[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005126741A - Mg-Li BASED HYDROGEN STORAGE ALLOY AND ITS MANUFACTURING METHOD - Google Patents

Mg-Li BASED HYDROGEN STORAGE ALLOY AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2005126741A
JP2005126741A JP2003360901A JP2003360901A JP2005126741A JP 2005126741 A JP2005126741 A JP 2005126741A JP 2003360901 A JP2003360901 A JP 2003360901A JP 2003360901 A JP2003360901 A JP 2003360901A JP 2005126741 A JP2005126741 A JP 2005126741A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
sheet
storage alloy
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003360901A
Other languages
Japanese (ja)
Other versions
JP4367084B2 (en
Inventor
Katsumi Miyashita
克己 宮下
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003360901A priority Critical patent/JP4367084B2/en
Publication of JP2005126741A publication Critical patent/JP2005126741A/en
Application granted granted Critical
Publication of JP4367084B2 publication Critical patent/JP4367084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having excellent hydrogen storage capacity per unit weight at about 100°C and high hydrogen absorption/desorption rate, capable of preventing deterioration due to pulverization and being excellent in mass productivity and highly advantageous in costs and also to provide its manufacturing method. <P>SOLUTION: This manufacturing method comprises steps of: winding an Mg-Li alloy sheet, a Ti (foil) sheet and an Al (foil) sheet round a core rod made of an Al alloy into a jelly-roll shape (step 1); inserting it into a Cu pipe to form it into a billet shape (step 2); applying hydrostatic extrusion (step3), wiredrawing (step 4) and rolling (step 5); removing Cu as an outer shell with nitric acid (step 6); applying heat treatment (step 7); and further applying heat treatment for removing surface oxides (step 8). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素貯蔵を目的としたMg−Li系水素吸蔵合金及びその製造方法に関するものである。   The present invention relates to an Mg—Li-based hydrogen storage alloy for hydrogen storage and a method for producing the same.

水素吸蔵合金は単位体積あたりの水素原子個数が液体水素よりも多いため、水素貯蔵タンクのコンパクト化に有利である。また、水素放出は吸熱反応なので、事故発生時の爆発の危険性も非常に低く安全性が高い。現在実用化されている代表的な水素吸蔵合金としては室温付近で安定な水素の吸放出反応を示すLaNi5系があり、Ni−水素電池の負極材として広く使用されている他、試作用の燃料電池自動車にも搭載されている。 Since the hydrogen storage alloy has more hydrogen atoms per unit volume than liquid hydrogen, it is advantageous for making the hydrogen storage tank compact. Also, since hydrogen release is an endothermic reaction, the danger of an explosion in the event of an accident is very low and safety is high. As a typical hydrogen storage alloy that is currently in practical use, there is a LaNi 5 system that exhibits stable hydrogen absorption and desorption reaction near room temperature, and it is widely used as a negative electrode material for Ni-hydrogen batteries. It is also installed in fuel cell vehicles.

しかし、水素吸蔵合金は金属であることからコンパクトにもかかわらず重量がかさむため、LaNi5における重量あたりの水素吸蔵量は約1.3wt%と低い。また、一般にLaNi5等の水素吸蔵合金は熱伝導性が低く、大量にタンクに貯蔵した場合、合金の加熱や冷却に時間がかかる結果、水素の吸蔵および放出に時間を要してしまう。 However, since the hydrogen storage alloy is a metal, its weight is increased in spite of its compactness, so the hydrogen storage amount per weight in LaNi 5 is as low as about 1.3 wt%. In general, a hydrogen storage alloy such as LaNi 5 has low thermal conductivity, and when it is stored in a tank in a large amount, it takes time to heat and cool the alloy, so that it takes time to store and release hydrogen.

一方、重量密度の低い(軽い)Mg系水素吸蔵合金は、3〜6wt%の水素貯蔵が可能であり、特にMg単体は6wt%という高い吸蔵量を示す。しかし、Mg系水素吸蔵合金は、水素の吸放出反応が約250℃以上(Mgの場合は300℃以上)で発生するため、別途に熱源が必要となりエネルギー効率が悪い。しかも、Mgはその結晶構造が六方晶であり、室温付近での加工性が極端に悪いため、Mgを含む複合材は200℃以上の温度で加工する必要がある。また、複合化する金属によっては室温で加工可能なものもあるが、細径あるいは薄肉化してくると加工性が低下し、断線や切れてしまうことがほとんどである。   On the other hand, an Mg-based hydrogen storage alloy having a low weight density (light) can store 3 to 6 wt% of hydrogen, and especially Mg alone has a high storage capacity of 6 wt%. However, in the Mg-based hydrogen storage alloy, the hydrogen absorption / desorption reaction occurs at about 250 ° C. or more (300 ° C. or more in the case of Mg), so that a separate heat source is required and the energy efficiency is poor. In addition, Mg has a hexagonal crystal structure and extremely low workability near room temperature. Therefore, it is necessary to process a composite material containing Mg at a temperature of 200 ° C. or higher. In addition, some metals to be combined can be processed at room temperature. However, when the diameter is reduced or the thickness is reduced, workability is reduced, and disconnection or breakage is almost the case.

更に、近年、100℃以下で水素を吸・放出する金属であるPd(パラジウム)とMgをスパッタリングによりサブミクロン以下のオーダーで交互に積層させた多層薄膜が、100℃以下で〜5wt%の水素を吸蔵可能なことが判明し、注目されている(例えば、特許文献1参照)。この多層薄膜による現象の詳細は不明だが、原理的にはPdとMgの協力現象と説明されている。つまり、水素を吸蔵したPdは格子定数が増加し面方向に膨張する。それに接しているMg層の極薄い界面も格子定数が増加して水素を吸蔵する。一方、放出の際は、まずPdから水素が放出することで面方向に収縮し、Mgに圧縮応力が加わって水素が放出されると考えられている。
特開2002−105576号公報
Furthermore, in recent years, a multilayer thin film in which Pd (palladium), which is a metal that absorbs and desorbs hydrogen at 100 ° C. or less, and Mg are alternately laminated in the order of submicron or less by sputtering is ˜5 wt% hydrogen at 100 ° C. or less. Has been found to be occluded and is attracting attention (see, for example, Patent Document 1). Although the details of the phenomenon caused by this multilayer thin film are unknown, it is explained in principle as a cooperative phenomenon of Pd and Mg. That is, Pd that occludes hydrogen has an increased lattice constant and expands in the surface direction. The ultrathin interface of the Mg layer in contact with it also increases the lattice constant and occludes hydrogen. On the other hand, at the time of release, it is considered that hydrogen is first released from Pd and contracts in the plane direction, and compressive stress is applied to Mg to release hydrogen.
JP 2002-105576 A

しかしながら、前記Pd/Mg多層薄膜においては、PdがPt(白金)と同等か、それ以上に高価な貴金属であり、加えて多層薄膜の製造方法がスパッタによるPVD法で作製されているため、量産性とコスト面で現実味に欠けるという課題があった。   However, in the Pd / Mg multilayer thin film, Pd is a noble metal that is equivalent to or more expensive than Pt (platinum), and in addition, the multilayer thin film manufacturing method is manufactured by the PVD method by sputtering. There was a problem of lack of reality in terms of sex and cost.

また、一般に、水素吸蔵合金は、水素を吸蔵すると格子定数が増加し結晶サイズが大きくなる。ほとんどの水素吸蔵合金は脆いため、水素の吸・放出を繰り返すと微粉化して、粉体間の分子間力(ファンデルワールスカ)が増加し、合金を貯蔵しているタンクの内圧が高くなってしまうという課題があった。   In general, when hydrogen is stored in a hydrogen storage alloy, the lattice constant increases and the crystal size increases. Most hydrogen storage alloys are fragile, so when they repeatedly absorb and release hydrogen, they are pulverized, increasing the intermolecular force between the powders (van der Waals) and increasing the internal pressure of the tank that stores the alloy. There was a problem of ending up.

従って、本発明の目的は、100℃程度の温度で単位重量当たりの水素吸蔵量が高くエネルギー効率に優れ、水素の吸・放出速度が速く、かつ室温での加工性に優れ、しかも微粉化による劣化を防止できる水素吸蔵合金を提供することにある。   Therefore, the object of the present invention is to have a high hydrogen storage amount per unit weight at a temperature of about 100 ° C., excellent energy efficiency, a high hydrogen absorption / release rate, excellent workability at room temperature, and by pulverization. An object of the present invention is to provide a hydrogen storage alloy capable of preventing deterioration.

また、本発明の他の目的は、量産性とコスト面に優れた水素吸蔵合金の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing a hydrogen storage alloy that is excellent in mass productivity and cost.

上記目的を達成するため、本発明のMg−Li系水素吸蔵合金は、Mg−Li合金とMg系以外の水素吸蔵合金との複合体からなり、塑性加工により細線化又はシート化されたことを特徴とする。   In order to achieve the above object, the Mg—Li-based hydrogen storage alloy of the present invention is composed of a composite of an Mg—Li alloy and a non-Mg-based hydrogen storage alloy, and has been thinned or formed into a sheet by plastic working. Features.

前記Mg系以外の水素吸蔵合金は、Al又はAlを主成分とするAl合金、Ti又はTiを主成分とするTi合金、Ni又はNiを主成分とするNi合金、Fe又はFeを主成分とするFe合金、Nb又はNbを主成分とするNb合金、及びV又はVを主成分とするV合金からなる群から選ばれた少なくとも1種とすることが好ましい。   The hydrogen storage alloy other than the Mg-based alloy includes Al or an Al alloy containing Al as a main component, Ti or a Ti alloy containing Ti as a main component, Ni or a Ni alloy containing Ni as a main component, Fe or Fe as a main component. It is preferable to use at least one selected from the group consisting of an Fe alloy, an Nb alloy containing Nb or Nb as a main component, and a V alloy containing V or V as a main component.

前記Mg−Li合金の代わりに、Mg−Li−Mm(ミッシュメタル)合金を用いることができる。   Instead of the Mg-Li alloy, an Mg-Li-Mm (Misch metal) alloy can be used.

Liの添加量は5.5wt%〜20wt%、Mm(ミッシュメタル)の添加量は2wt%以下とすることが望ましい。   The addition amount of Li is desirably 5.5 wt% to 20 wt%, and the addition amount of Mm (Misch metal) is desirably 2 wt% or less.

前記Mg−Li系水素吸蔵合金を、水素貯蔵用タンク又はNi−水素2次電池の負極材として用いることができる。   The Mg—Li-based hydrogen storage alloy can be used as a hydrogen storage tank or a negative electrode material for a Ni—hydrogen secondary battery.

また、本発明のMg−Li系水素吸蔵合金の製造方法は、Mg−Li合金シートとMg系以外の水素吸蔵合金シートとを重ねて巻回してMg−Li/水素吸蔵合金の多層構造とし、金属製パイプに挿入後、塑性加工を施して細線化又はシート化したことを特徴とする。   Moreover, the manufacturing method of the Mg-Li-based hydrogen storage alloy of the present invention has a multilayer structure of Mg-Li / hydrogen storage alloy by stacking and winding an Mg-Li alloy sheet and a non-Mg-based hydrogen storage alloy sheet, After being inserted into a metal pipe, plastic processing is performed to make it thin or sheet.

前記Mg−Li合金シート及びMg系以外の水素吸蔵合金シートをAl若しくはAl合金製芯棒、又はMg合金製芯棒に巻回することができる。   The Mg—Li alloy sheet and the non-Mg hydrogen storage alloy sheet can be wound around an Al or Al alloy core rod, or an Mg alloy core rod.

前記Mg系以外の水素吸蔵合金は、Al又はAlを主成分とするAl合金、Ti又はTiを主成分とするTi合金、Ni又はNiを主成分とするNi合金、Fe又はFeを主成分とするFe合金、Nb又はNbを主成分とするNb合金、及びV又はVを主成分とするV合金からなる群から選ばれた少なくとも1種とすることが好ましい。   The hydrogen storage alloy other than the Mg-based alloy includes Al or an Al alloy containing Al as a main component, Ti or a Ti alloy containing Ti as a main component, Ni or a Ni alloy containing Ni as a main component, Fe or Fe as a main component. It is preferable to use at least one selected from the group consisting of an Fe alloy, an Nb alloy containing Nb or Nb as a main component, and a V alloy containing V or V as a main component.

前記Mg−Li合金の代わりに、Mg−Li−Mm(ミッシュメタル)合金を用いることができる。   Instead of the Mg-Li alloy, an Mg-Li-Mm (Misch metal) alloy can be used.

前記Mg‐Li合金シート又は前記Mg−Li−Mm(ミッシュメタル)合金シートの厚さt1と前記Mg系以外の水素吸蔵合金シートの厚さt2の比(=t1/t2)を、2〜8とすることが望ましい。 The ratio (= t 1 / t 2 ) between the thickness t 1 of the Mg-Li alloy sheet or the Mg-Li-Mm (Misch metal) alloy sheet and the thickness t 2 of the non-Mg-based hydrogen storage alloy sheet 2-8 are desirable.

前記塑性加工を施して細線化又はシート化後、外側の金属製パイプの被覆を除去し、400℃以上の温度で熱処理することが好ましい。   After thinning or sheeting by applying the plastic working, it is preferable to remove the coating on the outer metal pipe and heat-treat at a temperature of 400 ° C. or higher.

前記塑性加工を施して細線化又はシート化後のMg層部分の平均厚さが3μm以下であることが好ましい。   It is preferable that the average thickness of the Mg layer portion after the thinning or sheeting after the plastic working is 3 μm or less.

本発明によるMg−Li系水素吸蔵合金は、250〜300℃以上の温度で高い水素吸蔵量がありかつ室温で塑性加工可能なMg−Li合金と、100℃以下の温度で水素を吸蔵するが水素吸蔵量は低いMg系以外の水素吸蔵合金とを組み合わせて複合体とし、塑性加工を施してMg−Li合金とMg系以外の水素吸蔵合金とをμmオーダーにまで薄くして接触させているので、100℃程度の温度でも単位重量あたりの水素吸蔵量が増加し、従来の水素吸蔵合金に比較してエネルギー効率に優れたものとなる。このため、車搭載用として1回の水素補給での航続距離を伸ばすことが可能となる。   The Mg—Li-based hydrogen storage alloy according to the present invention has a high hydrogen storage capacity at a temperature of 250 to 300 ° C. or higher and can be plastically processed at room temperature, and stores hydrogen at a temperature of 100 ° C. or lower. A hydrogen storage alloy with a low hydrogen storage amount is combined with a hydrogen storage alloy other than Mg to form a composite, and plastic processing is performed to make the Mg-Li alloy and the non-Mg hydrogen storage alloy thinner to the μm order and contact each other. Therefore, the hydrogen storage amount per unit weight is increased even at a temperature of about 100 ° C., and the energy efficiency is superior to that of the conventional hydrogen storage alloy. For this reason, it is possible to extend the cruising distance with one hydrogen supply for mounting on a vehicle.

また、Mgが複合化されているので熱伝導性が良好なため、水素の吸・放出速度が速く、Mgとの複合効果で微粉化による劣化も少ないため、繰り返しの吸・放出に耐えられる。このため、従来の水素吸蔵合金にみられた水素吸・放出の繰り返しによる粉末の微粉化によりタンク内圧が上昇することもない。加えて、比較的熱伝導性の高いMgを複合化して構成されているのでタンクの温度コントロールの追従性も他の合金に比較すると高く、より早い水素充填が可能になる。   In addition, since Mg is complexed, the thermal conductivity is good, so the rate of hydrogen absorption / release is fast, and the deterioration due to micronization is small due to the combined effect with Mg, so that it can withstand repeated absorption / desorption. For this reason, the internal pressure of the tank does not increase due to the pulverization of the powder due to repeated hydrogen absorption / release found in conventional hydrogen storage alloys. In addition, since it is configured by combining Mg having relatively high thermal conductivity, the followability of the temperature control of the tank is also higher than that of other alloys, so that faster hydrogen filling is possible.

更に、Mg以外にLiや他の水素吸蔵合金を含んでいるため、Mg系水素吸蔵合金特有の室温付近での加工性が極端に悪いという欠点を解消することができる。   Furthermore, since Li and other hydrogen storage alloys are included in addition to Mg, it is possible to eliminate the disadvantage of extremely poor workability near room temperature, which is typical for Mg-based hydrogen storage alloys.

また、本発明によるMg−Li系水素吸蔵合金の製造方法は、Mg−Li合金シートと、Mg系以外の水素吸蔵合金シートとを組み合わせて複合体とし、塑性加工を施してMg−Li合金とMg系以外の水素吸蔵合金とをμmオーダーにまで薄くして接触させているので、Pd等の高価な貴金属を用いておらずコスト面に優れ、スパッタリングではなく合金シートを塑性加工により薄くしているので、量産性にも優れたものとなる。   Moreover, the manufacturing method of the Mg-Li-based hydrogen storage alloy according to the present invention is a composite of an Mg-Li alloy sheet and a non-Mg-based hydrogen storage alloy sheet, and is subjected to plastic working to form an Mg-Li alloy. Since it is in contact with a hydrogen storage alloy other than Mg based to a thickness of μm, it does not use expensive precious metals such as Pd and is excellent in terms of cost. The alloy sheet is thinned by plastic working instead of sputtering. Therefore, it is excellent in mass productivity.

本発明の最良の実施形態では、Mg−Liシートと、Mg系以外の種々の水素吸蔵合金シートとを交互に重ね合わせて丸棒状あるいは板状にした出発材料を、押出し・伸線や圧延等の塑性加工により、細く・薄くして、Mg−Li合金層、Mg系以外の水素吸蔵合金層の厚さをμmオーダー以下にまでしたのち、拡散熱処理することで、Mg‐Li系水素吸蔵合金を作製するものである。以下、最良の実施形態について更に詳しく説明する。   In the best embodiment of the present invention, a starting material obtained by alternately superposing Mg-Li sheets and various hydrogen storage alloy sheets other than Mg-based sheets into a round bar shape or a plate shape is extruded, drawn, rolled, etc. After making the thickness of the Mg-Li alloy layer and non-Mg hydrogen storage alloy layers to the μm order or less by using plastic processing, Mg-Li hydrogen storage alloy is obtained by diffusion heat treatment. Is produced. Hereinafter, the best embodiment will be described in more detail.

(Mg−Li合金)
前述のように純MgやAZ−31(Mg−3wt%Al−1wt%Zn)等のMg合金は基本的に結晶構造が六方晶(α相)であり、結晶方位においてすべり面が限定される。このため、室温付近での極端な塑性加工は難しく、温間加工が必要となる。しかしながら、MgにLiを添加したMg−Li合金は結晶構造が体心立方構造BCC(β相)となり、室温でも塑性加工が可能となる。結晶構造は、Li添加濃度により変化し、5.7〜11wt%Liの添加で(α+β)の混合相となり、11wt%Li以上の添加ではほぼβ相のみとなり、加工性が向上する。また、LiはMgよりも更に軽量であるため、軽量化目的には適している。
(Mg-Li alloy)
As described above, Mg alloys such as pure Mg and AZ-31 (Mg-3 wt% Al-1 wt% Zn) basically have a hexagonal crystal structure (α phase), and the slip plane is limited in crystal orientation. . For this reason, extreme plastic working near room temperature is difficult, and warm working is required. However, the Mg-Li alloy in which Li is added to Mg has a body-centered cubic structure BCC (β phase), and plastic processing is possible even at room temperature. The crystal structure changes depending on the Li addition concentration. When 5.7 to 11 wt% Li is added, a (α + β) mixed phase is obtained. When 11 wt% Li or more is added, only the β phase is obtained, and the workability is improved. In addition, Li is lighter than Mg and is therefore suitable for lightening purposes.

(Li及びMm(ミッシュメタル))
Mg−Li合金において、LiのほかにMm(ミッシュメタル:希土類元素の混合物)を含むMg−Li−Mm合金シートを使用することができる。希土類元素の添加により結晶粒が微細化して加工性が向上する。Mg‐Li−Mm系合金において、Liの添加量が5.5wt%以上20wt%以下、Mm(ミッシュメタル:希土類元素の混合物)の添加量が2wt%以下の範囲内が望ましい。この範囲に規定したのは、Liの添加量が5.5wt%未満になると、前述したようにα相が支配的となり室温における加工性が低下し、Liの添加量が20wt%を超えるとMg−Li合金の融点が500℃以下となり、加工後の最終熱処理においてMg−Li合金が溶融してしまうからである。また、希土類元素(Mm)の添加量が2wt%を超えると粒界部に希土類元素が偏析して加工性を低下させてしまうからである。
(Li and Mm (Misch Metal))
In the Mg—Li alloy, an Mg—Li—Mm alloy sheet containing Mm (Misch metal: a mixture of rare earth elements) in addition to Li can be used. Addition of rare earth elements refines crystal grains and improves workability. In the Mg—Li—Mm alloy, it is desirable that the amount of Li added is in the range of 5.5 wt% to 20 wt% and the amount of Mm (Misch metal: mixture of rare earth elements) is 2 wt% or less. The range is defined as follows: when the Li addition amount is less than 5.5 wt%, the α phase becomes dominant and the workability at room temperature decreases as described above, and when the Li addition amount exceeds 20 wt%, Mg This is because the melting point of the Li alloy is 500 ° C. or lower, and the Mg—Li alloy is melted in the final heat treatment after processing. Further, if the amount of rare earth element (Mm) added exceeds 2 wt%, the rare earth element segregates at the grain boundary portion and the workability is lowered.

(Mg‐Li合金と複合化するMg系以外の水素吸蔵合金シート)
Mg‐Li合金と複合化するMg系以外の水素吸蔵合金シートは、(1)AlまたはAlを主成分とするAl合金、(2)TiまたはTiを主成分とするTi合金、(3)NiまたはNiを主成分とするNi合金、(4)FeまたはFeを主成分とするFe合金、(5)NbまたはNbを主成分とするNb‐V系合金、(6)VまたはVを主成分とするV系合金、のいずれか1種類または、(1)〜(6)の複数の組み合わせからなる。
ここで、AlとTiの金属間化合物のうちTi3Alは室温で水素を吸蔵する。TiとFeの金属間化合物のうちTiFeは室温付近で水素を吸・放出する代表的な水素吸蔵合金である。TiとNiの金属間化合物のうち、TiNiとTi2Niは水素吸蔵合金である。MgとNiの化合物であるMg2Niは水素吸蔵合金である。NbとVは各々単体金属で、室温付近において水素を吸・放出する。また、Nb−V合金はNb、V単体よりも容易(低い水素圧で)に水素を吸・放出する。
(Non-Mg based hydrogen storage alloy sheet combined with Mg-Li alloy)
Non-Mg based hydrogen storage alloy sheets compounded with Mg-Li alloy are (1) Al or Al alloy containing Al as the main component, (2) Ti or Ti alloy containing Ti as the main component, and (3) Ni Or Ni alloy containing Ni as a main component, (4) Fe alloy containing Fe or Fe as a main component, (5) Nb-V alloy containing Nb or Nb as a main component, (6) V or V as a main component Any one type of V-type alloy or a plurality of combinations of (1) to (6).
Here, among the intermetallic compounds of Al and Ti, Ti 3 Al occludes hydrogen at room temperature. Of the intermetallic compounds of Ti and Fe, TiFe is a typical hydrogen storage alloy that absorbs and releases hydrogen near room temperature. Of the intermetallic compounds of Ti and Ni, TiNi and Ti 2 Ni are hydrogen storage alloys. Mg 2 Ni, which is a compound of Mg and Ni, is a hydrogen storage alloy. Nb and V are each a single metal, and absorb and release hydrogen near room temperature. Nb-V alloys absorb and release hydrogen more easily (at a lower hydrogen pressure) than Nb and V alone.

(Mg−Li合金シートの厚さとMg系以外の水素吸蔵合金シートの厚さの比)
Mg−Li合金シートの厚さt1とMg系以外の水素吸蔵合金シートの厚さt2の比(=t1/t2)が2以上8以下であることが好ましい。これは、Mgが実際に水素を吸・放出可能な量は6wt%、一方Mg−Li合金相に挟まれた各種水素吸蔵合金層の水素吸蔵量は約0.5〜2wt%の範囲内である。上記のシート厚さ比(=t1/t2)が2より低いと、Mg層の占有率が減少して全体の水素吸蔵量が低下し、Mg相の存在意味がなくなってしまう。一方、室温付近で水素を吸・放出する各種水素吸蔵合金層の影響でMgが室温付近で水素の吸・放出を起こすと考えると、厚さの比が8を超えると各種水素吸蔵合金層の影響がMg層全体に伝わらなくなる。
(Ratio of the thickness of the Mg-Li alloy sheet to the thickness of the hydrogen storage alloy sheet other than Mg-based)
It is preferable that the ratio (= t 1 / t 2 ) of the thickness t 1 of the Mg—Li alloy sheet and the thickness t 2 of the non-Mg hydrogen storage alloy sheet is 2 or more and 8 or less. This is because the amount of Mg that can actually absorb and release hydrogen is 6 wt%, while the hydrogen storage amount of various hydrogen storage alloy layers sandwiched between Mg-Li alloy phases is in the range of about 0.5 to 2 wt%. is there. When the sheet thickness ratio (= t 1 / t 2 ) is lower than 2, the occupation ratio of the Mg layer is reduced, the total hydrogen storage amount is lowered, and the presence of the Mg phase is lost. On the other hand, assuming that Mg causes hydrogen absorption / release near room temperature due to the influence of various hydrogen storage alloy layers that absorb and release hydrogen near room temperature, if the thickness ratio exceeds 8, the various hydrogen storage alloy layers The influence is not transmitted to the entire Mg layer.

(熱処理温度)
加工後に外側の金属被覆を除去した後、400℃以上の温度で熱処理する。これは、外側の金属被覆(例えばCu)はダイス引き等の加工性向上のためであり、最終的な水素吸蔵目的には無関係であるためである。加えて表面がCuの状態では水素が中に拡散していかない。よって、熱処理前に皮剥のような機械的手段か硝酸等のエッチングによる化学的手段により除去する。また、Mg−Li合金層に挟まれた各種金属層が反応して水素吸蔵合金となるためには、複合する金属により異なるが、最低でも400℃は必要となる。そのため、400℃以上で熱処理する。
(Heat treatment temperature)
After the outer metal coating is removed after the processing, heat treatment is performed at a temperature of 400 ° C. or higher. This is because the outer metal coating (for example, Cu) is for improving workability such as die drawing and is irrelevant to the final hydrogen storage purpose. In addition, when the surface is Cu, hydrogen does not diffuse into it. Therefore, it is removed by mechanical means such as peeling or chemical means by etching such as nitric acid before heat treatment. In addition, in order for various metal layers sandwiched between Mg—Li alloy layers to react to form a hydrogen storage alloy, 400 ° C. is required at least, although it depends on the composite metal. Therefore, heat treatment is performed at 400 ° C. or higher.

(伸線・圧延加工後の最終Mg−Li合金層の平均厚さ)
Mg−Li層は、層間の他の水素吸蔵合金層の影響で室温付近で水素を吸蔵する。Mg−Li層の厚さはサブミクロンオーダーが望ましいが、複合化する金属によってはMgと反応して別のMg系水素吸蔵合金層を形成させることもあるので(例えば、Niを複合化した場合は熱処理によりMgとNiが反応してMg2Niとなる)、反応したMgを除いたMg−Li層の厚さがサブミクロンオーダーとなるためには、伸線・圧延加工後で熱処理反応前のMg‐Li合金層の厚さを概ね3μm以下とする。
(Average thickness of final Mg-Li alloy layer after wire drawing / rolling)
The Mg—Li layer occludes hydrogen near room temperature due to the influence of other hydrogen occlusion alloy layers between layers. The thickness of the Mg-Li layer is preferably in the sub-micron order, but depending on the metal to be combined, it may react with Mg to form another Mg-based hydrogen storage alloy layer (for example, when Ni is combined) (Mg and Ni react with each other by heat treatment to become Mg 2 Ni). In order for the thickness of the Mg-Li layer excluding the reacted Mg to be on the submicron order, after the wire drawing / rolling process, before the heat treatment reaction The thickness of the Mg—Li alloy layer is approximately 3 μm or less.

図1に本実施例におけるMg−Li系水素吸蔵合金の線材作製工程図を示す。
まず、幅が全て125mmで、厚さが各々異なるMg−14wt%Li合金シート、Ti(箔)シート、Al(箔)シートの3種類をMg−Li/Ti/Al/Tiの順番で重ねて直径7mmのAl合金製芯棒に寿司巻き状に巻き付け、図2に示すようにMg−Li/Ti/Al/Tiジェリーロール部10を形成した(工程1)。ここで、Al合金芯棒1の直径は7mmであり、各シートの厚さはMg−Liシート3が0.3mm、Tiシート5、9が0.05mm、Alシート7が0.032mmであり、Alシート7はTiシート5、9の2枚で挟みこみ(Ti/Al/Ti)、Alと反応し易いMg−Li合金層と直接接触しないようにした。
FIG. 1 shows a wire production process diagram of an Mg—Li-based hydrogen storage alloy in this example.
First, three types of Mg-14 wt% Li alloy sheets, Ti (foil) sheets, and Al (foil) sheets, each having a width of 125 mm and different thicknesses, are stacked in the order of Mg-Li / Ti / Al / Ti. A sushi roll was wound around an Al alloy core rod having a diameter of 7 mm to form an Mg-Li / Ti / Al / Ti jelly roll 10 as shown in FIG. 2 (Step 1). Here, the diameter of the Al alloy core rod 1 is 7 mm, and the thickness of each sheet is 0.3 mm for the Mg-Li sheet 3, 0.05 mm for the Ti sheets 5 and 9, and 0.032 mm for the Al sheet 7. The Al sheet 7 was sandwiched between two Ti sheets 5 and 9 (Ti / Al / Ti) so as not to be in direct contact with the Mg—Li alloy layer that easily reacts with Al.

次に、図3に示すように、外径が24mmになるまで巻き付けたジェリーロール部10を、内径24.3mm、外径28.5mmのCuパイプ13中に挿入し、前端にCuプラグ、後端に鉄プラグを取り付け押出し用ビレットとした(工程2)。   Next, as shown in FIG. 3, the jelly roll 10 wound until the outer diameter becomes 24 mm is inserted into a Cu pipe 13 having an inner diameter of 24.3 mm and an outer diameter of 28.5 mm, a Cu plug at the front end, An iron plug was attached to the end to form an extrusion billet (step 2).

更に、このビレットを300℃に加熱した状態で直径10mmに静水圧押出し加工した(工程3)。得られた押出し材を室温で伸線加工して直径1mmまで細線化したのち(工程4)、圧延加工を繰り返して厚さ0.2mm、幅4mmのテープ状に加工した(工程5)。   Further, the billet was hydrostatically extruded to a diameter of 10 mm while being heated to 300 ° C. (Step 3). The obtained extruded material was drawn at room temperature to be thinned to a diameter of 1 mm (step 4), and then rolled into a tape having a thickness of 0.2 mm and a width of 4 mm (step 5).

次に、このテープ材を硝酸溶液に漬けて外皮のCuを取り除いたのち(工程6)、高純度Arガス(99.99%・Ar)中で600℃×50時間の熱処理を行い、TiとAlを反応させ、Ti3Al合金の生成を行った(工程7)。その後、水素拡散の妨げとなる表面のわずかなTiO2等の酸化物層を除去するため、真空(3×10-4Pa以下)中で400℃3時間の熱処理を行ったのち、室温まで冷却した(工程8)。 Next, after immersing this tape material in a nitric acid solution to remove Cu from the outer skin (step 6), heat treatment is performed at 600 ° C. for 50 hours in high-purity Ar gas (99.99% Ar), and Ti and Al was reacted to produce a Ti 3 Al alloy (Step 7). Then, in order to remove a slight oxide layer such as TiO 2 on the surface that hinders hydrogen diffusion, heat treatment is performed at 400 ° C. for 3 hours in a vacuum (3 × 10 −4 Pa or less), and then cooled to room temperature. (Step 8).

熱処理後、水素吸蔵測定のため、テープ材(重さ10.0g)を内容積が20ccのステンレス製高圧容器に入れて、室温で水素ガスを2MPa(約20気圧)まで加圧した状態で、容器を100℃まで加熱して1時間保持して水素を吸蔵させたのち、室温に戻して大気圧まで減圧した。   After heat treatment, for the hydrogen storage measurement, the tape material (weight 10.0 g) was put in a stainless steel high-pressure container with an internal volume of 20 cc, and hydrogen gas was pressurized to 2 MPa (about 20 atm) at room temperature. The container was heated to 100 ° C. and held for 1 hour to occlude hydrogen, then returned to room temperature and depressurized to atmospheric pressure.

容器から、テープ材を取り出して重量を測定した結果、10.46gとなり、容器に入れる前の重量10gに比較して0.46gの重量増加を確認した。実験結果より、4.6wt%の水素を吸蔵することを確認した。この値は、Ti3Al合金単体の値(約3wt%)の約1.5倍に相当する高い吸蔵量であった。 As a result of taking out the tape material from the container and measuring the weight, it was 10.46 g, and a weight increase of 0.46 g was confirmed as compared with 10 g before being put in the container. From the experimental results, it was confirmed that 4.6 wt% hydrogen was occluded. This value was a high occlusion amount corresponding to about 1.5 times the value of Ti 3 Al alloy alone (about 3 wt%).

なお、本実施例においては、従来粉末で使用されていた水素吸蔵合金を線材化しているが、他の変形例としては、製造過程において寿司巻き状の丸形状ではなく、シートを何枚も交互に積層させて板状とした状態で、圧延加工を繰り返して多層構造のシート状とすることで水素吸蔵シートとすることも可能である。   In this example, the hydrogen storage alloy that has been used in the conventional powder is made into a wire, but as another modified example, the sheet is not a sushi roll-shaped round shape in the manufacturing process. It is also possible to obtain a hydrogen storage sheet by repeating the rolling process into a sheet having a multilayer structure in a state of being laminated in a plate shape.

実施例1におけるMg−Li合金系水素吸蔵線の作製工程図である。FIG. 3 is a production process diagram of an Mg—Li alloy-based hydrogen storage wire in Example 1. 実施例1において製造途中で得られるジェリーロール部を示す斜視図である。It is a perspective view which shows the jelly roll part obtained in the middle of manufacture in Example 1. FIG. 実施例1において製造途中で得られる押出し用ビレットを示す斜視図である。In Example 1, it is a perspective view which shows the billet for extrusion obtained in the middle of manufacture.

符号の説明Explanation of symbols

1 Al合金芯棒
3 Mg−Alシート
5 Tiシート
7 Alシート
9 Tiシート
11 Mg−Li/Ti/Al/Tiジェリーロール部
13 Cuパイプ
DESCRIPTION OF SYMBOLS 1 Al alloy core rod 3 Mg-Al sheet 5 Ti sheet 7 Al sheet 9 Ti sheet 11 Mg-Li / Ti / Al / Ti jelly roll part 13 Cu pipe

Claims (12)

Mg−Li合金とMg系以外の水素吸蔵合金との複合体からなり、塑性加工により細線化又はシート化されたことを特徴とするMg−Li系水素吸蔵合金。   An Mg-Li-based hydrogen storage alloy comprising a composite of an Mg-Li alloy and a non-Mg-based hydrogen storage alloy that has been thinned or formed into a sheet by plastic working. 前記Mg系以外の水素吸蔵合金は、Al又はAlを主成分とするAl合金、Ti又はTiを主成分とするTi合金、Ni又はNiを主成分とするNi合金、Fe又はFeを主成分とするFe合金、Nb又はNbを主成分とするNb合金、及びV又はVを主成分とするV合金からなる群から選ばれた少なくとも1種であることを特徴とする請求項1記載のMg−Li系水素吸蔵合金。   The hydrogen storage alloy other than the Mg-based alloy includes Al or an Al alloy containing Al as a main component, Ti or a Ti alloy containing Ti as a main component, Ni or a Ni alloy containing Ni as a main component, Fe or Fe as a main component. 2. The Mg— alloy according to claim 1, wherein the Mg— is at least one selected from the group consisting of an Fe alloy, an Nb alloy containing Nb or Nb as a main component, and a V alloy containing V or V as a main component. Li-based hydrogen storage alloy. 前記Mg−Li合金の代わりに、Mg−Li−Mm(ミッシュメタル)合金を用いたことを特徴とする請求項1記載のMg−Li系水素吸蔵合金。   The Mg-Li-based hydrogen storage alloy according to claim 1, wherein an Mg-Li-Mm (Misch metal) alloy is used instead of the Mg-Li alloy. Liの添加量が5.5wt%〜20wt%、Mm(ミッシュメタル)の添加量が2wt%以下であることを特徴とする請求項3記載のMg−Li系水素吸蔵合金。   The Mg-Li-based hydrogen storage alloy according to claim 3, wherein the addition amount of Li is 5.5 wt% to 20 wt%, and the addition amount of Mm (Misch metal) is 2 wt% or less. 水素貯蔵用タンク又はNi−水素2次電池の負極材として用いられることを特徴とする請求項1乃至請求項4のいずれか1項記載のMg−Li系水素吸蔵合金。   The Mg-Li-based hydrogen storage alloy according to any one of claims 1 to 4, wherein the Mg-Li-based hydrogen storage alloy is used as a hydrogen storage tank or a negative electrode material of a Ni-hydrogen secondary battery. Mg−Li合金シートとMg系以外の水素吸蔵合金シートとを重ねて巻回してMg−Li/水素吸蔵合金の多層構造とし、金属製パイプに挿入後、塑性加工を施して細線化又はシート化したことを特徴とするMg−Li系水素吸蔵合金の製造方法。   A Mg-Li alloy sheet and a non-Mg hydrogen storage alloy sheet are layered and wound to form a multilayer structure of Mg-Li / hydrogen storage alloy, inserted into a metal pipe, and then subjected to plastic working to form a thin wire or sheet The manufacturing method of the Mg-Li type | system | group hydrogen storage alloy characterized by the above-mentioned. 前記Mg−Li合金シート及びMg系以外の水素吸蔵合金シートをAl若しくはAl合金製芯棒、又はMg合金製芯棒に巻回したことを特徴とする請求項6記載のMg−Li系水素吸蔵合金の製造方法。   The Mg-Li-based hydrogen storage according to claim 6, wherein the Mg-Li alloy sheet and a non-Mg-based hydrogen storage alloy sheet are wound around an Al or Al alloy core rod, or an Mg alloy core rod. Alloy manufacturing method. 前記Mg系以外の水素吸蔵合金は、Al又はAlを主成分とするAl合金、Ti又はTiを主成分とするTi合金、Ni又はNiを主成分とするNi合金、Fe又はFeを主成分とするFe合金、Nb又はNbを主成分とするNb合金、及びV又はVを主成分とするV合金からなる群から選ばれた少なくとも1種であることを特徴とする請求項6又は請求項7記載のMg−Li系水素吸蔵合金の製造方法。   The hydrogen storage alloy other than the Mg-based alloy includes Al or an Al alloy containing Al as a main component, Ti or a Ti alloy containing Ti as a main component, Ni or a Ni alloy containing Ni as a main component, Fe or Fe as a main component. 8 or at least one selected from the group consisting of a Fe alloy, a Nb alloy containing Nb or Nb as a main component, and a V alloy containing V or V as a main component. The manufacturing method of Mg-Li type hydrogen storage alloy of description. 前記Mg−Li合金の代わりに、Mg−Li−Mm(ミッシュメタル)合金を用いたことを特徴とする請求項6又は請求項7記載のMg−Li系水素吸蔵合金の製造方法。   The method for producing an Mg-Li-based hydrogen storage alloy according to claim 6 or 7, wherein an Mg-Li-Mm (Misch metal) alloy is used instead of the Mg-Li alloy. 前記Mg‐Li合金シート又は前記Mg−Li−Mm(ミッシュメタル)合金シートの厚さt1と前記Mg系以外の水素吸蔵合金シートの厚さt2の比(=t1/t2)が、2〜8であることを特徴とする請求項6又は請求項9記載のMg−Li系水素吸蔵合金の製造方法。 The ratio (= t 1 / t 2 ) between the thickness t 1 of the Mg—Li alloy sheet or the Mg—Li—Mm (Misch metal) alloy sheet and the thickness t 2 of the non-Mg hydrogen storage alloy sheet The method for producing an Mg—Li-based hydrogen storage alloy according to claim 6 or 9, wherein: 前記塑性加工を施して細線化又はシート化後、外側の金属製パイプの被覆を除去し、400℃以上の温度で熱処理したことを特徴とする請求項6記載のMg−Li系水素吸蔵合金の製造方法。   7. The Mg—Li-based hydrogen storage alloy according to claim 6, wherein after the thinning or sheeting is performed by the plastic working, the outer metal pipe coating is removed and heat treatment is performed at a temperature of 400 ° C. or higher. Production method. 前記塑性加工を施して細線化又はシート化後のMg層部分の平均厚さが3μm以下であることを特徴とする請求項6記載のMg−Li系水素吸蔵合金の製造方法。

The method for producing an Mg—Li-based hydrogen storage alloy according to claim 6, wherein an average thickness of the Mg layer portion after the plastic working is thinned or formed into a sheet is 3 μm or less.

JP2003360901A 2003-10-21 2003-10-21 Method for producing Mg-Li-based hydrogen storage alloy Expired - Fee Related JP4367084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360901A JP4367084B2 (en) 2003-10-21 2003-10-21 Method for producing Mg-Li-based hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360901A JP4367084B2 (en) 2003-10-21 2003-10-21 Method for producing Mg-Li-based hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2005126741A true JP2005126741A (en) 2005-05-19
JP4367084B2 JP4367084B2 (en) 2009-11-18

Family

ID=34641077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360901A Expired - Fee Related JP4367084B2 (en) 2003-10-21 2003-10-21 Method for producing Mg-Li-based hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP4367084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007899A1 (en) 2011-04-21 2012-10-25 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for manufacturing e.g. intermetallic phase lithium-aluminum anode material utilized in cells of lithium batteries, involves filling shell with lithium or material containing lithium, and cold-transforming closed shell by hammers
JP2013544734A (en) * 2010-07-12 2013-12-19 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for producing a hydrogen storage material including a hyperplastic deformation operation
CN111876640A (en) * 2020-06-12 2020-11-03 榆林学院 Gasification slag magnesium-nickel alloy hydrogen storage composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177217A (en) * 1988-12-27 1990-07-10 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconducting wire
JPH0741808A (en) * 1993-07-30 1995-02-10 Mazda Motor Corp Composite hydrogen storage alloy and its production
JPH0790327A (en) * 1993-09-17 1995-04-04 Mazda Motor Corp Hydrogen storage alloy and its production
JPH0941066A (en) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd Magnesium alloy capable of cold press working
JP2003073765A (en) * 2001-09-04 2003-03-12 Toyota Central Res & Dev Lab Inc Hydrogen storage material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177217A (en) * 1988-12-27 1990-07-10 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconducting wire
JPH0741808A (en) * 1993-07-30 1995-02-10 Mazda Motor Corp Composite hydrogen storage alloy and its production
JPH0790327A (en) * 1993-09-17 1995-04-04 Mazda Motor Corp Hydrogen storage alloy and its production
JPH0941066A (en) * 1995-08-01 1997-02-10 Mitsui Mining & Smelting Co Ltd Magnesium alloy capable of cold press working
JP2003073765A (en) * 2001-09-04 2003-03-12 Toyota Central Res & Dev Lab Inc Hydrogen storage material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544734A (en) * 2010-07-12 2013-12-19 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for producing a hydrogen storage material including a hyperplastic deformation operation
DE102011007899A1 (en) 2011-04-21 2012-10-25 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method for manufacturing e.g. intermetallic phase lithium-aluminum anode material utilized in cells of lithium batteries, involves filling shell with lithium or material containing lithium, and cold-transforming closed shell by hammers
CN111876640A (en) * 2020-06-12 2020-11-03 榆林学院 Gasification slag magnesium-nickel alloy hydrogen storage composite material and preparation method thereof
CN111876640B (en) * 2020-06-12 2021-06-29 榆林学院 Gasification slag magnesium-nickel alloy hydrogen storage composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4367084B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JPH11503489A (en) Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage
JP2008088467A (en) Hydrogen storage alloy, hydrogen separation membrane, hydrogen storage tank and method for storing/discharging hydrogen
JP2015053475A (en) Hydrogen discharge membrane
EP1866238A1 (en) Hydrogen storage structure
KR930006212B1 (en) Rare earth metal-series alloys for storage of hydrogen
JP4367084B2 (en) Method for producing Mg-Li-based hydrogen storage alloy
EP1116797A1 (en) Hydrogen-occluding material and process for producing the same
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JP2004066653A (en) Multi-ply structured hydrogen storage body
US5298037A (en) Metal hydrides
JP2004083966A (en) Method for producing hydrogen storage material, and hydrogen storage material
JP4482321B2 (en) Method for producing Mg-Cu composite material
JP6106343B2 (en) Hydrogen discharge membrane
JP2004346419A (en) Hydrogen storage alloy, negative electrode material of battery, multilayer structure and method of producing hydrogen storage alloy
JP2004346418A (en) Compound hydrogen storage alloy, hydrogen storage tank for fuel battery, multilayer structure, and method of producing compound hydrogen storage alloy
JP2002105576A (en) Hydrogen occluding laminated structure
JP2004026623A (en) Composite material for hydrogen absorption, its using method and manufacturing method, and hydrogen absorbing material and its using method
JP2004083967A (en) Method for producing hydrogen storage material and hydrogen storage material
US7323034B2 (en) Space group Cp2 alloys for the use and separation of hydrogen
JP4417806B2 (en) Hydrogen storage material and method for producing the same
JP2003073765A (en) Hydrogen storage material
US20080166573A1 (en) Hydrogens Storage Structure
JP7542824B2 (en) Metal-coated magnesium wire and its manufacturing method
JP2002060804A (en) Hydrogen storage alloy excellent in durability and its production method
JP2005194580A (en) Mg-Ni BASED HYDROGEN STORAGE ALLOY, AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees