[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005138379A - Composite molded product and its manufacturing method - Google Patents

Composite molded product and its manufacturing method Download PDF

Info

Publication number
JP2005138379A
JP2005138379A JP2003376195A JP2003376195A JP2005138379A JP 2005138379 A JP2005138379 A JP 2005138379A JP 2003376195 A JP2003376195 A JP 2003376195A JP 2003376195 A JP2003376195 A JP 2003376195A JP 2005138379 A JP2005138379 A JP 2005138379A
Authority
JP
Japan
Prior art keywords
molded body
rubber
resin
silicone
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003376195A
Other languages
Japanese (ja)
Inventor
Akihiro Yamamoto
昭宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2003376195A priority Critical patent/JP2005138379A/en
Publication of JP2005138379A publication Critical patent/JP2005138379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite molded product constituted so that a resin molded body and a rubber molded body having an undercut part are strongly bonded and integrated. <P>SOLUTION: A silicone rubber layer (B)3 showing adhesiveness with respect to a resin is bonded to the resin molded body (A)2 and the rubber molded body (D)5 having the undercut part is bonded to the silicone rubber layer (B)3 through a silicone adhesive layer (C)4 to constitute the composite molded product 1 wherein the resin molded body 2 and the rubber molded body 5 are integrated. By this constitution, the composite molded product wherein the resin molded body and the rubber molded body are strongly integrated can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は樹脂成形体とアンダーカット部を有するゴム成形体とが一体化した複合成形体及びその製造方法に関する。   The present invention relates to a composite molded body in which a resin molded body and a rubber molded body having an undercut portion are integrated, and a method for manufacturing the same.

一般に、樹脂成形体とゴム成形体とを接着させる場合、樹脂成形品の表面を溶剤で処理(プライマー処理)を行って、その表面に接着剤を塗布し、該接着剤を介して樹脂成形体とゴム成形体とを接着しているが、ゴムと樹脂は本来相溶性がないため、その接着力は概して低いものであった。従って、長期に負荷がかかると、接着剤と樹脂成形体間での剥離または/及び接着剤とゴム成形体間での剥離が生じるという問題点を有していた。   Generally, when a resin molded body and a rubber molded body are bonded, the surface of the resin molded product is treated with a solvent (primer treatment), an adhesive is applied to the surface, and the resin molded body is passed through the adhesive. However, since the rubber and the resin are inherently incompatible, their adhesion is generally low. Therefore, when a load is applied for a long period of time, there is a problem that peeling between the adhesive and the resin molding or / and peeling between the adhesive and the rubber molding occur.

そこで、近年、それ自体が樹脂と接着性を示し、樹脂成形体にプライマー処理を行うことなく接着し得るシリコーンゴムが開発されている(例えば、特許文献1)。すなわち、このシリコーンゴムは樹脂成形体に接触させた状態で自体を成形することによって、樹脂成形体と接着した成形体を作製できるものであり、このシリコーンゴムを使用すればプライマー処理や別途接着剤を必要とせずに、樹脂成形体とシリコーンゴム成形体とが比較的高い接着強度で一体化した複合体を作製することができる。しかし、このシリコーンゴムは高温高圧下で樹脂と接触しないと樹脂に対して良好な接着性を発現しないので、その成形は必然的にプレス成形又は射出成形となる。   Thus, in recent years, silicone rubber has been developed that itself exhibits adhesiveness to a resin and can be bonded to a resin molded body without performing primer treatment (for example, Patent Document 1). In other words, this silicone rubber can be made into a molded body bonded to the resin molded body by molding itself in a state of being in contact with the resin molded body. If this silicone rubber is used, primer treatment or a separate adhesive can be produced. Thus, a composite body in which the resin molded body and the silicone rubber molded body are integrated with a relatively high adhesive strength can be produced. However, since this silicone rubber does not exhibit good adhesion to the resin unless it is in contact with the resin under high temperature and high pressure, the molding is inevitably press molding or injection molding.

ところが、プレス成形や射出成形で、アンダーカット部を有するゴム成形体を作製することは余り行われない。すなわち、ゴム成形体は柔いので、エアブロー等でゴム成形体を変形させることによって、アンダーカット部を有するゴム成形体であっても金型から離型することは可能であるが、その作業は非常に面倒であり、また、変形によってゴム成形体に損傷が加わることがあるためである。なお、3個以上に分割する複雑な金型を使用すれば、アンダーカット部を有するゴム成形体であっても、成形体の離型は比確的容易にできる場合もあるが、パーティングラインといった新たな問題が発生する。   However, a rubber molded body having an undercut portion is hardly produced by press molding or injection molding. That is, since the rubber molded body is soft, it is possible to release it from the mold even if it is a rubber molded body having an undercut part by deforming the rubber molded body by air blow or the like. This is because it is very troublesome, and the rubber molded body may be damaged by deformation. In addition, if a complicated mold that is divided into three or more parts is used, even if it is a rubber molded body having an undercut portion, the molded body may be released relatively accurately, but the parting line A new problem occurs.

前記の通り、樹脂に対して接着性を示すシリコーンゴム(特許文献1)は、高温高圧下でないと樹脂に対して良好な接着性を発現せず、その成形は必然的にプレス成形又は射出成形で行うことになる。本発明者等は、かかるシリコーンゴムを使用して樹脂成形体とアンダーカット部を有するゴム成形体とが一体化した複合成形体を作製することを試みた(すなわち、樹脂成形体を金型内にインサートした状態でシリコーンゴムを成形してアンダーカット部を有するゴム成形体を作製した。)。しかし、得られる複合成形体は剛体である樹脂成形体を有するため、エアブロー等を当てても十分に変形しないため、金型から離型できないという問題が起った。
特開2002−201454号公報
As described above, the silicone rubber (Patent Document 1) exhibiting adhesiveness to the resin does not exhibit good adhesiveness to the resin unless it is under high temperature and high pressure, and the molding is inevitably performed by press molding or injection molding. Will be done. The inventors of the present invention attempted to produce a composite molded body in which a resin molded body and a rubber molded body having an undercut portion are integrated using such silicone rubber (that is, the resin molded body is placed in a mold). A rubber molded body having an undercut portion was produced by molding silicone rubber in a state of being inserted into the rubber. However, since the obtained composite molded body has a resin molded body that is a rigid body, the composite molded body does not deform sufficiently even when air blow or the like is applied thereto, so that there is a problem that it cannot be released from the mold.
JP 2002-201445 A

上記事情に鑑み、本発明の課題は、樹脂成形体とアンダーカット部を有するゴム成形体とが強固に接着・一体化した複合成形体及びその製造方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide a composite molded body in which a resin molded body and a rubber molded body having an undercut portion are firmly bonded and integrated, and a manufacturing method thereof.

上記課題を解決するために、本発明者等は鋭意研究した結果、樹脂成形体に樹脂と接着性を示すシリコーンゴムを接着させ(すなわち、樹脂成形体と接触させた状態で樹脂と接着性を示すシリコーンゴムを層状に成形し)、こうして得た樹脂と接着性を示すシリコーンゴムの成形物(シリコーンゴム層)にシリコーン系接着剤を介してゴム成形体を接着することで、樹脂成形体とゴム成形体とを強固に接着・一体化できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the resin molded body is bonded with a resin and a silicone rubber that exhibits adhesiveness (that is, the resin and the adhesive properties are maintained in contact with the resin molded body). The resin molded body is formed by adhering a rubber molded body with a silicone adhesive to a silicone rubber molded body (silicone rubber layer) exhibiting adhesiveness with the resin thus obtained. It has been found that the rubber molded body can be firmly bonded and integrated, and the present invention has been completed.

すなわち、本発明は、
(1)樹脂成形体(A)に樹脂と接着性を示すシリコーンゴム層(B)が接着し、該シリコーンゴム層(B)にシリコーン系接着剤層(C)を介してアンダーカット部を有するゴム成形体(D)が接着してなること特徴とする、樹脂成形体とゴム成形体とが一体化した複合成形体、
(2)樹脂成形体(A)がPPEの成形体であり、ゴム成形体(D)がシリコーンゴムの成形体である、上記(1)記載の複合成形体、
(3)樹脂と接着性を示すシリコーンゴムを樹脂成形体に接触させた状態で層状に成形してゴム層を形成した後、該ゴム層にシリコーン系接着剤を塗布し、次いで該シリコーン系接着剤にアンダーカット部を有するゴム成形体を接触させた状態で、該シリコーン系接着剤を硬化させることを特徴とする、樹脂成形体とゴム成形体とが一体化した複合成形体の製造方法、及び
(4)シリコーン系接着剤が常温硬化型シリコーン系接着剤である、上記(3)記載の方法、に関する。
That is, the present invention
(1) A silicone rubber layer (B) showing adhesiveness to the resin is bonded to the resin molded body (A), and the silicone rubber layer (B) has an undercut portion through the silicone adhesive layer (C). A composite molded body in which a resin molded body and a rubber molded body are integrated, wherein the rubber molded body (D) is bonded,
(2) The composite molded body according to (1), wherein the resin molded body (A) is a molded body of PPE and the rubber molded body (D) is a molded body of silicone rubber,
(3) After forming a rubber layer by forming a rubber layer in a state where a resin and a silicone rubber exhibiting adhesiveness are in contact with the resin molding, a silicone adhesive is applied to the rubber layer, and then the silicone adhesive A method for producing a composite molded body in which a resin molded body and a rubber molded body are integrated, wherein the silicone-based adhesive is cured in a state where a rubber molded body having an undercut portion is brought into contact with the agent, And (4) The method according to (3) above, wherein the silicone adhesive is a room temperature curable silicone adhesive.

本発明において、「アンダーカット部を有するゴム成形体」とは、外周面に凹部または凸部を少なくとも有し、実質的にパーティングラインを生じなように設計した2分割型の金型で成形した場合には、前記凹部または凸部が金型を型開きしたときに一方の金型のキャビティーの凸部または凹部と係合して、キャビティー内に保持されてしまう形状のゴム成形体」を意味する。   In the present invention, the “rubber molded body having an undercut portion” is formed by a two-part mold having at least a concave portion or a convex portion on the outer peripheral surface and designed so as not to produce a parting line substantially. In such a case, when the concave portion or the convex portion is opened, the rubber molded body having a shape that engages with the convex portion or concave portion of the cavity of one mold and is held in the cavity. "Means.

本発明によれば、樹脂成形体とアンダーカット部を有するゴム成形体とが強固に一体化した複合成形体を得ることができる。特に、樹脂成形体とゴム成形体との間に介在するシリコーンゴム層とシリコーン系接着剤層は、シリコーンゴム層とともにシリコーン系接着剤層もゴム弾性を示すことから、外力が樹脂成形体やゴム成形体に加わった時に制振作用を示し、樹脂成形体とゴム成形体間の接着状態が長期に亘って安定に維持される。   According to the present invention, it is possible to obtain a composite molded body in which a resin molded body and a rubber molded body having an undercut portion are firmly integrated. In particular, since the silicone rubber layer and the silicone adhesive layer interposed between the resin molded body and the rubber molded body exhibit rubber elasticity together with the silicone rubber layer, the external force is applied to the resin molded body and rubber. When applied to the molded body, it exhibits a vibration damping action, and the adhesion state between the resin molded body and the rubber molded body is stably maintained over a long period of time.

また、特に、樹脂成形体がPPEの成形体であり、ゴム成形体がシリコーンゴムの成形体であると、剛性と柔軟性とのバランスの取れた複合成形体を得やすくなるという利点がある。   In particular, when the resin molded body is a PPE molded body and the rubber molded body is a silicone rubber molded body, there is an advantage that a composite molded body having a balance between rigidity and flexibility can be easily obtained.

以下、本発明を詳細に説明する。
図1は本発明の樹脂成形体とゴム成形体とが一体化した複合成形体の一具体例の斜視図(図1(a))と断面図(図1(b))である。該一例の複合成形体1に示されるように、本発明の複合成形体は、樹脂成形体(A)2に樹脂と接着性を示すシリコーンゴム層(B)3が接着し、該シリコーンゴム層(B)3にシリコーン系接着剤層(C)4を介してアンダーカット部を有するゴム成形体(D)5が接着してなるものである。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a perspective view (FIG. 1 (a)) and a sectional view (FIG. 1 (b)) of a specific example of a composite molded body in which a resin molded body and a rubber molded body of the present invention are integrated. As shown in the composite molded body 1 of the example, the composite molded body of the present invention has a silicone rubber layer (B) 3 that adheres to the resin molded body (A) 2 and is bonded to the resin molded body (A) 2. A rubber molded body (D) 5 having an undercut portion is bonded to (B) 3 via a silicone adhesive layer (C) 4.

樹脂成形体(A)
本発明において、樹脂成形体の材質(樹脂の種類)、形状は特に制限されず、種々の熱可塑性樹脂の成形体を使用できる。中でも、成形時の加圧・加熱時に変形を起さないで、シリコーン系接着剤と相溶することができるエンジニアリングプラスチック(エンプラ)が好ましい。具体的には、ポリメチルペンテン(PMP)、ポリブテン−1(PB−1)、ポリブタジエン(BDR)、ポリスチレン(PS)、アクリロニトリル・スチレン樹脂(AS)、アクリロニトリルブタジエン・スチレン樹脂(ABS)、ポリフェニレンエーテル(PPE)、ポリアクリロニトリル(PAN)、ポリメタクリルスチレン(MS)、メタクリル樹脂(PMMA)、ナイロン(PA)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアリレート(PAR)、ポリエーテルスルホン(PES)等が挙げられる。また、これらの中でもポリフェニレンエーテル(PPE)の成形体が好ましく、該樹脂成形体(A)がポリフェニレンエーテル(PPE)の成形体である場合、適度な剛性が得られる点で好ましい。
Resin molding (A)
In the present invention, the material (type of resin) and shape of the resin molding are not particularly limited, and various thermoplastic resin moldings can be used. Among them, an engineering plastic (engineering plastic) that can be compatible with a silicone-based adhesive without causing deformation at the time of pressing and heating during molding is preferable. Specifically, polymethylpentene (PMP), polybutene-1 (PB-1), polybutadiene (BDR), polystyrene (PS), acrylonitrile styrene resin (AS), acrylonitrile butadiene styrene resin (ABS), polyphenylene ether (PPE), polyacrylonitrile (PAN), polymethacrylstyrene (MS), methacrylic resin (PMMA), nylon (PA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyarylate (PAR), polyethersulfone (PES) and the like. Among these, a molded product of polyphenylene ether (PPE) is preferable, and when the resin molded product (A) is a molded product of polyphenylene ether (PPE), it is preferable in that appropriate rigidity can be obtained.

アンダーカット部を有するゴム成形体(D
本発明において、アンダーカット部を有するゴム成形体の材質(ゴムの種類)、形状は特に限定されず、種々のゴムの成形体を使用できる。例えば、ブチルゴム、クロロプレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、天然ゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、エチレン−プロピレンゴム、ウレタンゴム、フッ素ゴム、シリコーンゴム等の成形体が挙げられる。また、ゴム成形体は、プレス成形、射出成形、押出成形、ブロー成形、ガスアシスト成形等の種々の成形方法で作製されたものを使用できる。これらの中でも、シリコーンゴムの成形体が好ましく、該ゴム成形体(D)がシリコーンゴムの成形体であると、シリコーン系接着剤層(C)との間により高い接着力が得られる。
Rubber molded body with undercut (D )
In the present invention, the material (type of rubber) and shape of the rubber molded body having an undercut portion are not particularly limited, and various rubber molded bodies can be used. For example, molded products such as butyl rubber, chloroprene rubber, chlorosulfonated polyethylene, acrylic rubber, natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, ethylene-propylene rubber, urethane rubber, fluorine rubber, silicone rubber, etc. Can be mentioned. Moreover, the rubber molded body can use what was produced with various shaping | molding methods, such as press molding, injection molding, extrusion molding, blow molding, and gas assist molding. Among these, a molded body of silicone rubber is preferable, and when the rubber molded body (D) is a molded body of silicone rubber, higher adhesive force can be obtained with the silicone-based adhesive layer (C).

樹脂と接着性を示すシリコーンゴム層(B)
本発明における樹脂と接着性を示すシリコーンゴム層は、特許文献1に記載されたような、高温高圧下で樹脂に接触することで樹脂と接着する、公知の「樹脂と接着性を示すシリコーンゴム(組成物)」を加熱及び加圧処理して成形(硬化)したゴム層である。
Silicone rubber layer (B) showing adhesiveness with resin
The silicone rubber layer exhibiting adhesiveness with the resin in the present invention is a known “silicone rubber exhibiting adhesiveness with resin, as described in Patent Document 1, which adheres to the resin by contacting the resin under high temperature and high pressure. It is a rubber layer formed (cured) by heating and pressurizing the “composition”.

本発明において、当該ゴム層の形成に使用する「樹脂と接着性を示すシリコーンゴム(組成物)」としては、特許文献1に記載されたシリコーンゴム(組成物)は特に好ましいものである。すなわち、(a)加熱硬化型のオルガノポリシロキサン組成物と、(b)補強性シリカ微粉末と、(c)エポキシ当量が100〜5000g/1molで、分子中に芳香族環を少なくとも1個有する有機化合物又は有機珪素化合物とを必須成分とするシリコーンゴム組成物は特に好ましいものである。当該シリコーンゴム組成物における各成分の組成比は(a)加熱硬化型のオルガノポリシロキサン組成物100重量部当たり、(b)補強性シリカ微粉末 1〜100重量部、(c)エポキシ当量が100〜5000g/1molで、分子中に芳香族環を少なくとも1個有する有機化合物又は有機珪素化合物0.1〜50重量部である。また、本発明における当該シリコーンゴム組成物の各成分(a)〜(c)の好適態様は特許文献1をそのまま参照できる。例えば、(a)成分の熱硬化性オルガノポリシロキサン組成物としては、付加反応硬化型オルガノポリシロキサン組成物又は有機過酸化物硬化型オルガノポリシロキサン組成物とすることが好ましく、特に付加反応硬化型のオルガノポリシロキサン組成物が好ましい。この場合、付加反応硬化型オルガノポリシロキサン組成物は、(1)1分子中に平均2個以上のアルケニル基を有するオルガノポリシロキサン 100重量部(2)1分子中に平均2個以上の珪素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン 0.1〜50重量部(3)付加反応触媒 触媒量からなるものであることが好ましく、有機過酸化物硬化型オルガノポリシロキサン組成物は、(i)1分子中に平均2個以上のアルケニル基を有するオルガノポリシロキサン 100重量部(ii)有機過酸化物 触媒量からなるものであることが好ましい。   In the present invention, the silicone rubber (composition) described in Patent Document 1 is particularly preferable as the “silicone rubber (composition) exhibiting adhesiveness with resin” used for forming the rubber layer. That is, (a) a thermosetting organopolysiloxane composition, (b) a reinforcing silica fine powder, and (c) an epoxy equivalent of 100 to 5000 g / 1 mol and having at least one aromatic ring in the molecule. A silicone rubber composition containing an organic compound or an organosilicon compound as essential components is particularly preferable. The composition ratio of each component in the silicone rubber composition is (b) 1 to 100 parts by weight of reinforcing silica fine powder per 100 parts by weight of (a) heat-curable organopolysiloxane composition, and (c) epoxy equivalent is 100. The organic compound or organosilicon compound having at least one aromatic ring in the molecule at 0.1 to 50 g / 1 mol is 0.1 to 50 parts by weight. Moreover, patent document 1 can be referred as it is for the suitable aspect of each component (a)-(c) of the said silicone rubber composition in this invention. For example, the thermosetting organopolysiloxane composition of component (a) is preferably an addition reaction curable organopolysiloxane composition or an organic peroxide curable organopolysiloxane composition, particularly an addition reaction curable type. The organopolysiloxane composition is preferred. In this case, the addition reaction curable organopolysiloxane composition comprises (1) 100 parts by weight of an organopolysiloxane having an average of two or more alkenyl groups in one molecule and (2) an average of two or more silicon atoms in one molecule. 0.1 to 50 parts by weight of (3) addition reaction catalyst It is preferable that the catalyst comprises a catalytic amount, and the organic peroxide curable organopolysiloxane composition is ( i) Organopolysiloxane having an average of 2 or more alkenyl groups in one molecule 100 parts by weight (ii) Organic peroxide It is preferable that the catalyst consists of a catalyst amount.

当該シリコーンゴム(組成物)の調製は、上記した(a)〜(c)成分、任意成分を常温で均一に混合するだけでも得ることが可能であるが、好ましくは、(b)成分は、(a)成分のうち(2)、(3)成分、或いは(ii)成分を除いた成分とプラネタリーミキサーやニーダー等で100〜200℃の範囲で1〜4時間熱処理し、その時点で上記処理剤を添加してもよい。その後室温で(2)、(3)成分、或いは(ii)成分、(C)成分を混合して組成物を得ることができる。   Preparation of the silicone rubber (composition) can be obtained by simply mixing the above-described components (a) to (c) and optional components evenly at room temperature. Preferably, the component (b) Among components (a), (2), (3), or components other than (ii) are heat treated with a planetary mixer, kneader, etc. in the range of 100 to 200 ° C. for 1 to 4 hours, at which point A processing agent may be added. Thereafter, the composition can be obtained by mixing the components (2), (3), or (ii), and (C) at room temperature.

当該「樹脂と接着性を示すシリコーンゴム(組成物)」は、市販品をそのまま使用でき、好ましい例として、例えば、X−34−1547A/B、X−34−1625A/B(いずれも商品名、信越化学工業社製)等が挙げられる。   As the “silicone rubber (composition) exhibiting adhesiveness with resin”, a commercially available product can be used as it is, and preferred examples thereof include, for example, X-34-1547A / B, X-34-1625A / B (both trade names , Manufactured by Shin-Etsu Chemical Co., Ltd.).

本発明において当該ゴム層(B)の形成方法、すなわち、「樹脂と接着性を示すシリコーンゴム(組成物)」を層状に成形する方法は、「樹脂と接着性を示すシリコーンゴム(組成物)」の粘度により自由に選択することができ、注入成形、プレス(圧縮)成形、射出成形、押出成形、トランスファー成形等いずれの方法を採用してもよい。その硬化条件は、通常60〜200℃で10秒〜24時間の範囲内で加熱成形することができる。かかる加熱成形の際のシリコーンゴム(組成物)は樹脂(樹脂成形体)に対して加圧されており、その樹脂に対する接触圧は、各成形方法での公知の一般的な成形条件であればよい。   In the present invention, the method for forming the rubber layer (B), that is, the method for forming a “silicone rubber (composition) exhibiting adhesiveness with a resin” in a layer form is the “silicone rubber (composition) exhibiting adhesiveness with a resin”. The viscosity can be freely selected, and any method such as injection molding, press (compression) molding, injection molding, extrusion molding, or transfer molding may be employed. The curing conditions are usually 60-200 ° C. and thermoforming within a range of 10 seconds to 24 hours. The silicone rubber (composition) at the time of such heat molding is pressurized against the resin (resin molded body), and the contact pressure with respect to the resin is a known general molding condition in each molding method. Good.

本発明において、当該シリコーンゴム層(B)の厚みは接着性とプレス成形で成形する成形品の設計の自由度を損なわないという観点から比較的薄い厚みにするのがよく、0.5〜2.0mmが好ましく、より好ましくは1.0〜1.5mmである。   In the present invention, the thickness of the silicone rubber layer (B) is preferably a relatively thin thickness from the viewpoint of adhesion and freedom of design of a molded product molded by press molding. 0.0 mm is preferable, and 1.0 to 1.5 mm is more preferable.

シリコーン系接着剤層(C)
本発明においてシリコーン系接着剤層(C)を構成するシリコーン系接着剤は、シリコーン樹脂、シリコーンゴム(RTV)等を主材料として含み、加熱下(例えば80〜100℃程度)または常温(10〜30℃程度)下で硬化し、硬化後は弾性接着層を形成するものであり、特にシリコーンRTVは常温で硬化するので、加熱を必要とせず、熱経済性に優れ好適である。好適なシリコーン系接着剤としては、例えば、KM−45−TM(信越化学社製、商品名)等が挙げられる。
Silicone adhesive layer (C)
In the present invention, the silicone-based adhesive constituting the silicone-based adhesive layer (C) contains a silicone resin, silicone rubber (RTV) or the like as a main material, and is heated (for example, about 80 to 100 ° C.) or at room temperature (10 to 10 ° C.). Under the condition of about 30 ° C., an elastic adhesive layer is formed after curing. In particular, since silicone RTV is cured at room temperature, it does not require heating and is excellent in thermal economy. Suitable silicone adhesives include, for example, KM-45-TM (manufactured by Shin-Etsu Chemical Co., Ltd., trade name).

本発明において、当該シリコーン系接着剤層(C)の厚みは、接着性とプレス成形で成形する成形品の設計の自由度を損なわないという観点から、比較的薄い厚みにするのがよく、0.5〜2.0mmが好ましく、より好ましくは1.0〜1.5mmである。   In the present invention, the thickness of the silicone-based adhesive layer (C) is preferably a relatively thin thickness from the viewpoint of adhesion and freedom of design of a molded product molded by press molding. 0.5 to 2.0 mm is preferable, and 1.0 to 1.5 mm is more preferable.

図1に示す一例の複合体成形体1は、円柱状の樹脂成形体2の側面外周に、その外側面の高さ方向の略中間位置に側面の全周に亘って連続する溝(アンダーカット)5Aを形成した円筒状のゴム成形体5を外装して、円柱状の樹脂成形体1と円筒状のゴム成形体5とを一体化したものである。該一例の複合成形体1は、例えば、複写機、プリンター等の画像形成装置における排紙ローラー等の紙搬送ローラーとして好適であり、該紙搬送ローラーの場合、円柱状の樹脂成形体2にはPPEの成形体を使用し、円筒状のゴム成形体5にはシリコーンゴムの成形体を使用するのが特に好ましい。   An example of the composite molded body 1 shown in FIG. 1 is a groove (undercut) continuously formed on the outer periphery of a side surface of a cylindrical resin molded body 2 over the entire periphery of the side surface at a substantially intermediate position in the height direction of the outer surface. ) The cylindrical rubber molded body 5 on which 5A is formed is packaged, and the columnar resin molded body 1 and the cylindrical rubber molded body 5 are integrated. The composite molded body 1 of the example is suitable as a paper transport roller such as a paper discharge roller in an image forming apparatus such as a copying machine or a printer. In the case of the paper transport roller, the cylindrical resin molded body 2 includes It is particularly preferable to use a PPE molded body and use a silicone rubber molded body for the cylindrical rubber molded body 5.

かかる図1に示す構造(形状)のPPEの成形体とシリコーンゴムとを一体化させた複合成形体を紙搬送ローラーに使用した場合、外面(紙と接触する面)が柔らかく、中が硬いため、高い紙搬送力が得られる。
当該紙搬送ローラーの寸法は、具体的には、図1(b)中のL1が10〜30mm、L2が8〜10mm、L3が20〜30mm、L4が1〜5mm、L5が1〜10mmである。
When a composite molded body in which a molded body of PPE having the structure (shape) shown in FIG. 1 and silicone rubber are integrated is used for a paper transport roller, the outer surface (the surface in contact with the paper) is soft and the inside is hard. High paper conveyance force can be obtained.
Specifically, the dimensions of the paper transport roller are as follows: L1 in FIG. 1B is 10 to 30 mm, L2 is 8 to 10 mm, L3 is 20 to 30 mm, L4 is 1 to 5 mm, and L5 is 1 to 10 mm. is there.

本発明の複合成形体は、以下の方法で作製される。
図2(a)〜(c)は、図1の円柱状の樹脂成形体1の側面外周に、その外側面の全周に亘って連続する溝(アンダーカット)を形成した円筒状のゴム成形体5を外装して、円柱状の樹脂成形体1と円筒状のゴム成形体5とを一体化した複合成形体1の製造工程を示す工程別の断面図である。
The composite molded body of the present invention is produced by the following method.
2 (a) to 2 (c) are cylindrical rubber moldings in which grooves (undercuts) are formed on the outer periphery of the cylindrical resin molded body 1 shown in FIG. It is sectional drawing according to process which shows the manufacturing process of the composite molded object 1 which packaged the body 5 and integrated the columnar resin molded object 1 and the cylindrical rubber molded object 5. FIG.

かかる図2(a)〜(c)に示されるように、本発明の複合成形体の作製にあっては、先ず、樹脂と接着性を示すシリコーンゴム(組成物)を樹脂成形体2に接触させた状態で層状に成形してゴム層3を形成する(図2(a))。この成形は前記したようにシリコーンゴム(組成物)の溶融物を樹脂成形体に接触させた状態で加熱硬化させることで行われる。成形(硬化)条件は、前記したように、通常60〜200℃で10秒〜24時間の範囲内で行われる。その際、シリコーンゴム(組成物)を樹脂成形体2に10〜100kgf/cm程度の接触圧で接触させることが必要である。なお、作業性、経済性等の点から、射出成形装置を使用し、所定の形状に設計したキャビティを有する金型のキャビティ内に樹脂成形体2をインサートし、当該シリコーンゴム(組成物)をキャビティ内に射出して成形するのが好ましい。 As shown in FIGS. 2 (a) to 2 (c), in producing the composite molded body of the present invention, first, a silicone rubber (composition) showing adhesiveness with the resin is brought into contact with the resin molded body 2. In this state, the rubber layer 3 is formed by forming into a layer shape (FIG. 2A). As described above, this molding is performed by heat-curing the molten silicone rubber (composition) in contact with the resin molding. As described above, the molding (curing) conditions are usually performed at 60 to 200 ° C. for 10 seconds to 24 hours. At that time, it is necessary to bring the silicone rubber (composition) into contact with the resin molded body 2 with a contact pressure of about 10 to 100 kgf / cm 2 . From the viewpoint of workability, economy, etc., using an injection molding device, the resin molded body 2 is inserted into the cavity of a mold having a cavity designed in a predetermined shape, and the silicone rubber (composition) is inserted. Preferably, it is molded by injection into the cavity.

次に、樹脂成形体2と接着したシリコーンゴム層3にシリコーン系接着剤4aを塗布する(図2(b))。このシリコーン系接着剤の塗布方法は特に限定されず、例えば、スピンコート等の汎用の方法で行えばよい。   Next, a silicone adhesive 4a is applied to the silicone rubber layer 3 adhered to the resin molded body 2 (FIG. 2B). The method for applying the silicone adhesive is not particularly limited, and may be performed by a general-purpose method such as spin coating.

次に、塗布したシリコーン系接着剤4aにゴム成形体5を接触させた状態で、シリコーン系接着剤4aを硬化させることで、ゴム層3にシリコーン系接着剤層4を介してゴム成形体5が接着し、樹脂成形体2とゴム成形体5とが一体化した複合成形体1が完成する(図2(c))。前記したように、シリコーンRTVを主材とするシリコーン系接着剤を使用すれば、シリコーン系接着剤を常温で硬化でき、加熱を必要とせず、熱経済性に優れる。   Next, in a state where the rubber molded body 5 is in contact with the applied silicone adhesive 4a, the silicone adhesive 4a is cured, whereby the rubber molded body 5 is bonded to the rubber layer 3 via the silicone adhesive layer 4. Is bonded to complete the composite molded body 1 in which the resin molded body 2 and the rubber molded body 5 are integrated (FIG. 2C). As described above, when a silicone-based adhesive mainly composed of silicone RTV is used, the silicone-based adhesive can be cured at room temperature, does not require heating, and is excellent in thermal economy.

以下、実施例を示して本発明をより具体的に説明するが、本発明は下記の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited by the following Example.

実施例1
PPE(ユピエースGAV2515/三菱樹脂エンジニアリングプラスチック社製)からなる横断面の直径(φ)が14mm、高さ(L)が10mmの円柱状成形体を用意した。この円柱状成形体を射出成形装置の金型のキャビティ内にインサートし、樹脂と接着性を示すシリコーンゴム(X−34−1547A/B、信越化学工業社製)を150℃に加熱溶融した溶融物をキャビティに射出して、円柱状成形体の側面全域を覆う厚さ1mmのシリコーンゴム層を形成した。射出成形条件は、射出時間:1秒、冷却時間:20秒、射出圧力:140kgf/cm、型締め圧力25トン、第1金型温度:120℃、第2金型温度:120℃とした。この後、型開きして、側面全周が厚さ1mmのシリコーンゴム層で被覆された円柱状成形体(図2(a)の状態)を取り出した。
Example 1
A cylindrical molded body having a cross-sectional diameter (φ) of 14 mm and a height (L) of 10 mm made of PPE (Iupiace GAV2515 / manufactured by Mitsubishi Plastics Engineering Plastics) was prepared. This cylindrical molded body is inserted into a mold cavity of an injection molding apparatus, and a silicone rubber (X-34-1547A / B, manufactured by Shin-Etsu Chemical Co., Ltd.) showing adhesiveness with resin is heated and melted at 150 ° C. The product was injected into the cavity to form a 1 mm thick silicone rubber layer covering the entire side surface of the cylindrical molded body. The injection molding conditions were: injection time: 1 second, cooling time: 20 seconds, injection pressure: 140 kgf / cm 2 , mold clamping pressure 25 tons, first mold temperature: 120 ° C., second mold temperature: 120 ° C. . Thereafter, the mold was opened, and a cylindrical molded body (in the state shown in FIG. 2A) whose entire circumference was covered with a silicone rubber layer having a thickness of 1 mm was taken out.

次に、上記の円柱状成形体の側面全域を覆う厚さ1mmのシリコーンゴム層の外周面に略均一な厚みとなるようにシリコーン系接着剤(KM−45−T/信越化学工業社製)を1g塗布し(図2(b)の状態)、そして、これを、外径(φ)が20mm、内径(φ)が16mm、高さ(L)が10mmの円筒状であって、その外側面の高さ方向の略中間位置に側面の全周に亘って連続する溝深さ1mm、溝幅2mmの断面コ字状の溝(アンダーカット)を設けた、シリコーンゴムからなる溝付き円筒状成形体の内部空間に挿入し、温度25℃、湿度25%の環境下でシリコーン系接着剤を48時間かけて硬化させて、PPEからなる円柱状成形体の側面にシリコーンゴムからなる溝付き円筒状成形体が外装されて一体化した複合成形体(図2(c))を完成させた。   Next, a silicone-based adhesive (KM-45-T / manufactured by Shin-Etsu Chemical Co., Ltd.) so as to have a substantially uniform thickness on the outer peripheral surface of a 1 mm thick silicone rubber layer covering the entire side surface of the cylindrical molded body. 1g (the state shown in FIG. 2 (b)), and this is a cylindrical shape having an outer diameter (φ) of 20 mm, an inner diameter (φ) of 16 mm, and a height (L) of 10 mm. A grooved cylindrical shape made of silicone rubber with a groove depth of 1 mm and a groove width of 2 mm (undercut) that is continuous across the entire circumference of the side surface at a substantially intermediate position in the height direction of the side surface. Insert into the inner space of the molded body, cure the silicone adhesive for 48 hours in an environment of temperature 25 ° C. and humidity 25%, and form a cylindrical cylinder with groove made of silicone rubber on the side of the cylindrical molded body made of PPE. Composite molded body (Fig. 2 ( c)) was completed.

上記と同様の手順で同様の複合成形体をさらに2個作製し、合計3個の複合成形体のそれぞれについて下記の方法で接着後トルクを測定して、接着強度を評価した。   Two more composite molded bodies were produced in the same procedure as above, and the post-adhesion torque was measured for each of a total of three composite molded bodies by the following method to evaluate the adhesive strength.

[接着後トルクの測定方法]
図3(a)に示すように、複合成形体1にその軸心が複合成形体1の軸心と一致する直径(φ)8mmの円形孔からなる貫通孔13をドリル等で孔空け加工し、次に、複合成形体1の外周面を複合成形体1の軸心に対して直交する相対する2方向から研削して、軸心に平行でかつ軸心から等距離離れた対向する2つの平面H1、H2を形成した後、前記の円形孔13に直径(φ)8.10mmの金属棒14を圧入する(図3(b))。平面H1と平面H2間の距離(L)は、図1中のL3の0.9倍(L3×0.9)であり、ここでは、20mm×0.9=18mmとした。次に、図3(c)に示すように、距離(L)で離間させた一対の圧板11、12の間に、前記平面H1、H2を形成した複合成形体1を設置し、金属棒14をその軸線回りに回転させて、破壊が生じた時のトルクを測定した。なお、ここでの破壊とは、複合成形体1を構成する層2〜5中の隣接する二つの層間のうちの少なくとも一つの箇所で接着が解かれてしまうことを意味する。
[Measurement method of torque after bonding]
As shown in FIG. 3 (a), the composite molded body 1 is drilled with a drill or the like to form a through hole 13 consisting of a circular hole having a diameter (φ) of 8 mm whose axis coincides with the axis of the composite molded body 1. Next, the outer peripheral surface of the composite molded body 1 is ground from two opposite directions orthogonal to the axis of the composite molded body 1, and two opposing faces that are parallel to the axis and are equidistant from the axis. After forming the planes H1 and H2, a metal rod 14 having a diameter (φ) of 8.10 mm is press-fitted into the circular hole 13 (FIG. 3B). The distance (L) between the plane H1 and the plane H2 is 0.9 times L3 (L3 × 0.9) in FIG. 1, and here, 20 mm × 0.9 = 18 mm. Next, as shown in FIG. 3 (c), the composite molded body 1 having the planes H1 and H2 formed between the pair of pressure plates 11 and 12 separated by a distance (L) is installed, and the metal rod 14 Was rotated around its axis to measure the torque when the breakage occurred. In addition, destruction here means that adhesion | attachment will be released | released in the at least 1 location of the two adjacent layers in the layers 2-5 which comprise the composite molded object 1. FIG.

下記表1がその結果であり、PPEの円柱状成形体とシリコーンゴムの円筒状成形体との間に界面剥離は生じず、接着後トルクは64〜65kgf・cmであった。なお、試験後のシリコーンゴムの円筒状成形体は破損していたため、実際の接着強度は表1の値よりも大きいと考えられる。   The results are shown in Table 1 below. Interfacial delamination did not occur between the cylindrical molded body of PPE and the cylindrical molded body of silicone rubber, and the post-adhesion torque was 64-65 kgf · cm. In addition, since the cylindrical molded body of the silicone rubber after the test was damaged, the actual adhesive strength is considered to be larger than the values in Table 1.

Figure 2005138379
Figure 2005138379

比較例1
PPE(ユピエースGAV2515/三菱樹脂エンジニアリングプラスチック社製)からなる横断面の直径(φ)が16mm、高さ(L)が10mmの円柱状成形体を用意した。次に、該円柱状成形体の側面全域に略均一な厚みとなるようにシリコーン系接着剤(KM−45−T/信越化学工業社製)を1g塗布し、これを、実施例1で用いたものと同じシリコーンゴムからなる溝付き円筒状成形体の内部空間に挿入し、温度25℃、湿度25%の環境下でシリコーン系接着剤を48時間かけて硬化させて、PPEからなる円柱状成形体の側面にシリコーンゴムからなる溝付き円筒状成形体が外装されて一体化した複合成形体を完成させた。さらに同様の複合成形体をさらに2個作製し、合計3個の複合成形体のそれぞれについて前記の方法で接着後トルクを測定して、接着強度を評価した。下記表2がその結果であり、PPEの円柱状成形体とシリコーンゴムの円筒状成形体との間には界面剥離が生じ、その接着後トルクは26〜28kgf・cmであった。
Comparative Example 1
A cylindrical shaped body having a cross-sectional diameter (φ) of 16 mm and a height (L) of 10 mm made of PPE (Iupiace GAV2515 / Mitsubishi Resin Engineering Plastics) was prepared. Next, 1 g of a silicone-based adhesive (KM-45-T / manufactured by Shin-Etsu Chemical Co., Ltd.) is applied over the entire side surface of the cylindrical molded body so as to have a substantially uniform thickness. Inserted into the inner space of a grooved cylindrical molded body made of the same silicone rubber as that used, and cured with a silicone adhesive for 48 hours in an environment of a temperature of 25 ° C. and a humidity of 25%. A composite molded body in which a grooved cylindrical molded body made of silicone rubber was packaged and integrated on the side surface of the molded body was completed. Furthermore, two similar composite molded bodies were produced, and the post-adhesion torque was measured by the above-described method for each of a total of three composite molded bodies to evaluate the adhesive strength. The results are shown in Table 2 below. Interfacial peeling occurred between the cylindrical molded body of PPE and the cylindrical molded body of silicone rubber, and the torque after adhesion was 26 to 28 kgf · cm.

Figure 2005138379
Figure 2005138379

比較例2
PPE(ユピエースGAV2515/三菱樹脂エンジニアリングプラスチック社製)からなる横断面の直径(φ)が16mm、高さ(L)が10mmの円柱状成形体を用意した。次に、上記の円柱状成形体の側面全域をプライマー(トルエン)処理後、該側面全域に略均一な厚みとなるようにシリコーン系接着剤(KM−45−T/信越化学工業社製)を1g塗布し、これを、実施例1で用いたものと同じシリコーンゴムからなる溝付き円筒状成形体の内部空間に挿入し、温度25℃、湿度25%の環境下でシリコーン系接着剤を48時間かけて硬化させて、PPEからなる円柱状成形体の側面にシリコーンゴムからなる溝付き円筒状成形体が外装されて一体化した複合成形体を完成させた。さらに同様の複合成形体をさらに2個作製し、合計3個の複合成形体のそれぞれについて前記の方法で接着後トルクを測定して、接着強度を評価した。下記表3がその結果であり、PPEの円柱状成形体とシリコーンゴムの円筒状成形体との間には界面剥離が生じ、その接着後トルクは35〜40kgf・cmであった。
Comparative Example 2
A cylindrical shaped body having a cross-sectional diameter (φ) of 16 mm and a height (L) of 10 mm made of PPE (Iupiace GAV2515 / Mitsubishi Resin Engineering Plastics) was prepared. Next, after the primer (toluene) treatment is performed on the entire side surface of the cylindrical molded body, a silicone-based adhesive (KM-45-T / manufactured by Shin-Etsu Chemical Co., Ltd.) is applied so that the entire side surface has a substantially uniform thickness. 1 g was applied, and this was inserted into the inner space of a grooved cylindrical molded body made of the same silicone rubber as used in Example 1, and a silicone adhesive was applied in an environment of a temperature of 25 ° C. and a humidity of 25%. It was cured over time, and a cylindrical molded body made of PPE was covered with a cylindrical molded body with a groove made of silicone rubber to complete a composite molded body integrated. Furthermore, two similar composite molded bodies were produced, and the post-adhesion torque was measured by the above-described method for each of a total of three composite molded bodies to evaluate the adhesive strength. The results are shown in Table 3 below. Interfacial peeling occurred between the cylindrical molded body of PPE and the cylindrical molded body of silicone rubber, and the torque after adhesion was 35 to 40 kgf · cm.

Figure 2005138379
Figure 2005138379

本発明の樹脂成形体とアンダーカット部を有するゴム成形体とが一体化した複合成形体の一例の斜視図(図1(a))と断面図(図1(b))である。It is the perspective view (FIG. 1 (a)) and sectional drawing (FIG.1 (b)) of an example of the composite molded object which the resin molded object of this invention and the rubber molded object which has an undercut part integrated. 図2(a)〜図2(c)は図1の複合成形体の製造工程を示す工程別断面図である。2 (a) to 2 (c) are cross-sectional views showing processes for manufacturing the composite molded body of FIG. 図3(a)〜図3(c)は複合成形体の接着後トルクの測定方法の説明図である。FIG. 3A to FIG. 3C are explanatory views of a method for measuring the post-adhesion torque of the composite molded body.

符号の説明Explanation of symbols

1 複合成形体
2 樹脂成形体
3 樹脂と接着性を示すシリコーンゴム層
4 シリコーン系接着剤
5 アンダーカット部を有するゴム成形体
DESCRIPTION OF SYMBOLS 1 Composite molded object 2 Resin molded object 3 Silicone rubber layer which shows resin and adhesiveness 4 Silicone type adhesive agent 5 Rubber molded object which has an undercut part

Claims (4)

樹脂成形体(A)に樹脂と接着性を示すシリコーンゴム層(B)が接着し、該シリコーンゴム層(B)にシリコーン系接着剤層(C)を介してアンダーカット部を有するゴム成形体(D)が接着してなること特徴とする、樹脂成形体とゴム成形体とが一体化した複合成形体。   A rubber molded body in which a silicone rubber layer (B) exhibiting adhesiveness with a resin is bonded to the resin molded body (A), and the silicone rubber layer (B) has an undercut portion through the silicone adhesive layer (C). A composite molded body in which a resin molded body and a rubber molded body are integrated, wherein (D) is bonded. 樹脂成形体(A)がPPEの成形体であり、ゴム成形体(D)がシリコーンゴムの成形体である、請求項1記載の複合成形体。   The composite molded body according to claim 1, wherein the resin molded body (A) is a molded body of PPE and the rubber molded body (D) is a molded body of silicone rubber. 樹脂と接着性を示すシリコーンゴムを樹脂成形体に接触させた状態で層状に成形してゴム層を形成した後、該ゴム層にシリコーン系接着剤を塗布し、次いで該シリコーン系接着剤にアンダーカット部を有するゴム成形体を接触させた状態で、該シリコーン系接着剤を硬化させることを特徴とする、樹脂成形体とゴム成形体とが一体化した複合成形体の製造方法。   A rubber layer is formed by forming a rubber layer in a state where a resin and a silicone rubber exhibiting adhesiveness are in contact with the resin molded body, and then a silicone adhesive is applied to the rubber layer, and then the silicone adhesive is undercoated. A method for producing a composite molded body in which a resin molded body and a rubber molded body are integrated, wherein the silicone-based adhesive is cured in a state where a rubber molded body having a cut portion is brought into contact therewith. シリコーン系接着剤が常温硬化型シリコーン系接着剤である、請求項3記載の方法。   The method according to claim 3, wherein the silicone adhesive is a room temperature curable silicone adhesive.
JP2003376195A 2003-11-05 2003-11-05 Composite molded product and its manufacturing method Pending JP2005138379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376195A JP2005138379A (en) 2003-11-05 2003-11-05 Composite molded product and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376195A JP2005138379A (en) 2003-11-05 2003-11-05 Composite molded product and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005138379A true JP2005138379A (en) 2005-06-02

Family

ID=34687338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376195A Pending JP2005138379A (en) 2003-11-05 2003-11-05 Composite molded product and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005138379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009119A (en) * 2005-07-01 2007-01-18 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and integrally molded product
JP2007077205A (en) * 2005-09-12 2007-03-29 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and integrally molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009119A (en) * 2005-07-01 2007-01-18 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and integrally molded product
JP2007077205A (en) * 2005-09-12 2007-03-29 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate resin composition and integrally molded product

Similar Documents

Publication Publication Date Title
WO2012073775A1 (en) Method for producing metal composite, and chassis for electronic equipment
JP2004529758A5 (en)
JP2011079289A (en) Joint structure and joining process of fiber reinforced plastic
ATE458665T1 (en) COMPONENT, IN PARTICULAR EXTERNAL SKIN COMPONENT FOR A VEHICLE
WO2008056161A8 (en) Foamed tools
JPWO2019188020A1 (en) Internal mold release agent for fiber reinforced composite material, fiber reinforced composite material, its molding method and joining method of fiber reinforced resin molded product
JP2009073088A (en) Insert molded article and its manufacturing method
JP4112378B2 (en) Composite of metal and thermoplastic resin composition and method for producing the same
JP2005138379A (en) Composite molded product and its manufacturing method
JP2016016594A (en) Machine parts made of metal and rubber and method for producing the same
WO2023127665A1 (en) Joined body manufacturing method and base material manufacturing method
WO2008078681A1 (en) Fixing member and process for producing the same
CN101218082B (en) Method for producing a coated component
JP2009500200A5 (en)
JP7274466B2 (en) Fluoroelastomer encased elastomer tools for composite manufacturing
WO2006048908A3 (en) Article having an integrated structure of composite material and thermoplastic or elastomer material and process for the production of the said article
JP3208839U (en) louver
JPH10323845A (en) Method for producing silicone rubber o-ring and silicone rubber o-ring
KR101932621B1 (en) Manufacturing method of adhesion film for insert injection molding
JP2017160993A (en) Process of manufacture of gasket, flexible molding tool, and gasket
JP4911251B2 (en) Mold
JPH0259328A (en) Manufacture of frp container
JP4347533B2 (en) Belt manufacturing method
JPWO2019066022A1 (en) Reinforcing sheet, reinforcing member, reinforcing kit, manufacturing method of reinforcing sheet and manufacturing method of reinforcing member
CN116056309B (en) High-adhesion flexible substrate and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630