[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005242021A - Electrostatic latent image developing magnetic single component toner - Google Patents

Electrostatic latent image developing magnetic single component toner Download PDF

Info

Publication number
JP2005242021A
JP2005242021A JP2004052261A JP2004052261A JP2005242021A JP 2005242021 A JP2005242021 A JP 2005242021A JP 2004052261 A JP2004052261 A JP 2004052261A JP 2004052261 A JP2004052261 A JP 2004052261A JP 2005242021 A JP2005242021 A JP 2005242021A
Authority
JP
Japan
Prior art keywords
toner
acid
release agent
melting point
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004052261A
Other languages
Japanese (ja)
Inventor
Takashi Nagai
孝 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2004052261A priority Critical patent/JP2005242021A/en
Publication of JP2005242021A publication Critical patent/JP2005242021A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic latent image developing magnetic single component toner which can keep offset resistance, improved fixing property in a low temperature region and sufficient heat resistance even when the toner is used for a high-speed image forming apparatus using a magnetic single component developing system. <P>SOLUTION: The electrostatic latent image developing magnetic single component toner comprises at least a binder resin and a release agent, wherein the release agent contains a release agent showing 65 to 85°C melting point (Wp1) and a release agent having 130 to 160°C melting point (Wp2) measured by a differential scanning calorimeter. The glass transition temperature Tg of the toner measured by a differential scanning calorimetry satisfies 70≤Wp2-Tg≤100. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複写機、ファクシミリ、レーザープリンタ等の電子写真法による画像形成システムに用いられる静電潜像現像用磁性一成分トナーに関する。   The present invention relates to a magnetic one-component toner for developing an electrostatic latent image used in an electrophotographic image forming system such as a copying machine, a facsimile machine, and a laser printer.

近年の省エネルギー資源化等の環境問題に対応するために、静電記録方式を用い、熱ローラによってトナーを被転写材に定着させる画像形成装置において、消費電力を低減させることが強く要求されている。
消費電力を低減する方法としては、低温定着化、つまり、トナーの定着温度を引き下げる方法、ウォーミングアップ時間を短縮して、待機電力を削減する方法等が検討されている。
In order to cope with environmental problems such as energy saving resources in recent years, it is strongly required to reduce power consumption in an image forming apparatus that uses an electrostatic recording method and fixes toner onto a transfer material using a heat roller. .
As methods for reducing power consumption, low-temperature fixing, that is, a method for lowering the toner fixing temperature, a method for shortening the warm-up time, and reducing standby power are being studied.

定着温度を引き下げるためには、低融点ワックスを用いてトナーを作製することが提案されている(例えば、特許文献1〜3)。
しかし、低融点ワックスの使用は、低温定着性の向上には有効であるが、低融点ワックスの添加量や、トナーの輸送時等の温度変化によって、耐熱性が低下するという問題がある。
In order to lower the fixing temperature, it has been proposed to produce toner using a low melting point wax (for example, Patent Documents 1 to 3).
However, the use of a low melting point wax is effective for improving the low-temperature fixability, but there is a problem that the heat resistance is lowered depending on the amount of the low melting point wax added and the temperature change during toner transportation.

また、ウォーミングアップ時間の短縮では、画像形成装置における定着器の温度を迅速に立ち上げるために、ヒートローラの温度を、定着器の設定温度よりも高く設定することが必要となる。従って、過剰に定着器が昇温した場合においても、オフセットが発生しないように、十分な耐オフセット性を確保することが必要となる。
このように、低温定着化とウォーミングアップ時間の短縮とを両立させるためには、高温オフセット性を十分に確保しながら、かつ低温領域での定着性の向上を両立させる、つまり、非オフセット幅をより広く確保することが必要である。
In order to shorten the warm-up time, it is necessary to set the temperature of the heat roller higher than the set temperature of the fixing device in order to quickly raise the temperature of the fixing device in the image forming apparatus. Therefore, it is necessary to ensure sufficient offset resistance so that no offset occurs even when the temperature of the fixing device is excessively increased.
As described above, in order to achieve both low-temperature fixing and shortening of the warm-up time, while ensuring sufficient high-temperature offset property, both improve fixability in the low-temperature region, that is, more non-offset width. It is necessary to secure it widely.

さらには、近年において画像形成装置の高速化が進んでいるが、二成分系現像方式よりも長期にわたって安定な画像形成を行うことができる一成分系現像方式を用いた高速画像形成装置が主流となってきている。
このような画像形成装置の高速化に伴い定着時間も減少することになるが、特に、一成分現像方式の主流である磁性一成分ジャンピング現像方式に用いられる磁性一成分トナーは、磁性粉を多量に含有しているために定着には一層不利となる。
従って、これまで使用されている磁性一成分トナーでは、高速の画像形成装置において非オフセット幅が狭く、高温オフセット性の確保、十分な耐熱性と低温定着性の向上とを両立させることが困難であった。
特開平7−199681号公報 特開平8−297378号公報 特開平8−50368号公報
Furthermore, in recent years, the speed of image forming apparatuses has been increased. However, high-speed image forming apparatuses using a one-component developing system capable of performing stable image formation over a longer period than the two-component developing system have become mainstream. It has become to.
As the speed of image forming apparatuses increases, the fixing time also decreases. In particular, the magnetic one-component toner used in the magnetic one-component jumping developing method, which is the mainstream of the one-component developing method, contains a large amount of magnetic powder. Therefore, it is more disadvantageous for fixing.
Therefore, the magnetic one-component toner used so far has a narrow non-offset width in a high-speed image forming apparatus, and it is difficult to ensure both high temperature offset property and sufficient heat resistance and low temperature fixability. there were.
Japanese Patent Laid-Open No. 7-199681 JP-A-8-297378 JP-A-8-50368

本発明は上記課題に鑑みなされたものであり、磁性一成分現像方式の高速の画像形成装置に用いても耐オフセット性を確保するとともに、低温領域での定着性の向上、さらには十分な耐熱性を確保することができる静電潜像現像用磁性一成分トナーを提供することを目的とする。ここで、磁性一成分現像方式の高速の画像形成装置とは、例えば、A4横のコピー速度が50枚/分以上の磁性一成分ジャンピング現像方式を用いたレーザープリンタ等を指す。   The present invention has been made in view of the above problems, and ensures offset resistance even when used in a high-speed image forming apparatus of a magnetic one-component development system, improves fixability in a low temperature region, and further has sufficient heat resistance. It is an object of the present invention to provide a magnetic one-component toner for developing an electrostatic latent image that can secure the property. Here, the high-speed image forming apparatus of the magnetic one-component development system refers to, for example, a laser printer using a magnetic one-component jumping development system with an A4 horizontal copy speed of 50 sheets / minute or more.

本発明者は高速の磁性一成分ジャンピング現像方式の画像形成装置においても優れた定着性を示す磁性一成分トナーについて種々の検討を行った結果、融点の異なる2種類の離型剤をトナーに含有させ、さらには、詳細な理由は不明であるが、高融点の離型剤の融点とトナーのガラス転移点Tgとの差を特定範囲とすることが有効であることを見出し、本発明の完成に至った。   As a result of various studies on a magnetic one-component toner exhibiting excellent fixability even in an image forming apparatus of a high-speed magnetic one-component jumping development system, the present inventors have included two types of release agents having different melting points in the toner. Further, although the detailed reason is unknown, it has been found that it is effective to set the difference between the melting point of the high melting point releasing agent and the glass transition point Tg of the toner within a specific range, and the present invention is completed. It came to.

すなわち、本発明の静電潜像現像用磁性一成分トナーは、少なくとも結着樹脂と離型剤とからなる静電潜像現像用トナーであって、前記離型剤が、示差走査熱量計によって測定される融点(Wp1)が65〜85℃である離型剤と、融点(Wp2)が130〜160℃である離型剤とを含み、かつ示差走査熱量計によって測定されるトナーのガラス転移点Tgが、70≦Wp2−Tg≦100を満足することを特徴とする。   That is, the magnetic monocomponent toner for developing an electrostatic latent image of the present invention is an electrostatic latent image developing toner comprising at least a binder resin and a release agent, and the release agent is measured by a differential scanning calorimeter. Glass transition of toner comprising a release agent having a melting point (Wp1) of 65 to 85 ° C. and a release agent having a melting point (Wp2) of 130 to 160 ° C. and measured by a differential scanning calorimeter The point Tg satisfies 70 ≦ Wp2−Tg ≦ 100.

なお、本発明における、離型剤の示差走査熱量計によって測定される融点とは、示差走査熱計によって測定される昇温時の磁性一成分トナーのDSC曲線における吸熱ピークを示す温度である。また、示差走査熱量計によって測定されるトナーのガラス転移点Tgとは、示差走査熱計によって測定される昇温時の磁性一成分トナーのDSC曲線における昇温開始時の曲線の接線と、最初にエネルギーが低下する曲線の接線との交点を示す温度である。
図1に、一例として、本発明の磁性一成分トナーのDSC曲線を示した。図1において、吸熱ピークA、吸熱ピークBを示す温度が離型剤の融点であり、接線Aと接線Bの交点を示す温度がトナーのガラス転移点Tgである。
In the present invention, the melting point measured by the differential scanning calorimeter of the release agent is a temperature showing an endothermic peak in the DSC curve of the magnetic one-component toner at the time of temperature rise measured by the differential scanning calorimeter. Further, the glass transition point Tg of the toner measured by the differential scanning calorimeter is the tangent of the curve at the start of temperature rise in the DSC curve of the magnetic one-component toner at the time of temperature rise measured by the differential scanning calorimeter. Is a temperature indicating the intersection with the tangent of the curve where the energy decreases.
FIG. 1 shows a DSC curve of the magnetic monocomponent toner of the present invention as an example. In FIG. 1, the temperature indicating the endothermic peak A and the endothermic peak B is the melting point of the release agent, and the temperature indicating the intersection of the tangent A and the tangent B is the glass transition point Tg of the toner.

本発明によれば、特定の融点を有する2種類の離型剤を用い、かつ、その高い方の融点と、トナー自体のガラス転移点Tgとが上記式を満足することにより、低融点の離型剤に起因する耐熱性の低下と、高融点の離型剤に起因する低温定着化の抑制との双方のバランスを制御することが可能となり、高速の磁性一成分現像方式の画像形成時における定着率を向上させ、非オフセット幅を広く確保することができる。しかも、トナーの流通過程における保存性及び耐熱性を確保することが可能となる。   According to the present invention, two types of release agents having a specific melting point are used, and when the higher melting point and the glass transition point Tg of the toner itself satisfy the above formula, It is possible to control the balance between the reduction in heat resistance caused by the mold agent and the suppression of low-temperature fixing caused by the release agent having a high melting point, and at the time of image formation of a high-speed magnetic one-component development system. The fixing rate can be improved and a wide non-offset width can be secured. In addition, it is possible to ensure storage stability and heat resistance in the toner distribution process.

本発明の静電潜像現像用磁性一成分トナーは、上述したように、主として、結着樹脂、磁性粉と2種類の融点を有する離型剤とから構成される。また、このトナーには、さらに、必要により、正電荷制御剤、離型剤などのトナー配合剤が分散されていてもよい。
本発明の磁性一成分トナーに使用することができる結着樹脂は、通常、トナー自体のガラス転移点Tgを決定する主な要因となるため、上記の式を満足するようなガラス転移点Tgを得ることができるものであれば、特に限定されることなく、公知の結着樹脂を用いることができる。
As described above, the magnetic monocomponent toner for developing an electrostatic latent image of the present invention is mainly composed of a binder resin, magnetic powder, and a release agent having two kinds of melting points. Further, in this toner, toner compounding agents such as a positive charge control agent and a release agent may be further dispersed if necessary.
Since the binder resin that can be used in the magnetic one-component toner of the present invention is usually a main factor for determining the glass transition point Tg of the toner itself, a glass transition point Tg that satisfies the above formula is used. Any known binder resin can be used without particular limitation as long as it can be obtained.

例えば、スチレン系樹脂、アクリル系樹脂、スチレン−アクリル系共重合樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリビニルアルコール系樹脂、ビニルエーテル系樹脂、N−ビニル系樹脂、スチレン−ブタジエン樹脂等の熱可塑性樹脂が挙げられる。なかでも、ポリエステル系樹脂、スチレン系樹脂、スチレン−アクリル系共重合樹脂が好ましい。   For example, styrene resin, acrylic resin, styrene-acrylic copolymer resin, polyolefin resin such as polyethylene and polypropylene, vinyl chloride resin, polyester resin, polyamide resin, polyurethane resin, polyvinyl alcohol resin, vinyl ether And thermoplastic resins such as styrene resins, N-vinyl resins, and styrene-butadiene resins. Of these, polyester resins, styrene resins, and styrene-acrylic copolymer resins are preferable.

ポリエステル系樹脂としては、多価アルコール成分と多価カルボン酸成分との縮重合、共縮重合によって得られるものを使用することができる。   As the polyester resin, those obtained by polycondensation or copolycondensation of a polyhydric alcohol component and a polycarboxylic acid component can be used.

多価アルコール成分としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のジオール類;ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、ポリオキシプロピレン化ビスフェノールA等のビスフェノール類;ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、ジグリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等の3価以上のアルコール類が例示される。   Examples of the polyhydric alcohol component include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, 1, Diols such as 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol; bisphenol A, hydrogenated bisphenol A, polyoxyethylene Bisphenols such as bisphenol A, polyoxypropylene bisphenol A; sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, Pentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, tri Examples of trihydric or higher alcohols such as methylolethane, trimethylolpropane, and 1,3,5-trihydroxymethylbenzene.

多価カルボン酸成分としては、例えば、マレイン酸、フマール酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アジピン酸、セバチン酸、アゼライン酸、マロン酸等の2価カルボン酸;n−ブチルコハク酸、n−ブテニルコハク酸、イソブチルコハク酸、イソブテニルコハク酸、n−オクチルコハク酸、n−オクテニルコハク酸、n−ドデシルコハク酸、n−ドデセニルコハク酸、イソドデシルコハク酸、イソドデセニルコハク酸等の2価カルボン酸のアルキル又はアルケニルエステル;1,2,4−ベンゼントリカルボン酸(トリメリット酸)、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシル−2−メチル−2−メチレンカルボキシプロパン、1,2,4−シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8−オクタンテトラカルボン酸、ピロメリット酸、エンポール三量体酸等の3価以上のカルボン酸等が例示される。また、上記2価又は3価以上のカルボン酸の無水物も使用することができる。   Examples of the polyvalent carboxylic acid component include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, Divalent carboxylic acids such as malonic acid; n-butyl succinic acid, n-butenyl succinic acid, isobutyl succinic acid, isobutenyl succinic acid, n-octyl succinic acid, n-octenyl succinic acid, n-dodecyl succinic acid, n-dodecenyl succinic acid Alkyl or alkenyl esters of divalent carboxylic acids such as isododecyl succinic acid and isododecenyl succinic acid; 1,2,4-benzenetricarboxylic acid (trimellitic acid), 1,2,5-benzenetricarboxylic acid, 2 , 5,7-Naphthalenetricarboxylic acid, 1,2,4-naphthalenetri Rubonic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, Examples thereof include trivalent or higher carboxylic acids such as tetra (methylenecarboxyl) methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, and empole trimer acid. In addition, anhydrides of the above divalent or trivalent or higher carboxylic acids can also be used.

ポリエステル樹脂は、これら原料を使用して通常の方法で製造することができる。例えば、アルコール成分と酸成分とを所定の割合で反応容器に仕込み、窒素等の不活性ガスを吹き込みながら、触媒の存在下150〜190℃の温度で反応を開始する。副生する低分子化合物は連続的に反応系外へ除去する。その後、さらに反応温度を210〜250℃に上げて反応を促進し、目的とするポリエステル樹脂を得る。反応は、常圧、減圧、加圧のいずれの条件下でも行うことができるが、反応率が50〜90%に達した後は、200mmHg以下に減圧して反応させるのが好ましい。なお、触媒としては、スズ、チタン、アンチモン、マンガン、ニッケル、亜鉛、鉛、鉄、マグネシウム、カルシウム、ゲルマニウム等の金属及びこれらの金属含有化合物が挙げられる。   The polyester resin can be produced by a usual method using these raw materials. For example, an alcohol component and an acid component are charged into a reaction vessel at a predetermined ratio, and the reaction is started at a temperature of 150 to 190 ° C. in the presence of a catalyst while blowing an inert gas such as nitrogen. By-product low molecular weight compounds are continuously removed from the reaction system. Thereafter, the reaction temperature is further increased to 210 to 250 ° C. to accelerate the reaction, and the target polyester resin is obtained. The reaction can be carried out under any of normal pressure, reduced pressure, and increased pressure, but after the reaction rate reaches 50 to 90%, the reaction is preferably carried out under reduced pressure of 200 mmHg or less. In addition, as a catalyst, metals, such as tin, titanium, antimony, manganese, nickel, zinc, lead, iron, magnesium, calcium, germanium, and these metal containing compounds are mentioned.

スチレン系樹脂、スチレン−アクリル系共重合樹脂は、スチレンの単独重合体、スチレンと共重合可能な他の共重合モノマーとの共重合体である。共重合モノマーとしては、p−クロルスチレン;ビニルナフタレン;エチレン、プロピレン、ブチレン、イソブチレンなどのエチレン不飽和モノオレフィン類;塩化ビニル、臭化ビニル、弗化ビニルなどのハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニル、酪酸ビニルなどのビニルエステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ドテシル、アクリル酸n−オクチル、アクリル酸2−クロルエチル、アクリル酸フェニル、α−クロルアクリル酸メチル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸ブチルなどの(メタ)アクリル酸エステル;アクリロニトリル、メタアクリロニトリル、アクリルアミドなどの他のアクリル酸誘導体;ビニルメチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、メチルイソプロペニルケトンなどのビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリデンなどのN−ビニル化合物などが挙げられる。これら共重合モノマーは、1種を単独で使用することもできるし、2種以上を組み合わせてスチレン単量体と共重合させて用いてもよい。   The styrene resin and the styrene-acrylic copolymer resin are a styrene homopolymer and a copolymer with another copolymerizable monomer copolymerizable with styrene. As copolymerizable monomers, p-chlorostyrene; vinyl naphthalene; ethylene unsaturated monoolefins such as ethylene, propylene, butylene, and isobutylene; vinyl halides such as vinyl chloride, vinyl bromide, and vinyl fluoride; vinyl acetate, propion Vinyl esters such as vinyl acrylate, vinyl benzoate, vinyl butyrate; methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, 2-chloroethyl acrylate, acrylic (Meth) acrylic acid esters such as phenyl acid, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate; other acrylic acid derivatives such as acrylonitrile, methacrylonitrile, acrylamide; Vinyl ethers such as rumethyl ether and vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone and methyl isopropenyl ketone; N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidene, etc. N-vinyl compounds of These copolymerization monomers can be used alone or in combination of two or more with a styrene monomer.

なお、結着樹脂は、上述したモノマーの種類、モノマーの配合比、共重合比、重合開始剤の量、反応時間など、種々の条件を適宜変更することにより、所望の分子量、ガラス転移点Tg等を有するものとして合成することができる。   Note that the binder resin has a desired molecular weight and glass transition point Tg by appropriately changing various conditions such as the types of monomers, the blending ratio of the monomers, the copolymerization ratio, the amount of the polymerization initiator, and the reaction time. Etc. can be synthesized.

また、結着樹脂中には、耐オフセット性を向上させたり、トナー強度を高めるために、必要により、架橋剤及び熱硬化性樹脂等を上述した熱可塑性樹脂と組み合わせて使用することにより、一部架橋構造を導入してもよい。
このような架橋剤としては、用いる熱可塑性樹脂の種類によっても異なるが、例えば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物、エチレングリコールジ(メタ)アクリレートなどの2官能性カルボン酸エステル、ジビニルエーテルなどのビニル基を2個又は3個以上有するビニル化合物などが挙げられる。
In addition, in the binder resin, in order to improve the offset resistance or increase the toner strength, a cross-linking agent and a thermosetting resin may be used in combination with the above-described thermoplastic resin as necessary. A partially crosslinked structure may be introduced.
Such a cross-linking agent varies depending on the type of thermoplastic resin used. For example, aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene, bifunctional carboxylic acid esters such as ethylene glycol di (meth) acrylate, Examples thereof include vinyl compounds having 2 or 3 or more vinyl groups such as vinyl ether.

また、熱硬化性樹脂としては、ビスフェノールA型エポキシ樹脂、水素化ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、環状脂肪族型エポキシ樹脂などのエポキシ樹脂、シアネート樹脂を、1種または2種以上の組み合わせで使用することができる。
なお、分子量の調整を目的として、モノカルボン酸、モノアルコールを必要により使用してもよい。モノカルボン酸としては、例えば、安息香酸、パラヒドロキシ安息香酸、トルエンカルボン酸、サリチル酸、酢酸、プロピオン酸及びステアリン酸等が挙げられる。モノアルコールとしては、ベンジルアルコール、トルエン−4−メタノール、シクロヘキサンメタノールなどのモノアルコールが挙げられる。
In addition, as thermosetting resins, bisphenol A type epoxy resins, hydrogenated bisphenol A type epoxy resins, novolac type epoxy resins, polyalkylene ether type epoxy resins, cycloaliphatic type epoxy resins and the like, cyanate resins, One kind or a combination of two or more kinds can be used.
For the purpose of adjusting the molecular weight, a monocarboxylic acid or a monoalcohol may be used as necessary. Examples of the monocarboxylic acid include benzoic acid, parahydroxybenzoic acid, toluene carboxylic acid, salicylic acid, acetic acid, propionic acid, and stearic acid. Examples of the monoalcohol include monoalcohols such as benzyl alcohol, toluene-4-methanol, and cyclohexanemethanol.

本発明の磁性一成分トナーにおいては、定着性及びオフセット性を向上させるために、離型剤、例えば、ワックス類を結着樹脂中に分散配合する。離型剤は、示差走査熱量計によって測定される融点(Wp1)が65〜85℃の離型剤(以下「低融点離型剤」と記すことがある)と、融点(Wp2)が130〜160℃の離型剤(以下「高融点離型剤」と記すことがある)とである限り、公知の離型剤のなかから選択して用いることができる。   In the magnetic one-component toner of the present invention, a release agent such as a wax is dispersed and blended in the binder resin in order to improve the fixing property and the offset property. The release agent has a melting point (Wp1) measured by a differential scanning calorimeter of 65 to 85 ° C. (hereinafter sometimes referred to as “low melting point release agent”), and a melting point (Wp2) of 130 to As long as it is a release agent at 160 ° C. (hereinafter sometimes referred to as “high melting point release agent”), it can be selected from known release agents.

特に、高融点離型剤は、上述した結着樹脂の種類に応じて、示差走査熱量計によって測定されるトナーのガラス転移点Tgとの関係で、式70≦Wp2−Tg≦100を満足するものを選択することが必要である。このような式を満足することにより、トナー使用時の耐熱性及び耐ブロッキング性を確保しながら、低温定着化を図り、高速の磁性一成分現像方式の画像形成装置に用いても定着率を向上させることができる。なお、離型剤は、その種類及び量などによって、トナー自体のガラス転移点Tgを左右する要因となることがあるため、上記の式を満足するようなガラス転移点Tgを得ることができるように、離型剤の種類及び量などを選択する必要がある。特に、トナーのガラス転移点Tgとしては、54〜60℃程度であることが好ましい。このような範囲のガラス転移点Tgに設定することにより、輸送時等の保存性、耐熱性をある程度確保しながら、低温定着化を図ることができる。   In particular, the high melting point release agent satisfies the formula 70 ≦ Wp2−Tg ≦ 100 in relation to the glass transition point Tg of the toner measured by a differential scanning calorimeter depending on the type of the binder resin described above. It is necessary to choose one. By satisfying these formulas, it is possible to achieve low-temperature fixing while ensuring heat resistance and blocking resistance when using toner, and to improve the fixing rate even when used in high-speed magnetic one-component development type image forming devices. Can be made. The release agent may be a factor that affects the glass transition point Tg of the toner itself depending on the type and amount thereof, so that a glass transition point Tg satisfying the above formula can be obtained. In addition, it is necessary to select the type and amount of the release agent. In particular, the glass transition point Tg of the toner is preferably about 54 to 60 ° C. By setting the glass transition point Tg in such a range, it is possible to achieve low temperature fixing while ensuring a certain degree of storage stability and heat resistance during transportation.

このような離型剤としては、従来公知のものを使用することができ、例えば、エステル系ワックス、アルキレンビス脂肪酸アミド化合物、天然ワックス(カルナウバ系等)、ポリプロピレン系ワックス、ポリエチレン系ワックス、プロピレン−エチレン共重合体ワックスなどが挙げられる。なかでも、低融点離型剤として、カルナウバ系、エステル系ワックスが好ましく、高融点離型剤として、ポリプロピレン系ワックスが好ましい。離型剤の総添加量は、離型の効果を得、耐ブロッキング性を確保し、さらに、上述したトナーのガラス転移点Tgを得ることを考慮すると、結着樹脂100重量部に対して0.1〜10重量部の範囲、さらに3.5〜8.0重量部の範囲が好ましい。なお、低融点離型剤は、例えば、結着樹脂100重量部に対して3〜5重量部、高融点離型剤は、例えば、0.5〜3.0重量部程度が好ましい。   As such a release agent, conventionally known release agents can be used. For example, ester wax, alkylenebisfatty acid amide compound, natural wax (carnauba type, etc.), polypropylene wax, polyethylene wax, propylene- Examples include ethylene copolymer wax. Of these, carnauba and ester waxes are preferred as the low melting point release agent, and polypropylene waxes are preferred as the high melting point release agent. The total addition amount of the release agent is 0 with respect to 100 parts by weight of the binder resin in consideration of obtaining the release effect, ensuring the blocking resistance, and obtaining the glass transition point Tg of the toner described above. A range of 0.1 to 10 parts by weight, and a range of 3.5 to 8.0 parts by weight is preferable. The low melting point release agent is preferably, for example, 3 to 5 parts by weight with respect to 100 parts by weight of the binder resin, and the high melting point release agent is preferably, for example, about 0.5 to 3.0 parts by weight.

エステル系ワックスとしては、直鎖飽和脂肪酸とアルコールとの反応から得られるものが挙げられる。直鎖飽和脂肪酸としては、例えば、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸などのモノカルボン酸;マロン酸、コハク酸、グルタル酸、ダイマー酸などのジカルボン酸などが挙げられる。アルコールとしては、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、アラキルアルコール、ベヘニルアルコール、テトラコサノールなどの直鎖飽和一価アルコール;エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオールなどの直鎖飽和二価アルコール;1,2,4−ブタントリオール、1,2,4−ペンタントリオール、2−メチル−1,2,4−ブタントリオール、グリセリン、2−メチルプロパントリオール、トリメチロールエタン、トリエチロールエタンなどの直鎖飽和三価アルコール;1,2,3,6−ヘキサンテトロール、ペンタエリトリトールなどの直鎖飽和四価アルコールなどが挙げられる。   Examples of the ester wax include those obtained from a reaction between a linear saturated fatty acid and an alcohol. Examples of linear saturated fatty acids include monocarboxylic acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid; dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, and dimer acid. It is done. Examples of the alcohol include linear saturated monohydric alcohols such as myristyl alcohol, cetyl alcohol, stearyl alcohol, aralkyl alcohol, behenyl alcohol, tetracosanol; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol Linear saturated dihydric alcohols such as 1,4-butanediol; 1,2,4-butanetriol, 1,2,4-pentanetriol, 2-methyl-1,2,4-butanetriol, glycerin, 2 -Linear saturated trihydric alcohols such as methylpropanetriol, trimethylolethane, triethylolethane; linear saturated tetrahydric alcohols such as 1,2,3,6-hexanetetrol and pentaerythritol.

ポリプロピレン系ワックスとしては、数平均分子量が1,000〜10,000、特に2,000〜6,000の範囲にあるものが好ましい。
なお、離型剤を合成する場合には、原料となる化合物の種類、量、原料となる化合物の組み合わせ、配合比、反応時間等を調整することにより、所望の融点を有する離型剤を得ることができる。
As the polypropylene wax, those having a number average molecular weight in the range of 1,000 to 10,000, particularly 2,000 to 6,000 are preferable.
In addition, when synthesizing a mold release agent, a mold release agent having a desired melting point is obtained by adjusting the type and amount of the raw material compound, the combination of the raw material compounds, the blending ratio, the reaction time, and the like. be able to.

本発明の磁性一成分トナーには、本発明の効果を害しない範囲でその他の添加剤を使用してもよい。このような添加剤としては、例えば、電荷制御剤、表面処理剤などが挙げられる。
本発明におけるトナーは、帯電レベルや帯電立ち上がり特性(短時間で、一定の電荷レベルに帯電するかの指標)を著しく向上させ、耐久性や安定性に優れた特性等を得るために、必要により、結着樹脂100重量部当り1〜4重量部の量で正電荷制御剤を配合してもよい。
In the magnetic one-component toner of the present invention, other additives may be used as long as the effects of the present invention are not impaired. Examples of such additives include charge control agents and surface treatment agents.
The toner according to the present invention is required to significantly improve the charge level and charge rising characteristics (indicator of whether to charge to a constant charge level in a short time) and to obtain characteristics such as excellent durability and stability. The positive charge control agent may be blended in an amount of 1 to 4 parts by weight per 100 parts by weight of the binder resin.

このような正電荷制御剤の具体例としては、ピリダジン、ピリミジン、ピラジン、オルトオキサジン、メタオキサジン、パラオキサジン、オルトチアジン、メタチアジン、パラチアジン、1,2,3−トリアジン、1,2,4−トリアジン、1,3,5−トリアジン、1,2,4−オキサジアジン、1,3,4−オキサジアジン、1,2,6−オキサジアジン、1,3,4−チアジアジン、1,3,5−チアジアジン、1,2,3,4−テトラジン、1,2,4,5−テトラジン、1,2,3,5−テトラジン、1,2,4,6−オキサトリアジン、1,3,4,5−オキサトリアジン、フタラジン、キナゾリン、キノキサリンなどのアジン化合物;アジンファストレッドFC、アジンファストレッド12BK、アジンバイオレットBO、アジンブラウン3G、アジンライトブラウンGR、アジンダークグリーンBH/C、アジンディープブラックEWおよびアジンディープブラック3RLなどのアジン化合物からなる直接染料;ニグロシン、ニグロシン塩、ニグロシン誘導体などのニグロシン化合物;ニグロシンBK、ニグロシンNB、ニグロシンZなどのニグロシン化合物からなる酸性染料;ナフテン酸または高級脂肪酸の金属塩類;アルコキシル化アミン;アルキルアミド;ベンジルメチルヘキシルデシルアンモニウム、デシルトリメチルアンモニウムクロライド等の4級アンモニウム塩を例示することができる。これらは、単独で又は2種以上を併用して使用してもよい。特に、ニグロシン化合物は、より迅速な立ち上がり性が得られる観点から、最適である。   Specific examples of such positive charge control agents include pyridazine, pyrimidine, pyrazine, orthooxazine, metaoxazine, paraoxazine, orthothiazine, metathiazine, parathiazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,4-oxadiazine, 1,3,4-oxadiazine, 1,2,6-oxadiazine, 1,3,4-thiadiazine, 1,3,5-thiadiazine, 1, 2,3,4-tetrazine, 1,2,4,5-tetrazine, 1,2,3,5-tetrazine, 1,2,4,6-oxatriazine, 1,3,4,5-oxatriazine, Azine compounds such as phthalazine, quinazoline, quinoxaline; azine fast red FC, azine fast red 12BK, azine violet BO, Direct dyes composed of azine compounds such as N-brown 3G, azine light brown GR, azine dark green BH / C, azine deep black EW and azine deep black 3RL; nigrosine compounds such as nigrosine, nigrosine salt, nigrosine derivatives; nigrosine BK, nigrosine Examples include acid dyes composed of nigrosine compounds such as NB and nigrosine Z; metal salts of naphthenic acid or higher fatty acids; alkoxylated amines; alkylamides; quaternary ammonium salts such as benzylmethylhexyldecylammonium and decyltrimethylammonium chloride. it can. These may be used alone or in combination of two or more. In particular, the nigrosine compound is optimal from the viewpoint of obtaining a quicker start-up property.

また、4級アンモニウム塩を有する樹脂またはオリゴマー、カルボン酸塩を有する樹脂またはオリゴマー、カルボキシル基を有する樹脂またはオリゴマーなども正帯電性電荷制御剤として使用することができる。
より具体的には、4級アンモニウム塩を有するポリスチレン系樹脂、4級アンモニウム塩を有するアクリル系樹脂、4級アンモニウム塩を有するスチレン−アクリル系樹脂、4級アンモニウム塩を有するポリエステル系樹脂、カルボン酸塩を有するポリスチレン系樹脂、カルボン酸塩を有するアクリル系樹脂、カルボン酸塩を有するスチレン−アクリル系樹脂、カルボン酸塩を有するポリエステル系樹脂、カルボキシル基を有するポリスチレン系樹脂、カルボキシル基を有するアクリル系樹脂、カルボキシル基を有するスチレン−アクリル系樹脂、カルボキシル基を有するポリエステル系樹脂等の1種または2種以上が挙げられる。特に、4級アンモニウム塩、カルボン酸塩またはカルボキシル基を官能基として有するスチレン−アクリル系樹脂(スチレン−アクリル系共重合体)は、帯電量を所望の範囲内の値に容易に調節することができる観点から、最適である。
Further, a resin or oligomer having a quaternary ammonium salt, a resin or oligomer having a carboxylate, a resin or oligomer having a carboxyl group, or the like can also be used as a positively chargeable charge control agent.
More specifically, polystyrene resin having quaternary ammonium salt, acrylic resin having quaternary ammonium salt, styrene-acrylic resin having quaternary ammonium salt, polyester resin having quaternary ammonium salt, carboxylic acid Polystyrene resin with salt, acrylic resin with carboxylate, styrene-acrylic resin with carboxylate, polyester resin with carboxylate, polystyrene resin with carboxyl group, acrylic with carboxyl group 1 type, or 2 or more types, such as resin, the styrene-acrylic resin which has a carboxyl group, and the polyester-type resin which has a carboxyl group, are mentioned. In particular, a styrene-acrylic resin (styrene-acrylic copolymer) having a quaternary ammonium salt, a carboxylate or a carboxyl group as a functional group can easily adjust the charge amount to a value within a desired range. It is optimal from the point of view.

この場合において、上記スチレン−アクリル系樹脂又はアクリル系樹脂における好ましいアクリル系コモノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸iso−プロピル、アクリル酸n−ブチル、アクリル酸iso−ブチル、アクリル酸2−エチルヘキシル、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸n−ブチル、メタアクリル酸iso−ブチルなどの(メタ)アクリル酸アルキルエステルが挙げられる。
また、4級アンモニウム塩としては、ジアルキルアミノアルキル(メタ)アクリレートから第4級化の工程を経て誘導される単位が挙げられる。
In this case, as the preferable acrylic comonomer in the styrene-acrylic resin or acrylic resin, methyl acrylate, ethyl acrylate, n-propyl acrylate, iso-propyl acrylate, n-butyl acrylate, acrylic acid Examples include (meth) acrylic acid alkyl esters such as iso-butyl, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and iso-butyl methacrylate.
In addition, examples of the quaternary ammonium salt include units derived from a dialkylaminoalkyl (meth) acrylate through a quaternization step.

誘導されるジアルキルアミノアルキル(メタ)アクリレートとしては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート等のジ(低級アルキル)アミノエチル(メタ)アクリレート;ジメチルメタクリルアミド、ジメチルアミノプロピルメタクリルアミドが好適である。また、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等のヒドロキシ基含有重合性モノマーを重合時に併用することもできる。   Examples of the derived dialkylaminoalkyl (meth) acrylate include di (amino) ethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, dibutylaminoethyl (meth) acrylate and the like ( Lower alkyl) aminoethyl (meth) acrylate; dimethylmethacrylamide, dimethylaminopropylmethacrylamide are preferred. Further, hydroxy group-containing polymerizable monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and N-methylol (meth) acrylamide can be used in combination during polymerization.

本発明の磁性一成分トナーは結着樹脂中に磁性粉を含有するが、磁性粉は、結着樹脂100重量部当り50〜100重量部の量で配合することが適当である。磁性粉が配合されたトナーは、磁性キャリアなどを使用することなく、それ単独で磁力を利用して現像域にこのトナーを供給することができる。   The magnetic one-component toner of the present invention contains magnetic powder in the binder resin, and the magnetic powder is suitably blended in an amount of 50 to 100 parts by weight per 100 parts by weight of the binder resin. The toner containing the magnetic powder can be supplied to the developing area by using magnetic force alone without using a magnetic carrier or the like.

磁性粉としては、公知のものを使用することができる。例えば、四三酸化鉄(Fe)、三二酸化鉄(γ−Fe)等の強磁性の鉄酸化物や、酸化鉄亜鉛(ZnFe)、酸化鉄イットリウム(YFe12)、酸化カドミウム(CdFe)、酸化鉄ガドリウム(GdFe12)、酸化鉄銅(CuFe)、酸化鉄鉛(PbFe1219)、酸化鉄ネオジウム(NdFeO)、酸化鉄バリウム(BaFe1219)、酸化鉄マンガン(MnFe)、酸化鉄ランタン(LaFeO)、あるいはこれらの複合物等のフェライト類、あるいは鉄粉(Fe)、コバルト粉(Co)、ニッケ粉(Ni)等強磁性金属及び合金類等を単独あるいは組み合わせて用いることができる。例えば、マンガン−マグネシウム系フェライト、ニッケル−亜鉛系フェライト、銅−亜鉛系フェライト、リチウム系フェライト等が挙げられる。磁性粉の粒子形状は特に制限されず、球状、立方体状、不定形等の任意の形状でよい。磁性粉の平均粒子径は0.1〜1μm、特に0.1〜0.5μmの範囲内の微粉末状態が好ましい。また、磁性粉は、チタン系カップリング剤、シラン系カップリング剤などの表面処理剤で表面処理を施して使用してもよい。 As the magnetic powder, a known powder can be used. For example, ferromagnetic iron oxides such as triiron tetroxide (Fe 3 O 4 ) and iron sesquioxide (γ-Fe 2 O 3 ), iron oxide zinc (ZnFe 2 O 4 ), iron yttrium oxide (Y 3 Fe 5 O 12 ), cadmium oxide (CdFe 2 O 4 ), iron gadolinium oxide (Gd 3 Fe 5 O 12 ), iron oxide copper (CuFe 2 O 4 ), iron oxide lead (PbFe 12 O 19 ), iron neodymium oxide Ferrites such as (NdFeO 3 ), iron barium oxide (BaFe 12 O 19 ), iron manganese oxide (MnFe 2 O 4 ), iron lanthanum oxide (LaFeO 3 ), or a composite thereof, or iron powder (Fe), Ferromagnetic metals such as cobalt powder (Co) and nickel powder (Ni) and alloys can be used alone or in combination. For example, manganese-magnesium ferrite, nickel-zinc ferrite, copper-zinc ferrite, lithium ferrite and the like can be mentioned. The particle shape of the magnetic powder is not particularly limited, and may be any shape such as a spherical shape, a cubic shape, or an indefinite shape. The average particle size of the magnetic powder is preferably from 0.1 to 1 μm, particularly preferably in a fine powder state within the range of 0.1 to 0.5 μm. Further, the magnetic powder may be used after being subjected to a surface treatment with a surface treatment agent such as a titanium coupling agent or a silane coupling agent.

本発明における磁性一成分トナーは、分級法、混練粉砕法、粉砕分級又は混練粉砕した後に熱処理又は機械的衝撃力によって球形化する方法、溶融造粒法、スプレー造粒法、湿式造粒法(例えば、懸濁法、懸濁重合法、乳化重合法、分散重合法、界面重合法、シード重合法等)、溶解懸濁法(例えば、特開平11−52619号公報参照)、転相乳化法(例えば、特開平4−303849号公報及び特開平5−66600号公報参照)等のそれ自体公知の方法で製造することができる。なかでも、結着樹脂と各種配合剤とを混合し、押出機等を用いて溶融混練し、さらに粉砕し、上述した粒度分布を有するように分級することによって調製する方法や、製造設備、生産性、上述した円形度を容易に実現できることなどを考慮すると、湿式造粒法が好ましく、懸濁重合法及び乳化重合法がより好ましい。具体的には、懸濁重合法として、着色剤、任意に添加剤を分散したモノマー溶液を、この溶液が相溶しない溶媒に分散粒径化して懸濁させ、懸濁状態でモノマーを重合することによりトナーを得る方法、乳化重合としてミセル内でモノマーを重合させる方法等が挙げられる。なお、トナーの大きさ及び形状は、製造工程における熱処理温度又はそのタイミング、加える力(機械的衝撃力、攪拌の回転数、回転速度等)の大きさ又はそのタイミング、原料の種類等、種々の製造条件を適宜選択、組み合わせることにより調整することができる。   In the present invention, the magnetic one-component toner is classified into a classification method, a kneading and pulverizing method, a pulverizing and classifying or kneading and pulverizing method, a spheroidizing method by heat treatment or mechanical impact force, a melt granulating method, a spray granulating method, For example, suspension method, suspension polymerization method, emulsion polymerization method, dispersion polymerization method, interfacial polymerization method, seed polymerization method, etc.), dissolution suspension method (for example, see JP-A-11-52619), phase inversion emulsification method (For example, refer to JP-A-4-303849 and JP-A-5-66600) and the like. Among them, a method of preparing by mixing a binder resin and various compounding agents, melt-kneading using an extruder, etc., further pulverizing, and classifying to have the above-described particle size distribution, manufacturing equipment, and production The wet granulation method is preferable, and the suspension polymerization method and the emulsion polymerization method are more preferable in consideration of the properties, the circularity described above can be easily realized, and the like. Specifically, as a suspension polymerization method, a monomer solution in which a colorant and optionally an additive are dispersed is suspended in a dispersed particle size in a solvent incompatible with this solution, and the monomer is polymerized in a suspended state. Examples thereof include a method for obtaining a toner, and a method for polymerizing monomers in micelles as emulsion polymerization. The size and shape of the toner may vary depending on the heat treatment temperature or timing in the manufacturing process, the magnitude or timing of applied force (mechanical impact force, rotation speed of stirring, rotation speed, etc.), the type of raw material, etc. It can be adjusted by appropriately selecting and combining the manufacturing conditions.

また、上記のトナーには、必要により、コロイダルシリカ、疎水性シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸カルシウム等の無機微粒子(通常、平均粒径が0.3μm以下)、ポリメチルメタクリレート等の有機微粉末、ステアリン酸亜鉛等の脂肪酸金属塩等の1種又は2種以上を組み合わせて表面処理を施してもよい。これにより、トナーの流動性、保存安定性等を高めることができる。また、アルミナや酸化チタン等の微粒子を表面処理した場合には、例えばアモルファスシリコン感光体を用いた場合において、感光体表面を適度に研磨することが可能で有効に画像流れを防止することができる。また、以上の外添剤を添加することで、トナーの感光体表面への付着力を低下させることができ、感光体表面へのトナー付着防止の点で、一層好適である。   In addition, if necessary, the above toner includes colloidal silica, hydrophobic silica, alumina, titanium oxide, zinc oxide, magnesium oxide, calcium carbonate and other inorganic fine particles (usually having an average particle size of 0.3 μm or less), polymethyl Surface treatment may be performed by combining one or two or more organic fine powders such as methacrylate and fatty acid metal salts such as zinc stearate. Thereby, the fluidity and storage stability of the toner can be improved. Further, when the surface treatment is performed on fine particles such as alumina or titanium oxide, for example, when an amorphous silicon photoconductor is used, the surface of the photoconductor can be appropriately polished, and image flow can be effectively prevented. . Further, by adding the above external additives, the adhesion force of the toner to the surface of the photoconductor can be reduced, which is more preferable in terms of preventing the toner from adhering to the surface of the photoconductor.

本発明において、上述した表面処理剤は、トナー本来の特性を損なわない範囲で、例えば、トータルでの表面処理剤量がトナー粒子100重量部当り2.0重量部以下となるような量で使用するのがよい。なお、表面処理は、トナー粒子と表面処理剤とをヘンシェルミキサー等により、表面処理剤の微粒子がトナー粒子中に埋め込まれないように乾式混合することにより行うことが好ましい。   In the present invention, the surface treatment agent described above is used in such an amount that the original properties of the toner are not impaired, for example, the total amount of the surface treatment agent is 2.0 parts by weight or less per 100 parts by weight of the toner particles. It is good to do. The surface treatment is preferably performed by dry-mixing the toner particles and the surface treatment agent with a Henschel mixer or the like so that the fine particles of the surface treatment agent are not embedded in the toner particles.

以下に、本発明の静電潜像現像用磁性一成分トナーについて、実施例に基づいて詳細に説明する。
なお、前述したように、本実施例における離型剤の示差走査熱量計によって測定される融点とは、示差走査熱計によって測定される昇温時の磁性一成分トナーのDSC曲線における吸熱ピークを示す温度である。また、示差走査熱量計によって測定されるトナーのガラス転移点Tgとは、示差走査熱計によって測定される昇温時の磁性一成分トナーのDSC曲線における昇温開始時の曲線の接線と、最初にエネルギーが低下する曲線の接線との交点を示す温度である。前記DSC曲線は、示差走査熱量計「DSC3210」マック・サイエンス社製を用いて、昇温速度15℃/minで室温から200℃まで昇温した後、25℃まで冷却し、再び昇温速度15℃/minで昇温し、このときの熱量を測定したものである。
Hereinafter, the magnetic one-component toner for developing an electrostatic latent image of the present invention will be described in detail based on examples.
As described above, the melting point measured by the differential scanning calorimeter of the release agent in this example is the endothermic peak in the DSC curve of the magnetic one-component toner at the time of temperature rise measured by the differential scanning calorimeter. It is the temperature shown. Further, the glass transition point Tg of the toner measured by the differential scanning calorimeter is the tangent of the curve at the start of temperature rise in the DSC curve of the magnetic one-component toner at the time of temperature rise measured by the differential scanning calorimeter. Is a temperature indicating the intersection with the tangent of the curve where the energy decreases. The DSC curve was measured by using a differential scanning calorimeter “DSC3210” manufactured by Mac Science Co., Ltd., heated from room temperature to 200 ° C. at a heating rate of 15 ° C./min, cooled to 25 ° C., and heated again at a heating rate of 15 The temperature was raised at a rate of ° C./min, and the amount of heat at this time was measured.

実施例1
<結着樹脂の合成>
スチレン70重量部、アクリル酸ブチル30重量部からなるモノマー溶液を、重合開始剤であるV−65(2,2−アゾビス−(2,4−ジメチルバレロニトリル)、和光純薬製)6重量部と、溶媒としてのトルエン200重量部をと含む溶液中(コンデンサーを具備し、トルエンを還流)に3時間かけて滴下し、滴下後60℃に保った状態で12時間重合した。その後、トルエンを減圧蒸留して除去し、結着樹脂(スチレン−アクリル系樹脂)を得た。
Example 1
<Synthesis of binder resin>
A monomer solution composed of 70 parts by weight of styrene and 30 parts by weight of butyl acrylate was added to 6 parts by weight of a polymerization initiator V-65 (2,2-azobis- (2,4-dimethylvaleronitrile), manufactured by Wako Pure Chemical Industries, Ltd.). The solution was added dropwise to a solution containing 200 parts by weight of toluene as a solvent (condenser was provided and toluene was refluxed) over 3 hours, and polymerization was carried out for 12 hours while maintaining the temperature at 60 ° C. Thereafter, toluene was distilled off under reduced pressure to obtain a binder resin (styrene-acrylic resin).

<磁性粉の調製>
Fe2+1.5モル/リットルを含む硫酸第一鉄20リットルと等量の3.4NのNaOH水溶液20リットルとを混合し、pH12.5、温度90℃でFe(OH)を含む第一鉄塩水溶液を生成した。Fe(OH)を含む第一鉄塩水溶液に温度90℃において毎分100リットルの空気を220分間通気して、マグネタイト粒子を生成した。生成粒子を常法により水洗、ろ別、乾燥、粉砕することにより、八面体のマグネタイト粒子を得た。
<Preparation of magnetic powder>
20 liters of ferrous sulfate containing Fe 2+ 1.5 mol / liter and 20 liters of an equal amount of 3.4N NaOH aqueous solution are mixed, and the first containing Fe (OH) 2 at a pH of 12.5 and a temperature of 90 ° C. An aqueous iron salt solution was produced. Magnetite particles were generated by aeration of 100 liters of air per minute at a temperature of 90 ° C. for 220 minutes through a ferrous salt aqueous solution containing Fe (OH) 2 . The produced particles were washed with water, filtered, dried, and pulverized by a conventional method to obtain octahedral magnetite particles.

<離型剤の調製>
ジムロート還流器、Dean−Stark水分離器を備えた4つ口フラスコ反応装置にベンゼン1740重量部、長鎖アルキルカルボン酸成分1300重量部、長鎖アルキルアルコール成分1300重量部、p−トルエンスルホン酸120重量部を加え、十分攪拌溶解した。その後、5時間還流し、水分離器のバルブを開け、共沸留去を行った。共沸留去の後、炭酸水素ナトリウムで十分洗浄、乾燥し、ベンゼンを留去した。得られた生成物を再結晶し、洗浄、精製してエステルワックスを得た。
<Preparation of mold release agent>
A four-neck flask reactor equipped with a Dimroth reflux apparatus and a Dean-Stark water separator was charged with 1740 parts by weight of benzene, 1300 parts by weight of a long-chain alkyl carboxylic acid component, 1300 parts by weight of a long-chain alkyl alcohol component, and 120 p-toluenesulfonic acid. Part by weight was added and dissolved with sufficient stirring. Thereafter, the mixture was refluxed for 5 hours, the valve of the water separator was opened, and azeotropic distillation was performed. After azeotropic distillation, the mixture was thoroughly washed with sodium hydrogen carbonate and dried to distill benzene. The obtained product was recrystallized, washed and purified to obtain an ester wax.

<トナーの製造>
上述したようにして得られた結着樹脂(スチレン−アクリル系樹脂)100重量部、磁性粉90.0重量部、ニグロシン染料(帯電制御剤、オリエント化学工業製、N−01)5.0重量部に、離型剤として、融点が73℃のエステルワックスを4.0重量部と、融点145℃のポリプロピレンワックス1.5重量部を添加し、これらをヘンシャルミキサー20B(三井鉱山社製)に投入し、2500rpmで5分間混合した。
<Manufacture of toner>
Binder resin (styrene-acrylic resin) 100 parts by weight obtained as described above, magnetic powder 90.0 parts by weight, nigrosine dye (charge control agent, manufactured by Orient Chemical Industries, N-01) 5.0 parts by weight As a mold release agent, 4.0 parts by weight of an ester wax having a melting point of 73 ° C. and 1.5 parts by weight of a polypropylene wax having a melting point of 145 ° C. are added as a release agent, and these are added to a Hensial mixer 20B (Mitsui Mining Co., Ltd.). And mixed at 2500 rpm for 5 minutes.

さらに、二軸混練機(PCM−30、池貝社製)で200rpm、シリンダ温度120℃、投入量6kg/時で混練した。その後、ドラムフレーカ(三井鉱山社製)を用い、140mm/秒、板厚3〜4mmにて冷却した。
続いて、ターボミル(T−250型、ターボ工業社製)にて粉砕し、アルピネ分級機にて分級した。
得られたトナーを、シリカ(外添剤、ワッカー社製、H2050EP)が0.8重量%となるように、シリカとともにヘンシャルミキサー20B(三井鉱山社製)に投入し、2500rpmで3分間混合して、表1に示すトナーを製造した。なお、得られたトナーのガラス転移点Tgは57℃であった。
Further, the mixture was kneaded with a twin-screw kneader (PCM-30, manufactured by Ikegai Co., Ltd.) at 200 rpm, a cylinder temperature of 120 ° C., and an input amount of 6 kg / hour. Then, it cooled at 140 mm / sec and plate | board thickness 3-4mm using the drum flake (made by Mitsui Mining Co., Ltd.).
Then, it grind | pulverized with the turbo mill (T-250 type, the turbo industry company make), and classified with the Alpine classifier.
The obtained toner was added to a Hensial mixer 20B (Mitsui Mining Co., Ltd.) together with silica so that silica (external additive, Wacker EP, H2050EP) was 0.8% by weight, and mixed at 2500 rpm for 3 minutes. Thus, the toner shown in Table 1 was produced. The obtained toner had a glass transition point Tg of 57 ° C.

実施例2
融点が65℃のエステルワックスを3.0重量部、融点が130℃のポリプロピレンワックスを3.0重量部添加した以外、実施例1と同様の方法によりトナーを製造した。得られたトナーのガラス転移点Tgは60℃であった。
Example 2
A toner was produced in the same manner as in Example 1 except that 3.0 parts by weight of ester wax having a melting point of 65 ° C. and 3.0 parts by weight of polypropylene wax having a melting point of 130 ° C. were added. The obtained toner had a glass transition point Tg of 60 ° C.

実施例3
融点が83℃の市販のカルナウバワックス(東亜化成(株)製、TOA−201)を5.0重量部、融点が155℃のポリプロピレンワックスを0.5重量部添加した以外、実施例1と同様の方法によりトナーを製造した。得られたトナーのガラス転移点Tgは55℃であった。
Example 3
Example 1 except that 5.0 parts by weight of commercially available carnauba wax having a melting point of 83 ° C. (TOA-201, manufactured by Toa Kasei Co., Ltd.) and 0.5 parts by weight of polypropylene wax having a melting point of 155 ° C. were added. A toner was produced in the same manner. The obtained toner had a glass transition point Tg of 55 ° C.

比較例1〜10
低融点離型剤と、高融点離型剤とを、表1に示した割合で、実施例1と同様に用いて、表1に示したガラス転移点Tgの各トナーを製造した。
Comparative Examples 1-10
Each toner having a glass transition point Tg shown in Table 1 was produced using the low melting point release agent and the high melting point release agent in the ratio shown in Table 1 in the same manner as in Example 1.

Figure 2005242021
Figure 2005242021

得られた各トナーについて、定着性及び耐熱性を測定した。その結果を表2に示す。   About each obtained toner, fixing property and heat resistance were measured. The results are shown in Table 2.

<定着性の評価>
(定着率)
複写機として京セラミタ(株)製レーザプリンタのKM−5035(磁性一成分ジャンピング現像方式、A4横コピー速度:50枚/分)を用いた。この複写機の定着器の設定温度を140℃とし、ベタ画像(東京電色社製、TC−6DS型を使用し、IDを1.3に調整)を出力し、得られたベタ画像を、さらしを巻いた重り(400g)で5往復擦り、こすり前後のIDを測定した。得られた結果から、(擦り後のID)/(擦り前のID)×100として定着率(%)を求めた。定着率が95%以上の場合を「可」とし、95%未満の場合を「不可」とした。
<Evaluation of fixability>
(Fixing rate)
As a copying machine, KM-5035 (magnetic one-component jumping development method, A4 horizontal copy speed: 50 sheets / min) manufactured by Kyocera Mita Corporation was used. The fixing temperature of this copying machine is set to 140 ° C., a solid image (manufactured by Tokyo Denshoku Co., Ltd., TC-6DS type is used, ID is adjusted to 1.3), and the obtained solid image is output. The ID was measured before and after rubbing with a weight (400 g) wound with a cover for 5 reciprocations. From the obtained results, the fixing rate (%) was determined as (ID after rubbing) / (ID before rubbing) × 100. A case where the fixing rate was 95% or more was judged “OK”, and a case where the fixing rate was less than 95% was judged “Not possible”.

(非オフセット幅)
定着ローラ温度を130〜230℃の範囲で変化させ、オフセットの発生しない温度範囲(非オフセット幅)を調べた。非オフセット幅の範囲内に温度範囲「140〜220℃」が入る場合を「可」、入らない場合を「不可」とした。
(Non-offset width)
The fixing roller temperature was changed in the range of 130 to 230 ° C., and the temperature range (non-offset width) where no offset occurred was examined. The case where the temperature range “140 to 220 ° C.” falls within the range of the non-offset width is set to “possible”, and the case where the temperature range does not fall is set to “impossible”.

<耐熱性の評価>
トナー3gを密閉可能なプラスチック容器に入れ、58℃で3時間加熱する。その後、常温で12時間放置し、パウダーデスターを用いて140メッシュの振動ふるいにかける。ふるい後、メッシュ上に残ったトナーの割合を計算し、メッシュ上に残るトナー割合が25%以下場合を「○」、25%を超える場合を「×」とした。
<Evaluation of heat resistance>
3 g of toner is placed in a sealable plastic container and heated at 58 ° C. for 3 hours. Then, it is allowed to stand at room temperature for 12 hours and applied to a 140-mesh vibrating screen using a powder destar. After sieving, the ratio of the toner remaining on the mesh was calculated, and the case where the ratio of the toner remaining on the mesh was 25% or less was “◯”, and the case where it exceeded 25% was “X”.

Figure 2005242021
Figure 2005242021

表2によれば、本発明の要件を具備する実施例のトナーでは、定着率、非オフセット幅及び耐熱性について良好な結果が得られた。
一方、比較例のトナーでは、低温オフセット又は高温オフセットが発生し、非オフセット幅を十分確保するものは少なかった。また、比較例4のように、非オフセット幅が広い場合においても、耐熱性に劣っており、定着性及び耐熱性の双方において、良好な結果を得られたものはなかった。
According to Table 2, good results were obtained with respect to the fixing rate, the non-offset width, and the heat resistance of the toners of the examples having the requirements of the present invention.
On the other hand, in the toner of the comparative example, a low temperature offset or a high temperature offset occurred, and few toners sufficiently ensure a non-offset width. Further, even in the case where the non-offset width was wide as in Comparative Example 4, the heat resistance was inferior, and none of the good results were obtained in both the fixability and the heat resistance.

本発明は、磁性一成分現像方式のレーザープリンタ、静電式複写機、普通紙ファクシミリ装置及びこれらの機能を併せもつ複合装置等の広範囲な画像形成装置に適用することができる。   The present invention can be applied to a wide range of image forming apparatuses such as a magnetic one-component developing type laser printer, an electrostatic copying machine, a plain paper facsimile apparatus, and a composite apparatus having these functions.

本発明の磁性一成分トナーのDSC曲線の一例である。2 is an example of a DSC curve of the magnetic one-component toner of the present invention.

Claims (1)

少なくとも結着樹脂と離型剤とからなる静電潜像現像用磁性一成分トナーであって、前記離型剤が、示差走査熱量計によって測定される融点(Wp1)が65〜85℃である離型剤と、融点(Wp2)が130〜160℃である離型剤とを含み、かつ示差走査熱量計によって測定されるトナーのガラス転移点Tgが、
70≦Wp2−Tg≦100
を満足することを特徴とする静電潜像現像用磁性一成分トナー。
A magnetic one-component toner for electrostatic latent image development comprising at least a binder resin and a release agent, wherein the release agent has a melting point (Wp1) measured by a differential scanning calorimeter of 65 to 85 ° C. A glass transition point Tg of a toner, which includes a release agent and a release agent having a melting point (Wp2) of 130 to 160 ° C. and is measured by a differential scanning calorimeter,
70 ≦ Wp2-Tg ≦ 100
A magnetic one-component toner for developing an electrostatic latent image.
JP2004052261A 2004-02-26 2004-02-26 Electrostatic latent image developing magnetic single component toner Pending JP2005242021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052261A JP2005242021A (en) 2004-02-26 2004-02-26 Electrostatic latent image developing magnetic single component toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052261A JP2005242021A (en) 2004-02-26 2004-02-26 Electrostatic latent image developing magnetic single component toner

Publications (1)

Publication Number Publication Date
JP2005242021A true JP2005242021A (en) 2005-09-08

Family

ID=35023812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052261A Pending JP2005242021A (en) 2004-02-26 2004-02-26 Electrostatic latent image developing magnetic single component toner

Country Status (1)

Country Link
JP (1) JP2005242021A (en)

Similar Documents

Publication Publication Date Title
JPH056029A (en) Electrostatic charge image developing toner and production thereof
CN111051997B (en) Positively chargeable toner for electrostatic image development
JP2010282154A (en) Toner and method of manufacturing the same
JP2017003980A (en) toner
JP2009093049A (en) Toner for electrostatic charge image development, powder toner cartridge and image forming apparatus
JP4345111B2 (en) Toner for electrostatic image development
JP3449935B2 (en) Dry toner for electrophotography
JP3077860B2 (en) Toner composition
JP2006243593A (en) Toner
JP3915542B2 (en) Toner for electrostatic image development
JP2005242021A (en) Electrostatic latent image developing magnetic single component toner
US8383310B2 (en) Toner compositions
WO2017141817A1 (en) Toner for electrophotography
JP4169272B2 (en) Toner for electrophotography
JP3977727B2 (en) Toner for electrostatic image development
JP4557897B2 (en) Binder resin for toner
JP2019215481A (en) toner
JP3881226B2 (en) Toner for electrostatic image development
JP5289002B2 (en) Non-magnetic toner
JPH0451249A (en) Magnetic toner and its manufacturing method
JP3902880B2 (en) Toner for development
JPH06308764A (en) Resin composition for toner and the toner
JP2005157320A (en) Magnetic toner
JP4583784B2 (en) Binder resin for toner
JP2005265961A (en) Method for forming image