[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005139566A - Spun lace comprising polylactic acid fiber and pulp - Google Patents

Spun lace comprising polylactic acid fiber and pulp Download PDF

Info

Publication number
JP2005139566A
JP2005139566A JP2003375248A JP2003375248A JP2005139566A JP 2005139566 A JP2005139566 A JP 2005139566A JP 2003375248 A JP2003375248 A JP 2003375248A JP 2003375248 A JP2003375248 A JP 2003375248A JP 2005139566 A JP2005139566 A JP 2005139566A
Authority
JP
Japan
Prior art keywords
fiber
pulp
polylactic acid
spunlace
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003375248A
Other languages
Japanese (ja)
Inventor
Akihiko Ito
彰彦 伊藤
Takuya Mizuno
卓也 水野
Masahiko Shibuya
昌彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2003375248A priority Critical patent/JP2005139566A/en
Publication of JP2005139566A publication Critical patent/JP2005139566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spun lace which has a uniform weave, is flexible, has a practical strength even with a relative low added specific energy, can biologically be degraded with microorganisms after used, and can widely be used as a substrate for medical/sanitary articles and as a substrate for other industrial articles/household articles. <P>SOLUTION: This spun lace having a geometric average breaking length value of ≥2 km in the longitudinal and latitudinal directions is obtained by subjecting a web having a fiber length of 7 to 20 mm and an aspect ratio of ≤1200 and prepared from polylactic acid fibers and pulp by a wet paper-making method to a water interlacing method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、湿式抄紙法を用いてポリ乳酸繊維とパルプからなるウェブを作製し、これに水流交絡して得られるスパンレースに関するものであり、更に詳しくは地合いが均一で柔軟性があり更には実用に適する強度を保持し、かつ使用後には微生物により生分解可能なスパンレースに関する。   The present invention relates to a spunlace obtained by producing a web composed of polylactic acid fibers and pulp using a wet papermaking method, and hydroentangled with the web. More specifically, the texture is uniform and flexible, and The present invention relates to a spunlace that retains strength suitable for practical use and can be biodegradable by microorganisms after use.

水流交絡して得られる不織布は、ソフトな感触、ノーバインダーで衛生的、実用的強度がある、という特徴を持ち、医療・衛生用品の基材、その他に産業用品・家庭用品の基材として広く用いられている。短繊維からなる不織布としては、ウェブ作製を乾式でおこなういわゆる乾式法があり、柔軟性と共に適度な強度を持つため、例えば、パルプシートとポリエステル繊維ウェブの2層シートに水流交絡した不織布が、医療用基材や清拭用基材として用いられている。ここで、パルプは微細繊維による目詰(これによって、液体バリヤー性やバクテリアバリヤー性を付与する)としての性能や、不織布に高吸液性や高保液性を付与するために用いられる。しかしながら、乾式法では、一般に比較的長い繊維を用いてカード法等によりウェブを形成させるため、繊維が均一に分布しない即ち地合いがよくないという欠点があった。そこで、これを改善するために、ウェブの形成を湿式抄紙法により行なういわゆる湿式法を用いた後、水流交絡する方法も各種報告されている。   Nonwoven fabric obtained by hydroentanglement has the characteristics of soft touch, no binder, hygienic and practical strength, and is widely used as a base material for medical and hygiene products and other industrial and household products. It is used. As a nonwoven fabric made of short fibers, there is a so-called dry method in which web production is performed in a dry manner, and since it has an appropriate strength with flexibility, for example, a nonwoven fabric hydroentangled with a two-layer sheet of a pulp sheet and a polyester fiber web is used as a medical It is used as a base material for cleaning and a base material for wiping. Here, the pulp is used for performance as clogging with fine fibers (thus providing liquid barrier property and bacterial barrier property), and for imparting high liquid absorbency and high liquid retention to the nonwoven fabric. However, the dry method generally has a disadvantage that the fibers are not uniformly distributed, that is, the texture is not good because the web is formed by a card method or the like using relatively long fibers. In order to improve this, various methods of hydroentanglement after using a so-called wet method in which a web is formed by a wet papermaking method have been reported.

一方、これら不織布に用いられる素材としては、ポリエステル、ポリオレフィン、ポリアミド等の合成繊維あるいはそれら繊維とパルプ繊維等の素材が用いられてきた。これらの合成繊維は、使用後自然界に放置されると分解されにくいため、減容化には焼却する必要がある。しかしながら、これらの化石資源を原料とする繊維を焼却すれば、二酸化炭素が大気中に放出されることになり、地球温暖化を促進することになる。
これに対し、生分解性を有し、焼却して二酸化炭素を発生しても大気中の二酸化炭素量を増加させない、植物を原料とする繊維としてレーヨン繊維を主体とし、湿式法によりウェブを作製し水流交絡した不織布が報告されているが、十分な強度が得られないため用途が限定されてしまうという問題があった。
On the other hand, as materials used for these non-woven fabrics, synthetic fibers such as polyester, polyolefin and polyamide, or materials such as these fibers and pulp fibers have been used. Since these synthetic fibers are difficult to be decomposed when left in the natural world after use, they need to be incinerated for volume reduction. However, if the fibers made from these fossil resources are incinerated, carbon dioxide will be released into the atmosphere, which will promote global warming.
On the other hand, it has biodegradability and does not increase the amount of carbon dioxide in the atmosphere even if it generates carbon dioxide by incineration. It is mainly made of rayon fiber as a fiber made from plants, and a web is produced by a wet method. However, there has been a report that hydroentangled nonwoven fabric has been reported, but there is a problem that the use is limited because sufficient strength cannot be obtained.

近年、微生物により生分解する生分解性熱可塑性樹脂の開発が進んできた。更に、地球温暖化問題がクローズアップされて、大気中の炭酸ガスを増加させない「カーボンニュートラル」という考え方が重要視されてきた。この考え方に適合する生分解性熱可塑性樹脂のひとつにポリ乳酸がある。該樹脂は、比較的融点が高く、強度もあることから、短繊維ウェブに水流交絡した不織布(特許文献1)も検討されている。
しかしながら、これら不織布は、ウェブが乾式法で製造されたものであったり、部分的に熱圧着されたものであり、強度的には優れているものの地合いが劣るという欠点があった。
そこで、湿式法で製造されたウェブを用いた水添絡み合いの際にポリ乳酸の融点以下、ガラス転移点温度以上の温度を付与する水添絡み合いさせる方法(特許文献2)が報告されており、より高い絡み合いが達成されることが開示されているが、操作が煩雑となるばかりでなく乾燥時の引張強度を向上させることは困難であり、より低いエネルギーレベルを用いて絡み合いをさせ、実用的な強度を有する不織布が望まれていた。
更に、一般に、湿式抄紙法で作成したウェブを水流交絡し易くするために抄紙性とアスペクト比を考慮して繊維長を短くするとより細い繊維を用いる必要があることから、高価になるという問題点もあった。
特開平7−126970号公報、同7−133511号公報、同7−133569号公報、特開2000−24852号公報 特表2003−508640号公報
In recent years, the development of biodegradable thermoplastic resins that biodegrade with microorganisms has progressed. Furthermore, the global warming issue has been highlighted, and the concept of “carbon neutral” that does not increase carbon dioxide in the atmosphere has been regarded as important. One of the biodegradable thermoplastic resins that meet this concept is polylactic acid. Since the resin has a relatively high melting point and high strength, a nonwoven fabric (Patent Document 1) in which water is entangled with a short fiber web has been studied.
However, these nonwoven fabrics have a disadvantage that the web is manufactured by a dry method or is partially thermocompression bonded, and is excellent in strength, but has a poor texture.
Therefore, a hydrogenation entanglement method (Patent Document 2) that gives a temperature below the melting point of polylactic acid and above the glass transition temperature during hydrogenation entanglement using a web produced by a wet method has been reported, Although it is disclosed that higher entanglement is achieved, not only is the operation complicated, but it is difficult to improve the tensile strength during drying, and entanglement is performed using a lower energy level, which is practical. A nonwoven fabric having a high strength has been desired.
Furthermore, in general, it is necessary to use finer fibers if the fiber length is shortened in consideration of papermaking property and aspect ratio in order to facilitate hydroentanglement of the web created by the wet papermaking method. There was also.
JP-A-7-126970, JP-A-7-133511, JP-A-7-13369, JP-A-2000-24852 Special table 2003-508640 gazette

本発明の目的は、地合いがよく柔軟性があり、実用的な強度が比較的低い付加比エネルギーで得られ、使用後は微生物により生分解されるスパンレースを提供することにある。   It is an object of the present invention to provide a spunlace that has a good texture, is flexible, has a practical strength with a relatively low added specific energy, and is biodegraded by microorganisms after use.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のポリ乳酸繊維とパルプを用いることにより課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by using specific polylactic acid fibers and pulp, and have completed the present invention.

本発明の第一は、繊維長7〜20mm、アスペクト比1200以下のポリ乳酸繊維とパルプからなる湿式抄紙法で得られたウェブに水流交絡した、数3で示される縦方向と横方向の裂断長の幾何平均が2km以上であるスパンレース、である。   The first aspect of the present invention is the longitudinal and lateral cracks shown in Equation 3, which are hydroentangled with a web obtained by a wet papermaking method comprising a polylactic acid fiber having a fiber length of 7 to 20 mm and an aspect ratio of 1200 or less and pulp. This is a span lace in which the geometric average of the longitudinal length is 2 km or more.

Figure 2005139566
Figure 2005139566

本発明の第二は、数4で表される水流交絡の付加比エネルギーが0.1〜0.3kwh/kgである、前記のスパンレースである。

Figure 2005139566
The second aspect of the present invention is the above-described spunlace in which the additional specific energy of hydroentanglement expressed by Equation 4 is 0.1 to 0.3 kwh / kg.
Figure 2005139566

本発明は、特定の繊維長、アスペクト比のポリ乳酸繊維、あるいはそれとパルプとの混合物、を湿式抄紙するため、地合いが均一であり、且つ比較的低い付加比エネルギーの水流交絡により実用的強度が得られ、更に使用後には微生物により生分解可能という効果を奏する。   In the present invention, polylactic acid fibers having a specific fiber length and aspect ratio, or a mixture thereof with a pulp, are wet-made, so that the texture is uniform and the practical strength is obtained by hydroentanglement with a relatively low added specific energy. Further, after use, it has the effect of being biodegradable by microorganisms.

以下、本発明を詳細に説明する。
本発明に用いられるポリ乳酸繊維とは、熱可塑性脂肪族ポリエステルであって、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸との共重合体等からなり、数平均分子量が20,000以上、好ましくは40,000以上の重合体を溶融紡糸法により紡糸して延伸して得られるものである。
本発明では延伸後に特定の繊維長、アスペクト比にカットしたものが用いられる。
Hereinafter, the present invention will be described in detail.
The polylactic acid fiber used in the present invention is a thermoplastic aliphatic polyester, which is poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, D-lactic acid. And a hydroxycarboxylic acid copolymer, a copolymer of L-lactic acid and hydroxycarboxylic acid, a copolymer of DL-lactic acid and hydroxycarboxylic acid, etc., and has a number average molecular weight of 20,000 or more, preferably It is obtained by spinning 40,000 or more polymers by the melt spinning method and drawing.
In the present invention, a fiber cut to a specific fiber length and aspect ratio after stretching is used.

本発明において、用いられるポリ乳酸繊維の繊維長は7〜20mm、好ましくは8〜15mmであり、アスペクト比が1200以下である。繊維長が20mmを越えたりアスペクト比が1200を越えると分散し難くなり、分散を改善するために長時間処理したり、強力に分散させたりするとよれが発生し、分散性とよれ回避の両方を満足させる事が困難になる。一方、繊維長が7mm未満であると、水流交絡により強度を得ることが難しい。   In the present invention, the polylactic acid fiber used has a fiber length of 7 to 20 mm, preferably 8 to 15 mm, and an aspect ratio of 1200 or less. If the fiber length exceeds 20 mm or the aspect ratio exceeds 1200, it becomes difficult to disperse, and if it is treated for a long time to improve the dispersion or if it is dispersed strongly, it will cause twisting, both dispersibility and avoidance It becomes difficult to satisfy. On the other hand, when the fiber length is less than 7 mm, it is difficult to obtain strength by hydroentanglement.

本発明に用いられるパルプとしては、針葉樹あるいは広葉樹木材をクラフト法、サルファイト法、ソーダ法等で蒸解した未晒パルプもしくは晒パルプ、あるいはグランドパルプ、サーモメカニカルパルプ等の機械パルプ、更には麻等の非木材パルプ等を挙げることが出来る。これらパルプでは、繊維長が長いものが強度的にはより好ましい。パルプは離解だけで用いても、ある程度叩解して用いてもよい。   As pulp used in the present invention, unbleached pulp or bleached pulp obtained by digesting coniferous or hardwood wood by kraft method, sulfite method, soda method, etc., or mechanical pulp such as ground pulp, thermomechanical pulp, hemp, etc. Non-wood pulp and the like. Among these pulps, those having a long fiber length are more preferable in terms of strength. The pulp may be used only by disaggregation or be beaten to some extent.

本発明において、ポリ乳酸繊維とパルプとの重量比率は8/2〜2/8が好ましい。パルプが少なすぎると、目詰め性能や吸液性が不十分になる。またポリ乳酸繊維が少なすぎると強度が不十分になる。   In the present invention, the weight ratio between the polylactic acid fiber and the pulp is preferably 8/2 to 2/8. If there is too little pulp, the clogging performance and liquid absorbency will be insufficient. Moreover, when there are too few polylactic acid fibers, intensity | strength will become inadequate.

本発明において、ポリ乳酸以外の生分解性繊維を、本発明の物性を損なわない範囲で混合して用いることもできる。
また、本発明において、生分解性の熱融着性繊維をバインダーとして用いることもできる。熱融着繊維としては、芯鞘型複合繊維が用いられる。芯鞘型複合繊維としては、例えば、ポリ乳酸樹脂のD−体比率を多くして低融点化した鞘成分とレギュラー配合の芯成分からなるものや、高融点の生分解性ポリエステルの芯成分と低融点のポリブチレンサクシネートの鞘成分とからなるもの等を挙げることができる。この熱融着性繊維は、スパンレースの柔軟性を損なわない程度の配合とすることが好ましく、通常、全繊維の30%以下、好ましくは20%以下である。また、熱融着は水流交絡の前または後のどちらで行なっても構わない。
In the present invention, biodegradable fibers other than polylactic acid can be mixed and used within a range not impairing the physical properties of the present invention.
In the present invention, a biodegradable heat-fusible fiber can also be used as a binder. A core-sheath type composite fiber is used as the heat-sealing fiber. Examples of the core-sheath type composite fiber include a sheath component that has a low melting point by increasing the D-form ratio of the polylactic acid resin and a core component of a regular blend, and a core component of a high melting point biodegradable polyester. What consists of a sheath component of polybutylene succinate of low melting point can be mentioned. This heat-fusible fiber is preferably blended so as not to impair the flexibility of the spunlace, and is usually 30% or less, preferably 20% or less of the total fiber. Further, heat fusion may be performed either before or after hydroentanglement.

本発明のスパンレースは、縦方向と横方向の裂断長の幾何平均が2km以上のものである。幾何平均が2km以下であれば、用途が限定され、例えば強度を必要とする医療用の手術着、シーツ等に用いることが困難となる。
また、スパンレースの坪量は、用途により選択されるが、通常20〜200g/mである。
The spunlace of the present invention has a geometric average of the longitudinal and lateral tear lengths of 2 km or more. If the geometric average is 2 km or less, the application is limited, and for example, it is difficult to use for medical surgical clothes and sheets that require strength.
Moreover, although the basic weight of a spunlace is selected by a use, it is 20-200 g / m < 2 > normally.

本発明のスパンレースは、湿式法スパンレースの公知の方法に準じて製造される。
先ず、ポリ乳酸繊維の離解を行なう。離解とは水中で繊維の束を1本1本の繊糸に解繊する操作を言う。離解設備としてはビーター、パルパー等がある。離解時の繊維濃度は繊維長の長い繊維ほど低濃度にする必要がある。一般には3%以下である。離解を促進するために通常、対繊維当たり数%の分散剤を投入する。ポリ乳酸繊維は単独で離解してもよいし、パルプと混合して離解してもよい。パルプと混合して離解する場合は先ず、パルプを離解しその後にポリ乳酸繊維を投入し離解するのがよい。
得られたスラリーを水で希釈して抄紙する。抄紙機としては一般には傾斜短網抄紙機や円網抄紙機が用いられる。ポリ乳酸繊維あるいはポリ乳酸繊維を主体とするスラリーを抄紙する際には地合いをよくするために粘剤(地合い形成助剤)を対繊維当たり0.1〜0.5%程度投入する。更に分散剤や粘剤により生ずる泡を消す目的で微量の消泡剤を投入する。ポリ乳酸繊維スラリーとパルプスラリーを別々に調成し2層を積層したウェブとすることもできる。
The spunlace of the present invention is produced according to a known method of wet-type spunlace.
First, polylactic acid fibers are disaggregated. Disaggregation refers to an operation in which a bundle of fibers is disassembled into a single yarn in water. There are beaters, pulpers, etc. as disaggregation facilities. The fiber concentration at the time of disaggregation needs to be lower as the fiber has a longer fiber length. Generally, it is 3% or less. In order to promote disaggregation, usually a few percent of dispersant per fiber is added. The polylactic acid fiber may be disaggregated alone or mixed with pulp and disaggregated. When mixing and disaggregating with pulp, it is preferable to first disaggregate the pulp and then add polylactic acid fibers to disaggregate.
The resulting slurry is diluted with water to make paper. As the paper machine, an inclined short net paper machine or a circular net paper machine is generally used. When paper is made of polylactic acid fibers or a slurry mainly composed of polylactic acid fibers, about 0.1 to 0.5% of a sticking agent (formation forming aid) is added to the fibers to improve the formation. Furthermore, a very small amount of antifoaming agent is added for the purpose of eliminating foam generated by the dispersant or the sticking agent. It is also possible to prepare a web in which a polylactic acid fiber slurry and a pulp slurry are separately prepared and two layers are laminated.

こうして作製されたウェブはオンラインであるいはオフラインで支持体に載せて水流交絡工程に送られる。水流交絡を行なうためのノズルは一般に径0.07〜0.2mm、ノズル間隔0.3〜1.5mmである。水圧は10〜150kg/cmが望ましい。
交絡は片面のみでも両面からでも行なうことが出来る。
交絡されたウェブは余分な水分を吸引又はプレスにより除去した後にドライヤーで乾燥する。
The web thus produced is placed on a support on-line or off-line and sent to the hydroentanglement process. Nozzles for performing water entangling generally have a diameter of 0.07 to 0.2 mm and a nozzle interval of 0.3 to 1.5 mm. The water pressure is preferably 10 to 150 kg / cm 2 .
Entanglement can be done from only one side or from both sides.
The entangled web is dried with a dryer after excess water is removed by suction or pressing.

本発明において、水流交絡の付加比エネルギーは、0.1〜1.0kwh/kg、好ましくは0.1〜0.3kwh/kgと、常法の水流交絡のエネルギーレベルより低い方が好ましい。かかる低いレベルのエネルギーで実施できるのも、本発明の特徴の一つである。
付加比エネルギーがこれより低すぎると十分な強度を得ることが出来ない。一方、これを越えると地合いが乱れたり、繊維が支持体に入り込み剥がし難くなったりすることがあり、好ましくはない。
In the present invention, the additional specific energy of hydroentanglement is 0.1 to 1.0 kwh / kg, preferably 0.1 to 0.3 kwh / kg, and is preferably lower than the energy level of conventional hydroentanglement. One of the features of the present invention is that it can be carried out at such a low level of energy.
If the additional specific energy is too low, sufficient strength cannot be obtained. On the other hand, if it exceeds this, the texture may be disturbed, or the fibers may enter the support and become difficult to peel off, which is not preferable.

以下に実施例を挙げて本発明をより具体的に説明する。
なお、実施例中の測定値は、以下の方法によって測定した。
1)裂断長:JIS P−8113
2)剛軟性:JIS L−1096A法(45°カンチレバー法)
3)地合い:目視により、◎:非常に良い、○:良い、△:やや悪い、の3段階で評価した。
Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, the measured value in an Example was measured with the following method.
1) Breaking length: JIS P-8113
2) Flexibility: JIS L-1096A method (45 ° cantilever method)
3) Texture: Visually, three grades were evaluated: ◎: very good, ○: good, △: slightly bad.

実施例1
タッピ離解機でNBKP(ヒントン)を離解し、その後、分散剤を対ポリ乳酸繊維3%、ポリ乳酸繊維1.3dtex×12mm(アスペクト比:1000)(カネボウ合繊製ラクトロン)及びパルプを、ポリ乳酸:パルプ=7:3(重量比)になるように投入し離解した。繊維濃度は1%とした。これを5倍に希釈し粘剤(PEO)を対繊維0.3%投入し、坪量70g/mの手漉きシートを得た。これを支持体に載せ、速度10m/minで、ノズル径0.1mm、ノズル間隔1mmのノズルにより圧力60kg/cmで3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.24kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が2.6km、剛軟性が70mm、地合いが○、であった。
Example 1
NBKP (hinton) is disaggregated with a tappi disintegrator, and then the dispersant is 3% polylactic acid fiber, 1.3 dtex x 12 mm polylactic acid fiber (aspect ratio: 1000) (Lactron made by Kanebo Synthetic Fiber) and pulp, : Pulp = 7: 3 (weight ratio) was added and disaggregated. The fiber concentration was 1%. It was poured diluted 5-fold Nebazai (PEO) 0.3% to to fiber, to give the handsheets having a basis weight of 70 g / m 2. This was placed on a support, and water entangled three times at a pressure of 60 kg / cm 2 with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 1 mm at a speed of 10 m / min, and dried with a drum dryer to obtain a spunlace. The added specific energy was 0.24 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 2.6 km, the bending resistance was 70 mm, and the texture was ◯.

実施例2
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして48g/mのシートを得た。更にタッピ離解機に分散剤を対ポリ乳酸繊維5%、及びポリ乳酸繊維1.3dtex×12mm(アスペクト比:1000)(カネボウ合繊製ラクトロン)を繊維濃度が0.7%になるように投入し離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量32g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度10m/minで、ノズル径0.1mm、ノズル間隔1mmのノズルにより圧力30→60→60kg/cmと3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.17kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が3.0km、剛軟性が85mm、地合いが○、であった。
Example 2
NBKP (Hinton) was disaggregated with a tapi disaggregator and hand-rolled to obtain a 48 g / m 2 sheet. In addition, 5% polylactic acid fiber and 1.3dtex x 12 mm polylactic acid fiber (aspect ratio: 1000) (Kanebo Synthetic Lactron) were added to the Tappi disintegrator so that the fiber concentration was 0.7%. Disaggregated. It was diluted to 5-fold, Nebazai the (PEO) was charged vs. 0.3% fiber, was obtained handsheets of basis weight 32 g / m 2. These sheets are stacked on a support so that the pulp sheet is on top, and at a speed of 10 m / min, a nozzle with a nozzle diameter of 0.1 mm and a nozzle interval of 1 mm is used to apply pressure 30 → 60 → 60 kg / cm 2 and three times. Spunlace was obtained by entanglement and drying with a drum dryer. The added specific energy was 0.17 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 3.0 km, the bending resistance was 85 mm, and the texture was good.

実施例3
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして35g/mのシートを得た。更にタッピ離解機に分散剤を対ポリ乳酸繊維5%、及びポリ乳酸繊維1.7dtex×10mm(アスペクト比:800)(ユニチカ製テラマック)を繊維濃度が0.7%になるように投入し離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量35g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度10m/minで、ノズル径0.1mm、ノズル間隔0.6mmのノズルにより圧力30kg/cmで4回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.19kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が2.3km、剛軟性が72mm、地合いが◎、であった。
Example 3
NBKP (Hinton) was disaggregated with a tapi disaggregator and hand-rolled to obtain a 35 g / m 2 sheet. Furthermore, 5% polylactic acid fiber and 1.7dtex x 10mm polylactic acid fiber (aspect ratio: 800) (Unitika Terramac) from Polylactic Fiber were added to the tappy disintegrator so that the fiber concentration would be 0.7%. did. This was diluted 5 times, and 0.3% of fiber (PEO) was added to the fiber to obtain a handsheet having a basis weight of 35 g / m 2 . These sheets are piled on the support so that the pulp sheet is on top, and the water is entangled four times at a speed of 10 m / min at a pressure of 30 kg / cm 2 with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 0.6 mm. Spunlace was obtained by drying with a drum dryer. The added specific energy was 0.19 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 2.3 km, the bending resistance was 72 mm, and the texture was ◎.

実施例4
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして26g/mのシートを得た。更にタッピ離解機に、分散剤を対繊維5%、ポリ乳酸繊維0.8dtex×10mm(アスペクト比:1100)(ユニチカ製テラマック)及びパルプを、ポリ乳酸:パルプ=8:2(重量比)となるように加え、繊維濃度が0.7%になるようにして離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量44g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度5m/minで、ノズル径0.1mm、ノズル間隔0.6mmのノズルにより圧力60kg/cmで3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.82kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が3.2km、剛軟性が75mm、地合いが◎、であった。
Example 4
NBKP the (Hinton) loosened away in Tappi disintegrator to obtain handmade to the 26 g / m 2 sheets this. Furthermore, in a tappi disintegrator, the dispersant is 5% to fiber, polylactic acid fiber 0.8 dtex × 10 mm (aspect ratio: 1100) (Terramac made by Unitika) and pulp, and polylactic acid: pulp = 8: 2 (weight ratio). In addition, the fiber concentration was 0.7%. It was diluted to 5-fold, Nebazai the (PEO) was charged vs. 0.3% fiber, was obtained handsheets of basis weight 44 g / m 2. These sheets are stacked on a support so that the pulp sheet is on top, and the water is entangled three times at a speed of 5 m / min at a pressure of 60 kg / cm 2 with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 0.6 mm. Spunlace was obtained by drying with a drum dryer. The added specific energy was 0.82 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 3.2 km, the bending resistance was 75 mm, and the texture was ◎.

比較例1
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして35g/mのシートを得た。更にタッピ離解機に分散剤を対繊維5%、及びポリエステル繊維1.7dtex×20mm(アスペクト比:1600)(帝人製テトロンテピルス)を繊維濃度が0.7%になるように投入し離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量35g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度5m/minで、ノズル径0.1mm、ノズル間隔1mmのノズルにより圧力60kg/cmで3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.49kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が3.2km、剛軟性が90mm、地合いが△、であった。
Comparative Example 1
NBKP (Hinton) was disaggregated with a tapi disaggregator and hand-rolled to obtain a 35 g / m 2 sheet. Furthermore, 5% of the dispersant was added to the tap disintegrator and 1.7 dtex × 20 mm of polyester fiber (aspect ratio: 1600) (Teijin Tetoron Tepyrus) was added so that the fiber concentration would be 0.7% and disaggregated. . This was diluted 5 times, and 0.3% of fiber (PEO) was added to the fiber to obtain a handsheet having a basis weight of 35 g / m 2 . These sheets are stacked on a support so that the pulp sheet is on top, and the water is entangled three times with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 1 mm at a pressure of 60 kg / cm 2 at a speed of 5 m / min. Spunlace was obtained by drying with a dryer. The added specific energy was 0.49 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 3.2 km, the bending resistance was 90 mm, and the texture was Δ.

比較例2
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして35g/mのシートを得た。更にタッピ離解機に分散剤を対繊維5%、及びポリエステル繊維1.7dtex×10mm(アスペクト比:800)(帝人製テトロンテピルス)を繊維濃度が0.7%になるように投入し離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量35g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度5m/minで、ノズル径0.1mm、ノズル間隔1mmのノズルにより圧力60kg/cmで3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.49kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が0.5km、剛軟性が70mm、地合いが○、であった。
Comparative Example 2
NBKP (Hinton) was disaggregated with a tapi disaggregator and hand-rolled to obtain a 35 g / m 2 sheet. Furthermore, 5% of the dispersant was added to the tapi disintegrator and 1.7 dtex × 10 mm of polyester fiber (aspect ratio: 800) (Teijin Tetoron Tepyrus) was added so that the fiber concentration would be 0.7% and disaggregated. . This was diluted 5 times, and 0.3% of fiber (PEO) was added to the fiber to obtain a handsheet having a basis weight of 35 g / m 2 . These sheets are stacked on a support so that the pulp sheet is on top, and the water is entangled three times with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 1 mm at a pressure of 60 kg / cm 2 at a speed of 5 m / min. Spunlace was obtained by drying with a dryer. The added specific energy was 0.49 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 0.5 km, the bending resistance was 70 mm, and the texture was ◯.

比較例3
タッピ離解機でNBKP(ヒントン)を離解し、これを手漉きして35g/mのシートを得た。更にタッピ離解機に分散剤を対繊維3%、及びレーヨン繊維1.7dtex×10mm(アスペクト比:840、断面を円と仮定し算出した。)(ダイワボウレーヨンSB)を繊維濃度が0.7%になるように投入し離解した。これを5倍に希釈し、粘剤(PEO)を対繊維0.3%投入し、坪量35g/mの手漉きシートを得た。これらのシートをパルプシートが上になるように重ねて支持体に載せ、速度5m/minで、ノズル径0.1mm、ノズル間隔1mmのノズルにより圧力60kg/cmで3回水流交絡し、ドラムドライヤーで乾燥することによりスパンレースを得た。付加比エネルギーは0.49kwh/kgであった。
得られたスパンレースの物性は、裂断長の幾何平均が1.6km、剛軟性が95mm、地合いが○、であった。
Comparative Example 3
NBKP (Hinton) was disaggregated with a tapi disaggregator and hand-rolled to obtain a 35 g / m 2 sheet. Furthermore, the dispersion agent was 3% for the fiber, and the rayon fiber was 1.7 dtex × 10 mm (calculated on the assumption that the aspect ratio was 840 and the cross section was a circle) (Daiwabow Rayon SB) (Daiwa Bow Rayon SB) in the Tappi disintegrator. It was thrown in and disaggregated. This was diluted 5 times, and 0.3% of fiber (PEO) was added to the fiber to obtain a handsheet having a basis weight of 35 g / m 2 . These sheets are stacked on a support so that the pulp sheet is on top, and the water is entangled three times with a nozzle having a nozzle diameter of 0.1 mm and a nozzle interval of 1 mm at a pressure of 60 kg / cm 2 at a speed of 5 m / min. Spunlace was obtained by drying with a dryer. The added specific energy was 0.49 kwh / kg.
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 1.6 km, the bending resistance was 95 mm, and the texture was ◯.

比較例4
タッピ離解機でNBKP(ヒントン)を離解し、その後、分散剤を対ポリ乳酸繊維3%、ポリ乳酸繊維1.3dtex×20mm(アスペクト比:1700)(カネボウ合繊ラクトロン)及びパルプを、ポリ乳酸:パルプ=1:1(重量比)になるように投入し離解した。繊維濃度は0.5%とした。ポリ乳酸繊維はよれが発生していた。以後、実施例1と同様に実施することによりスパンレースを得た(付加比エネルギー:0.24kwh/kg)。
得られたスパンレースの物性は、裂断長の幾何平均が1.5km、剛軟性が76mm、地合いが×、であった。
Comparative Example 4
NBKP (Hinton) is disaggregated with a tappi disintegrator, and then the dispersant is 3% polylactic acid fiber, 1.3 dtex x 20 mm polylactic acid fiber (aspect ratio: 1700) (Kanebo synthetic fiber lactron) and pulp, and polylactic acid: The pulp was thrown in and disaggregated at 1: 1 (weight ratio). The fiber concentration was 0.5%. The polylactic acid fiber was warped. Thereafter, a spunlace was obtained by carrying out in the same manner as in Example 1 (additional specific energy: 0.24 kwh / kg).
Regarding the physical properties of the obtained spunlace, the geometric average of the breaking length was 1.5 km, the bending resistance was 76 mm, and the texture was x.

以上説明してきたように、本発明のスパンレースは、地合いが均一で、柔軟性があり、比較的低い付加比エネルギーでも実用的強度を有し、使用後には微生物による生分解可能であるので、医療・衛生用品の基材、その他産業用品・家庭用品の基材として広く用いることが出来る。   As described above, the spunlace of the present invention has a uniform texture, is flexible, has practical strength even at a relatively low added specific energy, and is biodegradable by microorganisms after use. It can be widely used as a base material for medical and hygiene products and other industrial and household products.

Claims (2)

繊維長7〜20mm、アスペクト比1200以下のポリ乳酸繊維とパルプからなる湿式抄紙法で得られたウェブに、水流交絡した、数1で与えられる縦方向と横方向の裂断長の幾何平均が2km以上である、スパンレース。
Figure 2005139566
A web obtained by a wet papermaking method comprising a polylactic acid fiber and a pulp having a fiber length of 7 to 20 mm and an aspect ratio of 1200 or less is hydroentangled, and the geometric average of the longitudinal and lateral tear lengths given by Equation 1 is Span lace that is more than 2km.
Figure 2005139566
数2で与えられる水流交絡の付加比エネルギーが0.1〜0.3kwh/kgである、請求項1記載のスパンレース。
Figure 2005139566
The spunlace according to claim 1, wherein the additional specific energy of hydroentanglement given by Equation 2 is 0.1 to 0.3 kwh / kg.
Figure 2005139566
JP2003375248A 2003-11-05 2003-11-05 Spun lace comprising polylactic acid fiber and pulp Pending JP2005139566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375248A JP2005139566A (en) 2003-11-05 2003-11-05 Spun lace comprising polylactic acid fiber and pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375248A JP2005139566A (en) 2003-11-05 2003-11-05 Spun lace comprising polylactic acid fiber and pulp

Publications (1)

Publication Number Publication Date
JP2005139566A true JP2005139566A (en) 2005-06-02

Family

ID=34686671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375248A Pending JP2005139566A (en) 2003-11-05 2003-11-05 Spun lace comprising polylactic acid fiber and pulp

Country Status (1)

Country Link
JP (1) JP2005139566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015735A1 (en) * 2011-07-26 2013-01-31 Sca Hygiene Products Ab Flushable moist wipe or hygiene tissue and a method for making it
CN116497624A (en) * 2023-05-17 2023-07-28 河南逸祥卫生科技有限公司 Degradable flushable spunlaced material and manufacturing method thereof
CN116676805A (en) * 2023-06-05 2023-09-01 河南逸祥卫生科技有限公司 High-wet-strength flushable spunlaced material and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015735A1 (en) * 2011-07-26 2013-01-31 Sca Hygiene Products Ab Flushable moist wipe or hygiene tissue and a method for making it
CN116497624A (en) * 2023-05-17 2023-07-28 河南逸祥卫生科技有限公司 Degradable flushable spunlaced material and manufacturing method thereof
CN116676805A (en) * 2023-06-05 2023-09-01 河南逸祥卫生科技有限公司 High-wet-strength flushable spunlaced material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8673116B2 (en) Water disintegratable fibrous sheet
CN106687633B (en) Dispersible nonwoven fabric and method of making same
EP0972100B1 (en) Dispersible nonwoven fabric and method of making same
CA2314391C (en) Multi-layered water-decomposable fibrous sheet
US6749718B2 (en) Water-disintegratable sheet and manufacturing method thereof
US6699806B1 (en) Water-decomposable fibrous sheet of high resistance to surface friction, and method for producing it
JP3129192B2 (en) Water disintegrable nonwoven fabric and method for producing the same
EP1138823B1 (en) Water-decomposable fibrous sheet containing fibrillated rayon of different fiber length profiles
JPH1193055A (en) Water-disintegrable nonwoven fabric and its production
JPH10310960A (en) Water-disintegrable nonwoven fabric and its production
JP2001098489A (en) Water-disintegrable fibrous sheet containing water- insoluble carboxymethyl cellulose
TWI526589B (en) Preparation method of hydrolyzable fiber sheet
JP4619188B2 (en) Manufacturing method of water-disintegrating paper
JP4619110B2 (en) Method for producing hydrolyzed paper and method for producing hydrolyzable wiping article
JP2005139566A (en) Spun lace comprising polylactic acid fiber and pulp
JP3221364B2 (en) Water-disintegratable nonwoven fabric and method for producing the same
JPH1112909A (en) Water-disaggregative nonwoven fabric
JP2833784B2 (en) Bulk paper having dispersibility in water and production method thereof
JP2006052498A (en) Nonwoven fabric for cleaning
JP7559579B2 (en) Water-disintegrable nonwoven fabric, water-disintegrable nonwoven fabric laminate, and method for producing water-disintegrable nonwoven fabric
JPH11152667A (en) Water-disintegrable nonwoven fabric
JP2005105449A (en) Spun lace comprising polylactic acid short fiber
AU4887400A (en) Multi-layered water-decomposable fibrous sheet