[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005240618A - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP2005240618A
JP2005240618A JP2004049352A JP2004049352A JP2005240618A JP 2005240618 A JP2005240618 A JP 2005240618A JP 2004049352 A JP2004049352 A JP 2004049352A JP 2004049352 A JP2004049352 A JP 2004049352A JP 2005240618 A JP2005240618 A JP 2005240618A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
sensor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049352A
Other languages
Japanese (ja)
Inventor
Shinji Nakagawa
慎二 中川
Yoichi Iiboshi
洋一 飯星
Daisuke Watanabe
大輔 渡邉
Yoshikuni Kurashima
芳国 倉島
Toshio Hori
堀  俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004049352A priority Critical patent/JP2005240618A/en
Publication of JP2005240618A publication Critical patent/JP2005240618A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device having high robustness against noises for diagnosing an air-fuel ratio detecting means with high accuracy even when the air-fuel ratio detecting means is arranged on either the upstream or downstream side of a catalyst in an exhaust passage. <P>SOLUTION: The engine control device having the air-fuel ratio detecting means 51 arranged in the exhaust passage 40 comprises a predetermined frequency band component extracting means 220 such as a band filter for extracting signal components in a predetermined frequency band out of output signals from the air-fuel ratio detecting means 51, an amplitude/power computing means 231 for computing the amplitude or power of the signal components in the predetermined frequency band, and a diagnosing means 230 for diagnosing the air-fuel ratio detecting means in accordance with the amplitude or power. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンジンの制御装置に係り、特に、排気通路における触媒上流もしくは触媒下流に配在された空燃比検出手段を高精度に診断することができるようにされた制御装置に関する。   The present invention relates to an engine control device, and more particularly, to a control device capable of diagnosing air-fuel ratio detection means disposed upstream or downstream of a catalyst in an exhaust passage with high accuracy.

近年、排気規制が強化されつつある。エンジンから排出されるHC、CO、NOxを浄化するために排気通路に三元触媒を取り付け、該触媒の高効率利用のために、排気通路における触媒上流のA/Fセンサ(もしくはO2センサ)に加えて、下流にもO2センサを用い、ロバスト性の高い空燃比F/B制御を行うのが一般的になりつつある。一方、北米、欧州、国内等においては、A/Fセンサ及びO2センサの診断精度も高精度化が要求されつつあり、こうした背景からA/Fセンサ及びO2センサの応答性の劣化(低下)を検出するための方法が従来より幾つか提案されている。 In recent years, exhaust regulations have been strengthened. A three-way catalyst is attached to the exhaust passage to purify HC, CO, and NOx discharged from the engine, and an A / F sensor (or O 2 sensor) upstream of the catalyst in the exhaust passage is used for high efficiency use of the catalyst. In addition to this, it is becoming common to use an air-fuel ratio F / B control with high robustness using an O 2 sensor downstream. On the other hand, in North America, Europe, Japan, etc., the accuracy of diagnosis of the A / F sensor and the O 2 sensor is also demanded to be improved. Against this background, the responsiveness of the A / F sensor and the O 2 sensor deteriorates (decreases). Several methods have been proposed in the past for detecting).

例えば、下記特許文献1には、センサ出力の時間微分値(出力変化速度)を求め、この時間微分値の平均値、標準偏差値あるいは最大値に基づいて、空燃比センサの応答性劣化を検出することが提案されている。すなわち、センサ応答性をセンサ出力変化速度から求めるものである。   For example, in Patent Document 1 below, a time differential value (output change speed) of a sensor output is obtained, and responsiveness deterioration of the air-fuel ratio sensor is detected based on an average value, standard deviation value, or maximum value of the time differential value. It has been proposed to do. That is, the sensor response is obtained from the sensor output change speed.

さらに、下記特許文献2には、触媒下流の空燃比センサの応答性劣化を検出するため、センサ出力の時間微分値が所定値以上になる頻度に基づく手法が提案されている。しかしながら、微分器の特性は、周波数が高くなるにつれ、ゲインも高くなるため、ノイズの影響を受けやすく、検出精度の悪化を招くおそれがある。   Further, Patent Document 2 below proposes a method based on the frequency at which the time differential value of the sensor output becomes equal to or greater than a predetermined value in order to detect responsiveness deterioration of the air-fuel ratio sensor downstream of the catalyst. However, since the gain of the differentiator becomes higher as the frequency becomes higher, the characteristic of the differentiator is likely to be affected by noise and may deteriorate the detection accuracy.

一方、下記特許文献3には、空燃比F/B制御の高精度化を目的として、ノイズの影響低減のために、空燃比センサ出力の所定時間当たりの変化量が所定量より大きいときは、空燃比センサ出力に妥当性がないと判断し、出力値に補正を行い、制御用の信号とすることが提案されている。
特開昭61−31640号公報(第1〜6頁、図1〜図17) 特開平9−4496号公報(第1〜5頁、図1〜図7) 特開平6−229295号公報(第1〜11頁、図1〜図8)
On the other hand, in Patent Document 3 below, for the purpose of increasing the accuracy of air-fuel ratio F / B control, in order to reduce the influence of noise, when the amount of change per predetermined time of the air-fuel ratio sensor output is larger than a predetermined amount, It has been proposed to determine that the air-fuel ratio sensor output is not valid, correct the output value, and use it as a control signal.
JP 61-31640 (pages 1-6, FIGS. 1-17) Japanese Patent Laid-Open No. 9-4496 (pages 1-5, FIGS. 1-7) JP-A-6-229295 (pages 1 to 11 and FIGS. 1 to 8)

しかしながら、前記のように、センサの応答性劣化を診断する場合、出力信号の変化速度に基づいて行うことが合理的であるが、微分器を用いるため、ノイズの影響を受け、誤診断を招く可能性がある。   However, as described above, when diagnosing responsiveness deterioration of the sensor, it is reasonable to perform based on the change rate of the output signal. However, since a differentiator is used, it is affected by noise and causes misdiagnosis. there is a possibility.

本発明は、前記事情に鑑みてなされたもので、その目的とするところは、ノイズに対するロバスト性が高く、空燃比検出手段が排気通路における触媒上流及び下流のいずれに配在されている場合であっても、該空燃比検出手段を高精度に診断することができる制御装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a case where the robustness against noise is high and the air-fuel ratio detection means is arranged either upstream or downstream of the catalyst in the exhaust passage. Even if it exists, it is providing the control apparatus which can diagnose this air-fuel-ratio detection means with high precision.

前記目的を達成すべく、本発明に係るエンジンの制御装置の第1態様は、空燃比検出手段を備えたエンジンに適用されるもので、前記空燃比検出手段の出力信号から所定周波数帯域の信号成分を抽出する所定周波数帯域成分抽出手段と、前記所定周波数帯域の信号成分の振幅もしくはパワーを演算する振幅/パワー演算手段と、前記振幅もしくはパワーに基づいて、前記空燃比検出手段を診断する診断手段と、備えていることを特徴としている(図1参照)。   In order to achieve the above object, a first aspect of an engine control apparatus according to the present invention is applied to an engine equipped with an air-fuel ratio detection means, and a signal in a predetermined frequency band from an output signal of the air-fuel ratio detection means. Predetermined frequency band component extracting means for extracting components, amplitude / power calculating means for calculating the amplitude or power of the signal component in the predetermined frequency band, and diagnosis for diagnosing the air-fuel ratio detecting means based on the amplitude or power And means (see FIG. 1).

すなわち、図17に示されるように、O2センサ等の空燃比検出手段の出力は、それが正常であるとき(応答性正常時)と、それが劣化しているとき(応答性劣化時)とでは異なる。図18は、応答性正常時と応答性劣化時のそれぞれにおける出力信号を周波数解析した結果であるが、特定帯域の周波数のパワー(応答性指数)が異なることがわかる。したがって、空燃比検出手段の応答性に関わる部分のみの帯域を抽出し、該帯域の信号成分の振幅(もしくはパワー)に基づいて、空燃比検出手段を診断(応答性劣化判定)することができる。 That is, as shown in FIG. 17, the output of the air-fuel ratio detection means such as an O 2 sensor is normal (when responsiveness is normal) and when it is deteriorated (when responsiveness is deteriorated). And different. FIG. 18 shows the result of frequency analysis of the output signal when the response is normal and when the response is deteriorated, and it can be seen that the power (response index) of the frequency in the specific band is different. Accordingly, it is possible to extract only the band related to the responsiveness of the air-fuel ratio detecting means and diagnose the air-fuel ratio detecting means (responsiveness deterioration determination) based on the amplitude (or power) of the signal component in the band. .

本発明に係る制御装置の第2態様は、前記所定周波数帯域成分抽出手段は、前記空燃比検出手段の出力信号の所定周波数帯域のみを通過させる帯域通過型フィルタで構成される(図2参照)。   In a second aspect of the control device according to the present invention, the predetermined frequency band component extracting means is constituted by a band-pass filter that passes only a predetermined frequency band of the output signal of the air-fuel ratio detecting means (see FIG. 2). .

すなわち、帯域通過型フィルタ(以下バンドパスフィルタ)を用い、空燃比検出手段の応答性に関わる部分のみの帯域を抽出し、該帯域の信号成分の振幅(もしくはパワー)に基づいて、空燃比検出手段の診断(応答性劣化判定)を行う。具体的には、図16に示されるように、空燃比検出手段の周波数特性において、バンドパスフィルタの通過帯域を、応答性正常時と応答性劣化時でゲイン特性が異なる領域に設定する。このように通過帯域を設定することで、高周波ノイズの影響を受けることなく応答劣化によるゲイン低下を検出することが可能となる。   That is, a band-pass filter (hereinafter referred to as a band-pass filter) is used to extract only the band related to the responsiveness of the air-fuel ratio detection means, and the air-fuel ratio detection is performed based on the amplitude (or power) of the signal component in the band. Diagnose means (determination of responsiveness deterioration). Specifically, as shown in FIG. 16, in the frequency characteristics of the air-fuel ratio detection means, the pass band of the band-pass filter is set to a region where the gain characteristics are different when the response is normal and when the response is degraded. By setting the passband in this way, it is possible to detect a gain decrease due to response deterioration without being affected by high-frequency noise.

本発明に係る制御装置の第3態様は、前記所定周波数帯域成分抽出手段は、フーリエ変換により、前記空燃比検出手段の出力信号から前記所定周波数帯域の信号成分を抽出するようにされる(図3参照)。   In a third aspect of the control device according to the present invention, the predetermined frequency band component extracting means extracts a signal component of the predetermined frequency band from the output signal of the air-fuel ratio detecting means by Fourier transform (FIG. 3).

すなわち、図18に示されるように、フーリエ変換を用いて、空燃比検出手段の応答性に関わる部分のみの帯域を抽出し、該帯域の信号成分の振幅(もしくはパワー)に基づいて応答性劣化を判定する。このように通過帯域を設定することで、高周波ノイズの影響を受けることなく応答劣化によるゲイン低下を検出することが可能となる。   That is, as shown in FIG. 18, the band of only the portion related to the responsiveness of the air-fuel ratio detecting means is extracted using Fourier transform, and the responsiveness deterioration is based on the amplitude (or power) of the signal component in the band. Determine. By setting the passband in this way, it is possible to detect a gain decrease due to response deterioration without being affected by high-frequency noise.

本発明に係る制御装置の第4態様は、前記空燃比検出手段は、前記排気通路における触媒下流に配在される(図4参照)。   In a fourth aspect of the control device according to the present invention, the air-fuel ratio detection means is disposed downstream of the catalyst in the exhaust passage (see FIG. 4).

本発明に係る制御装置の第5態様は、前記空燃比検出手段は、広域の空燃比を検出可能なA/Fセンサとされる(図5参照)。   In a fifth aspect of the control apparatus according to the present invention, the air-fuel ratio detecting means is an A / F sensor capable of detecting a wide range of air-fuel ratio (see FIG. 5).

本発明に係る制御装置の第6態様は、前記空燃比検出手段は、理論空燃比に対してリッチ及びリーンのいずれであるかを検出することができるO2センサとされる(図6参照)。 According to a sixth aspect of the control apparatus of the present invention, the air-fuel ratio detecting means is an O 2 sensor that can detect whether the air-fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio (see FIG. 6). .

本発明に係る制御装置の第7態様は、前記診断手段は、前記振幅もしくはパワーが所定値A以下のとき、前記空燃比検出手段が劣化したと判定するようにされる(図7参照)。   According to a seventh aspect of the control device of the present invention, the diagnosis means determines that the air-fuel ratio detection means has deteriorated when the amplitude or power is equal to or less than a predetermined value A (see FIG. 7).

すなわち、応答性が劣化すると、図16に示されるように、前記バンドパスフィルタ通過後の信号の振幅(パワー)は、低下することがわかる。したがって、該信号の振幅もしくはパワーが所定値A以下のとき、空燃比検出手段の応答性が劣化したと判定する。   That is, when the responsiveness deteriorates, the amplitude (power) of the signal after passing through the bandpass filter decreases as shown in FIG. Therefore, when the amplitude or power of the signal is equal to or less than the predetermined value A, it is determined that the responsiveness of the air-fuel ratio detecting means has deteriorated.

本発明に係る制御装置の第8態様は、前記診断手段は、前記振幅もしくはパワーが所定値A以下で、かつ、所定値B以上のとき、前記空燃比検出手段が劣化したと判定するようにされる(図8参照)。   In an eighth aspect of the control device according to the present invention, the diagnosis means determines that the air-fuel ratio detection means has deteriorated when the amplitude or power is not more than a predetermined value A and not less than a predetermined value B. (See FIG. 8).

すなわち、空燃比検出手段の入力に相当する排ガス中の酸素濃度は必ずしも振幅を持った振動波形になるとは限らす、特に、触媒下流の場合は、触媒内のO2貯蔵、脱離機能の影響もあって排ガス中の酸素濃度は安定している。この場合、空燃比検出手段の応答性は正常であっても、前記バンドパスフィルタ通過後の信号の振幅(パワー)は小さくなり、応答性劣化と誤診断する可能性がある。このことから、パワーが所定値B以上の条件を追加することにより、排ガス中の酸素濃度が安定しているときの誤診断を防ぐことができる。 That is, the oxygen concentration in the exhaust gas corresponding to the input of the air-fuel ratio detection means does not necessarily have a vibration waveform having an amplitude. In particular, in the case of downstream of the catalyst, the influence of O 2 storage and desorption functions in the catalyst. For this reason, the oxygen concentration in the exhaust gas is stable. In this case, even if the responsiveness of the air-fuel ratio detecting means is normal, the amplitude (power) of the signal after passing through the band-pass filter is small, and there is a possibility of erroneously diagnosing responsiveness degradation. From this, by adding a condition in which the power is equal to or greater than the predetermined value B, it is possible to prevent erroneous diagnosis when the oxygen concentration in the exhaust gas is stable.

本発明に係る制御装置の第9態様は、第7態様の構成において、前記診断手段は、所定期間における前記振幅もしくはパワーが所定値A以下となる回数n1を演算する手段を備え、前記回数n1が所定値K1以上のとき、前記空燃比検出手段の応答性が劣化したと判定するようにされる(図9参照)。   According to a ninth aspect of the control apparatus of the present invention, in the configuration of the seventh aspect, the diagnostic means includes means for calculating a number n1 of times that the amplitude or power in a predetermined period is equal to or less than a predetermined value A, and the number n1 Is equal to or greater than a predetermined value K1, it is determined that the responsiveness of the air-fuel ratio detecting means has deteriorated (see FIG. 9).

すなわち、第9態様の構成において、空燃比検出手段の応答性が劣化した場合、前記振幅もしくはパワーが所定値A以下となるが、診断を車両走行中に行う場合、空燃比検出手段の入力信号を診断精度が高くなる所望の仕様にできないことがある。これに鑑み、本態様では、十分な診断期間もしくは診断機会を確保し、確率的に診断するようにされる。   That is, in the configuration of the ninth aspect, when the responsiveness of the air-fuel ratio detecting means deteriorates, the amplitude or power becomes not more than the predetermined value A, but when the diagnosis is performed while the vehicle is running, the input signal of the air-fuel ratio detecting means May not be able to achieve a desired specification with high diagnostic accuracy. In view of this, in this aspect, a sufficient diagnosis period or diagnosis opportunity is ensured and the diagnosis is performed probabilistically.

本発明に係る制御装置の第10態様は、第8態様の構成において、前記診断手段は、所定期間における前記振幅もしくはパワーが所定値A以下で、かつ、所定値B以上となる回数n2を演算する手段を備え、前記回数n2が所定値K2以上のとき、前記空燃比検出手段の応答性が劣化したと判定するようにされる(図10参照)。   According to a tenth aspect of the control device of the present invention, in the configuration according to the eighth aspect, the diagnosis unit calculates the number n2 of times that the amplitude or power in the predetermined period is equal to or less than the predetermined value A and equal to or greater than the predetermined value B. When the number n2 is equal to or greater than a predetermined value K2, it is determined that the responsiveness of the air-fuel ratio detecting means has deteriorated (see FIG. 10).

すなわち、第9態様と同様の事情に鑑み、第8態様の構成において、十分な診断期間もしくは診断機会を確保し、確率的に診断するようにされる。   That is, in view of the same situation as the ninth aspect, in the configuration of the eighth aspect, a sufficient diagnosis period or a diagnosis opportunity is ensured, and the diagnosis is performed probabilistically.

本発明に係る制御装置の第11態様は、エンジンの運転状態を検出する運転状態検出手段と、前記運転状態に基づいて、前記振幅もしくはパワーの検出を許可するか否かを判定する診断許可判定手段と、を備える(図11参照)。   An eleventh aspect of the control device according to the present invention is an operation state detection means for detecting an operation state of the engine, and a diagnosis permission determination for determining whether to permit detection of the amplitude or power based on the operation state. Means (see FIG. 11).

すなわち、空燃比検出手段の出力信号である排ガス中の酸素濃度の周波数成分が、図16に示されるように、バンドパスフィルタの通過帯域に相当する帯域で大きくなる領域で診断を行うのが精度の観点で望ましい。一般に、排ガス中の酸素濃度(空燃比)の振動周波数は、エンジンの運転状態に応じて変化する。このことから、例えば、エンジン回転数、吸入空気量などのエンジンの運転状態を検出し、診断のS/N比が高い領域で診断を行う。   That is, it is accurate to perform diagnosis in a region where the frequency component of the oxygen concentration in the exhaust gas, which is the output signal of the air-fuel ratio detection means, is large in the band corresponding to the pass band of the band-pass filter as shown in FIG. From the viewpoint of. In general, the vibration frequency of the oxygen concentration (air-fuel ratio) in the exhaust gas changes according to the operating state of the engine. From this, for example, engine operating conditions such as engine speed and intake air amount are detected, and diagnosis is performed in a region where the S / N ratio of diagnosis is high.

本発明に係る制御装置の第12態様は、前記空燃比検出手段の出力信号に基づいて、燃焼に供される混合気の空燃比を制御する空燃比制御手段を備え、該空燃比制御手段は、前記振幅もしくはパワーに基づいて、空燃比制御パラメータを変更するようにされる(図12参照)。   A twelfth aspect of the control device according to the present invention comprises air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied for combustion based on the output signal of the air-fuel ratio detection means, The air-fuel ratio control parameter is changed based on the amplitude or power (see FIG. 12).

すなわち、空燃比検出手段の出力に基づいて空燃比F/B制御を行う場合、F/B制御のパラメータの最適値は、前記空燃比検出手段の応答性に応じる。したがって、前記バンドパスフィルタ通過後の信号の振幅(パワー)から、空燃比検出手段の応答性を検出し、F/B制御のパラメータを適応させることで、常時、F/B制御の安定性を維持しつつ、応答性を確保することができる。   That is, when the air-fuel ratio F / B control is performed based on the output of the air-fuel ratio detection means, the optimum value of the F / B control parameter depends on the responsiveness of the air-fuel ratio detection means. Therefore, by detecting the responsiveness of the air-fuel ratio detection means from the amplitude (power) of the signal after passing through the band-pass filter and adapting the F / B control parameters, the stability of the F / B control is always improved. Responsiveness can be ensured while maintaining.

本発明に係る制御装置の第13態様は、第4態様の構成において、前記触媒下流に配在された空燃比検出手段の出力信号に基づいて、燃焼に供される混合気の空燃比を制御する空燃比制御手段を備え、該空燃比制御手段は、前記振幅もしくはパワーに基づいて、前記空燃比制御パラメータを変更するようにされる(図13参照)。   According to a thirteenth aspect of the control device of the present invention, in the configuration of the fourth aspect, the air-fuel ratio of the air-fuel mixture provided for combustion is controlled based on the output signal of the air-fuel ratio detecting means disposed downstream of the catalyst. The air-fuel ratio control means is configured to change the air-fuel ratio control parameter based on the amplitude or power (see FIG. 13).

すなわち、第12態様と同様に、触媒下流の空燃比検出手段の応答性に応じて、触媒下流の空燃比検出手段を用いて行う空燃比F/B制御のパラメータを適応させる。   That is, similarly to the twelfth aspect, the parameters of the air-fuel ratio F / B control performed using the air-fuel ratio detecting means downstream of the catalyst are adapted according to the responsiveness of the air-fuel ratio detecting means downstream of the catalyst.

本発明に係る制御装置の第14態様は、第12態様の構成において、前記空燃比制御手段の制御周期を演算する手段を備え、前記診断手段は、前記制御周期が所定値C以上のとき、前記空燃比検出手段が劣化したと判定するようにされる(図14参照)。   According to a fourteenth aspect of the control device of the present invention, in the configuration of the twelfth aspect, the control device includes means for calculating a control period of the air-fuel ratio control means, and the diagnosis means has the control period equal to or greater than a predetermined value C. It is determined that the air-fuel ratio detection means has deteriorated (see FIG. 14).

すなわち、空燃比検出手段の応答性に応じて、該空燃比検出手段を用いて行う空燃比F/B制御のパラメータを適応させると、F/B制御周期が長くなる。したがって、F/B制御周期を計測することで、空燃比検出手段の応答性劣化を間接的に検出することが可能となる。   That is, if the parameters of the air-fuel ratio F / B control performed using the air-fuel ratio detection means are adapted according to the responsiveness of the air-fuel ratio detection means, the F / B control cycle becomes longer. Therefore, by measuring the F / B control cycle, it becomes possible to indirectly detect the deterioration of the responsiveness of the air-fuel ratio detection means.

本発明に係る制御装置の第15態様は、第13態様の構成において、前記空燃比制御手段の制御周期を演算する手段を備え、前記診断手段は、前記制御周期が所定値D以上のとき、前記空燃比検出手段が劣化したと判定するようにされる(図15参照)。   According to a fifteenth aspect of the control device of the present invention, in the configuration of the thirteenth aspect, the control device includes means for calculating a control period of the air-fuel ratio control means, and the diagnosis means has the control period equal to or greater than a predetermined value D. It is determined that the air-fuel ratio detecting means has deteriorated (see FIG. 15).

すなわち、第14態様と同様に、触媒下流の空燃比検出手段の応答性に応じて、該触媒下流の空燃比検出手段を用いて行う空燃比F/B制御のパラメータを適応させると、F/B制御周期が長くなる。したがって、F/B制御周期を計測することで、空燃比検出手段の応答性劣化を間接的に検出することが可能となる。   That is, as in the fourteenth aspect, if the parameters of the air-fuel ratio F / B control performed using the air-fuel ratio detecting means downstream of the catalyst are adapted according to the responsiveness of the air-fuel ratio detecting means downstream of the catalyst, The B control cycle becomes longer. Therefore, by measuring the F / B control cycle, it becomes possible to indirectly detect the deterioration of the responsiveness of the air-fuel ratio detection means.

一方、本発明に係る自動車は、前記制御装置が適用されたエンジンを搭載していることを特徴としている。   On the other hand, an automobile according to the present invention is characterized in that an engine to which the control device is applied is mounted.

本発明に係る制御装置は、例えばバンドパスフィルタ等の所定周波数帯域抽出手段を用いて、空燃比検出手段の応答性に関わる部分のみの帯域を抽出し、該帯域の信号成分の振幅(もしくはパワー)に基づいて、空燃比検出手段の診断(応答性劣化判定)を行うようにされ、この際、空燃比検出手段の周波数特性において、バンドパスフィルタの通過帯域を、応答性正常時と応答性劣化時でゲイン特性が異なる領域に設定することにより、高周波ノイズの影響を受けることなく応答性劣化によるゲイン低下を検出することが可能となり、その結果、高周波ノイズによる誤診断を回避でき、ノイズに対するロバスト性が高く、空燃比検出手段が排気通路における触媒上流及び下流のいずれに配在されている場合であっても、該空燃比検出手段を高精度に診断することができる。   The control apparatus according to the present invention extracts a band of only a portion related to the responsiveness of the air-fuel ratio detection unit using a predetermined frequency band extraction unit such as a bandpass filter, and the amplitude (or power) of the signal component in the band. ), The air-fuel ratio detection means is diagnosed (responsiveness deterioration judgment). At this time, in the frequency characteristics of the air-fuel ratio detection means, the pass band of the band-pass filter is changed to the normal response and the response characteristics. By setting the gain characteristics in different areas at the time of deterioration, it is possible to detect gain reduction due to responsiveness deterioration without being affected by high-frequency noise. The air-fuel ratio detection means is highly robust and the air-fuel ratio detection means can be used regardless of whether the air-fuel ratio detection means is located upstream or downstream of the catalyst in the exhaust passage. It can be diagnosed in accuracy.

以下、本発明の実施の形態を図面を参照しながら説明する。
[第1実施形態]
図19は、本発明に係る制御装置の第1実施形態を、それが適用された車載用エンジンの一例と共に示す概略構成図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 19 is a schematic configuration diagram illustrating a first embodiment of the control device according to the present invention together with an example of an in-vehicle engine to which the control device is applied.

図示のエンジン10は、例えば4つの気筒#1、#2、#3、#4を有する多気筒エンジンであって、シリンダ12と、このシリンダ12の各気筒#1、#2、#3、#4内に摺動自在に嵌挿されたピストン15と、を有し、該ピストン15上方には燃焼室17が画成される。燃焼室17には、点火プラグ35が臨設されている。   The illustrated engine 10 is a multi-cylinder engine having four cylinders # 1, # 2, # 3, and # 4, for example, and includes a cylinder 12 and each cylinder # 1, # 2, # 3, # of the cylinder 12. 4, and a piston 15 slidably inserted into the piston 4. A combustion chamber 17 is defined above the piston 15. A spark plug 35 is provided in the combustion chamber 17.

燃料の燃焼に供せられる空気は、吸気通路20の始端部に設けられたエアクリーナ21から取り入れられ、エアフローセンサ24を通り、電制スロットル弁25を通ってコレクタ27に入り、このコレクタ27から前記吸気通路20の下流端(吸気ポート)に配在された吸気弁28を介して各気筒#1、#2、#3、#4の燃焼室17に吸入される。また、前記吸気通路20の下流部分(分岐通路部)には、燃料噴射弁30が臨設されている。   Air used for combustion of fuel is taken in from an air cleaner 21 provided at the start end of the intake passage 20, passes through an air flow sensor 24, passes through an electric throttle valve 25, enters a collector 27, and passes through the collector 27. The air is sucked into the combustion chambers 17 of the cylinders # 1, # 2, # 3, and # 4 via the intake valve 28 disposed at the downstream end (intake port) of the intake passage 20. A fuel injection valve 30 is provided in the downstream portion (branch passage portion) of the intake passage 20.

燃焼室17に吸入された空気と燃料噴射弁30から噴射された燃料との混合気は、点火プラグ35により点火されて爆発燃焼せしめられ、その燃焼廃ガス(排気)は、燃焼室17から排気弁48を介して排気通路40の上流部分を形成する個別通路部に排出され、その個別通路部から排気集合部を通って排気通路40に配備された三元触媒50に流入して浄化された後、外部に排出される。   The mixture of the air sucked into the combustion chamber 17 and the fuel injected from the fuel injection valve 30 is ignited by the spark plug 35 and explosively burned, and the combustion waste gas (exhaust gas) is exhausted from the combustion chamber 17. The exhaust gas is discharged to the individual passage portion forming the upstream portion of the exhaust passage 40 through the valve 48, and flows into the three-way catalyst 50 disposed in the exhaust passage 40 through the exhaust collecting portion and purified. After that, it is discharged outside.

また、排気通路40における三元触媒50より下流側にはO2センサ52が配在され、排気通路40における触媒50より上流側の排気集合部にはA/Fセンサ51が配在されている。 Further, an O 2 sensor 52 is disposed downstream of the three-way catalyst 50 in the exhaust passage 40, and an A / F sensor 51 is disposed in an exhaust collecting portion upstream of the catalyst 50 in the exhaust passage 40. .

前記A/Fセンサ51は、排気中に含まれる酸素の濃度に対して線形の出力特性を持つ。排気中の酸素濃度と空燃比の関係はほぼ線形になっており、したがって、酸素濃度を検出するA/Fセンサ51により、前記排気集合部における空燃比を求めることが可能となる。また、前記O2センサ52からの信号により、三元触媒50下流の酸素濃度もしくはストイキに対してリッチ及びリーンのいずれであるかを求めることができる。 The A / F sensor 51 has a linear output characteristic with respect to the concentration of oxygen contained in the exhaust gas. The relationship between the oxygen concentration in the exhaust gas and the air-fuel ratio is almost linear. Therefore, the A / F sensor 51 that detects the oxygen concentration can determine the air-fuel ratio in the exhaust gas collecting portion. Further, from the signal from the O 2 sensor 52, it can be determined whether the oxygen concentration downstream of the three-way catalyst 50 or the stoichiometric value is rich or lean.

また、燃焼室17から排気通路40に排出された排気ガスの一部は、必要に応じてEGR通路41を介して吸気通路20に導入され、吸気通路20の分岐通路部を介して各気筒の燃焼室17に還流される。前記EGR通路41には、EGR率を調整するためのEGRバルブ42が介装されている。   Further, a part of the exhaust gas discharged from the combustion chamber 17 to the exhaust passage 40 is introduced into the intake passage 20 through the EGR passage 41 as necessary, and is supplied to each cylinder through the branch passage portion of the intake passage 20. It returns to the combustion chamber 17. The EGR passage 41 is provided with an EGR valve 42 for adjusting the EGR rate.

そして、本実施形態の制御装置1においては、エンジン10の種々の制御を行うため、マイクロコンピュータを内蔵するコントロールユニット100が備えられている。   And in the control apparatus 1 of this embodiment, in order to perform various control of the engine 10, the control unit 100 incorporating a microcomputer is provided.

コントロールユニット100は、基本的には、図20に示される如くに、CPU101、入力回路102、入出力ポート103、RAM104、ROM105等で構成される。   As shown in FIG. 20, the control unit 100 basically includes a CPU 101, an input circuit 102, an input / output port 103, a RAM 104, a ROM 105, and the like.

コントロールユニット100には、入力信号として、エアフローセンサ24により検出される吸入空気量に応じた信号、スロットルセンサ28により検出されるスロットル弁25の開度に応じた信号、クランク角センサ(エンジン回転数センサ)37から得られるクランクシャフト18の回転(エンジン回転数)・位相をあらわす信号、排気通路40における三元触媒50より下流側に配在されたO2センサ52により検出される排気中の酸素濃度に応じた信号、排気通路40における触媒50より上流側の排気集合部に配在されたA/Fセンサ51により検出される酸素濃度(空燃比)に応じた信号、シリンダ12に配設された水温センサ19により検出されるエンジン冷却水温に応じた信号、アクセルセンサ36から得られるアクセルペダル39の踏み込み量(運転者の要求トルクを示す)に応じた信号等が供給される。 In the control unit 100, as an input signal, a signal corresponding to the intake air amount detected by the air flow sensor 24, a signal corresponding to the opening of the throttle valve 25 detected by the throttle sensor 28, a crank angle sensor (engine speed) Sensor) a signal representing rotation (engine speed) and phase of the crankshaft 18 obtained from the sensor 37, oxygen in the exhaust gas detected by an O 2 sensor 52 disposed downstream of the three-way catalyst 50 in the exhaust passage 40 A signal corresponding to the concentration, a signal corresponding to the oxygen concentration (air-fuel ratio) detected by the A / F sensor 51 disposed in the exhaust collecting portion upstream of the catalyst 50 in the exhaust passage 40, and disposed in the cylinder 12. A signal corresponding to the engine cooling water temperature detected by the water temperature sensor 19, an accelerator pedal obtained from the accelerator sensor 36. Signal or the like corresponding to the amount of depression of the Le 39 (indicating the requested torque of the driver) is supplied.

コントロールユニット100においては、A/Fセンサ51、O2センサ52、スロットルセンサ28、エアフローセンサ24、クランク角センサ37、水温センサ16、及びアクセルセンサ36、等の各センサの出力が入力され、入力回路102にてノイズ除去等の信号処理を行った後、入出力ポート103に送られる。入力ポートの値はRAM104に保管され、CPU101内で演算処理される。演算処理の内容を記述した制御プログラムはROM105に予め書き込まれている。制御プログラムに従って演算された各アクチュエータ操作量を表す値はRAM104に保管された後、出力ポート103に送られる。 In the control unit 100, outputs of sensors such as an A / F sensor 51, an O 2 sensor 52, a throttle sensor 28, an air flow sensor 24, a crank angle sensor 37, a water temperature sensor 16, and an accelerator sensor 36 are input. After signal processing such as noise removal is performed in the circuit 102, the signal is sent to the input / output port 103. The value of the input port is stored in the RAM 104 and processed in the CPU 101. A control program describing the contents of the arithmetic processing is written in the ROM 105 in advance. A value representing each actuator operation amount calculated according to the control program is stored in the RAM 104 and then sent to the output port 103.

点火プラグ35に対する作動信号は点火出力回路116内の一次側コイルの通流時はONとなり、非通流時はOFFとなるON・OFF信号がセットされる。点火時期はONからOFFになる時点である。出力ポート103にセットされた点火プラグ35用の信号は点火出力回路116で点火に必要な十分なエネルギーに増幅され点火プラグ35に供給される。また、燃料噴射弁30の駆動信号は開弁時ON、閉弁時OFFとなるON・OFF信号がセットされ、燃料噴射弁駆動回路117で燃料噴射弁30を開弁するのに十分なエネルギーに増幅されて燃料噴射弁30に供給される。電制スロットル弁25の目標開度を実現する駆動信号は、電制スロットル弁駆動回路118を経て、電制スロットル弁30に送られる。   The operation signal for the spark plug 35 is set to an ON / OFF signal that is ON when the primary coil in the ignition output circuit 116 is energized and is OFF when the primary coil is not energized. The ignition timing is the time when the ignition timing changes from ON to OFF. The signal for the spark plug 35 set in the output port 103 is amplified to a sufficient energy necessary for ignition by the ignition output circuit 116 and supplied to the spark plug 35. The drive signal for the fuel injection valve 30 is set to an ON / OFF signal that is ON when the valve is opened and OFF when the valve is closed. The fuel injection valve drive circuit 117 has sufficient energy to open the fuel injection valve 30. Amplified and supplied to the fuel injection valve 30. A drive signal for realizing the target opening degree of the electric throttle valve 25 is sent to the electric throttle valve 30 through the electric throttle valve drive circuit 118.

コントロールユニット100では、A/Fセンサ51の出力信号から三元触媒50上流の空燃比を算出し、O2センサ52の出力信号から、三元触媒50下流の酸素濃度もしくはストイキに対してリッチ及びリーンのいずれであるかを算出する。また、両センサ51、52の出力を用いて三元触媒50の浄化効率が最適となるよう燃料噴射量もしくは吸入空気量を逐次補正するフィードバック制御を行う。 In the control unit 100, the air-fuel ratio upstream of the three-way catalyst 50 is calculated from the output signal of the A / F sensor 51, and the oxygen concentration or stoichiometry downstream of the three-way catalyst 50 is rich from the output signal of the O 2 sensor 52. Calculate which is lean. Further, feedback control for sequentially correcting the fuel injection amount or the intake air amount is performed using the outputs of the sensors 51 and 52 so that the purification efficiency of the three-way catalyst 50 is optimized.

図21は、コントロールユニット100の処理内容(手段)を示す機能ブロック図であり、診断許可判定手段210、所定周波数帯域の信号成分を抽出するための手段であるバンドパスフィルタ220、A/Fセンサ51の応答性が劣化したかどうかを判定するためのセンサ診断手段230を備えている。   FIG. 21 is a functional block diagram showing the processing contents (means) of the control unit 100. The diagnosis permission judging means 210, the bandpass filter 220 which is means for extracting signal components in a predetermined frequency band, and the A / F sensor. The sensor diagnostic means 230 for determining whether the response of 51 has deteriorated is provided.

以下、各処理手段を詳細に説明する。
<診断許可判定手段210>
図22は、診断許可判定手段210の処理内容を示す図である。水温センサ19により検出される冷却水温Twnが所定値Twndag以上、エンジン回転数センサ37により検出されるエンジン回転数Neが所定値NedagH以下でかつ所定値NedagL以上、及び、エアフローセンサ24により検出される吸入空気量Qaが所定値QadagH以下でかつ所定値QadagL以上のとき、劣化診断許可フラグFpdagを1とし、A/Fセンサ51の診断を行う。Twndag、NedagH、NedagL、QadagH、QadagLは、車両(エンジン)走行試験を行う等して、入力信号の振幅(パワー)がバンドパスフィルタ220の通過帯域において大きくなる運転状態とするのが診断精度向上の観点で望ましい(図16参照)。
Hereinafter, each processing means will be described in detail.
<Diagnosis permission determination means 210>
FIG. 22 is a diagram illustrating the processing contents of the diagnosis permission determination unit 210. The cooling water temperature Twn detected by the water temperature sensor 19 is greater than or equal to a predetermined value Twndag, the engine speed Ne detected by the engine speed sensor 37 is less than or equal to a predetermined value NedagH and greater than or equal to a predetermined value NedagL, and is detected by the airflow sensor 24 When the intake air amount Qa is equal to or smaller than the predetermined value QadagH and equal to or larger than the predetermined value QadagL, the deterioration diagnosis permission flag Fpdag is set to 1, and the A / F sensor 51 is diagnosed. Twndag, NedagH, NedagL, QadagH, and QadagL improve the diagnostic accuracy by setting a driving state in which the amplitude (power) of the input signal becomes large in the passband of the bandpass filter 220 by performing a vehicle (engine) running test or the like. (See FIG. 16).

すなわち、A/Fセンサ51の出力信号である排ガス中の酸素濃度の周波数成分が、図16に示されるように、バンドパスフィルタの通過帯域に相当する帯域で大きくなる領域で診断を行うのが精度の観点で望ましい。一般に、排ガス中の酸素濃度(空燃比)の振動周波数は、エンジンの運転状態に応じて変化する。このことから、例えば、冷却水温、エンジン回転数、吸入空気量などのエンジンの運転状態を検出し、診断のS/N比が高い領域で診断を行う。   That is, the diagnosis is performed in a region where the frequency component of the oxygen concentration in the exhaust gas, which is the output signal of the A / F sensor 51, increases in a band corresponding to the pass band of the band pass filter as shown in FIG. Desirable in terms of accuracy. In general, the vibration frequency of the oxygen concentration (air-fuel ratio) in the exhaust gas changes according to the operating state of the engine. From this, for example, the operating state of the engine, such as the cooling water temperature, the engine speed, the intake air amount, is detected, and the diagnosis is performed in a region where the S / N ratio of the diagnosis is high.

<バンドパスフィルタ220>
バンドパスフィルタ220は、図23に示されるように、A/Fセンサ51の出力RABFに対してFIRもしくはIIRフィルタで構成されるバンドパスフィルタ処理を行い、フィルタ出力をRABF_FILとする。FIRもしくはIIRのどちらのフィルタ構成も、よく知られているように、各々一長一短があるので、実際の使用条件に応じ決めるのがよい。バンドパスフィルタ220の通過帯域及び遮断帯域は、図18に示されるように、A/Fセンサ51の応答性に応じて決めるのがよい。すなわち、応答性正常時と応答性劣化時の差が最も大きくなるような帯域を通過帯域とするのが望ましい。フィルタの設計法については、多くの文献、書物があるので、ここでは詳述しない。
<Band pass filter 220>
As shown in FIG. 23, the bandpass filter 220 performs a bandpass filter process including an FIR or IIR filter on the output RABF of the A / F sensor 51, and sets the filter output to RABF_FIL. As is well known, both FIR and IIR filter configurations have their merits and demerits, so it is better to decide according to actual use conditions. The pass band and stop band of the band pass filter 220 are preferably determined according to the responsiveness of the A / F sensor 51, as shown in FIG. That is, it is desirable to set a band where the difference between the normal response time and the response deterioration time is the largest as the pass band. Since there are many documents and books about the design method of the filter, it will not be described in detail here.

<センサ診断手段230>
図24は、センサ診断手段230の処理内容を示す図である。前記診断許可判定手段210で演算される劣化診断許可フラグFpdagが1のとき、バンドパスフィルタ220で(今回)演算されたRABF_FILと前回演算されたRABF_FILとの差分をとり、その差分の絶対値をFIL_ABSとする。なお、差分をとるのは、直流分をなくし、振幅分のみを抽出するためである。バンドパスフィルタ220通過後の信号に対して差分をとるので、高周波成分が増幅されることはない。FIL_ABSを所定期間積算した値をABS_SUMとし、劣化診断許可フラグが1で、かつ、ABS_SUMがABS_SUM_L以上かつABS_SUM_H以下のとき、A/Fセンサ51の応答性が劣化したと判定し、例えば警告灯を点灯するなどする。ABS_SUM_L及びABS_SUM_Hは、車両(エンジン)の特性及び目標とする診断精度の応じて決めるのがよい。
<Sensor diagnostic means 230>
FIG. 24 is a diagram illustrating the processing contents of the sensor diagnosis unit 230. When the deterioration diagnosis permission flag Fpdag calculated by the diagnosis permission determination unit 210 is 1, the difference between the RABF_FIL calculated (currently) by the bandpass filter 220 and the RABF_FIL calculated last time is taken, and the absolute value of the difference is calculated. Let it be FIL_ABS. The difference is taken in order to eliminate the direct current component and extract only the amplitude component. Since a difference is taken with respect to the signal after passing through the band pass filter 220, the high frequency component is not amplified. When the value obtained by integrating FIL_ABS for a predetermined period is ABS_SUM, the deterioration diagnosis permission flag is 1, and when ABS_SUM is not less than ABS_SUM_L and not more than ABS_SUM_H, it is determined that the responsiveness of the A / F sensor 51 has deteriorated. It lights up. ABS_SUM_L and ABS_SUM_H are preferably determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy.

また、所定期間中にABS_SUMがABS_SUM_L以上かつABS_SUM_H以下となる成立回数n2を演算しておき、n2が所定値K2以下となったときに、A/Fセンサ51の応答性が劣化したと判定するのもよい(図10参照)。K2も車両(エンジン)の特性及び目標とする診断精度に応じて決めるのがよい。   In addition, the number of times n2 at which ABS_SUM is equal to or higher than ABS_SUM_L and equal to or lower than ABS_SUM_H is calculated during a predetermined period, and when n2 is equal to or lower than a predetermined value K2, it is determined that the responsiveness of the A / F sensor 51 has deteriorated. (See FIG. 10). K2 is also preferably determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy.

このように、本実施形態の制御装置1は、バンドパスフィルタ220を用いて、A/Fセンサ51の応答性に関わる部分のみの帯域を抽出し、該帯域の信号成分の振幅(もしくはパワー)に基づいて、A/Fセンサ51の診断(応答性劣化判定)を行うようにされ、この際、A/Fセンサ51の周波数特性において、バンドパスフィルタ220の通過帯域を、応答性正常時と応答性劣化時でゲイン特性が異なる領域に設定するようにされるので、高周波ノイズの影響を受けることなく応答性劣化によるゲイン低下を検出することが可能となり、その結果、高周波ノイズによる誤診断を回避でき、ノイズに対するロバスト性が高く、センサが排気通路40における触媒50の上流及び下流のいずれに配在されている場合であっても、該センサを高精度に診断することができる。   As described above, the control device 1 according to the present embodiment uses the band-pass filter 220 to extract only the band related to the responsiveness of the A / F sensor 51, and the amplitude (or power) of the signal component in the band. The diagnosis of the A / F sensor 51 (determination of responsiveness deterioration) is performed based on the frequency characteristics of the A / F sensor 51. At this time, in the frequency characteristics of the A / F sensor 51, the passband of the bandpass filter 220 is set to Since the gain characteristics are set in different areas when the response is deteriorated, it is possible to detect a gain decrease due to the response deterioration without being affected by the high frequency noise. This can be avoided, has high robustness against noise, and the sensor can be used regardless of whether the sensor is disposed upstream or downstream of the catalyst 50 in the exhaust passage 40. It can be diagnosed in accuracy.

[第2実施形態]
本第2実施形態では、触媒50下流のO2センサ52を診断する。具体的には、第1実施形態におけるA/Fセンサ51の代わりに、O2センサ52の出力信号用いて、同様の処理を行う。第2実施形態の各部の構成は、前述した第1実施形態(図19〜図24)のものと、基本的には同じであるが、バンドパスフィルタ220の入力信号が、第1実施形態の場合、A/Fセンサ51の出力信号であるのに対して、本実施形態ではO2センサ52の出力信号である。以下各処理手段の詳細を説明する。
[Second Embodiment]
In the second embodiment, the O 2 sensor 52 downstream of the catalyst 50 is diagnosed. Specifically, the same processing is performed using the output signal of the O 2 sensor 52 instead of the A / F sensor 51 in the first embodiment. The configuration of each part of the second embodiment is basically the same as that of the first embodiment (FIGS. 19 to 24) described above, but the input signal of the bandpass filter 220 is the same as that of the first embodiment. In this case, the output signal of the A / F sensor 51 is an output signal of the O 2 sensor 52 in the present embodiment. Details of each processing means will be described below.

<診断許可判定手段210>
本第2実施形態の診断許可判定手段210は、第1実施形態(図22参照)と同じであるので、詳述しないが、Twndag、NedagH、NedagL、QadagH、QadagLは、第1実施形態と同じ値にはならない。
<Diagnosis permission determination means 210>
The diagnosis permission determination unit 210 of the second embodiment is the same as that of the first embodiment (see FIG. 22), and thus will not be described in detail. Twndag, NedagH, NedagL, QadagH, and QadagL are the same as those of the first embodiment. Not a value.

<バンドパスフィルタ220>
第1実施形態においては、A/Fセンサ51の出力がフィルタ入力になるが、本第2実施形態では、O2センサ52の出力を用いる(図23参照)。O2センサ52の出力VRO2をFIRもしくはIIRフィルタで構成されるバンドパスフィルタ処理を行い、フィルタ出力をVRO2_FILとする。FIRもしくはIIRのどちらのフィルタ構成も、よく知られているように、各々一長一短があるので、実際の使用条件に応じ決めるのがよい。バンドパスフィルタの通過帯域及び遮断帯域は、図18に示されるように、A/Fセンサ51の応答性に応じて決めるのがよい。すなわち、応答性正常時と応答性劣化時の差がもっとも大きくなるような帯域を通過帯域とするのが望ましい。フィルタの設計法については、多くの文献、書物があるので、ここでは詳述しない。
<Band pass filter 220>
In the first embodiment, the output of the A / F sensor 51 becomes a filter input, but in the second embodiment, the output of the O 2 sensor 52 is used (see FIG. 23). The output VRO2 of the O 2 sensor 52 is subjected to bandpass filter processing constituted by an FIR or IIR filter, and the filter output is set to VRO2_FIL. As is well known, both FIR and IIR filter configurations have their merits and demerits, so it is better to decide according to actual use conditions. The passband and stopband of the bandpass filter are preferably determined according to the responsiveness of the A / F sensor 51, as shown in FIG. That is, it is desirable to set a band where the difference between the normal response time and the response deterioration time is the largest as the pass band. Since there are many documents and books about the design method of the filter, it will not be described in detail here.

<センサ診断手段230>
本センサ診断手段230では、第1実施形態(図24参照)と同様に、診断許可判定手段210で演算される劣化診断許可フラグFpdagが1のとき、バンドパスフィルタ220で(今回)演算されたVRO2_FILと前回演算されたVRO2_FILとの差分をとり、その差分の絶対値をFIL_ABS2とする。なお、差分をとるのは、直流分をなくし、振幅分のみを抽出するためである。バンドパスフィルタ220通過後の信号に対して差分をとるので、高周波成分が増幅されることはない。FIL_ABS2を所定期間積算した値をABS_SUM2とし、劣化診断許可フラグが1で、かつ、ABS_SUM2がABS_SUM_L以上かつABS_SUM_H以下のとき、応答性が劣化したと判断し、例えば警告灯を点灯するなどする。ABS_SUM_L及びABS_SUM_Hは、車両(エンジン)の特性及び目標とする診断精度の応じて決めるのがよく、必ずしも実施例1とは一致しない。
<Sensor diagnostic means 230>
Similar to the first embodiment (see FIG. 24), in this sensor diagnosis means 230, when the deterioration diagnosis permission flag Fpdag calculated by the diagnosis permission determination means 210 is 1, it is calculated by the bandpass filter 220 (this time). The difference between VRO2_FIL and the previously calculated VRO2_FIL is taken, and the absolute value of the difference is taken as FIL_ABS2. The difference is taken in order to eliminate the direct current component and extract only the amplitude component. Since a difference is taken with respect to the signal after passing through the band pass filter 220, the high frequency component is not amplified. When the value obtained by integrating FIL_ABS2 for a predetermined period is ABS_SUM2, the deterioration diagnosis permission flag is 1, and when ABS_SUM2 is equal to or higher than ABS_SUM_L and equal to or lower than ABS_SUM_H, it is determined that the responsiveness has deteriorated. ABS_SUM_L and ABS_SUM_H should be determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy, and do not necessarily match those of the first embodiment.

また、図10に記載のように、所定走行期間中にABS_SUM2がABS_SUM_L以上かつABS_SUM_H以下となる成立回数n2を演算しておき、n2が所定値K2以下となったときに、応答性が劣化と判定するのもよい。K2も車両(エンジン)の特性及び目標とする診断精度に応じて決めるのがよい。   In addition, as shown in FIG. 10, the number of times n2 at which ABS_SUM2 is equal to or higher than ABS_SUM_L and equal to or lower than ABS_SUM_H is calculated during a predetermined traveling period, and when n2 becomes equal to or lower than a predetermined value K2, the responsiveness is deteriorated. It is good to judge. K2 is also preferably determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy.

[第3実施形態]
前記の如くにして、A/Fセンサ51もしくはO2センサ52の診断(応答性劣化判定)を行うことに加えて、本第3実施形態では、触媒50上流のA/Fセンサ51の応答性の診断結果に基づいて、A/Fセンサ51を用いた空燃比F/B(フィードバック)制御のパラメータチューニングを行う。
[Third Embodiment]
As described above, in addition to performing diagnosis (determination of response deterioration) of the A / F sensor 51 or the O 2 sensor 52, in the third embodiment, the response of the A / F sensor 51 upstream of the catalyst 50 is used. Based on the diagnosis result, air-fuel ratio F / B (feedback) control parameter tuning using the A / F sensor 51 is performed.

図25は、A/Fセンサ51出力に基づく空燃比F/B制御を行うF/B制御手段250の処理内容を示す図である。目標空燃比TRABFとA/Fセンサ51の出力RABFとの偏差DRABFに基づいてPI制御により空燃比補正項LAMBDAを求める。図中にはないが、空燃比補正項LAMBDAは、燃料噴射量に乗じられ、燃焼に供せられる混合気の空燃比が適宜補正される。さらに、図24のセンサ診断手段230で演算されるABS_SUMに基づいて、Pゲイン及びIゲインが調整されるようになっている。すなわち、ABS_SUMはA/Fセンサ51の応答性を表す指数である。   FIG. 25 is a diagram showing the processing contents of the F / B control means 250 that performs the air-fuel ratio F / B control based on the output of the A / F sensor 51. Based on the deviation DRABF between the target air-fuel ratio TRABF and the output RABF of the A / F sensor 51, the air-fuel ratio correction term LAMBDA is obtained by PI control. Although not shown in the figure, the air-fuel ratio correction term LAMBDA is multiplied by the fuel injection amount, and the air-fuel ratio of the air-fuel mixture used for combustion is corrected as appropriate. Further, the P gain and the I gain are adjusted based on ABS_SUM calculated by the sensor diagnosis unit 230 of FIG. That is, ABS_SUM is an index representing the responsiveness of the A / F sensor 51.

A/Fセンサ51によるF/B制御のF/Bゲインの最適値は系の応答性に依存するが、A/Fセンサ51の応答性が変化すると系の応答性もそれに応じて変化し、F/Bゲインの最適値も変化する。少なくともA/Fセンサ51の応答性を表すABS_SUMに基づいて、F/Bゲインを最適値にオンラインチューニングするものである。なお、ABS_SUMとPゲイン及びIゲインの最適値は、理論的に決めることもできるが、実験結果から決めるのもよい。   The optimum value of the F / B gain of the F / B control by the A / F sensor 51 depends on the responsiveness of the system, but when the responsiveness of the A / F sensor 51 changes, the responsiveness of the system also changes accordingly. The optimum value of the F / B gain also changes. The F / B gain is tuned online to an optimum value based on ABS_SUM representing at least the responsiveness of the A / F sensor 51. The optimum values of ABS_SUM, P gain, and I gain can be determined theoretically, but may be determined from experimental results.

すなわち、A/Fセンサ51(もしくはO2センサ52)の出力に基づいて空燃比F/B制御を行う場合、F/B制御のパラメータの最適値は、センサの応答性に応じる。したがって、前記バンドパスフィルタ通過後の信号の振幅(パワー)から、センサの応答性を検出し、F/B制御のパラメータを適応させることで、常時、F/B制御の安定性を維持しつつ、応答性を確保することができる。 That is, when the air-fuel ratio F / B control is performed based on the output of the A / F sensor 51 (or the O 2 sensor 52), the optimum value of the F / B control parameter depends on the response of the sensor. Therefore, by detecting the responsiveness of the sensor from the amplitude (power) of the signal after passing through the bandpass filter and adapting the F / B control parameters, the stability of the F / B control is always maintained. Responsiveness can be ensured.

[第4実施形態]
本第4実施形態では、触媒50下流のO2センサ52の応答性の診断結果に基づいて、O2センサ52を用いた空燃比F/B(フィードバック)制御のパラメータチューニングを行う。
[Fourth Embodiment]
In the fourth embodiment, parameter tuning of air-fuel ratio F / B (feedback) control using the O 2 sensor 52 is performed based on the diagnostic result of the responsiveness of the O 2 sensor 52 downstream of the catalyst 50.

図26は、O2センサ52出力に基づく空燃比F/B制御を行うF/B制御手段260の処理内容を示す図である。第3実施形態でのA/Fセンサ51出力に基づくF/B制御に加えて、目標空燃比空燃比TRABFをO2センサ52出力VRO2と目標VRO2であるTVRO2に基づいてPI制御により求める。図中にはないが、TRABFは、2値センサであるO2センサ52を用いた特有のPI制御で演算される。O2センサ52を用いたPI制御の詳細は多くの資料があるのでここでは詳述しない。さらに第2実施形態(図24)のセンサ診断手段230で演算されるABS_SUM2に基づいて、Pゲイン及びIゲインが調整されるようになっている。すなわち、ABS_SUM2はO2センサ52の応答性を表す指数である。O2センサ52によるF/B制御のF/Bゲインの最適値は系の応答性に依存するが、O2センサ52の応答性が変化すると系の応答性もそれに応じて変化し、F/Bゲインの最適値も変化する。少なくともO2センサ52の応答性を表すABS_SUM2に基づいて、F/Bゲインを最適値にオンラインチューニングするものである。 FIG. 26 is a diagram showing the processing contents of the F / B control means 260 that performs air-fuel ratio F / B control based on the output of the O 2 sensor 52. In addition to the F / B control based on the output of the A / F sensor 51 in the third embodiment, the target air-fuel ratio air-fuel ratio TRABF is obtained by PI control based on the O 2 sensor 52 output VRO2 and the target VRO2 TVRO2. Although not shown in the figure, TRABF is calculated by specific PI control using the O 2 sensor 52 which is a binary sensor. Details of the PI control using the O 2 sensor 52 are not described here because there are many documents. Further, the P gain and the I gain are adjusted based on ABS_SUM2 calculated by the sensor diagnosis unit 230 of the second embodiment (FIG. 24). That is, ABS_SUM2 is an index representing the responsiveness of the O 2 sensor 52. O 2 optimum value of F / B gain of F / B control by the sensor 52 is dependent on the response of the system, O 2 vary accordingly the response of the sensor 52 changes the response of the system, F / The optimum value of B gain also changes. The F / B gain is on-line tuned to an optimum value based on at least ABS_SUM2 representing the response of the O 2 sensor 52.

なお、ABS_SUM2とPゲイン及びIゲインの最適値は、理論的に決めることもできるが、実験結果から決めるのもよい。第3実施形態と第4実施形態を組み合わせることで、A/Fセンサ51出力に基づくF/B制御及びO2センサ52に基づくF/B制御の双方のPゲイン及びIゲインをオンラインチューニングするのもよい。 The ABS_SUM2, the optimum values of the P gain and the I gain can be theoretically determined, but may be determined from the experimental results. By combining the third and fourth embodiments, the P gain and I gain of both the F / B control based on the output of the A / F sensor 51 and the F / B control based on the O 2 sensor 52 are tuned online. Also good.

[第5実施形態]
本第5実施形態では、A/Fセンサ51を用いた空燃比F/B制御周期に基づく該A/Fセンサ51の診断(応答性劣化判定)を行うようにされる。
[Fifth Embodiment]
In the fifth embodiment, diagnosis (responsiveness deterioration determination) of the A / F sensor 51 based on the air-fuel ratio F / B control cycle using the A / F sensor 51 is performed.

前記第3実施形態において、A/Fセンサ51の応答性に基づいて、A/Fセンサ51を用いたF/B制御のPゲイン及びIゲインがオンラインチューニングされると、A/Fセンサ51の応答性が劣化(低下)するにつれ、Pゲイン及びIゲインが小さくなり、F/B制御周期が長くなる。このF/B制御周期を図14のように検出し、この制御周期が所定値C以上となったら、A/Fセンサ51の応答性が劣化したと判定する。なお、F/B制御周期を検出する手法としては、F/B制御の補正値がリッチ側補正にある時間とリーン側補正にある時間の周期とで求める方法等がある。   In the third embodiment, when the P gain and I gain of the F / B control using the A / F sensor 51 are tuned online based on the responsiveness of the A / F sensor 51, the A / F sensor 51 As the responsiveness deteriorates (decreases), the P gain and the I gain become smaller and the F / B control cycle becomes longer. This F / B control cycle is detected as shown in FIG. 14, and when the control cycle becomes equal to or greater than a predetermined value C, it is determined that the responsiveness of the A / F sensor 51 has deteriorated. As a method for detecting the F / B control cycle, there is a method of obtaining the correction value of the F / B control by the time in the rich side correction and the cycle of the time in the lean side correction.

[第6実施形態]
本第6実施形態では、O2センサ52を用いた空燃比F/B制御周期に基づく該O2センサ52の診断(応答性劣化判定)を行うようにされる。
[Sixth Embodiment]
In the sixth embodiment, it is to perform diagnosis of the O 2 sensor 52 based on the air-fuel ratio F / B control period using the O 2 sensor 52 (response deterioration determination).

前記第4実施形態において、O2センサ52の応答性に基づいて、O2センサ52を用いたF/B制御のPゲイン及びIゲインがオンラインチューニングされると、O2センサ52の応答性が劣化するにつれ、Pゲイン及びIゲインが小さくなり、F/B制御周期が長くなる。このF/B制御周期を図15のように検出し、この制御周期が所定値D以上となったら、O2センサ52の応答性が劣化したと判定する。なお、なお、F/B制御周期を検出する手法としては、F/B制御の補正値がリッチ側補正にある時間とリーン側補正にある時間の周期とで求める方法等がある。 In the fourth embodiment, based on the response of the O 2 sensor 52, the P gain and I gain of F / B control using an O 2 sensor 52 is online tuning, the response of the O 2 sensor 52 As it deteriorates, the P gain and the I gain become smaller and the F / B control cycle becomes longer. This F / B control cycle is detected as shown in FIG. 15, and when this control cycle is equal to or greater than a predetermined value D, it is determined that the responsiveness of the O 2 sensor 52 has deteriorated. In addition, as a method for detecting the F / B control cycle, there is a method of obtaining the correction value of the F / B control by the time in the rich side correction and the cycle of the time in the lean side correction.

[第7実施形態]
図27は、第7実施形態におけるコントロールユニット100の処理内容(手段)を示す機能ブロック図であり、診断許可判定手段310、所定周波数帯域の信号成分を抽出(検出)するための手段であるFFT(DFT)演算部320、A/Fセンサ51(もしくはO2センサ52)の応答性が劣化したかどうかを判定するためのセンサ診断手段330を備えている。
[Seventh Embodiment]
FIG. 27 is a functional block diagram showing the processing contents (means) of the control unit 100 according to the seventh embodiment. The diagnosis permission judging means 310 and FFT means for extracting (detecting) signal components in a predetermined frequency band. (DFT) the response of the computing unit 320, a / F sensor 51 (or O 2 sensor 52) is provided with a sensor diagnostic means 330 for determining whether the deteriorated.

前記診断許可判定手段310は、第1実施形態のもの(図21参照)と同じであるので詳細説明を省略し、以下においては、FFT(DFT)演算部320とセンサ診断手段330を詳細に説明する。   Since the diagnosis permission determination unit 310 is the same as that of the first embodiment (see FIG. 21), detailed description thereof is omitted, and the FFT (DFT) calculation unit 320 and the sensor diagnosis unit 330 will be described in detail below. To do.

<FFT(DFT)演算部320>
FFT(DFT)演算部320は、図28に示されるように、所定周波数帯域のパワーをFFT(Fast Fourier Transform)322を用いて求める。差分器321により、A/Fセンサ51の出力信号RABFもしくはO2センサ52の出力信号VRO2に基づき、今回演算値と前回演算値との差分を求め、この差分に対してFFTもしくはDFT(Discrete Fourier Transform)処理(フーリエ変換)を行い、所定周波数帯域のパワーを求め、RABF_FIL(VRO2_FIL)とする。FFT(DFT)322による抽出周波数帯域は、図18に示されるように、A/Fセンサ51(もしくはO2センサ52)の応答性に応じて決めるのがよい。すなわち、応答性正常時と応答性劣化時の差がもっとも大きくなるような帯域を抽出帯域とするのが望ましい。
<FFT (DFT) Operation Unit 320>
As shown in FIG. 28, the FFT (DFT) calculation unit 320 obtains power in a predetermined frequency band using an FFT (Fast Fourier Transform) 322. Based on the output signal RABF of the A / F sensor 51 or the output signal VRO2 of the O 2 sensor 52, the difference unit 321 obtains the difference between the current calculated value and the previous calculated value, and performs FFT or DFT (Discrete Fourier) on this difference. Transform) processing (Fourier transform) is performed to obtain power in a predetermined frequency band, and set as RABF_FIL (VRO2_FIL). The frequency band extracted by the FFT (DFT) 322 is preferably determined according to the responsiveness of the A / F sensor 51 (or the O 2 sensor 52) as shown in FIG. In other words, it is desirable to set a band where the difference between the normal response time and the response deterioration time is the largest as the extraction band.

<センサ診断手段330>
図29は、センサ診断手段330の処理内容を示す図である。診断許可判定手段310で演算される劣化診断許可フラグFpdagが1のとき、FFT(DFT)演算部320で演算されたRABF_FIL(VRO2_FIL)を所定期間積算した値をABS_SUM(ABS_SUM2)とし、劣化診断許可フラグが1で、かつ、ABS_SUM(ABS_SUM2)がABS_SUM_L以上かつABS_SUM_H以下のとき、A/Fセンサ51(もしくはO2センサ52)の応答性が劣化したと判定し、例えば警告灯を点灯するなどする。ABS_SUM_L及びABS_SUM_Hは、車両(エンジン)の特性及び目標とする診断精度の応じて決めるのがよく、必ずしもA/Fセンサ51使用時とO2センサ52使用時では一致しない。
<Sensor diagnosing means 330>
FIG. 29 is a diagram showing the processing contents of the sensor diagnosis means 330. When the deterioration diagnosis permission flag Fpdag calculated by the diagnosis permission determination unit 310 is 1, the value obtained by integrating the RABF_FIL (VRO2_FIL) calculated by the FFT (DFT) calculation unit 320 for a predetermined period is defined as ABS_SUM (ABS_SUM2), and the deterioration diagnosis is permitted. When the flag is 1 and ABS_SUM (ABS_SUM2) is not less than ABS_SUM_L and not more than ABS_SUM_H, it is determined that the responsiveness of the A / F sensor 51 (or O 2 sensor 52) has deteriorated, for example, a warning light is turned on. . ABS_SUM_L and ABS_SUM_H should be determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy, and do not necessarily match when the A / F sensor 51 is used and when the O 2 sensor 52 is used.

また、所定期間中にABS_SUM(ABS_SUM2)がABS_SUM_L以上かつABS_SUM_H以下となる成立回数n2を演算しておき、n2が所定値K2以下となったときに、応答性が劣化と判定するのもよい(図10参照)。K2も車両(エンジン)の特性及び目標とする診断精度に応じて決めるのがよい。   It is also possible to calculate the number n2 of establishments during which the ABS_SUM (ABS_SUM2) is greater than or equal to ABS_SUM_L and less than or equal to ABS_SUM_H during a predetermined period, and when n2 is less than or equal to the predetermined value K2, it may be determined that the responsiveness is deteriorated ( (See FIG. 10). K2 is also preferably determined according to the characteristics of the vehicle (engine) and the target diagnostic accuracy.

本発明に係る制御装置の第1態様の説明に供される図。The figure which is provided for description of the 1st aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第2態様の説明に供される図。The figure which is provided for description of the 2nd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第3態様の説明に供される図。The figure which is provided for description of the 3rd aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第4態様の説明に供される図。The figure which is provided for description of the 4th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第5態様の説明に供される図。The figure which is provided for description of the 5th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第6態様の説明に供される図。The figure which is provided for description of the 6th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第7態様の説明に供される図。The figure which is provided for description of the 7th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第8態様の説明に供される図。The figure which is provided for description of the 8th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第9態様の説明に供される図。The figure which is provided for description of the 9th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第10態様の説明に供される図。The figure which is provided for description of the 10th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第11態様の説明に供される図。The figure which is provided for description of the 11th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第12態様の説明に供される図。The figure which is provided for description of the 12th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第13態様の説明に供される図。The figure which is provided for description of the 13th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第14態様の説明に供される図。The figure which is provided for description of the 14th aspect of the control apparatus which concerns on this invention. 本発明に係る制御装置の第15態様の説明に供される図。The figure which is provided for description of the 15th aspect of the control apparatus which concerns on this invention. 空燃比検出手段の応答性正常時、応答性劣化時の周波数特性及びバンドパスフィルタの通過帯域を示す図。The figure which shows the frequency characteristic at the time of the normal response of an air fuel ratio detection means, and the response deterioration, and the pass band of a band pass filter. 空燃比検出手段(O2センサ)の応答性正常時と応答性劣化時の出力信号を示す図。Shows the time response normal and the output signal at the time of response deterioration of the air-fuel ratio detecting means (O 2 sensor). 空燃比検出手段(O2センサ)の応答性正常時と応答性劣化時の周波数解析結果を示す図。Air-fuel ratio shows the time response normal and the frequency analysis results of the response time of the degradation of the detection means (O 2 sensor). 本発明に係る制御装置の第1実施形態をそれが適用されたエンジンと共に示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows 1st Embodiment of the control apparatus which concerns on this invention with the engine to which it is applied. 第1実施形態におけるコントロールユニットの内部構成図。The internal block diagram of the control unit in 1st Embodiment. 第1実施形態におけるコントロールユニットの処理内容の説明に供される機能ブロック図。The functional block diagram with which it uses for description of the processing content of the control unit in 1st Embodiment. 第1実施形態における診断許可判定手段の説明に供される図。The figure which is provided to description of the diagnosis permission determination means in 1st Embodiment. 第1実施形態におけるバンドパスフィルタの説明に供される図。The figure which is provided for description of the band pass filter in 1st Embodiment. 第1実施形態におけるセンサ診断手段の説明に供される図。The figure which is provided for description of the sensor diagnostic means in the first embodiment. 第3実施形態におけるA/Fセンサ出力に基づくF/B制御手段の説明に供される図。The figure which is provided to description of the F / B control means based on the A / F sensor output in 3rd Embodiment. 第4実施形態におけるO2センサ出力に基づくF/B制御手段の説明に供される図。。Is a diagram illustrating the F / B control means based on the O 2 sensor output in the fourth embodiment. . 第7実施形態におけるコントロールユニットの処理内容の説明に供される機能ブロック図。The functional block diagram with which it uses for description of the processing content of the control unit in 7th Embodiment. 第7実施形態におけるFFT(DFT)演算部の説明に供される図。The figure which is provided for description of the FFT (DFT) calculating part in 7th Embodiment. 第7実施形態におけるセンサ診断手段の説明に供される図。The figure which is provided for description of the sensor diagnostic means in the seventh embodiment.

符号の説明Explanation of symbols

1 制御装置
10 エンジン
17 燃焼室
19 水温センサ
20 吸気通路
21 エアクリーナ
24 エアフローセンサ
25 電制スロットル弁
28 スロットル開度センサ
30 燃料噴射弁
35 点火プラグ
37 クランク角(エンジン回転数)センサ
39 アクセル開度センサ
40 排気通路
50 三元触媒
51 A/Fセンサ
52 酸素センサ
100 コントロールユニット
210 診断許可判定手段
220 バンドパスフィルタ(所定周波数帯域成分抽出手段)
230 センサ診断手段
250 空燃比F/B制御手段
310 診断許可判定手段
320 FFT(DFT)演算部
330 センサ診断手段
DESCRIPTION OF SYMBOLS 1 Control apparatus 10 Engine 17 Combustion chamber 19 Water temperature sensor 20 Intake passage 21 Air cleaner 24 Air flow sensor 25 Electric throttle valve 28 Throttle opening sensor 30 Fuel injection valve 35 Spark plug 37 Crank angle (engine speed) sensor 39 Accelerator opening sensor 40 Exhaust passage 50 Three-way catalyst 51 A / F sensor 52 Oxygen sensor 100 Control unit 210 Diagnosis permission determination means 220 Band pass filter (predetermined frequency band component extraction means)
230 Sensor diagnosis means 250 Air-fuel ratio F / B control means 310 Diagnosis permission determination means 320 FFT (DFT) calculation unit 330 Sensor diagnosis means

Claims (16)

空燃比検出手段を備えたエンジンの制御装置であって、前記空燃比検出手段の出力信号から所定周波数帯域の信号成分を抽出する所定周波数帯域成分抽出手段と、前記所定周波数帯域の信号成分の振幅もしくはパワーを演算する振幅/パワー演算手段と、前記振幅もしくはパワーに基づいて、前記空燃比検出手段を診断する診断手段と、備えていることを特徴とする制御装置。   An engine control apparatus including an air-fuel ratio detection unit, wherein the predetermined frequency band component extraction unit extracts a signal component of a predetermined frequency band from an output signal of the air-fuel ratio detection unit, and the amplitude of the signal component of the predetermined frequency band Alternatively, a control apparatus comprising: amplitude / power calculation means for calculating power; and diagnosis means for diagnosing the air-fuel ratio detection means based on the amplitude or power. 前記所定周波数帯域成分抽出手段は、前記空燃比検出手段の出力信号の所定周波数帯域のみを通過させる帯域通過型フィルタからなっていることを特徴とする請求項1に記載の制御装置。   2. The control apparatus according to claim 1, wherein the predetermined frequency band component extracting unit is composed of a band-pass filter that allows passage of only a predetermined frequency band of an output signal of the air-fuel ratio detecting unit. 前記所定周波数帯域成分抽出手段は、フーリエ変換により、前記空燃比検出手段の出力信号から前記所定周波数帯域の信号成分を抽出するようにされていることを特徴とする請求項1に記載の制御装置。   2. The control device according to claim 1, wherein the predetermined frequency band component extracting unit extracts a signal component of the predetermined frequency band from an output signal of the air-fuel ratio detecting unit by Fourier transform. . 前記空燃比検出手段は、前記排気通路における触媒下流に配在されていることを特徴とする請求項1から3のいずれかに記載の制御装置。   The control device according to any one of claims 1 to 3, wherein the air-fuel ratio detection means is arranged downstream of the catalyst in the exhaust passage. 前記空燃比検出手段は、広域の空燃比を検出可能なA/Fセンサであることを特徴とする1から4のいずれかに記載の制御装置。   5. The control device according to claim 1, wherein the air-fuel ratio detecting means is an A / F sensor capable of detecting a wide range of air-fuel ratio. 前記空燃比検出手段は、理論空燃比に対してリッチ及びリーンのいずれであるかを検出することができるO2センサであることを特徴とする請求項1から4のいずれかに記載の制御装置。 5. The control device according to claim 1, wherein the air-fuel ratio detection means is an O 2 sensor capable of detecting whether the air-fuel ratio is rich or lean with respect to the stoichiometric air-fuel ratio. . 前記診断手段は、前記振幅もしくはパワーが所定値A以下のとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項1から6のいずれかに記載の制御装置。   The control device according to any one of claims 1 to 6, wherein the diagnosis unit determines that the air-fuel ratio detection unit has deteriorated when the amplitude or power is equal to or less than a predetermined value A. 前記診断手段は、前記振幅もしくはパワーが所定値A以下で、かつ、所定値B以上のとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項1から6のいずれかに記載の制御装置。   The diagnostic means determines that the air-fuel ratio detecting means has deteriorated when the amplitude or power is not more than a predetermined value A and not less than a predetermined value B. The control device described. 前記診断手段は、所定期間における前記振幅もしくはパワーが所定値A以下となる回数n1を演算する手段を備え、前記回数n1が所定値K1以上のとき、前記空燃比検出手段の応答性が劣化したと判定することを特徴とする請求項7に記載の制御装置。   The diagnostic means includes means for calculating the number of times n1 when the amplitude or power in a predetermined period is equal to or less than a predetermined value A. When the number of times n1 is equal to or greater than the predetermined value K1, the responsiveness of the air-fuel ratio detecting means is degraded. The control device according to claim 7, wherein the control device is determined. 前記診断手段は、所定期間における前記振幅もしくはパワーが所定値A以下で、かつ、所定値B以上となる回数n2を演算する手段を備え、前記回数n2が所定値K2以上のとき、前記空燃比検出手段の応答性が劣化したと判定することを特徴とする請求項8に記載の制御装置。   The diagnostic means includes means for calculating the number of times n2 at which the amplitude or power in a predetermined period is not more than a predetermined value A and not less than the predetermined value B, and when the number of times n2 is not less than the predetermined value K2, the air-fuel ratio 9. The control device according to claim 8, wherein it is determined that the responsiveness of the detection means has deteriorated. エンジンの運転状態を検出する運転状態検出手段と、前記運転状態に基づいて、前記振幅もしくはパワーの検出を許可するか否かを判定する診断許可判定手段と、を備えていることを特徴とする請求項1から10のいずれかに記載の制御装置。   An operation state detection unit that detects an operation state of the engine, and a diagnosis permission determination unit that determines whether or not to detect the amplitude or power based on the operation state are provided. The control device according to claim 1. 前記空燃比検出手段の出力信号に基づいて、燃焼に供される混合気の空燃比を制御する空燃比制御手段を備え、該空燃比制御手段は、前記振幅もしくはパワーに基づいて、空燃比制御パラメータを変更するようにされていることを特徴とする請求項1から11のいずれかに記載の制御装置。   Air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture to be used for combustion based on the output signal of the air-fuel ratio detection means, and the air-fuel ratio control means controls the air-fuel ratio based on the amplitude or power The control device according to claim 1, wherein the parameter is changed. 前記触媒下流に配在された空燃比検出手段の出力信号に基づいて、燃焼に供される混合気の空燃比を制御する空燃比制御手段を備え、該空燃比制御手段は、前記振幅もしくはパワーに基づいて、前記空燃比制御パラメータを変更するようにされていることを特徴とする請求項4に記載の制御装置。   Air-fuel ratio control means for controlling the air-fuel ratio of the air-fuel mixture supplied for combustion based on the output signal of the air-fuel ratio detection means disposed downstream of the catalyst, the air-fuel ratio control means comprising the amplitude or power 5. The control apparatus according to claim 4, wherein the air-fuel ratio control parameter is changed based on the control. 前記空燃比制御手段の制御周期を演算する手段を備え、前記診断手段は、前記制御周期が所定値C以上のとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項12に記載の制御装置。   13. The apparatus according to claim 12, further comprising means for calculating a control period of the air-fuel ratio control means, wherein the diagnosis means determines that the air-fuel ratio detection means has deteriorated when the control period is equal to or greater than a predetermined value C. The control device described in 1. 前記空燃比制御手段の制御周期を演算する手段を備え、前記診断手段は、前記制御周期が所定値D以上のとき、前記空燃比検出手段が劣化したと判定することを特徴とする請求項13に記載の制御装置。   14. The apparatus according to claim 13, further comprising means for calculating a control period of the air-fuel ratio control means, wherein the diagnosis means determines that the air-fuel ratio detection means has deteriorated when the control period is equal to or greater than a predetermined value D. The control device described in 1. 請求項1から15のいずれかに記載の制御装置が適用されたエンジンを搭載した自動車。   An automobile equipped with an engine to which the control device according to any one of claims 1 to 15 is applied.
JP2004049352A 2004-02-25 2004-02-25 Engine control device Pending JP2005240618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049352A JP2005240618A (en) 2004-02-25 2004-02-25 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049352A JP2005240618A (en) 2004-02-25 2004-02-25 Engine control device

Publications (1)

Publication Number Publication Date
JP2005240618A true JP2005240618A (en) 2005-09-08

Family

ID=35022626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049352A Pending JP2005240618A (en) 2004-02-25 2004-02-25 Engine control device

Country Status (1)

Country Link
JP (1) JP2005240618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156201A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Exhaust system abnormality detection device of internal combustion engine
JP2009293433A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Degradation diagnostic device and degradation diagnostic method for air-fuel ratio detecting means
CN102733916A (en) * 2011-04-07 2012-10-17 通用汽车环球科技运作有限责任公司 Offset and slow response diagnostic methods for nox sensors in vehicle exhaust treatment applications
JP2012241525A (en) * 2011-05-16 2012-12-10 Honda Motor Co Ltd Air-fuel ratio control device of internal combustion engine
JP2014507597A (en) * 2011-03-09 2014-03-27 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine adjusting device and adjusting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156201A (en) * 2007-12-27 2009-07-16 Toyota Motor Corp Exhaust system abnormality detection device of internal combustion engine
JP2009293433A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Degradation diagnostic device and degradation diagnostic method for air-fuel ratio detecting means
JP2014507597A (en) * 2011-03-09 2014-03-27 ダイムラー・アクチェンゲゼルシャフト Internal combustion engine adjusting device and adjusting method
CN102733916A (en) * 2011-04-07 2012-10-17 通用汽车环球科技运作有限责任公司 Offset and slow response diagnostic methods for nox sensors in vehicle exhaust treatment applications
DE102012205464B4 (en) * 2011-04-07 2014-12-24 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) METHOD FOR DIAGNOSING VEHICLE NOX SENSOR ERRORS
US8930121B2 (en) 2011-04-07 2015-01-06 GM Global Technology Operations LLC Offset and slow response diagnostic methods for NOx sensors in vehicle exhaust treatment applications
DE102012025646B3 (en) * 2011-04-07 2016-05-12 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Method for diagnosing vehicle NOx sensor failures
JP2012241525A (en) * 2011-05-16 2012-12-10 Honda Motor Co Ltd Air-fuel ratio control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4130800B2 (en) Engine control device
JP4446084B2 (en) Engine control device
US7664591B2 (en) Engine control apparatus
JP4253294B2 (en) Engine self-diagnosis device
JP4345688B2 (en) Diagnostic device and control device for internal combustion engine
JP3878398B2 (en) Engine self-diagnosis device and control device
JP2008261287A (en) Filter clogging determination device of diesel engine
JP5890453B2 (en) Cylinder variation abnormality detection device
WO2016035498A1 (en) Engine control apparatus
JP4129221B2 (en) Engine control device
JP2008185035A (en) Engine control device
JP2006052684A (en) Control device of engine
JP2008180225A (en) Engine control device
JP2005240618A (en) Engine control device
US20060090456A1 (en) Control apparatus for an internal combustion engine
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2874572B2 (en) Air-fuel ratio control device for internal combustion engine
JP6222027B2 (en) Gas sensor signal processing device
JP3973390B2 (en) Intake pressure detection method for internal combustion engine
JP6199777B2 (en) Cylinder variation abnormality detection device
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JP2008128218A (en) Exhaust emission control device of internal combustion engine
US9057337B2 (en) Air-fuel ratio control system for internal combustion engine
JP4345853B2 (en) Abnormality diagnosis device for intake system sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513