくなるが、Inの組成比xが小さくなるとバンドギャップが大きくなるためトンネル電流Jpは小さくなり、結局In組成が0.2近傍で最大となる。また、吸収係数αは、バンドギャップの吸収端に近くなるほどバンドテイルの影響で大きくなるが、In組成xが0.2近傍ではそれほど影響を受けない。そこで、In0.2Ga0.8Asの材料でトンネル接合を作製すれば面発光半導体レーザの特性を飛躍的に向上させることが可能となることが分かる。 The maximum value ρ of the p-type carrier concentration is doped as the In composition ratio x decreases. On the other hand, the tunnel current Jp increases as the doping concentration increases. However, when the In composition ratio x decreases, the band gap increases, so the tunnel current Jp decreases, and eventually the In composition becomes maximum near 0.2. Further, the absorption coefficient α increases as the band gap is closer to the absorption edge of the band gap, but is not significantly affected when the In composition x is near 0.2. Thus, it can be seen that the characteristics of the surface emitting semiconductor laser can be drastically improved if a tunnel junction is made of a material of In 0.2 Ga 0.8 As.

図1では、発振波長が1.55μmを例にして述べたが、レーザ発振波長が異なれば、Inの組成xの最適値は異なることになる。発振波長が1.55μm帯の場合、本発明の作用効果を現出するIn組成範囲は、0以上0.53未満、より好ましくはトンネル電流Jpが10kA/cm以上となる0以上0.43以下、より好ましくはトンネル電流Jpが10kA/cm以上となる0以上0.35以下であり、0.15以上0.25以下が最適である。 In FIG. 1, the oscillation wavelength is 1.55 μm as an example. However, when the laser oscillation wavelength is different, the optimum value of the In composition x is different. When the oscillation wavelength is in the 1.55 μm band, the In composition range in which the effects of the present invention are exhibited is 0 or more and less than 0.53, more preferably 0 or more and 0 or more when the tunnel current Jp is 10 2 kA / cm 2 or more. .43 or less, more preferably 0 or more and 0.35 or less at which the tunnel current Jp is 10 3 kA / cm 2 or more, and 0.15 or more and 0.25 or less is optimal.

また、トンネル接合部分のp型半導体層InGa1−xAs(0≦x<0.53)にBeドーピングしてMBE結晶成長した面発光半導体レーザでも同様の作用効果がある。 Further, a surface emitting semiconductor laser obtained by Be doping the p-type semiconductor layer In x Ga 1-x As (0 ≦ x <0.53) in the tunnel junction portion and growing the MBE crystal has the same effect.

以上説明したように、本発明の長波長帯面発光半導体レーザによれば、単一横モード条件を満たしながら飛躍的に光出力の向上が可能となる。   As described above, according to the long-wavelength surface emitting semiconductor laser of the present invention, it is possible to dramatically improve the light output while satisfying the single transverse mode condition.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
(第1の実施形態)
図2に本発明の第1の実施形態における長波長面発光半導体レーザの断面構造を示す。作製工程は、面発光半導体レーザ構造以外は 非特許文献4に記載のものとほぼ同じである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 2 shows a cross-sectional structure of the long wavelength surface emitting semiconductor laser according to the first embodiment of the present invention. The manufacturing process is almost the same as that described in Non-Patent Document 4 except for the surface emitting semiconductor laser structure.

GaAs11基板上に、第1反射鏡12として、1.55μmの光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なるGaAs/AlAsをエピタキシャル成長させる。   On the GaAs 11 substrate, as the first reflecting mirror 12, GaAs / AlAs having different refractive indexes, which are alternately laminated with a film thickness corresponding to ¼ of the optical wavelength of 1.55 μm, are epitaxially grown.

また、InP基板(図示しない)上に、1.55μmの光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なる5ペアのn型のInGaAsP/InP第2反射鏡13と、n型第1スペーサ層14と、活性層15と、p型第2スペーサ層16と、Cドーピングされたp++のIn0.2Ga0.8As層17およびn++のInP層18からなるトンネル接合部分と、1.55μmの光学波長の1/4に相当する膜厚で交互に積層されたペアのn型InGaAsP/InP第3反射鏡19とを、順次にMOCVD法(有機金属気相エピタキシャル成長法)でエピタキシャル成長させる。その後、SiOマスクを用いてメタン系ドライエッチングを行い、メサ(台地型)形成を行う。 Further, five pairs of n-type InGaAsP / InP second reflecting mirrors 13 having different refractive indexes, which are alternately stacked on an InP substrate (not shown) with a film thickness corresponding to ¼ of the optical wavelength of 1.55 μm. An n-type first spacer layer 14, an active layer 15, a p-type second spacer layer 16, a C-doped p ++ In 0.2 Ga 0.8 As layer 17 and an n ++ InP layer 18. A tunnel junction portion and a pair of n-type InGaAsP / InP third reflecting mirrors 19 alternately stacked with a film thickness corresponding to ¼ of an optical wavelength of 1.55 μm are sequentially formed by MOCVD (organometallic vapor phase). Epitaxial growth is performed by an epitaxial growth method. Thereafter, methane-based dry etching is performed using a SiO 2 mask to form a mesa (plateau type).

次に、InGaAsP/InP第2反射鏡13の上に、埋込み層であるFeドーピングされた半絶縁性のInP層20を成長させ、SiOマスクを取り除いた後、n型InP層21とn++のInGaAsコンタクト層22を成長させ、メサ直上部分のInGaAs部分を化学的選択エッチングにより取り除き、埋込み工程を完了する。 Next, an Fe-doped semi-insulating InP layer 20 as a buried layer is grown on the InGaAsP / InP second reflecting mirror 13, and after removing the SiO 2 mask, the n-type InP layer 21 and the n ++ The InGaAs contact layer 22 is grown and the InGaAs portion immediately above the mesa is removed by chemical selective etching to complete the embedding process.

その後、埋込み表面(19)とSi基板(図示しない)とをワックス(蝋付け)で直接貼り合わせて固定し、上記のInP基板(図示しない)を完全に除去し、GaAs/AlAs第1反射鏡12の表面に第2反射鏡13であるInGaAsP/InP表面を接触させ、水素雰囲気中でアニール(anneal:熱処理)を施すことで、GaAsとInPとの間の共有結合を形成するという、いわゆるウエハーフュージョン(Wafer fusion)を行う。   Thereafter, the embedded surface (19) and the Si substrate (not shown) are directly bonded and fixed with wax (brazing), and the InP substrate (not shown) is completely removed, and the GaAs / AlAs first reflecting mirror is fixed. The surface of No. 12 is brought into contact with the surface of the InGaAsP / InP, which is the second reflecting mirror 13, and annealed in a hydrogen atmosphere to form a covalent bond between GaAs and InP. Perform fusion (Wafer fusion).

その後、Feドーピングされた埋込み層を部分的にエッチングして取り除き、下部電極23、上部電極と電極パット24、AR(反射防止)コート25を順次蒸着した後、第4反射鏡としての1.55μmの光学波長の1/4に相当する膜厚で交互に積層されたSiO/TiO 誘電体多層膜26を埋込み表面(19)上に形成し、その後、電極パット部分24の上部の誘電体多層膜26を取り除くことにより、図2に示す断面構造の長波長帯面発光半導体レーザを得る。 Thereafter, the Fe-doped buried layer is partially removed by etching, and a lower electrode 23, an upper electrode and an electrode pad 24, and an AR (antireflection) coat 25 are sequentially deposited, and then 1.55 μm as a fourth reflecting mirror. SiO 2 / TiO 2 dielectric multilayer films 26 alternately laminated with a film thickness corresponding to ¼ of the optical wavelength of the above are formed on the buried surface (19), and then the dielectric on the upper part of the electrode pad portion 24. By removing the multilayer film 26, a long-wavelength surface emitting semiconductor laser having a cross-sectional structure shown in FIG. 2 is obtained.

図3に、室温連続動作時における本発明の第1実施形態による上記面発光半導体レーザの電流−電圧−光特性と、従来技術により製作した面発光半導体レーザの電流−電圧−光特性とを示す。すなわち、図3において、実線の特性曲線(a)は本発明を適用して作製した第1実施形態の面発光半導体レーザの電流−光出力特性を示し、実線の特性曲線(b)は従来技術によるトンネル接合部分のp型半導体層がIn0.53Ga0.47Asで作製した場合の面発光半導体レーザの電流−光出力特性を示す。また、破線の特性曲線(a')は本発明を適用して作製した第1実施形態の面発光半導体レーザの電流−電圧特性を示し、破線の特性曲線(b')は従来技術によるトンネル接合部分のp型半導体層がIn0.53Ga0.47Asで作製した面発光半導体レーザの電流−電圧特性を示す。 FIG. 3 shows the current-voltage-optical characteristics of the surface-emitting semiconductor laser according to the first embodiment of the present invention during continuous operation at room temperature, and the current-voltage-optical characteristics of the surface-emitting semiconductor laser manufactured according to the prior art. . That is, in FIG. 3, a solid characteristic curve (a) shows a current-light output characteristic of the surface emitting semiconductor laser of the first embodiment manufactured by applying the present invention, and a solid characteristic curve (b) shows a conventional technique. 2 shows current-light output characteristics of a surface emitting semiconductor laser when the p-type semiconductor layer of the tunnel junction portion is made of In 0.53 Ga 0.47 As. A broken line characteristic curve (a ′) shows a current-voltage characteristic of the surface emitting semiconductor laser according to the first embodiment manufactured by applying the present invention, and a broken line characteristic curve (b ′) shows a tunnel junction according to the prior art. The current-voltage characteristic of a surface emitting semiconductor laser in which a partial p-type semiconductor layer is made of In 0.53 Ga 0.47 As is shown.

本発明による面発光半導体レーザでは、トンネル接合部分のp型半導体層が、従来技術の(b')に示すものに比べて、本発明の特性曲線(a')のものの方がInの組成比xが小さいため、高濃度ドーピングが可能となり、また電気抵抗が小さくなることがわかる。   In the surface emitting semiconductor laser according to the present invention, the In composition ratio of the p-type semiconductor layer in the tunnel junction portion is that of the characteristic curve (a ′) of the present invention compared to that of the prior art (b ′). It can be seen that since x is small, high-concentration doping is possible and the electrical resistance is small.

また、本発明の特性曲線(a)のものの方が従来技術の特性曲線(b)のものに比べて、光出力が大幅に増加し、閾値電流が減少しているが、これもp型半導体層が従来技術の特性曲線(b)のものに比べて、本発明の特性曲線(a)の方がInの組成比xが小さいため、レーザキャビティ内の内部損失が大幅に減少しているためである。   Also, the characteristic curve (a) of the present invention has a significantly increased light output and a lower threshold current than the characteristic curve (b) of the prior art, which is also a p-type semiconductor. Since the In composition ratio x is smaller in the characteristic curve (a) of the present invention than in the characteristic curve (b) of the prior art, the internal loss in the laser cavity is greatly reduced. It is.

その結果、本発明の長波長帯面発光半導体レーザによれば、単一横モード条件を満たしながら飛躍的に光出力の向上が可能となる。   As a result, according to the long wavelength surface emitting semiconductor laser of the present invention, it is possible to dramatically improve the light output while satisfying the single transverse mode condition.

(他の実施形態)
上述の本発明の第1の実施形態では、トンネル接合部分を構成するp型半導体層に対してMOCVD法を用いてCドーピングして行っているが、本発明はこれに限定されず、例えばMBE法(分子線エピタキシャル成長法)で結晶成長したとしても同様の効果があるのはいうまでもない。また、Beドーピングした面発光半導体レーザでも、MOCVD法、MBE法といった結晶性長法に関わらず、上述の本発明の一実施形態と同様の効果が得られることはいうまでもない。
(Other embodiments)
In the first embodiment of the present invention described above, the p-type semiconductor layer constituting the tunnel junction portion is C-doped using the MOCVD method. However, the present invention is not limited to this, and for example, MBE Needless to say, even if the crystal is grown by the method (molecular beam epitaxial growth method), the same effect is obtained. Further, it goes without saying that the same effect as that of the above-described embodiment of the present invention can be obtained even with a Be-doped surface emitting semiconductor laser regardless of the crystallinity length method such as the MOCVD method and the MBE method.

また、本発明は、上記の実施形態に限定されず、請求項に記載の範囲内において、その変更、置換等を行なうことができるのは勿論である。   Further, the present invention is not limited to the above-described embodiment, and it is needless to say that changes, substitutions, etc. can be made within the scope of the claims.

本発明に係わる、InGa1−xAs(0≦x<0.53)のInの組成比xと、Cドーピングされたp型キャリア濃度の最大値ρと、トンネル電流Jpと、レーザ発振波長1.55μmに対する吸収係数αとの関係を示すグラフ図である。In x Ga 1-x As (0 ≦ x <0.53) In composition ratio x, C doped p-type carrier concentration maximum value ρ, tunnel current Jp, and laser oscillation according to the present invention It is a graph which shows the relationship with the absorption coefficient (alpha) with respect to wavelength 1.55micrometer. 本発明の第1実施形態における長波長帯面発光半導体レーザの構成例を示す断面図である。It is sectional drawing which shows the structural example of the long wavelength band surface emitting semiconductor laser in 1st Embodiment of this invention. 本発明の第1実施形態における長波長帯面発光半導体レーザの電流−電圧−光出力特性と、トンネル接合部分のp型半導体層をIn0.53Ga0.47Asで作製した従来技術による長波長帯面発光半導体レーザの電流−電圧−光出力特性と比較して示すグラフ図である。The current-voltage-light output characteristics of the long-wavelength surface emitting semiconductor laser according to the first embodiment of the present invention and the length of the conventional technique in which the p-type semiconductor layer of the tunnel junction is made of In 0.53 Ga 0.47 As. It is a graph shown in comparison with the current-voltage-light output characteristics of the wavelength band surface emitting semiconductor laser.

符号の説明Explanation of symbols

11 GaAs基板
12 GaAs/AlAs第1反射鏡
13 n型InGaAsP/InP第2反射鏡
14 n型第1スペーサ層
15 活性層
16 p型第2スペーサ層
17 p++ −InGaAs層(トンネル接合部分)
18 n++ −InP層(トンネル接合部分)
19 n型InGaAsP/InP第3反射鏡
20 半絶縁性InP
21 n型InP層
22 n++ InGaAs層
23 電極
24 電極
25 ARコート
26 SiO/TiO第4反射鏡
11 GaAs substrate 12 GaAs / AlAs first reflecting mirror 13 n-type InGaAsP / InP second reflecting mirror 14 n-type first spacer layer 15 active layer 16 p-type second spacer layer 17 p ++-InGaAs layer (tunnel junction portion)
18 n ++ -InP layer (tunnel junction)
19 n-type InGaAsP / InP third reflector 20 semi-insulating InP
21 n-type InP layer 22 n ++ InGaAs layer 23 electrode 24 electrode 25 AR coat 26 SiO 2 / TiO 2 fourth reflecting mirror

Claims (3)

基板上に、光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なる2種類の材料からなる第1反射鏡と、光学波長の1/4に相当する膜厚で交互に積層された屈折率の異なる2種類の材料からなるn型の第2反射鏡と、n型第1スペーサ層と、活性層と、p型第2スペーサ層と、p型半導体層とn型半導体層からなるトンネル接合部分と、光学波長の1/4に相当する膜厚で交互に積層された2種類の材料からなるn型の第3反射鏡と、光学波長の1/4に相当する膜厚で交互に積層された2種類の材料からなる第4反射鏡を順次積層して構成された面発光半導体レーザであって、
前記トンネル接合部分を構成する前記p型半導体層が、カーボン(C)でドーピングされた、In組成比xが0≦x<0.53となる、InGa1−xAsの材料で構成され、
かつ前記活性層の側面が半絶縁性材料で覆われた埋込み構造を有することを特徴とする長波長帯面発光半導体レーザ。
First reflective mirrors made of two kinds of materials having different refractive indexes, which are alternately stacked on the substrate with a film thickness corresponding to ¼ of the optical wavelength, and alternately with a film thickness corresponding to ¼ of the optical wavelength. An n-type second reflecting mirror made of two kinds of materials with different refractive indexes, an n-type first spacer layer, an active layer, a p-type second spacer layer, a p-type semiconductor layer, and an n-type A tunnel junction portion made of a semiconductor layer, an n-type third reflecting mirror made of two kinds of materials stacked alternately with a thickness corresponding to ¼ of the optical wavelength, and ¼ of the optical wavelength. A surface emitting semiconductor laser configured by sequentially laminating a fourth reflecting mirror made of two kinds of materials alternately laminated with a film thickness,
The p-type semiconductor layer constituting the tunnel junction portion is made of a material of In x Ga 1-x As doped with carbon (C) and having an In composition ratio x of 0 ≦ x <0.53. ,
A long-wavelength surface emitting semiconductor laser having a buried structure in which a side surface of the active layer is covered with a semi-insulating material.
前記トンネル接合部分を構成するp型半導体層を、Beでドーピングされた、In組成比xが0≦x<0.53となる、InGa1−xAsの材料で構成することを特徴とする請求項1に記載の長波長帯面発光半導体レーザ。 The p-type semiconductor layer constituting the tunnel junction portion is composed of a material of In x Ga 1-x As doped with Be and having an In composition ratio x of 0 ≦ x <0.53. The long-wavelength surface emitting semiconductor laser according to claim 1. 前記光学波長が1.55μm帯の場合に、前記トンネル接合部分を構成するp型半導体層を、前記In組成比xが0.15<x<0.25となる、InGa1−xAsの材料で構成することを特徴とする請求項1または2に記載の長波長帯面発光半導体レーザ。
In the case where the optical wavelength is in the 1.55 μm band, the p-type semiconductor layer constituting the tunnel junction portion is formed of In x Ga 1-x As with the In composition ratio x being 0.15 <x <0.25. The long-wavelength surface emitting semiconductor laser according to claim 1, wherein the long-wavelength surface emitting semiconductor laser is formed of the following material.
JP2004048597A 2004-02-24 2004-02-24 Long wavelength surface emitting semiconductor laser Expired - Fee Related JP4722404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048597A JP4722404B2 (en) 2004-02-24 2004-02-24 Long wavelength surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048597A JP4722404B2 (en) 2004-02-24 2004-02-24 Long wavelength surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JP2005243743A true JP2005243743A (en) 2005-09-08
JP4722404B2 JP4722404B2 (en) 2011-07-13

Family

ID=35025183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048597A Expired - Fee Related JP4722404B2 (en) 2004-02-24 2004-02-24 Long wavelength surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP4722404B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108117A1 (en) * 2006-03-22 2007-09-27 Fujitsu Limited Optical semiconductor device
JP2008251718A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Surface emission laser element and its fabrication process
JP2009081230A (en) * 2007-09-26 2009-04-16 Nec Corp Surface-emitting laser
JP2019134019A (en) * 2018-01-30 2019-08-08 セイコーエプソン株式会社 Light-emitting device
WO2023145148A1 (en) * 2022-01-28 2023-08-03 ソニーグループ株式会社 Surface-emitting laser and method for manufacturing surface-emitting laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277853A (en) * 1999-03-26 2000-10-06 Tokyo Inst Of Technol Method for forming current constriction layer, and current constriction type surface emitting laser
JP2001060739A (en) * 1999-08-19 2001-03-06 Nippon Telegr & Teleph Corp <Ntt> Surface emission laser
JP2002134835A (en) * 2000-10-20 2002-05-10 Nec Corp Tunnel junction surface emitting laser
WO2002075868A2 (en) * 2001-03-15 2002-09-26 Ecole Polytechnique Federale De Lausanne Vertical cavity surface emitting laser
JP2003202529A (en) * 2001-03-13 2003-07-18 Ricoh Co Ltd Semiconductor optical modulator, semiconductor light emitting device and wavelength variable laser device and multiwavelength laser device and optical transmission system
JP2003298187A (en) * 2002-03-25 2003-10-17 Agilent Technol Inc ASYMMETRIC InGaAsN VERTICAL CAVITY SURFACE EMISSION LASER

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277853A (en) * 1999-03-26 2000-10-06 Tokyo Inst Of Technol Method for forming current constriction layer, and current constriction type surface emitting laser
JP2001060739A (en) * 1999-08-19 2001-03-06 Nippon Telegr & Teleph Corp <Ntt> Surface emission laser
JP2002134835A (en) * 2000-10-20 2002-05-10 Nec Corp Tunnel junction surface emitting laser
JP2003202529A (en) * 2001-03-13 2003-07-18 Ricoh Co Ltd Semiconductor optical modulator, semiconductor light emitting device and wavelength variable laser device and multiwavelength laser device and optical transmission system
WO2002075868A2 (en) * 2001-03-15 2002-09-26 Ecole Polytechnique Federale De Lausanne Vertical cavity surface emitting laser
JP2003298187A (en) * 2002-03-25 2003-10-17 Agilent Technol Inc ASYMMETRIC InGaAsN VERTICAL CAVITY SURFACE EMISSION LASER

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108117A1 (en) * 2006-03-22 2007-09-27 Fujitsu Limited Optical semiconductor device
US7924896B2 (en) 2006-03-22 2011-04-12 Fujitsu Limited Optical semiconductor device
JP4983791B2 (en) * 2006-03-22 2012-07-25 富士通株式会社 Optical semiconductor element
JP2008251718A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Surface emission laser element and its fabrication process
JP2009081230A (en) * 2007-09-26 2009-04-16 Nec Corp Surface-emitting laser
JP2019134019A (en) * 2018-01-30 2019-08-08 セイコーエプソン株式会社 Light-emitting device
WO2023145148A1 (en) * 2022-01-28 2023-08-03 ソニーグループ株式会社 Surface-emitting laser and method for manufacturing surface-emitting laser

Also Published As

Publication number Publication date
JP4722404B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3735047B2 (en) Semiconductor laser device and manufacturing method thereof
US6542531B2 (en) Vertical cavity surface emitting laser and a method of fabrication thereof
US6931042B2 (en) Long wavelength vertical cavity surface emitting laser
JP4663964B2 (en) Long wavelength photonics device comprising a GaAsSb quantum well layer
EP1378039B1 (en) Vertical cavity surface emitting laser
Nakagawa et al. 1.55-/spl mu/m InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs
EP0784363A2 (en) Vertical-cavity surface-emitting laser and method for manufacturing the same
US20050202614A1 (en) Laser diode device with nitrogen incorporating barrier
US20020131462A1 (en) Intracavity contacted long wavelength VCSELs with buried antimony layers
US8031752B1 (en) VCSEL optimized for high speed data
JPH10173294A (en) Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
CN110429473A (en) Vertical cavity surface emitting laser and preparation method thereof
JP2002185079A (en) Surface-emitting laser, optical module using the same, and optical system
JP2009182145A (en) Semiconductor optical element
JP2003133640A (en) Surface light-emitting semiconductor laser element
WO2002049171A9 (en) Laser diode with nitrogen incorporating barrier
JP2003513476A (en) Long wavelength pseudomorphic InGaNPAsSb type I and type II active layers for GaAs material systems
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
JP2003017812A (en) Semiconductor laser element
JP4722404B2 (en) Long wavelength surface emitting semiconductor laser
JP2009260093A (en) Optical semiconductor device
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP2004179640A (en) Semiconductor laser, module for optical transmission, and optical communication system
Iwai et al. High-performance 1.3-/spl mu/m InAsP strained-layer quantum-well ACIS (Al-oxide confined inner stripe) lasers
WO2004027950A1 (en) Semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees