[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005126763A - Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method - Google Patents

Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method Download PDF

Info

Publication number
JP2005126763A
JP2005126763A JP2003363565A JP2003363565A JP2005126763A JP 2005126763 A JP2005126763 A JP 2005126763A JP 2003363565 A JP2003363565 A JP 2003363565A JP 2003363565 A JP2003363565 A JP 2003363565A JP 2005126763 A JP2005126763 A JP 2005126763A
Authority
JP
Japan
Prior art keywords
coating
film
coating layer
intermetallic compound
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363565A
Other languages
Japanese (ja)
Inventor
Hitoshi Tanaka
仁志 田中
Akira Matsuda
晃 松田
Satoshi Suzuki
智 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003363565A priority Critical patent/JP2005126763A/en
Publication of JP2005126763A publication Critical patent/JP2005126763A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Contacts (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating material which is low in friction coefficient and contact resistance, excellent in oxidation resistance, and has consistent characteristic for a long time. <P>SOLUTION: In the coating material having a conductive base material 3, and a coating layer 4 formed on the base material 3, the coating layer 4 contains Sn and an intermetallic compound with noble metals at least on a surface 4a side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は被覆材及びその製造方法、ならびに、その被覆材を用いた電気・電子部品及びゴム接点部品に関する。更に詳しくは、摩擦特性及び耐熱性が良好で、例えば自動車のエンジンルームのような高温環境下で使用されるコネクタ部品または接点部品の素材として好適な被覆材に関する。また、経時的な接触抵抗の増加が抑制され、導電性ゴムを含むゴム接点部品の素材として好適な被覆材に関する。   The present invention relates to a covering material, a manufacturing method thereof, and an electric / electronic component and a rubber contact part using the covering material. More specifically, the present invention relates to a coating material that has good friction characteristics and heat resistance and is suitable as a material for connector parts or contact parts used in a high temperature environment such as an engine room of an automobile. In addition, the present invention relates to a covering material that suppresses an increase in contact resistance over time and is suitable as a material for rubber contact parts including conductive rubber.

基材と、基材表面を覆う被覆層とからなる被覆材は、様々な技術分野で使用されている。そして、その技術分野に応じて、基材及び被覆層の材料等は適宜選択されている。
例えば、電気・電子回路等に組み込まれるコネクタ部品や接点部品等の電子・電気部品においては、Cu若しくはCu合金からなる基材を金属Snで被覆した被覆材が用いられている。
Coating materials comprising a substrate and a coating layer covering the substrate surface are used in various technical fields. And according to the technical field, the material of a base material, a coating layer, etc. are selected suitably.
For example, in electronic / electric parts such as connector parts and contact parts incorporated in electric / electronic circuits, etc., a coating material in which a base material made of Cu or Cu alloy is coated with metal Sn is used.

このような被覆材のうち、自動車用の電気・電子部品に使用されるものについては、常温下で接触抵抗が低いことは勿論のこと、良好な耐熱性を有していること、すなわち高温下でも接触抵抗を低く維持できることが要求される。また、コネクタ部品に使用される被覆材については、コネクタ部品を接続するときの負荷、すなわち挿入力が低減する材料であることが望まれている。そして、パソコンのキーボード等において、導電性ゴムとともに接点部品を構成する被覆材については、長期的な安定性を有することが望まれている。   Among these coating materials, those used for electric and electronic parts for automobiles have good heat resistance, that is, low contact resistance at room temperature, that is, at high temperatures. However, it is required that the contact resistance can be kept low. Further, it is desired that the covering material used for the connector part is a material that reduces a load when the connector part is connected, that is, an insertion force. And in the keyboard of a personal computer etc., about the coating | covering material which comprises a contact component with conductive rubber, it is desired to have long-term stability.

従来、良好な耐熱性を有する被覆材としては、金属Snからなる被覆層とCu基材との間に、一般式Ni3Snで示される金属間化合物からなる中間層を備えたものが知られている(例えば、特許文献1参照。)。
また、低い挿入力で嵌合可能なコネクタ部品としては、金属Snからなる被覆層の厚みを最適化して、その厚みを薄くしたものが知られている(例えば、特許文献2参照。)。
Conventionally, as a coating material having good heat resistance, a coating material having an intermediate layer made of an intermetallic compound represented by the general formula Ni 3 Sn is known between a coating layer made of metal Sn and a Cu base material. (For example, refer to Patent Document 1).
Moreover, as a connector component that can be fitted with a low insertion force, there is known one in which the thickness of the coating layer made of metal Sn is optimized and the thickness is reduced (see, for example, Patent Document 2).

更に、長期的な安定性を有する被覆材としては、被覆層に含まれる金属Snの結晶粒径を最適化したものが知られている(例えば、特許文献3参照。)。
特開平4−329891号公報(特許請求の範囲等) 特開平10−302864号公報(特許請求の範囲等) 特開平5−308152号公報(特許請求の範囲等)
Furthermore, as a coating material having long-term stability, a material in which the crystal grain size of metal Sn contained in the coating layer is optimized is known (for example, see Patent Document 3).
JP-A-4-329891 (Claims etc.) Japanese Patent Laid-Open No. 10-302864 (claims) JP-A-5-308152 (Claims etc.)

しかしながら、特許文献1に記載された被覆材は、例えば150℃を超える高温下では、被覆層に含まれる金属Snが基材側から拡散してきた他の元素と反応することによって比較的接触抵抗が高い、例えばCuSn合金等の合金や化合物に転化して低接触抵抗状態が消失する。
特許文献2に記載された被覆材は、確かに挿入力の低減には有効であるが、高温下では、被覆層の厚みが薄いことから特許文献1の被覆材の場合よりも容易に金属Snが他の合金等に転化してその機能を喪失する。
However, the coating material described in Patent Document 1 has a relatively high contact resistance due to the reaction of the metal Sn contained in the coating layer with other elements diffused from the substrate side at a high temperature exceeding 150 ° C., for example. It is converted into a high alloy such as CuSn alloy or a compound and the low contact resistance state disappears.
Although the coating material described in Patent Document 2 is effective for reducing the insertion force, the thickness of the coating layer is thin at a high temperature, so that the metal Sn is more easily than in the case of the coating material of Patent Document 1. Will be converted to other alloys and lose its function.

したがって、これら特許文献1、2に記載された被覆材の耐熱性は満足できる水準にあるとは言い難いという問題がある。
また、特許文献3に記載された被覆材は、例えば25℃程度の室温環境下においても、被覆層の表面に接触抵抗の高い自然酸化膜が生成し、その厚みは経時的に増加する。
このように、特許文献3に記載された被覆材は、室温環境下で用いられたとしても、経時的に、その表面側から金属Snが酸化物に転化するので、例えば接触抵抗等の特性についてみたときに、長期的な安定性を必ずしも有しているとは言い難いという問題がある。
Therefore, there is a problem that it is difficult to say that the heat resistance of the coating materials described in Patent Documents 1 and 2 is at a satisfactory level.
Moreover, the coating material described in Patent Document 3 generates a natural oxide film having a high contact resistance on the surface of the coating layer even in a room temperature environment of about 25 ° C., for example, and its thickness increases with time.
Thus, even if the coating material described in Patent Document 3 is used in a room temperature environment, the metal Sn is converted into an oxide from the surface side over time. When viewed, there is a problem that it is difficult to say that it always has long-term stability.

本発明は上記した問題を解決し、接触抵抗が低く、低摩擦係数を有して挿入力の低減に有効であって、かつ、耐酸化性に優れて長期に亘って安定した特性を有する被覆材、及びその製造方法の提供を目的とする。さらに、本発明は、良好な耐熱性も兼ね備えた被覆材とその製造方法の提供を目的とする。そして更に、本発明は、それら被覆材を用いた電気・電子部品の提供を目的とし、より詳しくは、コネクタ部品及び接点部品、ならびに、ゴム接点部品の提供を目的とする。   The present invention solves the above-mentioned problems, has a low contact resistance, has a low friction coefficient, is effective in reducing the insertion force, and has excellent oxidation resistance and stable characteristics over a long period of time. An object is to provide a material and a manufacturing method thereof. Furthermore, this invention aims at provision of the coating | covering material which has favorable heat resistance, and its manufacturing method. Still further, the present invention aims to provide electrical / electronic parts using these coating materials, and more specifically, to provide connector parts, contact parts, and rubber contact parts.

上記した目的を達成するために、本発明においては、導電性を有する基材と、前記基材に形成された被覆層とを備えた被覆材において、前記被覆層は少なくとも表面側に、Snと、貴金属との金属間化合物を含むことを特徴とする被覆材が提供される(請求項1)。
具体的な態様としては、前記貴金属はAgであって、前記金属間化合物はAg3Snである(請求項2)。
In order to achieve the above-described object, in the present invention, in a covering material provided with a conductive base material and a coating layer formed on the base material, the coating layer is at least on the surface side, Sn and A covering material characterized by containing an intermetallic compound with a noble metal is provided.
As a specific aspect, the noble metal is Ag and the intermetallic compound is Ag 3 Sn (Claim 2).

前記被覆層は、前記基材側にNiとSnとの金属間化合物を更に含むことが好ましい(請求項3)。
また、本発明においては、電気回路に介装される電気・電子部品において、請求項3の被覆材を含むことを特徴とする電気・電子部品が提供される(請求項4)。
具体的な態様としては、前記電気・電子部品は、コネクタ部品又は接点部品であって(請求項5)、また、自動車に設置される電気回路に介挿される(請求項6)。
It is preferable that the coating layer further includes an intermetallic compound of Ni and Sn on the base material side.
According to the present invention, there is provided an electrical / electronic component characterized in that the electrical / electronic component interposed in the electrical circuit includes the coating material according to claim 3 (claim 4).
As a specific aspect, the electric / electronic component is a connector component or a contact component (Claim 5), and is inserted in an electric circuit installed in an automobile (Claim 6).

そして、本発明においては、絶縁基板と、前記絶縁基板上に互いに離隔して配置された少なくとも2つの請求項1〜3のいずれかの被覆材と、前記少なくとも2つの被覆材の被覆層の表面に同時に圧接可能に配置され、前記被覆層に圧接されたときに前記被覆材間を電気的に接続するための導電性ゴムとを備えたゴム接点部品が提供される(請求項7)。
また、本発明においては、導電性を有する基材と、前記基材に形成された被覆層とを備え、前記被覆層は少なくとも表面側にSnとAgとの金属間化合物を含む被覆材の製造方法において、前記基材上にSn及びAgを含む膜を成膜する成膜工程と、前記成膜工程で成膜されたSn及びAgを含む膜に熱処理を施して前記被覆層に転化させる熱処理工程とを備えていることを特徴とする被覆材の製造方法が提供される(請求項8)。
In the present invention, the insulating substrate, at least two coating materials according to any one of claims 1 to 3 disposed on the insulating substrate, and the surface of the coating layer of the at least two coating materials. A rubber contact part is provided, which is disposed so as to be capable of being pressed together at the same time, and includes a conductive rubber for electrically connecting the covering materials when pressed against the covering layer.
Moreover, in this invention, it is provided with the base material which has electroconductivity, and the coating layer formed in the said base material, The said coating layer manufactures the coating | covering material which contains the intermetallic compound of Sn and Ag at least on the surface side In the method, a film forming step for forming a film containing Sn and Ag on the substrate, and a heat treatment for converting the film containing Sn and Ag formed in the film forming step into the coating layer by performing a heat treatment And a process for producing a covering material characterized in that it comprises a step.

前記成膜工程に先立って前記基材上にNiを含む膜を成膜することが好ましい(請求項9)。
具体的な態様として、前記成膜工程では、Snを含むSn膜と、Agを含むAg膜とを前記基材上に順次成膜し、(請求項10)また、前記熱処理はリフロー処理若しくは熱拡散処理である(請求項11)。
Prior to the film formation step, a film containing Ni is preferably formed on the substrate.
As a specific aspect, in the film forming step, an Sn film containing Sn and an Ag film containing Ag are sequentially formed on the base material (claim 10). Diffusion processing (claim 11).

本発明の被覆材は、摩擦係数及び接触抵抗が低く、耐酸化性に優れて長期に亘り安定した特性を示す。したがって、この被覆材は、ゴム接点部品の素材として好適である。
また本発明の被覆材は、更に、良好な耐熱性を兼ね備え、例えば自動車エンジンルーム内のような高温若しくは硫黄を多く含む環境下に配置されるコネクタ部品及び接点部品の素材として好適である。
The coating material of the present invention has a low coefficient of friction and contact resistance, excellent oxidation resistance, and exhibits stable characteristics over a long period of time. Therefore, this covering material is suitable as a material for rubber contact parts.
Furthermore, the coating material of the present invention further has good heat resistance, and is suitable as a material for connector parts and contact parts that are arranged in a high temperature or sulfur-rich environment such as in an automobile engine room.

図1は、本発明の第一の実施形態に係る被覆材2を示している。この被覆材2は、例えば、各種の電気・電子部品の素材として使用することができる。
被覆材2は、導電性を有する基材3を備えている。基材3の材質は格段限定されることはない。例えば、被覆材2をコネクタ部品若しくは接点部品等の電気・電子部品として用いる場合には、当該部品に要求される機械的強度、耐熱性、導電性に応じて基材の材質を適宜選択することができる。より具体的には、基材の材質としては、純銅、リン青銅、黄銅、洋白、ベリリウム銅及びコルソン合金等の銅合金、純鉄、ステンレス鋼等の鉄合金、並びに、各種ニッケル合金を挙げることができる。更に基材は、これらの材質からなる素材の表面が、銅、コバルト、若しくはニッケル等で被覆された複合材であってもよい。そして更に基材は、導電性を有する高分子材料若しくはセラミックス材料であってもよく、または、絶縁性を有する高分子材料若しくはセラミックス材料を導電性材料で被覆した複合材であってもよい。なお、これらの材料のうち、純銅または銅合金が基材として好適である。
FIG. 1 shows a covering 2 according to the first embodiment of the present invention. This covering material 2 can be used, for example, as a material for various electric / electronic components.
The covering material 2 includes a base material 3 having conductivity. The material of the base material 3 is not particularly limited. For example, when the coating material 2 is used as an electrical / electronic component such as a connector component or a contact component, the material of the base material is appropriately selected according to the mechanical strength, heat resistance, and conductivity required for the component. Can do. More specifically, examples of the material of the base material include copper alloys such as pure copper, phosphor bronze, brass, western white, beryllium copper and Corson alloy, iron alloys such as pure iron and stainless steel, and various nickel alloys. be able to. Furthermore, the base material may be a composite material in which the surface of a material made of these materials is coated with copper, cobalt, nickel, or the like. Further, the base material may be a polymer material or ceramic material having conductivity, or may be a composite material obtained by coating a polymer material or ceramic material having insulation properties with a conductive material. Of these materials, pure copper or a copper alloy is suitable as the base material.

また、基材3の形状及び製造方法は格段限定されることはなく、基材は、例えば、圧延加工、鍛造加工、スリット加工若しくはプレス加工等によって製造された線材、条材、リボン材、及び、板材等であってもよい。更に基材は、めっき加工、マスク加工及びエッチング加工を適宜組み合わせて絶縁基板上に形成された、導体からなるパターンであってもよい。   Moreover, the shape and manufacturing method of the base material 3 are not particularly limited, and the base material is, for example, a wire material, strip material, ribbon material, and the like manufactured by rolling, forging, slitting, or pressing. It may be a plate material or the like. Further, the base material may be a pattern made of a conductor formed on the insulating substrate by appropriately combining plating, masking, and etching.

基材3の少なくとも一方の表面には被覆層4が形成されている。なお、被覆層4は基材3の両面に形成されていてもよい。
本発明の被覆材2においては、被覆層4の基材3とは反対の表面4aの側、すなわち、被覆材2において表出している被覆層4の表面4aの側には、Sn元素とAg元素とを含む金属間化合物(以下、SnAg金属間化合物という)が含まれている。
A coating layer 4 is formed on at least one surface of the substrate 3. The covering layer 4 may be formed on both surfaces of the base material 3.
In the coating material 2 of the present invention, Sn element and Ag are formed on the surface 4a side of the coating layer 4 opposite to the base material 3, that is, on the surface 4a side of the coating layer 4 exposed in the coating material 2. An intermetallic compound containing elements (hereinafter referred to as SnAg intermetallic compound) is included.

このSnAg金属間化合物は一般式Ag3Snで表され、接触抵抗が低く、かつ、良好な耐酸化性を有する安定な化合物である。したがって、本発明の被覆材は、長期間に亘り安定した特性を求められる接点部品の素材として好適である。
ここで、SnAg金属間化合物を被覆層4の表面4aの側に含むとは、少なくとも表面4a及びその近傍の領域に含むことをいう。その理由は、この領域の性状が、被覆材の接触抵抗及び耐酸化性に最も大きく影響するからである。なお、SnAg金属間化合物は被覆層4の厚み全体に亘って含まれていてもよい。
This SnAg intermetallic compound is represented by the general formula Ag 3 Sn, and is a stable compound having a low contact resistance and good oxidation resistance. Therefore, the coating material of the present invention is suitable as a material for contact parts that require stable characteristics over a long period of time.
Here, including the SnAg intermetallic compound on the surface 4a side of the coating layer 4 means including at least the surface 4a and the vicinity thereof. The reason is that the properties of this region have the greatest influence on the contact resistance and oxidation resistance of the coating material. Note that the SnAg intermetallic compound may be included throughout the thickness of the coating layer 4.

被覆層4に含まれるSnAg金属間化合物の存在形態は格別限定されることはない。例えば図2で示したように、被覆層4の最上層部がSnAg金属間化合物からなる単独層4Aとなっていてもよい。あるいは、例えばSn−Ag合金中に分散して存在していてもよい。またあるいは、SnAg金属間化合物は、形成されている被覆層において、Sn元素を含む膜と、Ag元素を含む膜とに後述する加熱処理を施すことによって生成する拡散層に含まれていても良い。そして、このように分散して存在している場合及び拡散層に含まれている場合には、被覆層4の基材3側に向かう深さ方向で、SnAg金属間化合物の濃度は勾配を有していても良い。   The existence form of the SnAg intermetallic compound contained in the coating layer 4 is not particularly limited. For example, as shown in FIG. 2, the uppermost layer portion of the coating layer 4 may be a single layer 4 </ b> A made of a SnAg intermetallic compound. Or you may exist disperse | distributing in Sn-Ag alloy, for example. Alternatively, the SnAg intermetallic compound may be contained in a diffusion layer generated by subjecting the formed coating layer to a film containing Sn element and a film containing Ag element, which will be described later. . In the case of being dispersed and present in the diffusion layer, the concentration of the SnAg intermetallic compound has a gradient in the depth direction toward the substrate 3 side of the coating layer 4. You may do it.

被覆層4中のAgの存在割合は、SnとAgの合計に対して1質量%以上、更に好ましくは3.5質量%以上とするのが良い。また、73質量%以下であることが好ましい。なぜならば、1質量%未満では顕著な効果は期待できない。また、3.5質量%以上になると、Sn−Ag合金の共晶組成を超えるので、特にリフロー処理によって製造したときにSnAg金属間化合物が粒状に析出し、接触抵抗を低く安定させるのに寄与する。また、Agの存在割合が73質量%を超えると、Ag3Snの組成よりもAgが多くなるため、マイグレーションや硫化の原因となる。 The abundance ratio of Ag in the coating layer 4 is 1% by mass or more, more preferably 3.5% by mass or more with respect to the total of Sn and Ag. Moreover, it is preferable that it is 73 mass% or less. Because, if it is less than 1% by mass, a remarkable effect cannot be expected. Further, if it is 3.5% by mass or more, it exceeds the eutectic composition of the Sn-Ag alloy, so that the SnAg intermetallic compound precipitates in a granular form, especially when manufactured by reflow treatment, and contributes to stabilizing the low contact resistance. To do. On the other hand, if the Ag content exceeds 73% by mass, Ag becomes larger than the composition of Ag 3 Sn, which causes migration and sulfurization.

図3は、本発明の第二の実施形態に係るゴム接点部品8の例を示しており、このゴム接点部品8は、例えば、キーボード、携帯電話、リモコン等に組込まれて使用される。
このゴム接点部品8は、絶縁基板10を備えている。絶縁基板10の表面には電気回路が形成されている。この電気回路は絶縁基板10上に、めっき加工、マスク加工、及びエッチング加工を順次施して形成された例えば銅等の導体からなるパターンであって、このパターンは、互いに離隔する少なくとも2つの被覆材2を含む。すなわち、導体を基材3として、その表面に被覆層4が形成されている。
FIG. 3 shows an example of the rubber contact part 8 according to the second embodiment of the present invention, and the rubber contact part 8 is used by being incorporated in, for example, a keyboard, a mobile phone, a remote controller or the like.
The rubber contact part 8 includes an insulating substrate 10. An electric circuit is formed on the surface of the insulating substrate 10. This electric circuit is a pattern made of a conductor such as copper, which is formed by sequentially performing plating, masking, and etching on the insulating substrate 10, and the pattern includes at least two covering materials that are separated from each other. 2 is included. That is, the coating layer 4 is formed on the surface of the conductor 3 as a base material.

そして、これら2つの被覆材2を覆うように、中空半球状のゴム材12が絶縁基板10上に配置されており、このゴム材12は弾性変形可能である。ゴム材12の頂部の内側には、導電性ゴム14が接着・固定されている。この導電性ゴム14、例えば、各種ゴム製の母材と、この母材中に分散した状態で含まれるカーボン粉末や金属粉末等の導電材とからなる。一方、ゴム材12の上側には、中間材16が配置され、更にキー部材18がこの中間材16の上側に配置されている。   A hollow hemispherical rubber material 12 is disposed on the insulating substrate 10 so as to cover these two coating materials 2, and the rubber material 12 can be elastically deformed. A conductive rubber 14 is bonded and fixed inside the top of the rubber material 12. The conductive rubber 14 is made of, for example, a base material made of various rubbers and a conductive material such as carbon powder or metal powder contained in a dispersed state in the base material. On the other hand, an intermediate member 16 is disposed above the rubber member 12, and a key member 18 is disposed above the intermediate member 16.

このゴム接点部品8によれば、キー部材18を下方に押し下げると、中間材16を介してゴム材12が押し潰されるので、2つの被覆材2の被覆層4の表面に導電性ゴム14が同時に圧接する。そして、この圧接された導電性ゴム14を介して、2つの被覆材2間は電気的に接続される。
ところで、近時、キーボード等にはソフトタッチ化が望まれており、導電性ゴム14と被覆材2との間の接触圧力は低下する傾向にある。そこで、被覆層4には、長期に亘りその表面に自然酸化膜が生成・成長しづらいことが求められている。なぜならば、導電性ゴム14は軟質であって、被覆層4の表面に摺接もしくは突き当てられたときに、被覆層4の表面に存在する高接触抵抗の自然酸化膜を突き破ることがほとんど不可能だからである。
According to this rubber contact component 8, when the key member 18 is pushed down, the rubber material 12 is crushed through the intermediate material 16, so that the conductive rubber 14 is formed on the surfaces of the coating layers 4 of the two coating materials 2. Weld together. Then, the two covering materials 2 are electrically connected through the pressed conductive rubber 14.
By the way, recently, soft touch is desired for a keyboard or the like, and the contact pressure between the conductive rubber 14 and the covering material 2 tends to decrease. Therefore, the coating layer 4 is required to have a natural oxide film that is difficult to generate and grow on the surface for a long period of time. This is because the conductive rubber 14 is soft and hardly pierces the natural oxide film having a high contact resistance existing on the surface of the coating layer 4 when being slidably contacted or abutted against the surface of the coating layer 4. Because it is possible.

また、携帯電話やリモコン等においては、省電力化を図るために弱電流化が進められており、被覆材の被覆層には、より一層、その接触抵抗の低いことが求められている。このようなことから、本発明の被覆材のように、耐酸化性に優れているので表面に厚い自然酸化膜が発生しづらく、かつ、接触抵抗の低い被覆層を有する被覆材は、ゴム接点部品の素材として好適である。   Further, in mobile phones, remote controllers, and the like, the current has been reduced to save power, and the coating layer of the coating material is required to have a lower contact resistance. Therefore, like the coating material of the present invention, the coating material having excellent oxidation resistance, so that a thick natural oxide film is hardly generated on the surface, and the coating material having a coating layer with low contact resistance is a rubber contact. It is suitable as a material for parts.

なお、被覆材2において表出している被覆層4の表面側には、上記したSn元素とAg元素とを含む金属間化合物に代えて、Sn元素と貴金属との金属間化合物が含まれていてもよい。Sn元素と貴金属との金属間化合物は、SnAg金属間化合物と同じように、低い接触抵抗と長期的な安定性を有するからである。
ここで、貴金属としては、Ag元素の外、Ru、Rh、Pd、Os、Ir、及びPtからなる白金属元素、並びに、Au元素があげられる。
Note that the surface side of the coating layer 4 exposed in the coating material 2 contains an intermetallic compound of Sn element and noble metal instead of the intermetallic compound containing Sn element and Ag element. Also good. This is because the intermetallic compound of the Sn element and the noble metal has low contact resistance and long-term stability like the SnAg intermetallic compound.
Here, examples of the noble metal include, in addition to the Ag element, a white metal element composed of Ru, Rh, Pd, Os, Ir, and Pt, and an Au element.

また、ゴム接点部品の素材として被覆材2を用いる場合、被覆層4の厚みは1〜3μmであることが好ましい。1μmより薄い場合には、耐酸化性の低下が生じることがあり、また、3μmを超えて厚い場合には、耐酸化性は飽和するばかりか、材料費及び製造コストの増加を招くからである。
図4は、本発明の第三の実施形態に係る自動車用の多極コネクタ部品の例20の分解斜視図を示している。
Moreover, when using the coating | covering material 2 as a raw material of rubber contact components, it is preferable that the thickness of the coating layer 4 is 1-3 micrometers. When the thickness is thinner than 1 μm, the oxidation resistance may be deteriorated. When the thickness is more than 3 μm, the oxidation resistance is not only saturated but also the material cost and the manufacturing cost are increased. .
FIG. 4: has shown the disassembled perspective view of Example 20 of the multipolar connector component for motor vehicles based on 3rd embodiment of this invention.

この多極コネクタ部品20は、互いに嵌合する樹脂製の雄ハウジング22と雌ハウジング24を備えている。雄ハウジング22と雌ハウジング24との間には、これらハウジング間を固定するための一対の鍵材26,28が介挿される。また、雄ハウジング22及び雌ハウジング24の鍵材26,28と反対側には、それぞれ16個ずつ、雄端子30もしくは雌端子32が嵌入されている。なお、図中、線の錯綜をさけるため、雄端子30及び雌端子32はそれぞれ一つずつ図示した。   The multipolar connector part 20 includes a male housing 22 and a female housing 24 which are made of resin and are fitted to each other. Between the male housing 22 and the female housing 24, a pair of key members 26 and 28 for fixing between these housings are inserted. Further, 16 male terminals 30 or 16 female terminals 32 are fitted on the opposite sides of the male housing 22 and the female housing 24 from the key members 26 and 28, respectively. In the drawing, one male terminal 30 and one female terminal 32 are shown in order to avoid complicated lines.

これら雄端子30及び雌端子32は、本発明の第一の実施形態において説明した被覆材を所定形状にプレス加工した後に折り曲げて形成され、一端側で互いに嵌合可能になっている。この嵌合時には、雄端子30の舌片部に位置する被覆層と、雌端子32の筒部に位置する被覆層とが所定長互いに摺接する。また、雄端子30及び雌端子32のそれぞれ他端側には、被覆電線34の心線がかしめられて固定されている。   The male terminal 30 and the female terminal 32 are formed by pressing the covering material described in the first embodiment of the present invention into a predetermined shape and then bending it so that they can be fitted to each other at one end side. At the time of this fitting, the covering layer located on the tongue piece portion of the male terminal 30 and the covering layer located on the tube portion of the female terminal 32 are in sliding contact with each other for a predetermined length. Further, the core wire of the covered electric wire 34 is caulked and fixed to the other end side of each of the male terminal 30 and the female terminal 32.

以下、上記した自動車用コネクタ部品における本発明の被覆材の作用を説明する。
Snは拡散速度が速く基材側に含まれる他の元素と合金化しやすく、その合金化は基材と被覆層との界面から被覆層の表面に向かって進行する。そのため、従来の金属Snからなる被覆層の場合には、その厚みは、このような合金化が生じた後もなお金属Snが被覆層の表面側に残存するように、予め厚めに設計・形成されていた。
Hereinafter, the operation of the covering material of the present invention in the above-described automotive connector part will be described.
Sn has a high diffusion rate and is easily alloyed with other elements contained on the substrate side, and the alloying proceeds from the interface between the substrate and the coating layer toward the surface of the coating layer. Therefore, in the case of a conventional coating layer made of metal Sn, the thickness is designed and formed in advance so that the metal Sn still remains on the surface side of the coating layer even after such alloying occurs. It had been.

これに対して、本発明の被覆材の被覆層によれば、Sn元素をAg元素との金属間化合物として含有しており、これが被覆層の特性を主に規定している。そのゆえこの被覆層によれば、従来のようにSn元素が他の元素と合金化することの対策として被覆層の厚みを厚くする必要がなく、その厚みを薄くすることができる。このことは、材料すなわちSnの節約による低コスト化には勿論のこと、このように薄い被覆層を含むコネクタ部品の場合には、その接続時における被覆層の変形抵抗が減少するので、挿入力の低減にとって有効である。とりわけ、近時、自動車の高性能化に伴って複数の端子が集積された自動車用多極コネクタ部品の場合には、各端子における挿入力の低減はコネクタ部品全体としての挿入力の低減に繋がり、この多極コネクタ部品を接続する作業員の負担軽減にとって有効である。   On the other hand, according to the coating layer of the coating material of the present invention, the Sn element is contained as an intermetallic compound with the Ag element, and this mainly defines the characteristics of the coating layer. Therefore, according to this coating layer, it is not necessary to increase the thickness of the coating layer as a countermeasure against the Sn element being alloyed with other elements as in the prior art, and the thickness can be reduced. This is not only to reduce the cost by saving the material, that is, Sn, but also in the case of a connector part including such a thin coating layer, since the deformation resistance of the coating layer at the time of connection is reduced, the insertion force It is effective for reducing the above. In particular, in the case of a multi-pole connector part for automobiles in which a plurality of terminals are integrated with the improvement of automobile performance in recent years, the reduction of the insertion force at each terminal leads to the reduction of the insertion force as a whole connector part. This is effective for reducing the burden on workers who connect the multipolar connector parts.

そして、SnAg金属間化合物は、金属Agに比較したときには、低コストな材料であることは勿論、良好な耐硫化性を示すことから、本発明の被覆材は、硫黄が比較的多く含まれる雰囲気中で使用される自動車用のコネクタ部品及び接点部品の素材として好適である。
更に、SnAg金属間化合物は、金属Agに比較したときには、Ag元素のマイグレーションが抑制された安定な化合物であって、絶縁不良の原因となる金属Agからなるウィスカーが成長しづらいという性質を有する。したがって、本発明の被覆材は、上記した自動車用多極コネクタ部品の素材として使用したときには、ウィスカーを介して発生する隣接する雄端子間若しくは雌端子間の短絡を防止することができるので好適である。
The SnAg intermetallic compound is not only a low-cost material, but also exhibits good sulfidation resistance when compared to metal Ag. Therefore, the coating material of the present invention has an atmosphere containing a relatively large amount of sulfur. It is suitable as a material for connector parts and contact parts for automobiles used therein.
Furthermore, the SnAg intermetallic compound is a stable compound in which migration of Ag element is suppressed when compared with metal Ag, and has a property that whiskers made of metal Ag that causes insulation failure are difficult to grow. Therefore, the coating material of the present invention is suitable because it can prevent a short circuit between adjacent male terminals or between female terminals generated through whiskers when used as a material for the above-described multipolar connector part for automobiles. is there.

本発明の被覆材は、その被覆層が、基材側にSn元素とNi元素とからなるNiSn金属間化合物を含んでいることが好ましい。
NiSn金属間化合物は一般式Ni3Snn(但し、n=1,2,4)で表され、すでにSn元素を含んでいることから、被覆層の表面側に存在するSnAg金属間化合物からSn元素が基材側へ拡散することを防止する作用効果を発揮する。そのゆえ、被覆層に含まれるSnAg金属間化合物中のSn元素は減量しづらい。そして、このNiSn金属間化合物の有するSn元素の拡散防止作用は、150℃を超える高温環境下においても有効に発揮されて、このような高温下においてもSnAg金属間化合物が他の化合物に転化することを抑制する。したがって、被覆層の基材側にNiSn金属間化合物を更に含む本発明の被覆材は、高温環境下で使用される例えば自動車用の電気・電子部品の素材として好適である。
In the coating material of the present invention, the coating layer preferably contains a NiSn intermetallic compound composed of Sn element and Ni element on the substrate side.
The NiSn intermetallic compound is represented by the general formula Ni 3 Sn n (where n = 1, 2, 4), and already contains Sn element. Therefore, the SnSg intermetallic compound is Sn from the SnAg intermetallic compound existing on the surface side of the coating layer. The effect which prevents an element from diffusing to the base material side is exhibited. Therefore, the Sn element in the SnAg intermetallic compound contained in the coating layer is difficult to reduce. The action of preventing the diffusion of Sn element of the NiSn intermetallic compound is effectively exhibited even in a high temperature environment exceeding 150 ° C., and the SnAg intermetallic compound is converted into another compound even at such a high temperature. To suppress that. Therefore, the coating material of the present invention further including a NiSn intermetallic compound on the substrate side of the coating layer is suitable as a material for electric / electronic parts for automobiles used in a high temperature environment.

なお、被覆層に含まれるNiSn金属間化合物の存在形態は格別限定されることはない。例えば図5で示したように、被覆層4の最下層部がNiSn金属間化合物からなる単独層4Bとなっていてもよい。あるいは、例えばNi−Sn合金中に分散して存在していてもよい。またあるいは、NiSn金属間化合物は、形成されている被覆層において、Sn元素を含む膜と、Ni元素を含む膜とに後述する加熱処理を施すことによって生成する拡散層に含まれていても良い。そして、このように分散して存在している場合及び拡散層に含まれている場合には、被覆層4の基材3側に向かう深さ方向で、NiSn金属間化合物の濃度は勾配を有していても良い。   Note that the existence form of the NiSn intermetallic compound contained in the coating layer is not particularly limited. For example, as shown in FIG. 5, the lowermost layer portion of the coating layer 4 may be a single layer 4B made of a NiSn intermetallic compound. Alternatively, for example, they may be dispersed in a Ni—Sn alloy. Alternatively, the NiSn intermetallic compound may be contained in a diffusion layer generated by subjecting the formed coating layer to a film containing Sn element and a film containing Ni element, which will be described later. . In the case of being dispersed and present in the diffusion layer as described above, the concentration of the NiSn intermetallic compound has a gradient in the depth direction toward the substrate 3 side of the coating layer 4. You may do it.

なお、このNiSn金属間化合物の平均厚さは、0.1μm以上0.5μm以下になっていることが好ましい。なぜならば0.1μm未満だと前述の効果が十分に発揮されず、0.5μmを超えると曲げ加工時に割れやすくなるなどのデメリットがあるためである。
以下、本発明の被覆材の製造方法について説明する。
本発明の被覆材は、適当に洗浄された基材の表面に、Sn元素とAg元素を含む膜(以下、SnAg膜ともいう)を成膜した後、基材とともにこの成膜された膜を熱処理して製造することができる。
The average thickness of this NiSn intermetallic compound is preferably 0.1 μm or more and 0.5 μm or less. This is because if the thickness is less than 0.1 μm, the above-described effects are not sufficiently exhibited, and if the thickness exceeds 0.5 μm, there is a demerit such that cracking easily occurs during bending.
Hereinafter, the manufacturing method of the coating | covering material of this invention is demonstrated.
In the coating material of the present invention, after a film containing Sn element and Ag element (hereinafter also referred to as SnAg film) is formed on the surface of a substrate that has been appropriately cleaned, It can be manufactured by heat treatment.

この成膜工程は、基材表面にSn膜を成膜する工程と、このSn膜の上に更にAg膜を成膜する工程との二つの工程からなっていてもよく、また、Sn元素とAg元素とを含むSnAg合金からなるSnAg合金膜を基材表面に成膜する一つの工程からなっていてもよい。ただし、成膜工程が二つの工程からなる場合には、Ag膜を先に基材表面に形成した後にSn膜をAg膜上に形成してもよい。   This film forming step may consist of two steps, a step of forming an Sn film on the surface of the substrate and a step of forming an Ag film on the Sn film. You may consist of one process which forms into a base material surface the SnAg alloy film which consists of a SnAg alloy containing Ag element. However, in the case where the film forming process includes two processes, the Sn film may be formed on the Ag film after the Ag film is first formed on the surface of the substrate.

ここで、Sn膜、Ag膜、及びSnAg合金膜には、それぞれ、Sn、Ag以外の他の元素が含まれていてもよいが、その場合の他の元素の含有量は、熱処理によるSnAg金属間化合物の生成を妨げない範囲内に制限されるべきである。
なお、予備成膜工程及び成膜工程で採用する成膜方法は格段限定されることはないが、湿式めっき法は低コストであってかつ大量生産に適しているので好ましい。
Here, the Sn film, the Ag film, and the SnAg alloy film may contain elements other than Sn and Ag, respectively, but the content of other elements in that case is SnAg metal by heat treatment. It should be limited to the extent that does not prevent the formation of intermetallic compounds.
Note that the film formation method employed in the preliminary film formation step and the film formation step is not particularly limited, but the wet plating method is preferable because it is low-cost and suitable for mass production.

成膜工程後に行われる熱処理工程では、基材上に成膜された膜が加熱されることによって、Sn元素が拡散してAg元素と反応し、SnAg金属間化合物が形成される。このような熱処理としては、金属Snの融点以上の温度で加熱する再溶融処理すなわちリフロー処理と、金属Snの融点よりも低い温度で加熱する熱拡散処理とをあげることができる。例えば、被処理材は、リフロー処理の場合には燃焼ガス中で加熱された後に水冷され、また、熱拡散処理の場合には窒素ガス等の不活性ガスまたは燃焼ガスなどの非酸化性雰囲気下で100℃以上の温度で数時間加熱される。   In the heat treatment step performed after the film formation step, the film formed on the substrate is heated, whereby the Sn element diffuses and reacts with the Ag element to form an SnAg intermetallic compound. Examples of such heat treatment include re-melting treatment that is heated at a temperature equal to or higher than the melting point of metal Sn, that is, reflow treatment, and thermal diffusion treatment that is heated at a temperature lower than the melting point of metal Sn. For example, the material to be treated is heated in a combustion gas in the case of reflow treatment and then water-cooled. In the case of thermal diffusion treatment, the material to be treated is in a non-oxidizing atmosphere such as an inert gas such as nitrogen gas or a combustion gas. And heated at a temperature of 100 ° C. or higher for several hours.

また、基材側にNiSn金属間化合物を更に含む被覆層を備えた被覆材を製造する場合には、上記した成膜工程に先立って、Ni元素を含むNi膜を基材表面に形成する予備成膜工程を実施すればよい。そして、成膜工程では、予備成膜工程で形成されたNi膜上にSn元素及びAg元素を含むSnAg膜を成膜する。ここでも、Ni膜の形成方法は格段限定されることはないが、湿式めっき法は低コストであってかつ大量生産に適しているので好ましい。   Further, when manufacturing a coating material provided with a coating layer further containing a NiSn intermetallic compound on the substrate side, a preliminary film for forming a Ni film containing Ni element on the substrate surface prior to the above-described film forming step. A film formation process may be performed. In the film forming process, an SnAg film containing Sn element and Ag element is formed on the Ni film formed in the preliminary film forming process. Again, the method for forming the Ni film is not particularly limited, but the wet plating method is preferable because it is low cost and suitable for mass production.

そしてその場合、上記した熱処理工程の条件は、SnAg金属間化合物のみならず、NiSn金属間化合物が形成されるように適宜設定される。例えば、温度100℃以上で1時間以上という加熱条件を採用すれば、安定したNiSn金属間化合物が、被覆層の基材側、すなわち、Ni膜とSnAg膜との界面近傍に生成される。また、温度150℃以上で3時間以上という加熱条件を採用すれば、NiSn金属間化合物からなる安定な単独層を、Ni膜とSnAg膜との界面近傍に形成することができる。したがって、両金属間化合物を一度の加熱処理で生成させるためには後者の加熱条件を採用することがより好ましい。   In that case, the conditions of the above-described heat treatment step are appropriately set so that not only the SnAg intermetallic compound but also the NiSn intermetallic compound is formed. For example, if a heating condition of a temperature of 100 ° C. or higher and 1 hour or longer is employed, a stable NiSn intermetallic compound is generated on the substrate side of the coating layer, that is, near the interface between the Ni film and the SnAg film. If a heating condition of a temperature of 150 ° C. or more and 3 hours or more is employed, a stable single layer made of a NiSn intermetallic compound can be formed in the vicinity of the interface between the Ni film and the SnAg film. Therefore, it is more preferable to employ the latter heating condition in order to generate both intermetallic compounds by a single heat treatment.

本発明は、上記した実施形態に限定されることはなく、種々変形が可能であって、例えば、本発明の被覆材の用途は、上記した実施形態に限定されることはない。   The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the use of the coating material of the present invention is not limited to the above-described embodiment.

実施例A2〜A5,A7,A8,比較例A1,A6
洗浄された銅製リボンに対し、予備成膜工程で、金属NiからなるNi膜を電気めっき法で形成した。その後、成膜工程で、金属AgからなるAg膜と、金属SnからなるSn膜とを、Ni膜上にこの順序で電気めっき法で形成した。ただし、A8のみはSn膜を先に、Ag膜を後に形成した。そして、これら予備成膜工程及び成膜工程を経た銅製リボンに対して、熱処理工程で、700℃の燃焼ガス中でリフロー処理を行ってから水冷処理を施し、実施例A2〜5,A7,A8,比較例A1,A6の被覆材を作成した。このときの各めっき条件を表1に示し、また、予備成膜工程、成膜工程において形成されたNi膜、Ag膜、およびSn膜の厚みを表2に示す。なお、表2には、Ag膜の厚みを面濃度に換算した値及びSnとAgの合計に対するAgの割合も示した。
Examples A2-A5, A7, A8, Comparative Examples A1, A6
On the cleaned copper ribbon, a Ni film made of metallic Ni was formed by electroplating in a preliminary film forming step. Thereafter, in the film forming step, an Ag film made of metal Ag and an Sn film made of metal Sn were formed on the Ni film in this order by electroplating. However, for A8 only, the Sn film was formed first and the Ag film was formed later. Then, the copper ribbon that has undergone the preliminary film forming process and the film forming process is subjected to a reflow process in a combustion gas at 700 ° C. in a heat treatment process, and then subjected to a water cooling process, and Examples A2 to A5, A7, A8 The coating materials of Comparative Examples A1 and A6 were prepared. The plating conditions at this time are shown in Table 1, and the thicknesses of the Ni film, the Ag film, and the Sn film formed in the preliminary film forming process and the film forming process are shown in Table 2. Table 2 also shows the value obtained by converting the thickness of the Ag film into the surface concentration and the ratio of Ag to the total of Sn and Ag.

製造した各実施例及び比較例の被覆材について以下の評価を行なった。
(1)接触抵抗の評価
(i)加熱試験後
各被覆材を、温度160℃で120時間加熱処理する加熱試験に供した後に、その被覆層側の表面の接触抵抗を測定した。接触抵抗の測定は四端子法で行われ、6φのAgプローブを用い、DC10mA、荷重0.98Nの条件下で測定した。測定結果を表3及び図6に示す。なお測定は、実施例及び比較例毎に10回ずつ行なった。
The following evaluation was performed about the manufactured coating material of each Example and a comparative example.
(1) Evaluation of contact resistance (i) After heating test Each coating material was subjected to a heating test in which heat treatment was performed at a temperature of 160 ° C for 120 hours, and then the contact resistance of the surface on the coating layer side was measured. The contact resistance was measured by a four-terminal method, and was measured using a 6φ Ag probe under the conditions of DC 10 mA and a load of 0.98 N. The measurement results are shown in Table 3 and FIG. The measurement was performed 10 times for each of the examples and comparative examples.

(ii)硫化試験後
各被覆材を、温度及び相対湿度がそれぞれ40℃、95%であって、3ppmの硫化水素を含む環境下に24時間暴露した後、その接触抵抗を測定した。測定結果を表3及び図7に示す。なお、測定法及びその条件は上記(i)の場合と同じである。また測定は、実施例及び比較例毎に10回ずつ行なった。
(Ii) After Sulfurization Test Each coating material was exposed to an environment containing 3 ppm hydrogen sulfide at a temperature and relative humidity of 40 ° C. and 95% for 24 hours, and then the contact resistance was measured. The measurement results are shown in Table 3 and FIG. The measurement method and its conditions are the same as in the case (i) above. The measurement was performed 10 times for each of the examples and comparative examples.

(2)動摩擦係数の評価
コネクタ部品の接続時の挿入力の指標として、被覆材の被覆層の動摩擦係数を測定した。測定結果を表3に示し、そのうち実施例A4,A7及び比較例A1,A6の結果を図8に示す。測定にはバウデン型摩擦試験器を用い、荷重294mN、摺動距離10mm、摺動速度100m/min、摺動回数1回の条件下で測定した。なお、被覆材の相手材すなわちプローブとしては、リフロー処理された厚み1μmのSnめっきを表面に有する板厚0.25mmの黄銅条に、0.5mmRの張り出し加工を行ったものを用いた。
(2) Evaluation of dynamic friction coefficient The dynamic friction coefficient of the coating layer of the coating material was measured as an index of the insertion force when connecting the connector parts. The measurement results are shown in Table 3, and the results of Examples A4 and A7 and Comparative Examples A1 and A6 are shown in FIG. The measurement was performed using a Bowden friction tester under the conditions of a load of 294 mN, a sliding distance of 10 mm, a sliding speed of 100 m / min, and a sliding number of one time. In addition, as a counterpart material of the coating material, that is, a probe, a brass strip having a thickness of 0.25 mm having a reflow-treated Sn plating having a thickness of 1 μm on the surface and 0.5 mmR of overhanging processing was used.

(3)被覆層におけるSnAg金属間化合物及びNiSn金属間化合物の存在形態の評価
実施例A4の被覆材のリフロー直後及び上記加熱試験後における断面TEM写真を図9に示す。SnAg金属間化合物は被覆層の表面に粒状に、SnNi金属間化合物は層状に生成しているのが分かる。
なお、図9中、白色の点線にて各相の境界を示した。
(3) Evaluation of Presence Form of SnAg Intermetallic Compound and NiSn Intermetallic Compound in Coating Layer FIG. 9 shows cross-sectional TEM photographs immediately after the reflow of the coating material of Example A4 and after the heating test. It can be seen that the SnAg intermetallic compound is formed in a granular form on the surface of the coating layer, and the SnNi intermetallic compound is formed in a layer form.
In addition, in FIG. 9, the boundary of each phase was shown with the white dotted line.

表3及び図6からは以下のことが明らかである。
(1) 加熱試験後の被覆材の被覆層の接触抵抗は、Ag膜の膜厚、すなわち熱処理後の被覆層におけるAgの面濃度の増加に伴って急激に減少する。このことは、熱処理によってSn元素とAg元素とがSnAg金属間化合物を形成するとともに、Ni元素とSn元素とがNiSn金属間化合物を形成したためと考えられる。
(2) そして、より具体的には、被覆層におけるAg元素の面濃度が0.004g/m2以上の場合、加熱試験後でも接触抵抗は10mΩ以下になる。したがって、被覆材の耐熱性を向上するためには、被覆層におけるAgの面濃度は0.004g/m2以上であることが好ましい。なお、Agの面濃度を0.004g/m2以上にするためには、成膜工程で金属AgからなるAg膜を形成する場合には、そのAg膜の厚みを平均として約0.0004μm以上にすればよい。
The following is clear from Table 3 and FIG.
(1) The contact resistance of the coating layer of the coating material after the heating test decreases rapidly as the film thickness of the Ag film, that is, the surface concentration of Ag in the coating layer after the heat treatment increases. This is considered to be because the Sn element and the Ag element formed a SnAg intermetallic compound and the Ni element and the Sn element formed a NiSn intermetallic compound by the heat treatment.
(2) More specifically, when the surface concentration of Ag element in the coating layer is 0.004 g / m 2 or more, the contact resistance is 10 mΩ or less even after the heating test. Therefore, in order to improve the heat resistance of the coating material, the surface concentration of Ag in the coating layer is preferably 0.004 g / m 2 or more. In order to make the surface concentration of Ag 0.004 g / m 2 or more, when an Ag film made of metal Ag is formed in the film forming process, the average thickness of the Ag film is about 0.0004 μm or more. You can do it.

また、表3及び図7からは以下のことが明らかである。
(1) 硫化試験後の被覆材の接触抵抗は、評価を行なった範囲では、熱処理工程前のAg膜の膜厚、すなわち被覆層におけるAg元素の面濃度に無依存であった。このことは、評価を行なったAg元素の面濃度の範囲では、範囲の上限側でも被覆層に含まれる金属Agは少量であって、硫化試験による硫化銀の発生量が少量であったためと考えられる。
(2) そして、このような考察に基づけば、この範囲を超えてAg元素の面濃度が高い場合、金属Agの割合が増加し、金属Agの硫化若しくはマイグレーショが生じやすくなると考えられる。かくして、これらの考察に加えて、Ag元素とSn元素は一般式Ag3Snで表される金属間化合物を形成することを考慮し、被覆層に含まれるAgの原子数は、被覆層に含まれるSnの原子数の3倍以下であることが好ましい。
The following is clear from Table 3 and FIG.
(1) The contact resistance of the coating material after the sulfidation test was independent of the film thickness of the Ag film before the heat treatment step, that is, the surface concentration of the Ag element in the coating layer within the evaluated range. This is considered to be because in the range of the surface concentration of the Ag element evaluated, the amount of metal Ag contained in the coating layer was small even on the upper side of the range, and the amount of silver sulfide generated by the sulfidation test was small. It is done.
(2) Based on such considerations, it is considered that when the surface concentration of the Ag element is high beyond this range, the ratio of the metal Ag increases, and the sulfidation or migration of the metal Ag is likely to occur. Thus, in addition to these considerations, considering that the Ag element and the Sn element form an intermetallic compound represented by the general formula Ag 3 Sn, the number of Ag atoms contained in the coating layer is included in the coating layer. The number of Sn atoms is preferably 3 times or less.

そして、表3及び図8からは以下のことが明らかである。
実施例A1〜A5ならびに実施例A7〜A8の被覆材は、0.4以下の低い動摩擦係数を示している。したがって、これらの被覆材を用いれば、小さい挿入力で接続可能なコネクタ部品を製造することができる。なお、Sn膜の厚みの増加に伴って、動摩擦係数は増加する傾向を示しているので、動摩擦係数のみを考慮すれば、Sn膜の厚みは薄い方が良いことがわかる。
From Table 3 and FIG. 8, the following is clear.
The coating materials of Examples A1 to A5 and Examples A7 to A8 have a low dynamic friction coefficient of 0.4 or less. Therefore, if these coating materials are used, a connector component that can be connected with a small insertion force can be manufactured. Since the dynamic friction coefficient tends to increase as the thickness of the Sn film increases, it can be understood that the thickness of the Sn film is better if only the dynamic friction coefficient is taken into consideration.

実施例B1〜B8,比較例B9,B10
厚み0.3mmの7/3黄銅条に対して、まず前処理として、電解脱脂処理及び酸洗処理を施した。この前処理された黄銅条に、予備成膜工程で、表4に示した組成及び厚みを有する膜(以下、ベース膜という)を電気めっき法で形成した。その後、成膜工程で、表4に示した組成及び厚みを有する2つの膜をベース膜上に順次電気めっき法で形成した。なおこれら2つの膜のうち、ベース膜側を第1の膜といい、第1の膜上に形成された膜を第2の膜という。
Examples B1 to B8, Comparative Examples B9 and B10
An electrolytic degreasing treatment and a pickling treatment were first applied as pretreatment to a 7/3 brass strip having a thickness of 0.3 mm. A film having the composition and thickness shown in Table 4 (hereinafter referred to as a base film) was formed on the pretreated brass strip by an electroplating method in a preliminary film forming step. Thereafter, in the film forming process, two films having the compositions and thicknesses shown in Table 4 were sequentially formed on the base film by electroplating. Of these two films, the base film side is referred to as a first film, and the film formed on the first film is referred to as a second film.

そして、これら予備成膜工程及び成膜工程を経た黄銅条に対して、熱処理工程で、窒素雰囲気下で表4に示した条件で熱拡散処理を施し、実施例B1〜B8及び比較例B9,B10の被覆材を作成した。
なお、このときの各めっき条件を表5に示した。
And with respect to the brass strip which passed through these preliminary | backup film-forming processes and a film-forming process, it heat-processes on the conditions shown in Table 4 by the heat treatment process in nitrogen atmosphere, Example B1-B8 and Comparative Example B9, A coating material for B10 was prepared.
The plating conditions at this time are shown in Table 5.

製造した各実施例及び比較例の被覆材について上記した(1)接触抵抗の評価及び(2)動摩擦係数の評価を行なった。更に、これら被覆材に以下の(4)耐絶縁性の評価を行なった。これらの結果を表6に示した。
(4)耐絶縁性の評価
耐絶縁性の評価として、短絡を引き起こすウィスカーの成長しやすさを調べた。すなわち、各実施例及び比較例の被覆材を温度50℃のエアバス内に1ヶ月放置した後、ウィスカーの発生の有無を顕微鏡観察により調べた。
(1) Evaluation of contact resistance and (2) Evaluation of dynamic friction coefficient were performed on the manufactured coating materials of each of the examples and comparative examples. Furthermore, the following (4) insulation resistance evaluation was performed on these coating materials. These results are shown in Table 6.
(4) Evaluation of insulation resistance As an evaluation of insulation resistance, the ease of growth of whiskers that cause a short circuit was examined. That is, after the coating materials of each Example and Comparative Example were left in an air bath at a temperature of 50 ° C. for 1 month, the presence or absence of whiskers was examined by microscopic observation.

表6からは以下のことが明らかである。
(1) 加熱試験後及び硫化試験後において、被覆層にNiSn金属間化合物及びSnAg金属間化合物を含む実施例B1〜B7の被覆材の接触抵抗は、いずれも10mΩ以下の低い値になっているが、全体的にリフローをされている実施例A2〜A5,A7及びA8にくらべると高くなる。この理由として、リフローされたものは被覆層中のSnAg金属間化合物が図9の写真のように粒状になっているため、接触時に相手材との間に圧力を発生させ良好な電気的導通を実現することが考えられる。
(2) これに対して、被覆層中にNiSn金属間化合物を含まず、SnAg金属間化合物を含む実施例B8の被覆材は、加熱試験後において、接触抵抗が10mΩを超えている。このことは、被覆層がNiSn金属間化合物を含んでおらず、実施例B1〜B7の場合に比べて、実施例B8の被覆材に含まれるSnAg金属間化合物がSnCu金属間化合物など他の化合物に転化しやすかったためと考えられる。このことから、被覆材の耐熱性を向上させるためには、被覆層がNiSn金属間化合物を含んでいることが好ましいことがわかる。
From Table 6, the following is clear.
(1) After the heating test and after the sulfidation test, the contact resistances of the coating materials of Examples B1 to B7 each including the NiSn intermetallic compound and the SnAg intermetallic compound in the coating layer are low values of 10 mΩ or less. However, it becomes higher compared to Examples A2 to A5, A7 and A8 which are reflowed as a whole. The reason for this is that, since the reflowed SnAg intermetallic compound in the coating layer is granular as shown in the photograph in FIG. It can be realized.
(2) On the other hand, the coating material of Example B8 which does not contain the NiSn intermetallic compound in the coating layer and contains the SnAg intermetallic compound has a contact resistance exceeding 10 mΩ after the heating test. This is because the coating layer does not contain a NiSn intermetallic compound, and the SnAg intermetallic compound contained in the coating material of Example B8 is other compound such as SnCu intermetallic compound as compared with Examples B1 to B7. It is thought that it was easy to convert to. From this, in order to improve the heat resistance of the coating material, it can be seen that the coating layer preferably contains a NiSn intermetallic compound.

(3) 加熱拡散が不十分であり、そのためSnAg金属間化合物の生成が不十分である実施例B1の被覆材の場合、加熱試験後及び硫化試験後の接触抵抗は10mΩ以下であるものの、ウィスカーの発生を完全に抑えることは出来ていない。
(4) 最表面にAgを被覆し、拡散させた実施例B5の被覆材にあっては、加熱試験後の接触抵抗は良好であるが、硫化試験後の接触抵抗が比較的高くなっている。これは、表面に金属間化合物とならずに残留したAgが存在するためと考えられ、このことから、Agの膜厚によってはAg膜をSn膜の下に被覆することがより好ましいこと、合金化手段としてはSn膜を溶融させるリフロー処理がより好ましいことが分かる。
(3) In the case of the coating material of Example B1 in which the heat diffusion is insufficient and, therefore, the formation of SnAg intermetallic compound is insufficient, the contact resistance after the heating test and after the sulfidation test is 10 mΩ or less. It is not possible to completely suppress the occurrence of
(4) In the coating material of Example B5 in which Ag is coated on the outermost surface and diffused, the contact resistance after the heating test is good, but the contact resistance after the sulfidation test is relatively high. . This is thought to be due to the presence of Ag remaining without becoming an intermetallic compound on the surface. Therefore, depending on the film thickness of Ag, it is more preferable to coat the Ag film under the Sn film. It can be seen that the reflow treatment for melting the Sn film is more preferable as the crystallization means.

(5) 実施例B1〜B8の被覆材は、実施例B4を除いて0.4以下の低い動摩擦係数を示している。したがって、これらの被覆材を用いれば、耐熱性及び耐硫化性に優れると共に、小さい挿入力で接続可能なコネクタ部品を製造することができる。ここで、成膜工程で成膜されたSn膜の厚みの増加に伴って、動摩擦係数は増加する傾向を示している。このことから、動摩擦係数のみを考慮すれば、成膜工程で成膜されるSn膜の厚みは薄ければ薄いほど良く、具体的には、このSn膜の厚みは1.0μm以下であることが好ましい。
(6) 実施例B2〜B7の被覆材においては、ウィスカーの発生は認められなかった。また、実施例B1および比較例B9の被覆材においては、少量のウィスカーの発生が認められた。これに対し、被覆層がSn−Ag合金を含んでいるが、SnAg金属間化合物を含まない比較例B10の被覆材では、多くのウィスカーの発生が認められた。このことから、被覆材の耐絶縁性を向上させるためには、被覆層がSnAg金属間化合物を含んでおり、また十分な加熱工程を経ていることが必要であることがわかる。
(5) The coating materials of Examples B1 to B8 exhibit a low dynamic friction coefficient of 0.4 or less except for Example B4. Therefore, by using these coating materials, it is possible to manufacture a connector component that is excellent in heat resistance and sulfidation resistance and that can be connected with a small insertion force. Here, the dynamic friction coefficient tends to increase as the thickness of the Sn film formed in the film forming process increases. Therefore, considering only the dynamic friction coefficient, the thinner the Sn film formed in the film forming process, the better. More specifically, the thickness of the Sn film is 1.0 μm or less. Is preferred.
(6) In the coating materials of Examples B2 to B7, no occurrence of whiskers was observed. In addition, in the coating materials of Example B1 and Comparative Example B9, a small amount of whiskers was observed. On the other hand, although the coating layer contains a Sn—Ag alloy, many whiskers were observed in the coating material of Comparative Example B10 that did not contain a SnAg intermetallic compound. From this, it can be seen that in order to improve the insulation resistance of the coating material, it is necessary that the coating layer contains a SnAg intermetallic compound and has undergone a sufficient heating step.

実施例D1〜D18 ,比較例D19〜D24
洗浄された黄銅製リボンに対して、予備成膜工程で、表7及び表8に示した組成及び厚みを有するベース膜を電気めっき法で形成した。その後、成膜工程で、表7及び表8に示した組成及び厚みを有する2つの膜をベース膜上に順次電気めっき法で形成した。なおこれら2つの膜のうち、ベース膜側を第1の膜といい、第1の膜上に形成された膜を第2の膜という。
Examples D1 to D18, Comparative Examples D19 to D24
A base film having the composition and thickness shown in Tables 7 and 8 was formed by electroplating on the washed brass ribbon in the preliminary film forming step. Thereafter, in the film forming process, two films having the compositions and thicknesses shown in Table 7 and Table 8 were sequentially formed on the base film by electroplating. Of these two films, the base film side is referred to as a first film, and the film formed on the first film is referred to as a second film.

また、実施例D15及び実施例D16については、ベース膜は2つの膜からなり、それらのうち基材側の膜を第1のベース膜といい、第1のベース膜上に形成された他方の膜を第2のベース膜という。
このときの各めっき条件を表9に示した。
そして、これら予備成膜工程及び成膜工程を経た黄銅条に対して、熱処理工程で、700℃の燃焼ガス中でリフロー処理を行ってから水冷処理を施して実施例D1〜D18及び比較例D19〜D24の被覆材を作成した。
For Example D15 and Example D16, the base film is composed of two films, of which the base-side film is referred to as the first base film, and the other film formed on the first base film. The film is referred to as a second base film.
Table 9 shows the plating conditions at this time.
Then, the brass strips that have undergone the preliminary film forming process and the film forming process are subjected to a reflow process in a combustion gas at 700 ° C. in a heat treatment process, and then subjected to a water cooling process, and Examples D1 to D18 and Comparative Example D19 are performed. A coating material of -D24 was prepared.

ただし、比較例D22,D23の被覆材は、リフロー処理等の熱処理は施さなかった。
また、実施例D17の被覆材には、熱処理工程で、リフロー処理ではなく、温度150℃の窒素雰囲気下で3時間加熱処理する熱拡散処理を施した。
そして、実施例18の被覆材については、熱処理工程の後に、溶解処理工程として、溶解液への浸漬処理が施された。この溶解処理工程によって、被覆層の表面が約0.1μm溶解・除去された。この溶解液は、例えば、濃度80g/Lの硫酸と濃度10mL/Lの過酸化水素水溶液とを混合した液体である。なお、このように被覆層の表面を溶解する溶解処理工程として、浸漬処理に代えて、電解溶解処理を採用してもよい。この電解溶解処理は、例えば、塩酸の6倍希釈水溶液、あるいは、濃度90g/Lの硫酸と濃度5g/Lの弗化カリウムとの混合液を用いて行なわれる。
However, the coating materials of Comparative Examples D22 and D23 were not subjected to heat treatment such as reflow treatment.
In addition, the coating material of Example D17 was not subjected to reflow treatment in the heat treatment step, but was subjected to heat diffusion treatment in which heat treatment was performed in a nitrogen atmosphere at a temperature of 150 ° C. for 3 hours.
And about the coating | covering material of Example 18, the immersion process to the solution was given as a melt | dissolution process process after the heat processing process. By this dissolution treatment step, the surface of the coating layer was dissolved and removed by about 0.1 μm. This solution is, for example, a liquid obtained by mixing sulfuric acid having a concentration of 80 g / L and a hydrogen peroxide aqueous solution having a concentration of 10 mL / L. In addition, as a dissolution treatment step for dissolving the surface of the coating layer in this way, an electrolytic dissolution treatment may be employed instead of the immersion treatment. This electrolytic dissolution treatment is performed using, for example, a 6-fold diluted aqueous solution of hydrochloric acid or a mixed solution of sulfuric acid having a concentration of 90 g / L and potassium fluoride having a concentration of 5 g / L.

製造した各実施例及び比較例の被覆材について上記した(1)接触抵抗の評価、(2)動摩擦係数の評価及び(4)耐絶縁性の評価を行なった。これらの結果を表10〜15に示した。   About the manufactured coating material of each Example and the comparative example, (1) evaluation of contact resistance mentioned above, (2) evaluation of a dynamic friction coefficient, and (4) evaluation of insulation resistance were performed. These results are shown in Tables 10-15.

表10からは以下のことが明らかである。
(1) Sn元素及びAg元素を含む膜がリフロー処理され、SnAg金属間化合物を含む実施例D1,D2の被覆材は、加熱試験後もしくは硫化試験後の接触抵抗が小さい。
(2) これに対し、被覆層がSnAg金属間化合物を含まない比較例D19〜D23の被覆材は、加熱試験後もしくは硫化試験後の接触抵抗が大きい。これは、Snまたは表面に拡散してきたCuあるいはNi元素の酸化若しくはAg元素の硫化によるものである。
したがって、SnAg金属間化合物を含む被覆層は、Ag元素若しくはSn元素のいずれか一つしか含まない被覆層に比べて長期にわたって安定した接触抵抗を有することがわかる。
From Table 10, the following is clear.
(1) The film containing Sn element and Ag element is subjected to reflow treatment, and the coating materials of Examples D1 and D2 containing SnAg intermetallic compound have low contact resistance after the heating test or after the sulfidation test.
(2) On the other hand, the coating materials of Comparative Examples D19 to D23 in which the coating layer does not contain the SnAg intermetallic compound have a large contact resistance after the heating test or after the sulfurization test. This is due to Sn or the oxidation of Cu or Ni element diffused on the surface or the sulfurization of Ag element.
Therefore, it can be seen that the coating layer containing the SnAg intermetallic compound has a stable contact resistance over a long period of time compared to the coating layer containing only one of the Ag element and the Sn element.

表11からは、以下のことが明らかである。
(1) 実施例D2、実施例D4及び実施例D8の被覆材を比較した場合、被覆材の接触抵抗の大きさは、成膜工程におけるSn膜及びAg膜の成膜の順序にはほぼ無依存である。
(2) また、実施例D3〜D7の被覆材を比較した場合、この範囲では被覆材の接触抵抗の大きさは、Agの面濃度にはほぼ無依存である。
From Table 11, the following is clear.
(1) When the coating materials of Example D2, Example D4, and Example D8 are compared, the magnitude of the contact resistance of the coating material is almost the same as the order of film formation of the Sn film and the Ag film in the film formation process. Dependence.
(2) Further, when comparing the coating materials of Examples D3 to D7, the magnitude of the contact resistance of the coating material is almost independent of the surface concentration of Ag in this range.

表12からは、硫化試験後の被覆材の接触抵抗は、ベース膜の組成には無依存であることがわかる。また、加熱試験後の被覆材の接触抵抗は、ベース膜をNi,Co,Feなどの鉄族元素にすると有利であることが分かる。
表13からは、Ag元素を含むAg膜の代わりに、Au元素を含むAu膜もしくはPd元素を含むPd膜を成膜しても、長期にわたり安定した接触抵抗を示す被覆材が得られることがわかる。このことは、AuやPd等の貴金属も、Snと金属間化合物を形成するためと考えられる。
From Table 12, it can be seen that the contact resistance of the coating material after the sulfidation test is independent of the composition of the base film. In addition, the contact resistance of the coating material after the heating test proves advantageous when the base film is made of an iron group element such as Ni, Co, or Fe.
From Table 13, it can be seen that, even if an Au film containing Au element or a Pd film containing Pd element is formed instead of an Ag film containing Ag element, a coating material showing stable contact resistance over a long period of time can be obtained. Understand. This is probably because noble metals such as Au and Pd also form an intermetallic compound with Sn.

表14からは、被覆層の表面側に、SnAg金属間化合物が含まれていれば、ベース膜が2つの膜からなるものであっても加熱試験後もしくは硫化試験後の接触抵抗が低くくなることがわかる。また、摩擦係数が小さくなることが期待される。
また、Ag膜及びSn膜は、それぞれ、Ag元素若しくはSn元素を含んでいれば、他の元素を含む合金からなる膜であってもよいことがわかる。
From Table 14, if SnAg intermetallic compound is contained on the surface side of the coating layer, the contact resistance after the heating test or the sulfidation test becomes low even if the base film is composed of two films. I understand that. In addition, the friction coefficient is expected to be small.
It can also be seen that the Ag film and the Sn film may each be a film made of an alloy containing another element as long as it contains an Ag element or Sn element.

表15からは、Ag元素及びSn元素を含む膜中にSnAg金属間化合物を生成させるための熱処理工程では、リフロー処理の外に、熱拡散処理を採用しても良いことがわかる。ただし、ウィスカー発生防止のためにはリフロー処理が有利である。
また、実施例D18のように溶解処理工程によって被覆層の表面を若干溶解・除去した場合、選択的に金属Snを除去して表面におけるSnAg金属間化合物の割合を高められるので、接触抵抗のばらつきを抑制することができる。したがって、被覆材を溶解処理工程に供することは好適である。
From Table 15, it can be seen that in the heat treatment step for generating the SnAg intermetallic compound in the film containing Ag element and Sn element, thermal diffusion treatment may be adopted in addition to the reflow treatment. However, reflow treatment is advantageous to prevent whisker generation.
In addition, when the surface of the coating layer is slightly dissolved and removed by the dissolution treatment step as in Example D18, the metal Sn can be selectively removed to increase the ratio of SnAg intermetallic compound on the surface, so that the contact resistance varies. Can be suppressed. Therefore, it is preferable to use the coating material for the dissolution treatment step.

本発明の第一の実施形態の被覆材の断面図である。It is sectional drawing of the coating | covering material of 1st embodiment of this invention. 図1の被覆材に含まれるSnAg金属間化合物の一存在形態の説明図である。It is explanatory drawing of the one presence form of the SnAg intermetallic compound contained in the coating | covering material of FIG. 本発明の第二の実施形態のゴム接点部品の断面図である。It is sectional drawing of the rubber contact component of 2nd embodiment of this invention. 本発明の第三の実施形態の自動車用多極コネクタ部品の部分分解斜視図である。It is a partial disassembled perspective view of the multipolar connector part for motor vehicles of 3rd embodiment of this invention. 図4の自動車用多極コネクタ部品に使用される被覆材の好適例の説明図である。It is explanatory drawing of the suitable example of the coating | covering material used for the multipolar connector component for motor vehicles of FIG. 本発明の一実施形態の被覆材の加熱試験後におけるAg元素の面濃度と接触抵抗との関係を示すグラフである。It is a graph which shows the relationship between the surface concentration of Ag element after a heating test of the coating material of one Embodiment of this invention, and contact resistance. 本発明の一実施形態の被覆材の硫化試験後におけるAg元素の面濃度と接触抵抗との関係を示すグラフである。It is a graph which shows the relationship between the surface concentration of Ag element and the contact resistance after the sulfidation test of the coating material of one Embodiment of this invention. 本発明の一実施形態の被覆材の被覆層におけるSn膜の厚みと動摩擦係数との関係を示すグラフである。It is a graph which shows the relationship between the thickness of Sn film in the coating layer of the coating material of one Embodiment of this invention, and a dynamic friction coefficient. 本発明の一実施形態の被覆材の被覆層におけるSn−Ag合金膜の左:リフロー直後、右:加熱処理後の断面写真である。The left of Sn-Ag alloy film in the coating layer of the coating material of one Embodiment of this invention: Immediately after reflow, Right: It is a cross-sectional photograph after heat processing.

符号の説明Explanation of symbols

3 基材
4 被覆層
4a 被覆層の表面
3 Base material 4 Coating layer 4a Surface of coating layer

Claims (11)

導電性を有する基材と、前記基材に形成された被覆層とを備えた被覆材において、
前記被覆層は少なくとも表面側に、Snと、貴金属との金属間化合物を含むことを特徴とする被覆材。
In a covering material comprising a base material having conductivity and a coating layer formed on the base material,
The covering layer contains an intermetallic compound of Sn and a noble metal at least on the surface side.
前記貴金属はAgであって、前記金属間化合物はAg3Snである請求項1の被覆材。 The coating material according to claim 1, wherein the noble metal is Ag, and the intermetallic compound is Ag 3 Sn. 前記被覆層は、前記基材側にNiとSnとの金属間化合物を更に含む請求項2の被覆材。 The said coating layer is a coating | covering material of Claim 2 which further contains the intermetallic compound of Ni and Sn in the said base material side. 電気回路に介装される電気・電子部品において、請求項3の被覆材を含むことを特徴とする電気・電子部品。   An electric / electronic component interposed in an electric circuit, comprising the covering material according to claim 3. 前記電気・電子部品は、コネクタ部品又は接点部品である請求項4の電気・電子部品。   The electrical / electronic component according to claim 4, wherein the electrical / electronic component is a connector component or a contact component. 前記電気回路は自動車に設置される請求項4または5の電気・電子部品。   6. The electric / electronic component according to claim 4, wherein the electric circuit is installed in an automobile. 絶縁基板と、前記絶縁基板上に互いに離隔して配置された少なくとも2つの請求項1〜3のいずれかの被覆材と、前記少なくとも2つの被覆材の被覆層の表面に同時に圧接可能に配置され、前記被覆層に圧接されたときに前記被覆材間を電気的に接続するための導電性ゴムとを備えたゴム接点部品。   An insulating substrate, at least two coating materials according to any one of claims 1 to 3 disposed on the insulating substrate and spaced apart from each other, and a surface of the coating layer of the at least two coating materials are arranged so as to be capable of being pressed simultaneously. A rubber contact component comprising conductive rubber for electrically connecting the covering materials when pressed against the covering layer. 導電性を有する基材と、前記基材に形成された被覆層とを備え、前記被覆層は少なくとも表面側にSnとAgとの金属間化合物を含む被覆材の製造方法において、
前記基材上にSn及びAgを含む膜を成膜する成膜工程と、
前記成膜工程で成膜されたSn及びAgを含む膜に熱処理を施して前記被覆層に転化させる熱処理工程とを備えていることを特徴とする被覆材の製造方法。
In the method for producing a coating material comprising a conductive substrate and a coating layer formed on the substrate, the coating layer containing an intermetallic compound of Sn and Ag on at least the surface side,
A film forming step of forming a film containing Sn and Ag on the substrate;
A method of manufacturing a coating material, comprising: a heat treatment step in which a film containing Sn and Ag formed in the film formation step is subjected to a heat treatment to be converted into the coating layer.
前記成膜工程に先立って前記基材上にNiを含む膜を成膜する請求項8の被覆材の製造方法。   The manufacturing method of the coating | covering material of Claim 8 which forms the film | membrane containing Ni on the said base material prior to the said film-forming process. 前記成膜工程では、Snを含むSn膜と、Agを含むAg膜とを前記基材上に順次成膜する請求項8または9の被覆材の製造方法。   The method for manufacturing a coating material according to claim 8 or 9, wherein in the film forming step, an Sn film containing Sn and an Ag film containing Ag are sequentially formed on the base material. 前記熱処理はリフロー処理若しくは熱拡散処理である請求項8〜10のいずれかの被覆材の製造方法。   The method for manufacturing a coating material according to claim 8, wherein the heat treatment is a reflow treatment or a thermal diffusion treatment.
JP2003363565A 2003-10-23 2003-10-23 Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method Pending JP2005126763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363565A JP2005126763A (en) 2003-10-23 2003-10-23 Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363565A JP2005126763A (en) 2003-10-23 2003-10-23 Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method

Publications (1)

Publication Number Publication Date
JP2005126763A true JP2005126763A (en) 2005-05-19

Family

ID=34642848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363565A Pending JP2005126763A (en) 2003-10-23 2003-10-23 Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method

Country Status (1)

Country Link
JP (1) JP2005126763A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050695A (en) * 2006-07-25 2008-03-06 National Institute For Materials Science Antibacterial article and method of producing antibacterial thin film
JP2010138452A (en) * 2008-12-11 2010-06-24 Mitsubishi Materials Corp Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010280946A (en) * 2009-06-04 2010-12-16 Mitsubishi Shindoh Co Ltd Plated copper wire and method for manufacturing the same
JP2011122234A (en) * 2009-07-15 2011-06-23 Kyowa Densen Kk Plating structure and method for manufacturing electric material
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
JP2013135014A (en) * 2011-12-26 2013-07-08 Fujitsu Ltd Electronic component and electronic apparatus
WO2014003147A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003144A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003145A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014017238A1 (en) 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP2015206094A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Metallic material for electronic component, connector terminal using the same, connector, and electronic component
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same
JP2016056439A (en) * 2014-09-12 2016-04-21 株式会社オートネットワーク技術研究所 Method for producing electrical contact material
US9576693B2 (en) 2011-09-20 2017-02-21 Jx Nippon Mining & Metals Corporation Metal material for electronic component and method for manufacturing the same
US9580783B2 (en) 2011-10-04 2017-02-28 Jx Nippon Mining & Metals Corporation Electronic component metal material and method for manufacturing the same
JP2017082337A (en) * 2016-12-22 2017-05-18 株式会社オートネットワーク技術研究所 Terminal metal fittings
US9728878B2 (en) 2012-02-03 2017-08-08 Jx Nippon Mining & Metals Corporation Press-fit terminal and electronic component using the same
WO2018150641A1 (en) 2017-02-15 2018-08-23 Jx金属株式会社 Metallic material for electronic component, method for manufacturing said metallic material, and connector terminal, connector, and electronic component in which said metallic material is used
JP2019123935A (en) * 2018-01-11 2019-07-25 オリエンタル鍍金株式会社 Production method of plated laminate, and plated laminate
DE112016002685B4 (en) 2015-11-06 2023-07-20 Autonetworks Technologies, Ltd. fitting and connector

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050695A (en) * 2006-07-25 2008-03-06 National Institute For Materials Science Antibacterial article and method of producing antibacterial thin film
JP2010138452A (en) * 2008-12-11 2010-06-24 Mitsubishi Materials Corp Sn PLATING MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010280946A (en) * 2009-06-04 2010-12-16 Mitsubishi Shindoh Co Ltd Plated copper wire and method for manufacturing the same
JP2011122234A (en) * 2009-07-15 2011-06-23 Kyowa Densen Kk Plating structure and method for manufacturing electric material
JP5705738B2 (en) * 2010-02-12 2015-04-22 古河電気工業株式会社 Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
CN102667989A (en) * 2010-02-12 2012-09-12 古河电气工业株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
US8637164B2 (en) 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
US9576693B2 (en) 2011-09-20 2017-02-21 Jx Nippon Mining & Metals Corporation Metal material for electronic component and method for manufacturing the same
US9580783B2 (en) 2011-10-04 2017-02-28 Jx Nippon Mining & Metals Corporation Electronic component metal material and method for manufacturing the same
JP2013135014A (en) * 2011-12-26 2013-07-08 Fujitsu Ltd Electronic component and electronic apparatus
US9728878B2 (en) 2012-02-03 2017-08-08 Jx Nippon Mining & Metals Corporation Press-fit terminal and electronic component using the same
KR20150053264A (en) 2012-06-27 2015-05-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003144A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
US10826203B2 (en) 2012-06-27 2020-11-03 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP2014029825A (en) * 2012-06-27 2014-02-13 Jx Nippon Mining & Metals Corp Electronic component metal material and method of manufacturing the same, connector terminal using the electronic component metal material, connector and electronic component
US10594066B2 (en) 2012-06-27 2020-03-17 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
KR20150053263A (en) 2012-06-27 2015-05-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
US10530084B2 (en) 2012-06-27 2020-01-07 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP2014029007A (en) * 2012-06-27 2014-02-13 Jx Nippon Mining & Metals Corp Electronic component metal material and method of manufacturing the same, connector terminal using the same, connector and electronic component
WO2014003147A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
KR20170017017A (en) 2012-06-27 2017-02-14 제이엑스금속주식회사 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
WO2014003145A1 (en) 2012-06-27 2014-01-03 Jx日鉱日石金属株式会社 Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
US10373730B2 (en) 2012-07-25 2019-08-06 Jx Nippon Mining & Metals Corporation Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
WO2014017238A1 (en) 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
KR20150028344A (en) 2012-07-25 2015-03-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP2015206094A (en) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 Metallic material for electronic component, connector terminal using the same, connector, and electronic component
JP2015229791A (en) * 2014-06-05 2015-12-21 Jx日鉱日石金属株式会社 Metal material for electronic part and connector terminal, connector and electronic part using the same
JP2016056439A (en) * 2014-09-12 2016-04-21 株式会社オートネットワーク技術研究所 Method for producing electrical contact material
DE112016002685B4 (en) 2015-11-06 2023-07-20 Autonetworks Technologies, Ltd. fitting and connector
JP2017082337A (en) * 2016-12-22 2017-05-18 株式会社オートネットワーク技術研究所 Terminal metal fittings
WO2018150641A1 (en) 2017-02-15 2018-08-23 Jx金属株式会社 Metallic material for electronic component, method for manufacturing said metallic material, and connector terminal, connector, and electronic component in which said metallic material is used
KR20190117596A (en) 2017-02-15 2019-10-16 제이엑스금속주식회사 Metal materials for electronic components and manufacturing methods thereof, connector terminals, connectors and electronic components using the same
JP2019123935A (en) * 2018-01-11 2019-07-25 オリエンタル鍍金株式会社 Production method of plated laminate, and plated laminate
JP7162341B2 (en) 2018-01-11 2022-10-28 オリエンタル鍍金株式会社 Method for manufacturing plated laminate and plated laminate

Similar Documents

Publication Publication Date Title
JP2005126763A (en) Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method
TWI362046B (en) Flat cable
US6083633A (en) Multi-layer diffusion barrier for a tin coated electrical connector
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
JP2010144252A (en) Plating material, method of producing the same, and electrical/electronic part using the same
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
JP3953169B2 (en) Manufacturing method of plating material for mating type connection terminal
US5236789A (en) Palladium alloys having utility in electrical applications
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
US5139891A (en) Palladium alloys having utility in electrical applications
JP2005353542A (en) Conductive covering material, manufacturing method thereof, and connector terminal or contact using the covering material
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP2019112666A (en) Conductive material
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
CN109715864B (en) Conductive strip
JP4043834B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JPH1060666A (en) Tin or tin alloy-plated copper alloy for multipole terminal and its production
JP2000169996A (en) Metallic material
JP7333010B2 (en) Electrical contact material, terminal fitting, connector, wire harness, and method for manufacturing electrical contact material
JP4514061B2 (en) Plating material, manufacturing method thereof, and electric / electronic parts using the same
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP2007204854A (en) Plated material, method of producing the same, and electrical/electronic part using the same
JP2005105419A (en) Plated material, method of producing the same, and electrical/electronic part using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218