JP2005120437A - High-strength steel thin sheet superior in hole-expandability and ductility - Google Patents
High-strength steel thin sheet superior in hole-expandability and ductility Download PDFInfo
- Publication number
- JP2005120437A JP2005120437A JP2003357280A JP2003357280A JP2005120437A JP 2005120437 A JP2005120437 A JP 2005120437A JP 2003357280 A JP2003357280 A JP 2003357280A JP 2003357280 A JP2003357280 A JP 2003357280A JP 2005120437 A JP2005120437 A JP 2005120437A
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- ductility
- hole
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 81
- 239000010959 steel Substances 0.000 title claims abstract description 81
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 16
- 239000002244 precipitate Substances 0.000 claims description 23
- 239000002131 composite material Substances 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 239000012535 impurity Substances 0.000 abstract 1
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 238000007792 addition Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 24
- 150000003568 thioethers Chemical class 0.000 description 16
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 4
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、主としてプレス加工される自動車用鋼板を対象とし、6.0mm程度以下の板厚で、980N/mm2 以上の引張強度を有し、穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法に関するものである。 The present invention is mainly intended for automotive steel plates to be pressed, has a thickness of about 6.0 mm or less, has a tensile strength of 980 N / mm 2 or more, and has high strength hot rolling excellent in hole expansibility and ductility. The present invention relates to a steel plate and a manufacturing method thereof.
近年、自動車の燃費改善対策としての車体軽量化、部品の一体成形によるコストダウンのニーズが強まり、プレス成形性に優れた熱延高強度鋼板の開発が進められてきた。従来、加工用熱延鋼板としてはフェライト・マルテンサイト組織からなるDual Phase鋼板が知られている。Dual Phase鋼板は、軟質なフェライト相と硬質なマルテンサイト相の複合組織で構成されており、著しく硬度の異なる両相の界面からボイドが発生して割れを生じるため穴拡げ性に劣る問題があり、足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。これに対し、特開平4−88125号公報、特開平3−180426号公報ではベイナイトを主体とした組織により穴拡げ性の優れた熱延鋼板の製造方法が提案されているが、この鋼板は伸び特性に劣ることから適用部品に制約があった。 In recent years, there has been an increasing need for weight reduction as a vehicle fuel efficiency improvement measure and cost reduction by integral molding of parts, and development of hot-rolled high-strength steel sheets excellent in press formability has been promoted. Conventionally, as a hot-rolled steel sheet for processing, a dual-phase steel sheet having a ferrite / martensite structure is known. The dual phase steel sheet is composed of a composite structure of soft ferrite phase and hard martensite phase, and voids are generated from the interface of both phases with extremely different hardness, causing cracks and poor hole expandability. In addition, it is unsuitable for applications requiring high hole expansibility such as undercarriage parts. In contrast, JP-A-4-88125 and JP-A-3-180426 propose a method of manufacturing a hot-rolled steel sheet having excellent hole expansibility with a structure mainly composed of bainite. There are restrictions on the applicable parts due to inferior properties.
穴拡げ性と延性を両立する技術として特開平6−293910号公報、特開2002−180188号公報、特開2002−180189号公報、特開2002−180190号公報ではフェライト+ベイナイトの混合組織による鋼板が提案されているが、自動車のさらなる軽量化指向、部品の複雑化等を背景に更に高い穴拡げ性が求められ上記技術では対応しきれない高度な加工性、高強度化が要求されている。 Japanese Patent Laid-Open No. 6-293910, Japanese Patent Laid-Open No. 2002-180188, Japanese Patent Laid-Open No. 2002-180189, and Japanese Patent Laid-Open No. 2002-180190 disclose a steel sheet having a mixed structure of ferrite and bainite. However, with the aim of further reducing the weight of automobiles and complicating parts, higher hole expansibility is required, and high workability and high strength that cannot be handled by the above technology are required. .
また、本発明者らは特開2001−342543号公報、特開2002−20838号公報にて、伸びの劣化を伴わず、穴拡げ性の向上の手段として打抜き穴のクラックの状態が重要であることを見出し、(Ti、Nb)Nの微細化により打抜き穴の断面に微細均一なボイドを生成させることで穴拡げ加工時の応力の集中を緩和しうることで穴拡げ性を向上させうることを見出した。そして、この(Ti、Nb)Nの微細化の手段としてMg系の酸化物の利用を提案した。しかしながら、この発明では酸化物のみを制御しているが、酸素の制御は自由度が少なく、脱酸後の限られたフリー酸素を利用するため総量が少なく、所定の分散状態を得ることが難しく十分な効果を得ることが困難であった。
本発明は上記した従来の問題点を解決するためになされたものであって、980N/mm2 クラス以上の薄鋼板に関するもので、優れた穴拡げ性と延性を両立した高強度薄鋼板を提供しようとするものである。 The present invention has been made to solve the above-mentioned conventional problems, and relates to a thin steel sheet of 980 N / mm 2 class or higher, and provides a high-strength thin steel sheet having both excellent hole expansibility and ductility. It is something to try.
本発明者らは、打抜き穴の断面に微細均一なボイドを生成させることで穴拡げ加工時の応力の集中を緩和することで穴拡げ性を向上させるため、(Ti、Nb)Nの微細化の手法について種々実験、検討を重ねた結果、従来、硫化物は穴拡げ性の劣化を引き起こすといわれているが、Mg系の硫化物は、高温で析出するものは(Ti、Nb)N析出物の生成核としての作用し、低温で析出するものは(Ti、Nb)Nとの競合析出により(Ti、Nb)Nの成長の抑制作用があり、TiN微細化による穴拡げ性の向上に寄与することを見出した。そして、従来のMn系硫化物の析出を回避し、Mg系の硫化物で上記の作用を得るためにはO、MgとMnとSの添加バランスをある条件に入れることが必要であり、これにより、Mg系酸化物単独の利用に比べて、より微細な(Ti、Nb)Nの均一微細化が容易に達成できることを見出すことでこの発明をなすに至ったのである。 The present inventors have refined (Ti, Nb) N in order to improve the hole expandability by reducing the concentration of stress during hole expansion by generating fine uniform voids in the cross-section of the punched hole. As a result of various experiments and examinations on the above method, it is conventionally said that sulfides cause deterioration of hole expansibility, but Mg-based sulfides precipitate at high temperatures (Ti, Nb) N precipitation. Those that act as product nuclei and precipitate at low temperatures have the effect of suppressing the growth of (Ti, Nb) N due to competitive precipitation with (Ti, Nb) N, and improve the hole expansibility by refinement of TiN. I found that it contributed. And in order to avoid the precipitation of conventional Mn-based sulfides and obtain the above-mentioned action with Mg-based sulfides, it is necessary to put the addition balance of O, Mg, Mn and S under certain conditions. Thus, the present invention has been made by finding that a uniform finer (Ti, Nb) N can be easily achieved as compared with the use of Mg-based oxide alone.
(1)質量%にて
C :0.01%以上、0.20%以下、
Si:1.5%以下、
Al:1.5%以下、
Mn:0.5%以上、3.5%以下、
P :0.2%以下、
S :0.0005%以上、0.009%以下、
N :0.009%以下、
Mg:0.0006%以上、0.01%以下、
O:0.005%以下、
および
Ti:0.01%以上、0.20%以下、
Nb:0.01%以上、0.10%以下、
の1種または2種含有し、残部が鉄および不可避的不純物からなり、下記の3つの式の全てを満たすことを特徴とした鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
[Mg%]≧([O%]/16×0.8)×24 ・・・(1)
[S%]≦([Mg%]/24−[O%]/16×0.8 +0.00012)×32 ・・・(2)[S%]≦0.0075/[Mn%] ・・・(3)
(1) By mass% C: 0.01% or more, 0.20% or less,
Si: 1.5% or less,
Al: 1.5% or less,
Mn: 0.5% or more, 3.5% or less,
P: 0.2% or less,
S: 0.0005% or more, 0.009% or less,
N: 0.009% or less,
Mg: 0.0006% or more, 0.01% or less,
O: 0.005% or less,
And Ti: 0.01% or more and 0.20% or less,
Nb: 0.01% or more, 0.10% or less,
The steel structure characterized by satisfying all of the following three formulas having a strength mainly composed of bainite phase is over 980 N / mm 2 . High-strength thin steel sheet with excellent hole expandability and ductility.
[Mg%] ≧ ([O%] / 16 × 0.8) × 24 (1)
[S%] ≦ ([Mg%] / 24− [O%] / 16 × 0.8 +0.00012) × 32 (2) [S%] ≦ 0.0075 / [Mn%] ( 3)
(2) (1)の鋼において更に、MgOとMgSと(Nb、Ti)Nの複合析出物のうち、そのサイズが0.05μm以上、3.0μm以下の析出物が1平方mmあたり5.0×102 個以上、1.0×107 個以下含む、鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。 (2) In the steel of (1), among the composite precipitates of MgO, MgS, and (Nb, Ti) N, precipitates having a size of 0.05 μm or more and 3.0 μm or less are 5. A high-strength thin steel sheet excellent in hole expansibility and ductility in which the steel structure mainly contains a bainite phase and has a strength exceeding 980 N / mm 2 , including 0 × 10 2 or more and 1.0 × 10 7 or less.
(3)質量%で更に、Al、Siの関係が式(4)を満たす(1)又は(2)に記載の鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
[Si%]+2.2×[Al%]≧0.35 ・・・(4)
(3) Further, the expansibility of the steel structure described in (1) or (2) in which the relationship between Al and Si satisfies the formula (4) in mass% and the strength mainly including the bainite phase exceeds 980 N / mm 2 . High strength steel sheet with excellent ductility.
[Si%] + 2.2 × [Al%] ≧ 0.35 (4)
(4) (1)又は(2)又は(3)の鋼において更に、Ti、C、Mn、Nbがそれぞれ式(5)、(6)、(7)を満たす、
0.9≦48/12×C/Ti<1.7 ・・・ (5)
50227×C−4479×Mn>−9860 ・・・(6)
811×C+135×Mn+602×Ti+794×Nb>465 ・・・(7)
鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
(4) In the steel of (1) or (2) or (3), Ti, C, Mn, and Nb satisfy the formulas (5), (6), and (7), respectively.
0.9 ≦ 48/12 × C / Ti <1.7 (5)
50227 × C-4479 × Mn> −9860 (6)
811 × C + 135 × Mn + 602 × Ti + 794 × Nb> 465 (7)
A high-strength thin steel sheet with excellent hole expansibility and ductility with a steel structure mainly composed of a bainite phase and a strength exceeding 980 N / mm 2 .
(5)質量%で更に、Ca、Zr、REMの1種または2種以上を0.0005%以上、0.01%以下含有する(1)から(4)に記載の鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。 (5) The steel structure according to (1) to (4) further containing 0.0005% or more and 0.01% or less of one or more of Ca, Zr, and REM in mass%. A high-strength thin steel sheet with excellent hole expansibility and ductility with a main strength exceeding 980 N / mm 2 .
(6)質量%で更に、
Cu:0.04%以上、0.4%以下、
Ni:0.02%以上、0.3%以下、
Mo:0.02%以上、0.5%以下、
V :0.02%以上、0.1%以下、
Cr:0.02%以上、1.0%以下、
B :0.0003%以上、0.0010%以下、
の1種または2種以上を含有する(1)から(5)に記載の鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
(6) Further in mass%,
Cu: 0.04% or more, 0.4% or less,
Ni: 0.02% or more, 0.3% or less,
Mo: 0.02% or more, 0.5% or less,
V: 0.02% or more, 0.1% or less,
Cr: 0.02% or more, 1.0% or less,
B: 0.0003% or more, 0.0010% or less,
A high-strength thin steel sheet excellent in hole expansibility and ductility in which the steel structure described in any one of (1) to (5) mainly contains a bainite phase and has a strength exceeding 980 N / mm 2 .
本発明によれば強度レベルが980N/mm2 クラス以上で、従来にない伸び−延性バランスを有した熱延高強度鋼板を供給できるようになったもので、産業上極めて有用なものである。 According to the present invention, a hot rolled high-strength steel sheet having a strength level of 980 N / mm 2 class or higher and having an unprecedented elongation-ductility balance can be supplied, which is extremely useful industrially.
本発明は穴拡げ性の改善に対して打抜き穴の端面性状に着眼したもので、O、Mg、Mn、Sの添加バランスを調整し、Mg系の酸化物、硫化物を均一微細析出させ、打抜き時の粗大クラック発生を抑制し、端面性状を均一化することで穴拡げ性を改善させるものである。以下に本発明の個々の構成要件について詳細に説明する。
まず、本発明の成分の限定理由について述べる。
The present invention focuses on the end face property of the punched hole for improving the hole expandability, and adjusts the addition balance of O, Mg, Mn, and S to uniformly and finely precipitate Mg-based oxides and sulfides. It suppresses the generation of coarse cracks at the time of punching, and improves the hole expandability by making the end face properties uniform. The individual constituent requirements of the present invention will be described in detail below.
First, the reasons for limiting the components of the present invention will be described.
Cは、鋼の加工性に影響を及ぼす元素であり、含有量が多くなると、加工性は劣化する。特に0.20%を超えると穴拡げ性に有害な炭化物(パーライト、セメンタイト)が生成するので、0.20%以下とする。但し、特に高い穴拡げ性が要求される場合、0.1%以下とすることが望ましい。また、強度確保の面で0.01%以上は必要である。 C is an element that affects the workability of steel, and the workability deteriorates as the content increases. In particular, if it exceeds 0.20%, carbides (pearlite, cementite) harmful to the hole expandability are generated, so the content is made 0.20% or less. However, when a particularly high hole expansibility is required, it is desirable to make it 0.1% or less. Moreover, 0.01% or more is necessary in terms of securing strength.
Siは、有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素であり、固溶強化により材料強度確保のためにも有効な元素であるため添加することが望ましいが、添加量が増加すると化成処理性が低下するほか、点溶接性も劣化するため1.5%を上限とする。 Si is an effective element for suppressing the formation of harmful carbides and increasing the ferrite fraction and improving the elongation, and it is desirable to add it because it is an effective element for securing the material strength by solid solution strengthening. However, when the addition amount is increased, the chemical conversion treatment property is lowered and the spot weldability is also deteriorated, so 1.5% is made the upper limit.
AlはSiと同様、有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素である。特に、延性と化成処理性を両立するために必要な元素である。Alは、従来より脱酸に必要な元素であり、通常0.01〜0.07%程度添加してきた。本発明者らは、鋭意研究を重ねた結果、低Si系においてもAlを多量に添加することにより延性を劣化させること無く、化成処理性を改善できることを見出した。しかし、添加量が増加すると延性向上の効果は飽和してしまうばかりか、化成処理性が低下するほか、点溶接性も劣化するため1.5%を上限し、特に化成処理の厳しい条件では、1.0%を上限とすることが望ましい。 Al, like Si, is an effective element for suppressing the formation of harmful carbides and increasing the ferrite fraction and improving the elongation. In particular, it is an element necessary for achieving both ductility and chemical conversion treatment. Al is an element necessary for deoxidation from the past, and is usually added in an amount of about 0.01 to 0.07%. As a result of intensive studies, the present inventors have found that chemical conversion can be improved without deteriorating ductility by adding a large amount of Al even in a low Si system. However, as the amount added increases, not only the effect of improving ductility is saturated, but also the chemical conversion treatment performance decreases, and spot weldability also deteriorates, so the upper limit is 1.5%. It is desirable that the upper limit is 1.0%.
Mnは、強度確保に必要な元素であり、最低0.50%の添加が必要である。焼き入れ性を確保し安定した強度を得るためには2.0%超の添加が望ましい。しかし、多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、これらは穴拡げ性を劣化させる。これより3.50%を上限とする。 Mn is an element necessary for ensuring the strength, and at least 0.50% of addition is necessary. In order to secure hardenability and obtain a stable strength, addition of over 2.0% is desirable. However, if added in a large amount, microsegregation and macrosegregation are likely to occur, and these deteriorate the hole expandability. Accordingly, the upper limit is set to 3.50%.
Pは鋼板の強度を上げる元素であり、Cuと同時添加により耐腐食性を向上する元素であるが、添加量が高いと溶接性、加工性、靭性の劣化を引き起こす元素である。これより、0.2%以下とする。特に耐食性が問題とならない場合、加工性を重視して0.03%以下が望ましい。 P is an element that increases the strength of the steel sheet, and is an element that improves corrosion resistance by simultaneous addition with Cu. However, if the addition amount is high, it is an element that causes deterioration of weldability, workability, and toughness. Accordingly, the content is set to 0.2% or less. In particular, when corrosion resistance is not a problem, 0.03% or less is desirable with emphasis on workability.
Sは本発明における最も重要な添加元素の一つである。SはMgと結合して硫化物を生成し、(Ti、Nb)Nの核となり、また(Ti、Nb)Nの成長を抑制することにより、これらの微細化に寄与し、穴拡げ性の飛躍的な向上をもたらすと考えられる。この効果を得るためには0.0005%以上の添加が必要であり、0.001%以上の添加が望ましい。但し、過剰の添加はMn系の硫化物を形成し、逆に穴拡げ性を劣化させるため0.009%以下が望ましい。 S is one of the most important additive elements in the present invention. S combines with Mg to form a sulfide, which becomes a nucleus of (Ti, Nb) N, and by suppressing the growth of (Ti, Nb) N, it contributes to these miniaturization and has a hole expanding property. It is thought to bring about a dramatic improvement. In order to obtain this effect, 0.0005% or more must be added, and 0.001% or more is desirable. However, excessive addition forms a Mn-based sulfide and conversely degrades the hole expandability, so 0.009% or less is desirable.
Nは、(Ti、Nb)Nの生成に寄与するため加工性を確保するためには少ない方が良い。0.009%を越えると粗大なTiNが発生し加工性が劣化するので0.009%以下とする。 Since N contributes to the generation of (Ti, Nb) N, it is preferable that N is small in order to ensure workability. If it exceeds 0.009%, coarse TiN is generated and the workability deteriorates, so the content is made 0.009% or less.
Mgは、本発明における最も重要な添加元素の一つである。Mgはこの添加により、酸素と結合して酸化物を、Sと結合して硫化物を形成する。このとき生成されるMg系酸化物、Mg系硫化物はMgを添加しない従来の鋼に比べ、個々の析出物のサイズが小さく、均一に分散した分布状態となる。鋼中に微細に分散したこれらの析出物は、(Ti、Nb)Nの微細分散に寄与し、穴拡げ性の向上に効果があると考えられる。ただし、0.0006%未満ではその効果が不十分であり、0.0006以上の添加が必要である。その効果を十分に得るためには0.0015%以上の添加が望ましい。一方で0.01%超の添加は添加量に対する改善代が飽和するばかりでなく、逆に鋼の清浄度を劣化させ、穴拡げ性、延性を劣化させるため上限を0.01%とする。 Mg is one of the most important additive elements in the present invention. With this addition, Mg combines with oxygen to form an oxide and S to form a sulfide. The Mg-based oxides and Mg-based sulfides generated at this time are in a distributed state in which the size of the individual precipitates is small and uniformly dispersed compared to conventional steel to which no Mg is added. These precipitates finely dispersed in the steel contribute to the fine dispersion of (Ti, Nb) N and are considered to be effective in improving the hole expansibility. However, if it is less than 0.0006%, the effect is insufficient, and addition of 0.0006 or more is necessary. In order to sufficiently obtain the effect, 0.0015% or more is desirable. On the other hand, addition over 0.01% not only saturates the improvement for the amount added, but conversely degrades the cleanliness of the steel and degrades the hole expandability and ductility, so the upper limit is made 0.01%.
Oは本発明における最も重要な添加元素の一つである。Mgと結合して酸化物を形成し、穴拡げ性の向上に寄与する。しかしながら、過剰の添加は鋼の清浄度を劣化させ伸びの劣化を引き起こすため0.005%を上限とすることが望ましい。 O is one of the most important additive elements in the present invention. Bonds with Mg to form an oxide and contributes to improvement of hole expansibility. However, excessive addition degrades the cleanliness of the steel and causes elongation degradation, so it is desirable to make the upper limit 0.005%.
Ti、Nbは本発明における最も重要な添加元素の一つである。Ti、Nbは炭化物を形成し強度の増加に有効であり、硬度の均一化に寄与して穴拡げ性を改善する。また、Mg系の酸化物、硫化物を核に微細均一に窒化物を形成し、これが、打抜き時に微細ボイドを形成し、応力集中を抑制することで粗大クラックの発生を抑制する効果があると考えられ、穴拡げ性の飛躍的な向上をもたらすと考えられる。これらの結果を有効に発揮させるためにはNb、Tiともに少なくとも0.01%の添加が必要である。しかし、これらの添加が過度になると析出強化により延性が劣化するため、上限としてTiは0.20%以下、Nbは0.10%以下とする。これらの元素は単独で添加しても効果があり、複合添加しても効果がある。 Ti and Nb are one of the most important additive elements in the present invention. Ti and Nb form carbides and are effective in increasing the strength, contributing to uniform hardness and improving the hole expandability. In addition, a nitride is formed finely and uniformly with Mg-based oxides and sulfides as nuclei, and this has the effect of suppressing the occurrence of coarse cracks by forming fine voids at the time of punching and suppressing stress concentration. This is thought to bring about a dramatic improvement in hole expansibility. In order to exhibit these results effectively, it is necessary to add at least 0.01% of both Nb and Ti. However, if these additions become excessive, the ductility deteriorates due to precipitation strengthening. Therefore, the upper limit is set to 0.20% or less for Ti and 0.10% or less for Nb. These elements are effective even when added alone, and are effective even when added in combination.
Ca、Zr、REMは硫化物系の介在物の形状制御し、穴拡げ性の向上に有効である。これを有効に発揮させるためには少なくとも1種類または2種以上を0.0005%以上添加する必要がある。一方、多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性、延性を損なう。これより上限を0.01%とする。 Ca, Zr, and REM control the shape of sulfide inclusions and are effective in improving hole expansibility. In order to exhibit this effectively, it is necessary to add at least one or two or more of 0.0005%. On the other hand, addition of a large amount deteriorates the cleanliness of the steel, so that the hole expandability and ductility are impaired. Accordingly, the upper limit is made 0.01%.
CuはPとの複合添加により耐腐食性を向上する元素である。この作用を得るためには0.04%以上添加することが望ましい。但し、多量の添加は焼き入れ性を増加させ延性が低下するため、上限を0.4%とする。 Cu is an element that improves the corrosion resistance when combined with P. In order to obtain this effect, it is desirable to add 0.04% or more. However, the addition of a large amount increases the hardenability and lowers the ductility, so the upper limit is made 0.4%.
NiはCuを添加したときの熱間割れを抑制するために必須元素である。この効果を得るためには0.02%以上添加することが望ましい。但し、多量の添加はCu同様、焼き入れ性を増加させ延性が低下するため、上限を0.3%とする。 Ni is an essential element for suppressing hot cracking when Cu is added. In order to obtain this effect, it is desirable to add 0.02% or more. However, the addition of a large amount increases the hardenability and lowers the ductility like Cu, so the upper limit is made 0.3%.
Moはセメンタイトの生成を抑制し、穴拡げ性を向上させるのに有効な元素であり、この効果を得るためには、0.02%以上の添加が必要である。但し、Moも焼き入れ性を高める元素であるため過剰の添加では延性が低下するため、上限を0.5%とする。 Mo is an element effective for suppressing the formation of cementite and improving the hole expansibility. To obtain this effect, it is necessary to add 0.02% or more. However, since Mo is also an element that enhances hardenability, if added excessively, ductility decreases, so the upper limit is made 0.5%.
Vは炭化物を形成し強度確保に寄与する。この効果を得るためには0.02%以上の添加が必要である、但し、多量の添加は伸びの低減させ、コストも高いため、上限を0.1%とする。 V forms carbides and contributes to securing the strength. In order to obtain this effect, addition of 0.02% or more is necessary. However, since a large amount of addition reduces elongation and costs are high, the upper limit is made 0.1%.
CrもVと同様、炭化物を形成し強度確保に寄与する。この効果を得るためには0.02%以上の添加が必要である。但し、Crは焼き入れ性を高める元素であるため、多量の添加により伸びの低減させる。そこで、上限を1.0%とする。 Cr, like V, forms carbides and contributes to securing strength. In order to obtain this effect, addition of 0.02% or more is necessary. However, since Cr is an element that enhances hardenability, elongation is reduced by adding a large amount. Therefore, the upper limit is made 1.0%.
Bは粒界を強め超ハイテンで課題となる2次加工割れの改善に有効な元素である。この効果を得るためには0.0003%以上の添加が必要である。但し、Bも焼き入れ性を高める元素であるため、多量の添加により延性が低下するため、上限を0.001%とする。 B is an element that strengthens the grain boundary and is effective in improving secondary work cracking, which is a problem with ultra high tensile strength. In order to obtain this effect, addition of 0.0003% or more is necessary. However, since B is also an element that enhances hardenability, the ductility is lowered by the addition of a large amount, so the upper limit is made 0.001%.
本発明者らは上記課題を解決するために鋭意研究した結果、O、MgとMnとSの添加バランスをある条件に入れることで、Mg系の酸化物、硫化物を利用しTiNを微細分散させることが可能であることを見出した。即ち、Mg酸化物を十分に析出させること、Mn系の硫化物の析出を抑制しつつ、Mg系硫化物の析出温度を制御し、先述の核としての作用、成長抑制の作用を利用することが可能となる。このために以下の3つの関係式を導き出した。以下に説明する。 As a result of diligent research to solve the above problems, the present inventors have finely dispersed TiN using Mg-based oxides and sulfides by putting the addition balance of O, Mg, Mn, and S under certain conditions. I found out that it is possible. That is, to sufficiently precipitate Mg oxide, to control the precipitation temperature of Mg-based sulfides while suppressing the precipitation of Mn-based sulfides, and to use the above-described action as a nucleus and growth suppressing action. Is possible. For this purpose, the following three relational expressions were derived. This will be described below.
本発明ではMg系の酸化物に加えMg系の硫化物を利用するため、MgはO以上の添加が必要である。但し、OはAlなど他の元素とも酸化物を形成しているため、発明者らが鋭意検討した結果、Mgと結合する有効Oは分析量の8割であり、これ以上のMg添加が穴拡げ性の向上に作用する十分な硫化物を形成するために必要であり、Mg添加量は(1)式を満たす必要がある。一方で、Mg系の硫化物形成において、Sは必須元素であるが、S添加量が高くなると、SはMn系の硫化物となり、この析出量が少量であればMg系硫化物との複合で存在し穴拡げ性の劣化には影響しないが、多量に析出する条件では、詳細は明らかではないが単独析出またはMg系硫化物の析出物の特性に影響を及ぼし穴拡げ性を劣化させる。このため、S添加量は、Mg、有効O量に対して(2)式を満たす必要がある。更に、Mn、Sともに高い条件では、高温でのMn系硫化物が析出するため、Mg系の硫化物の生成を抑制し、十分な穴拡げ性の向上が得られなくなるため、Mn、Sは(3)式を満たす必要がある。
[Mg%]≧([O%]/16×0.8)×24 ・・・(1)
[S%]≦([Mg%]/24−[O%]/16×0.8 +0.00012)×32 ・・・(2)[S%]≦0.0075/[Mn%] ・・・(3)
In the present invention, since Mg-based sulfides are used in addition to Mg-based oxides, Mg needs to be added in an amount equal to or more than O. However, since O forms an oxide with other elements such as Al, the inventors have intensively studied. As a result, the effective O combined with Mg is 80% of the amount of analysis, and Mg addition beyond this is a hole. Necessary for forming sufficient sulfides to improve the spreadability, and the amount of Mg added needs to satisfy the formula (1). On the other hand, in the formation of Mg-based sulfides, S is an essential element. However, when the amount of S added is high, S becomes a Mn-based sulfide. It does not affect the deterioration of hole expansibility, but under conditions where a large amount of precipitation occurs, details are not clear, but it affects the characteristics of single precipitation or Mg-based sulfide precipitates and deteriorates the hole expandability. For this reason, S addition amount needs to satisfy | fill Formula (2) with respect to Mg and effective O amount. Furthermore, when Mn and S are both high, Mn-based sulfides precipitate at high temperatures, so that the formation of Mg-based sulfides can be suppressed and sufficient hole expansibility cannot be improved. It is necessary to satisfy equation (3).
[Mg%] ≧ ([O%] / 16 × 0.8) × 24 (1)
[S%] ≦ ([Mg%] / 24− [O%] / 16 × 0.8 +0.00012) × 32 (2) [S%] ≦ 0.0075 / [Mn%] ( 3)
打抜き穴の断面に微細均一なボイドを生成させることで穴拡げ加工時の応力の集中を緩和させ、穴拡げ性を向上させるためには、(Nb、Ti)Nの均一微細化が重要であり、このサイズが小さい時、微細ボイドの起点とならないため効果を発揮せず、大きすぎると粗大クラックの起点となり、一方でこの析出物密度は個数が少ないと、打抜き時に発生する微細ボイドが不足し、粗大なクラックの発生を抑制する効果が得られないと考えられる。本発明者らは鋭意検討した結果、この手法としてMgOとMgSとの複合析出が利用できることを見出し、原因は定かではないが、酸化物に加えて硫化物の複合利用においては、効果を発揮する複合析出物のサイズ、析出物密度として、MgOとMgSと(Nb、Ti)Nの複合析出物で、0.05μm以上、3.0μm以下の析出物が1平方mmあたり5.0×102 個以上、1.0×107 個以下含む必要があることを見出した。このとき、複合酸化物にAl2 O3 、SiO2 が含まれていても本効果は損なわれるものではなく、少量であればMnSが含まれていても効果は損なわれない。 Uniform refinement of (Nb, Ti) N is important to reduce the concentration of stress during hole expansion by generating fine uniform voids in the cross-section of punched holes and to improve hole expandability. However, when this size is small, it will not be effective since it does not become the starting point of fine voids, and if it is too large, it will become the starting point of coarse cracks.On the other hand, if this precipitate density is small, the number of fine voids generated during punching will be insufficient. It is considered that the effect of suppressing the generation of coarse cracks cannot be obtained. As a result of intensive investigations, the present inventors have found that composite precipitation of MgO and MgS can be used as this method, and the cause is not clear, but in the combined use of sulfides in addition to oxides, the effect is exhibited. The composite precipitate size and precipitate density are MgO, MgS, and (Nb, Ti) N composite precipitates, and a precipitate of 0.05 μm or more and 3.0 μm or less is 5.0 × 10 2 per square mm. It has been found that it is necessary to include at least 1.0 and not more than 1.0 × 10 7 . At this time, even if Al 2 O 3 and SiO 2 are contained in the composite oxide, this effect is not impaired, and even if MnS is contained in a small amount, the effect is not impaired.
Si、Alは延性を確保するための組織制御上、非常に重要な元素である。ただし、Siは熱延工程でSiスケールと呼ばれる表面の凹凸が発生する場合があり、これにより、製品外観が損なわれる他、プレス後に施される化成処理や塗装において、化成処理膜の生成が悪い場合や塗装の密着性が悪い場合が発生する。このため、一部の化成処理性の厳しい用途には多量のSiは添加できないケースが生じる.このとき、延性と化成処理性の両立を狙うためにはAlによるSi代替が可能であるが、Si、Al共に添加量が多量になるとフェライト相分率が増大し、狙いの強度が得られなくなる。そこで、十分な強度を確保し、延性を確保するためには、Si、Alの関係が(4)式を満たす必要がある。ただし、特に伸びが課題となるとき0.9以上とすることが望ましい。
[Si%]+2.2×[Al%]≧0.35 ・・・(4)
Si and Al are very important elements for controlling the structure for ensuring ductility. However, Si may have surface irregularities called Si scales in the hot rolling process, and this may impair the appearance of the product, and the formation of a chemical conversion film is poor in chemical conversion treatment and coating performed after pressing. Cases or poor paint adhesion. For this reason, there are cases where a large amount of Si cannot be added to some applications with severe chemical conversion properties. At this time, Al can be substituted for Si in order to achieve both ductility and chemical conversion, but if both Si and Al are added in large amounts, the ferrite phase fraction increases and the desired strength cannot be obtained. . Therefore, in order to ensure sufficient strength and ensure ductility, the relationship between Si and Al needs to satisfy formula (4). However, it is desirable to set it to 0.9 or more especially when elongation becomes a problem.
[Si%] + 2.2 × [Al%] ≧ 0.35 (4)
本発明は打ち抜き時の断面性状の改善技術であるため、金属組織として、フェライト相、ベイナイト相、マルテンサイト相のいずれの相を含んでいても効果を発揮する。しかしながら、980MPa超の強度を確保するためには、強化機構として組織強化を使う必要があり、加工性のうち特に穴拡げ性を高めるためにはベイナイト相を主体とする必要がある。このとき、第2相をフェライト相とすると延性が向上するため、第2相としてフェライト相を含むことが望ましい。また、本発明鋼では組織中にオーステナイト相が残存しても本発明の効果を妨げるものではないが、粗大なセメンタイト、パーライト相はMg系析出物による端面性状の改善効果が薄れるため望ましくない。 Since the present invention is a technique for improving the cross-sectional properties at the time of punching, the present invention is effective even if the metal structure includes any of a ferrite phase, a bainite phase, and a martensite phase. However, in order to ensure a strength of over 980 MPa, it is necessary to use structural strengthening as the strengthening mechanism, and in order to improve the hole expandability among the workability, it is necessary to mainly use the bainite phase. At this time, if the second phase is a ferrite phase, the ductility is improved. Therefore, it is desirable to include a ferrite phase as the second phase. In the steel of the present invention, even if an austenite phase remains in the structure, the effect of the present invention is not hindered. However, coarse cementite and pearlite phases are not desirable because the effect of improving the end face properties due to Mg-based precipitates is diminished.
強度が980N/mm2 超の鋼はハイテン化に伴う延性、穴拡げ性の劣化が見られる。本発明者らは上記課題を解決するために鋭意研究した結果、Mg系析出物による打ち抜き端面性状の改善による穴拡げ性改善効果と、強度を確保しつつ延性を確保する手段として、ベイナイト相主体の鋼組織において、C、Mn、Tiの成分の範囲を規定することが有効であることを見出した。即ち、TiC析出強化の最大限の利用とMn、Cによる組織強化の材質に与える影響を明確化することで下記に示す3つの関係式を導き出した。以下に説明する。 Steel with a strength of over 980 N / mm 2 shows deterioration in ductility and hole expansibility associated with high tempering. As a result of diligent research to solve the above problems, the present inventors have found that, as a means of ensuring ductility while securing strength and improving the hole expansion property by improving the punched end face properties with Mg-based precipitates, the bainite phase mainly It was found that it is effective to define the ranges of the components of C, Mn, and Ti in the steel structure. That is, the following three relational expressions were derived by clarifying the maximum use of TiC precipitation strengthening and the effect of Mn and C on the structure strengthening material. This will be described below.
Tiに比べCの添加量が少ないと固溶Tiの増加により、伸びを劣化させるため0.9≦48/12×C/Tiとする。一方で、CがTiに比べて高すぎると、熱延加熱中にTiCが析出し強度上昇の効果が得られなくなることに加え、第2相中のC量の増加による穴拡げ性の劣化を伴う、これはMg系析出物による端面性状改善効果の低減にもつながるため、48/12×C/Ti<1.7を上限とする。特に穴拡げ性を重視する場合、1.0≦48/12×C/Ti<1.3であることが望ましい。 If the amount of addition of C is small compared to Ti, the elongation is deteriorated due to an increase in solid solution Ti, so 0.9 ≦ 48/12 × C / Ti. On the other hand, if C is too high compared to Ti, TiC will precipitate during hot rolling heating and the effect of increasing the strength will not be obtained, and the hole expandability will be degraded due to the increase in the amount of C in the second phase. In addition, this leads to a reduction in the effect of improving the end face properties due to the Mg-based precipitates, so the upper limit is 48/12 × C / Ti <1.7. In particular, when importance is attached to hole expansibility, it is desirable that 1.0 ≦ 48/12 × C / Ti <1.3.
Mnの添加量の増大に伴い、フェライト生成が抑制されるため、第2相分率が増大し、強度の確保は容易になるが伸びの低下を招く。一方で、Cは第2相を硬くすることで、穴拡げ性の劣化は伴うものの伸びを改善する。そこで、980N/mm2 超に要求される伸びを確保するためには、式(6)を満たす必要がある。
50227×C−4479×Mn>−9860 ・・・(6)
As the amount of Mn added increases, ferrite formation is suppressed, so that the second phase fraction increases and the strength can be easily secured, but the elongation decreases. On the other hand, C hardens the second phase to improve the elongation, although accompanied by deterioration of hole expansibility. Therefore, in order to ensure the elongation required to exceed 980 N / mm 2 , it is necessary to satisfy Equation (6).
50227 × C-4479 × Mn> −9860 (6)
加工性を確保するためには、上記の2つの式を満たす必要がある。780N/mm2 レベルの鋼板であれば、強度を確保しつつ、上記の2式を満たすことは比較的容易であるが、980N/mm2 超の強度を確保するためには、穴拡げ性を劣化させるCや、伸びを劣化させるMnの添加はやむをえない。980N/mm2 超の強度を確保するためには、上記の2つの式を満たしつつ式(7)を満たす範囲に成分を調整する必要がある。
811×C+135×Mn+602×Ti+794×Nb>465 ・・・(7)
In order to ensure workability, it is necessary to satisfy the above two expressions. If the steel plate has a level of 780 N / mm 2, it is relatively easy to satisfy the above two formulas while ensuring the strength. However, in order to ensure a strength of over 980 N / mm 2 , the hole expandability should be improved. Addition of C that deteriorates or Mn that deteriorates elongation is unavoidable. In order to ensure a strength of more than 980 N / mm 2, it is necessary to adjust the components in a range that satisfies the equation (7) while satisfying the above two equations.
811 × C + 135 × Mn + 602 × Ti + 794 × Nb> 465 (7)
本発明で規定した複合析出物の分散状態は例えば以下の方法により定量的に測定される。母材鋼板の任意の場所から抽出レプリカ試料を作成し、これを透過電子顕微鏡(TEM)を用いて倍率は5000〜20000倍で少なくとも5000μm2 以上の面積にわたって観察し、対象となる複合介在物の個数を測定し、単位面積当たりの個数に換算する。この時、酸化物と(Nb、Ti)Nの同定にはTEMに付属のエネルギー分散型X線分光法(EDS)による組成分析とTEMによる電子線回折像の結晶構造解析によって行われる。このような同定を測定する全ての複合介在物に対して行うことが煩雑な場合、簡易的に次に手順による。まず、対象となるサイズの個数を形状、サイズ別に上記の要領にて測定し、これらのうち、形状、サイズの異なる全てに対し、各々10個以上に対し上記の要領にて同定を行い、酸化物と(Nb、Ti)Nの割合を算出する。そして、はじめに測定された介在物の個数にこの割合を掛け合わせる。鋼中の炭化物が以上のTEM観察を邪魔する場合、熱処理によって炭化物を凝集粗大化、または溶解させ対象とする複合介在物の観察を容易にすることができる。 The dispersion state of the composite precipitate defined in the present invention is quantitatively measured by, for example, the following method. An extraction replica sample is prepared from an arbitrary place on the base steel plate, and this is observed using a transmission electron microscope (TEM) at a magnification of 5000 to 20000 times over an area of at least 5000 μm 2 . The number is measured and converted to the number per unit area. At this time, the oxide and (Nb, Ti) N are identified by composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to TEM and crystal structure analysis of electron diffraction image by TEM. When it is complicated to perform such identification on all the complex inclusions to be measured, the procedure is simply as follows. First, the number of target sizes is measured according to the above-mentioned procedure for each shape and size. Among these, all of the different shapes and sizes are identified according to the above-mentioned procedure for each of 10 or more, and oxidized. The ratio between the product and (Nb, Ti) N is calculated. Then, this ratio is multiplied by the number of inclusions measured first. When carbides in the steel interfere with the above TEM observation, the carbides can be agglomerated or melted by heat treatment to facilitate observation of complex inclusions.
次に本鋼板を得るための一般的な製造方法について説明する。
仕上圧延終了温度はフェライトの生成を妨げ、穴拡げ性を良好にするためAr3 変態点以上とする必要がある。しかしあまり高温にすると組織の粗大化による強度低減、延性の低下を招くため950℃以下とすることが望ましい。冷却速度は穴拡げ性に有害な炭化物形成を抑制するため、高い穴拡げ比は20℃/s以上の冷却速度により得られる。また、捲取温度は穴拡げ性に有害な、パーライト、セメンタイトの生成を抑制するため600℃以下とした。
Next, the general manufacturing method for obtaining this steel plate is demonstrated.
The finish rolling finish temperature needs to be not less than the Ar 3 transformation point in order to prevent the formation of ferrite and improve the hole expandability. However, if the temperature is too high, the strength is reduced due to the coarsening of the structure and the ductility is lowered. Since the cooling rate suppresses the formation of carbides harmful to the hole expandability, a high hole expansion ratio can be obtained with a cooling rate of 20 ° C./s or more. In addition, the cutting temperature was set to 600 ° C. or lower in order to suppress the formation of pearlite and cementite, which are harmful to hole expansibility.
また、連続冷却中に空冷を行うことによりフェライト相の占有率を増加させ、延性を向上させることが可能である。しかし、空冷中にパーライトが生成されると逆に延性が低下するため、空冷温度、空冷時間としては空冷開始温度が650℃以上、750℃以下としている。 Further, by performing air cooling during continuous cooling, it is possible to increase the occupancy ratio of the ferrite phase and improve ductility. However, when pearlite is generated during air cooling, the ductility is reduced, and therefore the air cooling start temperature is set to 650 ° C. or higher and 750 ° C. or lower.
次に本発明を実施例に基づいて説明する。
表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。符号A〜Zが本発明に従った成分の鋼で符号aの鋼はC添加量、bの鋼はMn添加量、cの鋼はO添加量、eの鋼はS添加量、fの鋼はMg添加量が本発明の範囲外である。また、aの鋼は式(5)、bの鋼は式(3)と式(6)、cの鋼は式(1)と式(2)、dの鋼は式(4)、eの鋼は式(2)と式(3)、fの鋼は式(1)、gの鋼は式(7)が本発明の範囲外である.また、fの鋼は析出物個数が本発明の範囲外である。これらの鋼を加熱炉中で1200℃以上の温度で加熱し、熱間圧延にて板厚2.6〜3.2mmの熱延鋼板を得た。熱延条件については表2に示す。
表2のうち、A4、J2は冷却速度、B3、F3は空冷開始温度、E3、G3、Q4は巻取り温度がそれぞれ本発明の範囲外である。
Next, this invention is demonstrated based on an Example.
Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. The steels with the symbols A to Z according to the present invention, the steel with the symbol a, the addition amount of C, the steel with b, the addition amount of Mn, the steel with c, the addition amount of O, the steel with e, the addition amount of S, and the steel with f Is outside the scope of the present invention. The steel of a is the formula (5), the steel of b is the formula (3) and formula (6), the steel of c is the formula (1) and formula (2), the steel of d is the formula (4), For the steel, the formulas (2) and (3), the steel for f is the formula (1), and for the steel g, the formula (7) is out of the scope of the present invention. Further, the number of precipitates in the steel f is outside the scope of the present invention. These steels were heated in a heating furnace at a temperature of 1200 ° C. or higher, and hot rolled steel sheets having a thickness of 2.6 to 3.2 mm were obtained by hot rolling. Table 2 shows the hot rolling conditions.
In Table 2, A4 and J2 are cooling rates, B3 and F3 are air cooling start temperatures, and E3, G3 and Q4 are winding temperatures outside the scope of the present invention.
このようにして得られた熱延鋼板についてJIS5号片による引張試験、および穴拡げ試験を行った。穴拡げ性(λ)は径10mmの打抜き穴を60°円錐ポンチにて押し拡げ、クラックが板厚を貫通した時点での穴径(d)と初期穴径(d0:10mm)からλ=(d−d0)/d0×100で評価した。 The hot rolled steel sheet thus obtained was subjected to a tensile test and a hole expansion test using JIS No. 5 pieces. The hole expansibility (λ) is obtained by expanding a punched hole having a diameter of 10 mm with a 60 ° conical punch, and λ = (from the hole diameter (d) and the initial hole diameter (d0: 10 mm) when the crack penetrates the plate thickness. d−d0) / d0 × 100.
各試験片のTS、El、λを表2に示す。図1に強度と伸びの関係を図2に強度と穴拡げ率の関係を示す。本発明鋼は比較鋼1と比べて伸びが、比較鋼2と比べると穴拡げ率が高くなっており、比較鋼3と比べるといずれの特性においても優れていることがわかる。一方で、g1の鋼は目的の強度を得ることができなかった。
このように、本発明により980N/mm2 の所定の強度を確保しつつ、穴拡げ率、延性ともに優れた高強度熱延鋼板が得られる。
Table 2 shows TS, El, and λ of each test piece. FIG. 1 shows the relationship between strength and elongation, and FIG. 2 shows the relationship between strength and hole expansion rate. It can be seen that the steel of the present invention has an elongation compared to the comparative steel 1 and a hole expansion rate higher than that of the
Thus, according to the present invention, a high-strength hot-rolled steel sheet excellent in both hole expansion rate and ductility can be obtained while ensuring a predetermined strength of 980 N / mm 2 .
Claims (6)
C :0.01%以上、0.20%以下、
Si:1.5%以下、
Al:1.5%以下、
Mn:0.5%以上、3.5%以下、
P :0.2%以下、
S :0.0005%以上、0.009%以下、
N :0.009%以下、
Mg:0.0006%以上、0.01%以下、
O :0.005%以下、
および
Ti:0.01%以上、0.20%以下、
Nb:0.01%以上、0.10%以下、
の1種または2種含有し、残部が鉄および不可避的不純物からなり、下記の3つの式の全てを満たすことを特徴とした鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
[Mg%]≧([O%]/16×0.8)×24 ・・・(1)
[S%]≦([Mg%]/24−[O%]/16×0.8 +0.00012)×32 ・・・(2)[S%]≦0.0075/[Mn%] ・・・(3) In mass% C: 0.01% or more, 0.20% or less,
Si: 1.5% or less,
Al: 1.5% or less,
Mn: 0.5% or more, 3.5% or less,
P: 0.2% or less,
S: 0.0005% or more, 0.009% or less,
N: 0.009% or less,
Mg: 0.0006% or more, 0.01% or less,
O: 0.005% or less,
And Ti: 0.01% or more and 0.20% or less,
Nb: 0.01% or more, 0.10% or less,
The steel structure characterized by satisfying all of the following three formulas having a strength mainly composed of bainite phase is over 980 N / mm 2 . High-strength thin steel sheet with excellent hole expandability and ductility.
[Mg%] ≧ ([O%] / 16 × 0.8) × 24 (1)
[S%] ≦ ([Mg%] / 24− [O%] / 16 × 0.8 +0.00012) × 32 (2) [S%] ≦ 0.0075 / [Mn%] ( 3)
[Si%]+2.2×[Al%]≧0.35 ・・・(4) Further, the steel structure according to claim 1 or 2, wherein the relationship between Al and Si satisfies the formula (4) at a mass%, and the strength mainly including a bainite phase has a hole expandability and ductility exceeding 980 N / mm 2. Excellent high-strength thin steel sheet.
[Si%] + 2.2 × [Al%] ≧ 0.35 (4)
0.9≦48/12×C/Ti<1.7 ・・・ (5)
50227×C−4479×Mn>−9860 ・・・(6)
811×C+135×Mn+602×Ti+794×Nb>465 ・・・(7)
鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。 In the steel of claim 1 or claim 2 or claim 3, further, Ti, C, Mn, and Nb satisfy formulas (5), (6), and (7), respectively.
0.9 ≦ 48/12 × C / Ti <1.7 (5)
50227 × C-4479 × Mn> −9860 (6)
811 × C + 135 × Mn + 602 × Ti + 794 × Nb> 465 (7)
A high-strength thin steel sheet with excellent hole expansibility and ductility with a steel structure mainly composed of a bainite phase and a strength exceeding 980 N / mm 2 .
Cu:0.04%以上、0.4%以下、
Ni:0.02%以上、0.3%以下、
Mo:0.02%以上、0.5%以下、
V :0.02%以上、0.1%以下、
Cr:0.02%以上、1.0%以下、
B :0.0003%以上、0.0010%以下、
の1種または2種以上を含有する請求項1から請求項5に記載の鋼組織がベイナイト相を主体とした強度が980N/mm2 超の穴拡げ性と延性に優れた高強度薄鋼板。
In mass%,
Cu: 0.04% or more, 0.4% or less,
Ni: 0.02% or more, 0.3% or less,
Mo: 0.02% or more, 0.5% or less,
V: 0.02% or more, 0.1% or less,
Cr: 0.02% or more, 1.0% or less,
B: 0.0003% or more, 0.0010% or less,
A high-strength thin steel sheet excellent in hole expansibility and ductility in which the steel structure according to any one of claims 1 to 5 containing one or more of the above has a strength of mainly bainite phase exceeding 980 N / mm 2 .
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003357280A JP4317419B2 (en) | 2003-10-17 | 2003-10-17 | High strength thin steel sheet with excellent hole expandability and ductility |
CA2542762A CA2542762C (en) | 2003-10-17 | 2003-12-26 | High-strength steel sheets excellent in hole-expandability and ductility |
EP03768328A EP1681362B1 (en) | 2003-10-17 | 2003-12-26 | High strength thin steel sheet excellent in hole expansibility and ductility |
PCT/JP2003/016967 WO2005038064A1 (en) | 2003-10-17 | 2003-12-26 | High strength thin steel sheet excellent in hole expansibility and ductility |
KR1020067007180A KR100853328B1 (en) | 2003-10-17 | 2003-12-26 | High strength thin steel sheet excellent in hole expansibility and ductility |
US10/576,227 US8192683B2 (en) | 2003-10-17 | 2003-12-26 | High-strength steel sheets excellent in hole-expandability and ductility |
CA2676781A CA2676781C (en) | 2003-10-17 | 2003-12-26 | High-strength steel sheets excellent in hole-expandability and ductility |
KR1020087012318A KR20080053532A (en) | 2003-10-17 | 2003-12-26 | High strength thin steel sheet excellent in hole expansibility and ductility |
EP10156257.7A EP2192205B1 (en) | 2003-10-17 | 2003-12-26 | High-strength steel sheets excellent in hole-expandability and ductility and a method for producing the same |
AU2003292689A AU2003292689A1 (en) | 2003-10-17 | 2003-12-26 | High strength thin steel sheet excellent in hole expansibility and ductility |
US12/584,903 US8182740B2 (en) | 2003-10-17 | 2009-09-14 | High-strength steel sheets excellent in hole-expandability and ductility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003357280A JP4317419B2 (en) | 2003-10-17 | 2003-10-17 | High strength thin steel sheet with excellent hole expandability and ductility |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005120437A true JP2005120437A (en) | 2005-05-12 |
JP4317419B2 JP4317419B2 (en) | 2009-08-19 |
Family
ID=34614210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003357280A Expired - Fee Related JP4317419B2 (en) | 2003-10-17 | 2003-10-17 | High strength thin steel sheet with excellent hole expandability and ductility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4317419B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008255484A (en) * | 2007-03-15 | 2008-10-23 | Kobe Steel Ltd | High strength hot-rolled steel sheet superior in press workability, and its manufacturing method |
JP2009084637A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability |
JP2010024505A (en) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Ind Ltd | Continuously cast slab for high strength steel sheet and continuous casting method therefor |
WO2014119261A1 (en) | 2013-01-31 | 2014-08-07 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and production method thereof |
WO2014171063A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing same |
JP2014205890A (en) * | 2013-04-15 | 2014-10-30 | Jfeスチール株式会社 | High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor |
JP2014205889A (en) * | 2013-04-15 | 2014-10-30 | Jfeスチール株式会社 | High strength hot rolled steel sheet excellent in toughness and method of producing the same |
KR20180018803A (en) | 2015-07-27 | 2018-02-21 | 제이에프이 스틸 가부시키가이샤 | High strength hot rolled steel sheet and manufacturing method for same |
US10301698B2 (en) | 2012-01-31 | 2019-05-28 | Jfe Steel Corporation | Hot-rolled steel sheet for generator rim and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11603571B2 (en) | 2017-02-17 | 2023-03-14 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for producing the same |
-
2003
- 2003-10-17 JP JP2003357280A patent/JP4317419B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008255484A (en) * | 2007-03-15 | 2008-10-23 | Kobe Steel Ltd | High strength hot-rolled steel sheet superior in press workability, and its manufacturing method |
JP2009084637A (en) * | 2007-09-28 | 2009-04-23 | Kobe Steel Ltd | High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability |
JP2010024505A (en) * | 2008-07-22 | 2010-02-04 | Sumitomo Metal Ind Ltd | Continuously cast slab for high strength steel sheet and continuous casting method therefor |
US10301698B2 (en) | 2012-01-31 | 2019-05-28 | Jfe Steel Corporation | Hot-rolled steel sheet for generator rim and method for manufacturing the same |
WO2014119261A1 (en) | 2013-01-31 | 2014-08-07 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and production method thereof |
WO2014171063A1 (en) | 2013-04-15 | 2014-10-23 | Jfeスチール株式会社 | High strength hot rolled steel sheet and method for producing same |
JP2014205890A (en) * | 2013-04-15 | 2014-10-30 | Jfeスチール株式会社 | High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor |
JP2014205889A (en) * | 2013-04-15 | 2014-10-30 | Jfeスチール株式会社 | High strength hot rolled steel sheet excellent in toughness and method of producing the same |
KR20180018803A (en) | 2015-07-27 | 2018-02-21 | 제이에프이 스틸 가부시키가이샤 | High strength hot rolled steel sheet and manufacturing method for same |
US11578375B2 (en) | 2015-07-27 | 2023-02-14 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4317419B2 (en) | 2009-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP2019157277A (en) | High-strength low-specific gravity steel sheet and method for manufacturing the same | |
JP6729823B2 (en) | Method of manufacturing wear-resistant steel | |
US10144996B2 (en) | High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same | |
JP4085826B2 (en) | Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
JP2006176843A (en) | High-strength and low-density steel sheet superior in ductility and manufacturing method therefor | |
JP4976906B2 (en) | Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance | |
JP2005298924A (en) | High strength hot rolled steel sheet having excellent stamping workability and its production method | |
JP6858253B2 (en) | Ultra-high-strength steel sheet with excellent hole expansion and yield ratio and its manufacturing method | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP4317418B2 (en) | High strength thin steel sheet with excellent hole expandability and ductility | |
JP4317419B2 (en) | High strength thin steel sheet with excellent hole expandability and ductility | |
JP2005290547A (en) | High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor | |
JPH11229075A (en) | High strength steel excellent in delayed breakdown resistance, and its production | |
JP4911122B2 (en) | Cold rolled steel sheet with ultrafine grain structure | |
JP4317417B2 (en) | High strength thin steel sheet with excellent hole expandability and ductility | |
JP2003193194A (en) | High strength steel sheet having excellent weldability and hole expansibility and production method therefor | |
KR100853328B1 (en) | High strength thin steel sheet excellent in hole expansibility and ductility | |
JP2007070648A (en) | High strength thin steel sheet having excellent hole expandability, and method for producing the same | |
JP2006342421A (en) | Method for producing high-tension steel excellent in weld crack resistance | |
JP2005314796A (en) | High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method | |
JP3945373B2 (en) | Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics | |
JP5058892B2 (en) | DP steel sheet with excellent stretch flangeability and method for producing the same | |
JP2007224408A (en) | Hot-rolled steel sheet having excellent strain aging property and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090522 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4317419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |