JP2005112960A - Method for producing refuse-derived solid fuel - Google Patents
Method for producing refuse-derived solid fuel Download PDFInfo
- Publication number
- JP2005112960A JP2005112960A JP2003347697A JP2003347697A JP2005112960A JP 2005112960 A JP2005112960 A JP 2005112960A JP 2003347697 A JP2003347697 A JP 2003347697A JP 2003347697 A JP2003347697 A JP 2003347697A JP 2005112960 A JP2005112960 A JP 2005112960A
- Authority
- JP
- Japan
- Prior art keywords
- rdf
- wet
- hydrogen gas
- sealed container
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
本発明は、公知の方法によって製造されたゴミ固形燃料(RDF)について、その保存中に異常発熱に伴う異常燃焼やガス爆発の危険性を回避するための製造方法、及び、その処理工程中で発生する水素ガス又はその混合ガスを有用資源として採取するRDFの製造技術に関する。 The present invention relates to a manufacturing method for avoiding the risk of abnormal combustion and gas explosion associated with abnormal heat generation during storage of a solid waste fuel (RDF) manufactured by a known method, and its processing step The present invention relates to an RDF manufacturing technique in which generated hydrogen gas or a mixed gas thereof is collected as a useful resource.
近年、益々増大する廃棄物を、資源として有効利用する観点からゴミ固形燃料(RDF)が注目され、全国各地で数十ヶ所のRDF処理システムが稼動又は建設されている。そ In recent years, solid waste fuel (RDF) has attracted attention from the viewpoint of effectively using increasingly increasing waste as a resource, and several tens of RDF treatment systems are in operation or constructed throughout the country. So
して、RDFの製造技術の概要については、下記の
その製造工程は、一般的に、生ゴミ、紙類、繊維、プラスチックス等の樹脂類等を含むゴミを2段階で破砕する工程、加熱による乾燥工程、金属等不燃物を除去する工程、風力選別によって成形不適物を除去する工程、石灰(主に消石灰)の添加工程、及び、RDFの成形工程からなっている。そして、これらの工程を経て製造されるRDFは、ペーハー(pH)が6.5〜10.5の範囲にあり、且つ、含水比率は20重量%未満好ましくは15重量%以下、より好ましくは10重量%以下となっている。
ここで、RDFのpHが6.5〜10.5の範囲となるのは、ゴミ中のハロゲン化合物が燃焼によってダイオキシンを発生するのを防止する目的で消石灰等の石灰が添加されているためであり、RDFの燃焼により塩化カルシウムとなって中和される。そして、ダイオキシン発生を更に改善する下記の特許が公開されている。
The manufacturing process generally includes a process of crushing garbage containing resin such as raw garbage, paper, fibers, plastics, etc. in two stages, a drying process by heating, a process of removing non-combustible materials such as metals, wind power It consists of a step of removing unsuitable molding by sorting, a step of adding lime (mainly slaked lime), and a step of molding RDF. The RDF produced through these steps has a pH (pH) in the range of 6.5 to 10.5 and a water content of less than 20% by weight, preferably 15% by weight or less, more preferably 10%. It is less than wt%.
Here, the pH of RDF is in the range of 6.5 to 10.5 because lime such as slaked lime is added for the purpose of preventing the halogen compound in the garbage from generating dioxin by combustion. Yes, it becomes neutralized as calcium chloride by the combustion of RDF. The following patents that further improve dioxin generation have been published.
次に、RDFの強度を確保するためにRDFの含水比率は20重量%未満に制御されるが、これを達成する方法として、破砕ゴミを実体温度で60℃〜120℃の高温に加熱・乾燥後、消石灰等の石灰が添加される。これらの工程を経ることによって、生ゴミ中の大腸菌等の熱に弱い微生物は死滅し、又、乾燥状態にあるため発酵や腐敗は生ぜず、発酵による発熱やガス発生は防止できると考えられていた。 Next, in order to ensure the strength of RDF, the water content of RDF is controlled to be less than 20% by weight. As a method for achieving this, the crushed waste is heated and dried at a substantial temperature of 60 ° C. to 120 ° C. Later, lime such as slaked lime is added. Through these steps, it is thought that heat-sensitive microorganisms such as Escherichia coli in garbage are killed, and because they are in a dry state, no fermentation or rot occurs, and heat generation and gas generation due to fermentation can be prevented. It was.
しかしながら、最近、特に夏場の高気温下で貯蔵中のRDFが異常発熱して燃焼する事故や、ひどい場合は爆発する事故が発生するという問題点があった。 However, recently, there has been a problem that an accident in which RDF being stored burns due to abnormal heat generation, or an explosion in severe cases, particularly at high temperatures in summer, has occurred.
既存のRDF製造技術及び製造装置を使用しながら、RDF製造方法を改善することにより、RDFの異常燃焼や爆発を防止するとともに、本発明のRDF製造方法により発生する水素ガス又は水素ガスを主成分とする混合ガスを採取して資源として有効活用することが、本発明の課題である。 While using existing RDF manufacturing technology and manufacturing equipment, the RDF manufacturing method is improved to prevent abnormal combustion and explosion of RDF, and the main component is hydrogen gas or hydrogen gas generated by the RDF manufacturing method of the present invention. It is an object of the present invention to collect the mixed gas and effectively use it as a resource.
本発明者らは上記の課題を解決するため、貯蔵中のRDFの異常発熱、異常燃焼及び爆発の原因に関する検討を行い、以下の事実を発見した。すなわち、粉砕された可燃性ゴミが、加熱乾燥工程により実体温度で60℃〜120℃の高温状態を経ること及び消石灰添加によるアルカリ化した状況においても、バチルス属等のある種の耐熱性の微生物は生存し、貯蔵中のRDFが適温状態におかれると、生ゴミ中に含まれるデンプンやセルロース等の多糖類及び/又はオリゴ糖等の糖類を原料とする発酵により、水素ガスが生成されており、これが異常燃焼や爆発の主原因と推察された。 In order to solve the above problems, the present inventors have studied the causes of abnormal heat generation, abnormal combustion, and explosion of RDF during storage, and have found the following facts. That is, even when the combustible crushed pulverized material passes through a high temperature state of 60 ° C. to 120 ° C. at the substantial temperature by the heat drying process and is alkalized by the addition of slaked lime, certain heat-resistant microorganisms such as Bacillus genus When the stored RDF is kept at an appropriate temperature, hydrogen gas is produced by fermentation using polysaccharides such as starch and cellulose and / or saccharides such as oligosaccharides contained in the garbage. This was assumed to be the main cause of abnormal combustion and explosion.
本発明は、上記の発見を基に、公知のRDF製造工程に加えて、特定の微生物が発酵しやすい環境を提供することにより発酵を促進させる後工程を付加することによって、課題を解決するという逆転の発想によりなされた。 Based on the above discovery, the present invention solves the problem by adding a post-process that promotes fermentation by providing an environment in which specific microorganisms are easily fermented, in addition to the known RDF production process. It was made with the idea of reversal.
すなわち、本発明は、少なくとも糖類と消石灰を含み、ペーハー(pH)が6.5〜10.5の範囲にあり且つ含水比率が20重量%未満の乾燥状態にあるゴミ固形燃料(RDF)に、含水比率が20重量%〜75重量%となるように水分を添加して湿潤化RDFとした後、該湿潤化RDFを、雰囲気温度が25℃〜45℃の密閉化容器中で6時間以上保持することを特徴とするゴミ固形燃料(RDF)の製造方法である。 That is, the present invention provides at least a solid waste fuel (RDF) containing at least saccharides and slaked lime, having a pH (pH) in the range of 6.5 to 10.5, and having a moisture content of less than 20% by weight. Moisture is added so that the water content is 20% to 75% by weight to obtain a wet RDF, and then the wet RDF is held for 6 hours or more in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. This is a method for producing a solid waste fuel (RDF).
更に、雰囲気温度が25℃〜45℃の密閉化容器中で6時間以上保持された湿潤化RDFを、再乾燥する製造方法に係わる製造方法である。
次に、該湿潤化RDFを、雰囲気温度が25℃〜45℃の密閉化容器中で6時間以上保持する工程において、湿潤化RDFのペーハー(pH)が6.0以下になるまで保持することを特徴とする製造方法である。
Furthermore, it is a manufacturing method related to a manufacturing method of re-drying the wetted RDF held for 6 hours or more in a sealed container having an atmospheric temperature of 25 ° C. to 45 ° C.
Next, in the step of holding the wet RDF in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. for 6 hours or more, holding the wet RDF until the pH (pH) of the wet RDF is 6.0 or less. Is a manufacturing method characterized by
更に、該湿潤化RDFを、雰囲気温度が25℃〜45℃の密閉化容器中で6時間以上保持する工程において、保持中に発生する水素ガス又は水素ガスを主成分とする混合ガスを、密閉容器から選択的に採取することを特徴とする製造方法である。 Further, in the step of holding the wet RDF in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. for 6 hours or more, the hydrogen gas generated during the holding or a mixed gas containing hydrogen gas as a main component is sealed. It is a manufacturing method characterized by selectively collecting from a container.
本発明のゴミ固形燃料製造方法により、異常燃焼や爆発の危険性のないRDFが製造可能となり、且つ、本発明による製造工程で発生する水素ガス又はその混合ガスを採取でき、資源の有効活用が図れる。 With the solid waste fuel production method of the present invention, it is possible to produce RDF without the risk of abnormal combustion or explosion, and it is possible to collect hydrogen gas generated in the production process according to the present invention or a mixed gas thereof, thereby effectively utilizing resources. I can plan.
以下に本発明の好適な一実施の形態を詳細に説明するが、本発明の技術的範囲は下記の実施形態によって限定されるものでなく、その要旨を変更することなく様々に改変して実施することができる。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described in detail. However, the technical scope of the invention is not limited by the following embodiment, and various modifications can be made without changing the gist of the invention. can do.
最初に、本発明において、公知の方法によって製造された含水比率が20重量%未満の乾燥状態にあるRDFに、水分を加えて含水比率を20重量%〜75重量%の湿潤化RDFとし、該湿潤化RDFを雰囲気温度が25℃〜45℃の密閉容器中に6時間以上保持するとした理由について以下に述べる。 First, in the present invention, water is added to RDF in a dry state having a water content of less than 20% by weight produced by a known method to obtain a wet RDF having a water content of 20% to 75% by weight. The reason why the wet RDF is held in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. for 6 hours or more will be described below.
デンプン、セルロース、果汁等の糖類は、微生物(細菌、カビ等)によりグルコースや果糖等の単糖に分解され、更に、単糖は(1)式に示す発酵反応により、最終的には有機酸、炭酸ガス及び水素に分解される。 Sugars such as starch, cellulose and fruit juice are decomposed into monosaccharides such as glucose and fructose by microorganisms (bacteria, mold, etc.), and the monosaccharide is finally converted into an organic acid by the fermentation reaction shown in the formula (1). Decomposed into carbon dioxide and hydrogen.
(1)式の反応は、水分の存在と適温及び適正なpHにおいて、酸素の存在する初期環境下では微生物の好気呼吸による反応が進行し、酸素が消費された次の段階では嫌気的に発酵が進行する。 The reaction of formula (1) is anaerobic at the next stage where oxygen is consumed, in the presence of water, at an appropriate temperature and at an appropriate pH, under the initial environment where oxygen is present, and the reaction by aerobic respiration of microorganisms proceeds. Fermentation proceeds.
乾燥状態にあるRDFに、含水比率が20重量%〜75重量%となるよう水分を添加する理由は、20重量%未満では発酵反応の進行が遅く、75重量%を超えるとRDFの強度が低下し、RDFの扱い操作が困難となるためである。よって、RDFの強度を保持しながら発酵反応を促進するためには、RDFの含水比率は30重量%〜60重量%がより望ましい。 The reason for adding water to the RDF in a dry state so that the water content is 20% to 75% by weight is that the fermentation reaction progresses slowly if it is less than 20% by weight, and the strength of RDF decreases if it exceeds 75% by weight. This is because the handling operation of RDF becomes difficult. Therefore, in order to promote the fermentation reaction while maintaining the strength of RDF, the water content of RDF is more preferably 30% by weight to 60% by weight.
次に、上記の湿潤化RDFを雰囲気温度が25℃〜45℃の密閉容器中で6時間以上保持するが、25℃〜45℃では微生物の活性が高く特に37℃近傍の温度条件がより望ましい。又、6時間未満では、殆ど発酵反応が進行せず、24時間以上の保持がより望ましい。 Next, the wet RDF is held in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. for 6 hours or longer. . In addition, if it is less than 6 hours, the fermentation reaction hardly proceeds, and it is more desirable to keep it for 24 hours or more.
ここで、湿潤化されたRDFを密閉容器中に格納する理由は、水素ガスを生成する発酵は嫌気的に進行するため、酸素の供給を絶つためと、生成する水素ガスが大気中に放散され、異常燃焼や爆発等の事故を防止する目的並びに生成水素ガス又はその混合ガスを密閉容器に配設されたパイプ等から採取し、資源として回収するためである。 Here, the reason why the wet RDF is stored in the sealed container is that the fermentation for generating hydrogen gas proceeds anaerobically, so that the supply of oxygen is cut off and the generated hydrogen gas is diffused into the atmosphere. This is for the purpose of preventing accidents such as abnormal combustion and explosion, and for collecting the generated hydrogen gas or a mixed gas thereof from a pipe or the like disposed in a sealed container and recovering it as a resource.
さて、生成する水素ガスと炭酸ガス及び容器中に残存する窒素ガス等の密閉容器内の混合ガスは、燃料ガスとして活用する他に、炭酸ガスはエタノールアミン等のアルカリ液で加圧吸収させて除去する等の公知の方法によって水素ガスを主成分とする混合ガスとして回収することも可能である。 The mixed gas in the sealed container such as hydrogen gas, carbon dioxide gas and nitrogen gas remaining in the container is used as fuel gas. Carbon dioxide gas is pressurized and absorbed with an alkaline liquid such as ethanolamine. It can be recovered as a mixed gas containing hydrogen gas as a main component by a known method such as removal.
ところで、上記において、乾燥状態にあるRDFに水分を添加する方法は、RDFを密閉容器に格納する前に散水や湿潤空気等により湿潤化する方法の他に、RDFを密閉容器中に格納してから湿潤空気雰囲気下において湿潤化する方法等があり、反応効率やコスト等を考慮して選択される。 By the way, in the above, the method of adding moisture to the dry RDF includes not only the method of moistening the RDF with watering or moist air before storing it in the sealed container, but also storing the RDF in the sealed container. There is a method of wetting in a humid air atmosphere, and the method is selected in consideration of reaction efficiency, cost and the like.
さて、(1)式に示すように、発酵反応の進行と共に、有機カルボン酸等の有機酸の生成量が増加してpHは酸性側に移行し、微生物の生存が困難になる等の原因で発酵活動は低下するため、水素ガスの生成は殆ど無くなる。従って、pH6は以下に、より望ましくはpH5.5以下となった時点で、発酵反応を終了させる。 Now, as shown in the formula (1), as the fermentation reaction proceeds, the amount of organic acid such as organic carboxylic acid increases, the pH shifts to the acidic side, and it becomes difficult for microorganisms to survive. Since the fermentation activity is reduced, there is almost no production of hydrogen gas. Therefore, the fermentation reaction is terminated when pH 6 becomes below, more desirably, below pH 5.5.
次に、発酵反応の終了した湿潤化RDFの強度を増大する目的で、再乾燥する工程を加えることも選択肢の一つである。再乾燥の方法としては、加熱による方法、乾燥空気雰囲気下に保持する方法、真空乾燥する方法等があるが、再乾燥を省略する場合も含めて、コスト等を考慮の上選択される。 Next, for the purpose of increasing the strength of the wet RDF after the fermentation reaction, it is also an option to add a re-drying step. The re-drying method includes a method by heating, a method of keeping in a dry air atmosphere, a method of vacuum drying, etc., and is selected in consideration of the cost and the like including the case of omitting the re-drying.
以下に、本発明を実施例を用いて更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
<乾燥RDF中の微生物数>
現在、工業的に製造されているRDFの中から、pHの異なる3種類の乾燥RDFを三重県内のRDF工場から入手し、その中に生存している微生物数を調査した。入手したRDFは、雰囲気温度280℃(実体温度は約80℃)で乾燥されたものであり、含水比率は7重量%であった。
<Number of microorganisms in dry RDF>
Currently, three types of dry RDF with different pH were obtained from RDF plants in Mie Prefecture from among industrially produced RDFs, and the number of microorganisms living in them was investigated. The obtained RDF was dried at an atmospheric temperature of 280 ° C. (substance temperature was about 80 ° C.), and the water content was 7% by weight.
結果を表1に示すが、pHの異なる何れの乾燥RDFにおいても、好気微生物(Aerobes)、嫌気微生物(Anaerobes)及び通性嫌気微生物(Facultative anaerobes)の何れも、104〜106cfu/g(cfuは細菌が生成するコロニー数)存在していた。特に、RDF1(pH8.33)は生存する微生物の適正pHのためか、他のRDFより数が多かった。 The results are shown in Table 1. In any dry RDF with different pH, all of aerobic microorganisms (Aerobes), anaerobic microorganisms (Anaerobes) and facultative anaerobes (10 4 to 10 6 cfu / g (cfu is the number of colonies produced by bacteria). In particular, RDF1 (pH 8.33) was higher in number than other RDFs because of the appropriate pH of the living microorganisms.
<湿潤化RDFの発酵によるガス生成>
次に、上記のRDF1試料1.7L(100g)に異なる含水比率となるよう脱イオン水を添加して湿潤化し、これを0.5Lのガラス瓶に格納し、密閉して37℃に48時間保持した。発酵により生成するガスは、該ガラス瓶から容器外に導かれたパイプを通して水上置換法によってシリンダーに採取され、ガス成分をガスクロマトグラフィーによって分析した。
<Gas generation by fermentation of wetted RDF>
Next, deionized water was added to 1.7 L (100 g) of the above RDF1 sample so that the water content was different, and the mixture was moistened. did. The gas produced by the fermentation was collected in a cylinder by a water displacement method through a pipe led out of the container from the glass bottle, and the gas components were analyzed by gas chromatography.
その結果を表2に示すが、以下の傾向が認められた。すなわち、含水比率の増加と共に発生ガス量は増加し、全ガス量に占める水素ガス量の比率は80%から65%付近まで徐々に低下した。 The results are shown in Table 2, and the following tendencies were observed. That is, the amount of generated gas increased with an increase in the water content ratio, and the ratio of the amount of hydrogen gas to the total gas amount gradually decreased from 80% to around 65%.
さらに、含水比率73%の場合に、72時間まで保持した場合の、生成ガス量の時間変化量を測定した結果を図1に示す。これによると、ガス生成量は、湿潤化RDFを容器に格納後12時間後から急激に増加し、約72時間後に飽和状態に達した。そして、この時のpHは5.5であった。 Further, FIG. 1 shows the results of measuring the amount of change in the amount of generated gas with time when the moisture content ratio is 73% and holding for 72 hours. According to this, the amount of gas generated increased rapidly from 12 hours after storing the wet RDF in the container, and reached saturation after about 72 hours. The pH at this time was 5.5.
<考察>
pHが約7〜10の中性ないしアルカリ性にあり、含水比率が7%の乾燥状態にあるRDF中に、好気性、嫌気性及び両性の微生物が生存していた。該RDFの含水比率を高めて湿潤化し、30℃〜40℃の適温環境に置くことによって発酵反応が進行し、約12時間後から水素ガスが生成し、時間の経過と共に水素ガスの発生量は増加したが、約72時間後には飽和状態に達した。pHは、8.33のアルカリ性から5.5の酸性にまで変化し、この状態で微生物の活性が低下し発酵反応が不活発になると推測された。
<Discussion>
Aerobic, anaerobic and amphoteric microorganisms were alive in RDF in a dry state with a pH of about 7-10 neutral to alkaline and a water content of 7%. The moisture content of the RDF is increased and moistened, and the fermentation reaction proceeds by placing it in an appropriate temperature environment of 30 ° C. to 40 ° C., and hydrogen gas is generated after about 12 hours. Although increased, saturation was reached after about 72 hours. The pH was changed from an alkalinity of 8.33 to an acidity of 5.5, and in this state, it was estimated that the activity of microorganisms decreased and the fermentation reaction became inactive.
Claims (4)
In the step of holding the wet RDF in a sealed container having an ambient temperature of 25 ° C. to 45 ° C. for 6 hours or more, hydrogen gas generated during the holding or a mixed gas containing hydrogen gas as a main component is removed from the sealed container. The method for producing solid refuse fuel (RDF) according to any one of claims 1 to 3, which is selectively collected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003347697A JP2005112960A (en) | 2003-10-07 | 2003-10-07 | Method for producing refuse-derived solid fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003347697A JP2005112960A (en) | 2003-10-07 | 2003-10-07 | Method for producing refuse-derived solid fuel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005112960A true JP2005112960A (en) | 2005-04-28 |
Family
ID=34540121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003347697A Pending JP2005112960A (en) | 2003-10-07 | 2003-10-07 | Method for producing refuse-derived solid fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005112960A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057713A1 (en) * | 2007-10-31 | 2009-05-07 | Sumitomo Osaka Cement Co., Ltd. | Method of desalting organic waste, process for producing biomass, and biomass fuel |
-
2003
- 2003-10-07 JP JP2003347697A patent/JP2005112960A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057713A1 (en) * | 2007-10-31 | 2009-05-07 | Sumitomo Osaka Cement Co., Ltd. | Method of desalting organic waste, process for producing biomass, and biomass fuel |
JP5617242B2 (en) * | 2007-10-31 | 2014-11-05 | 住友大阪セメント株式会社 | Organic waste desalting method, biomass manufacturing method, and biomass fuel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Masebinu et al. | A review of biochar properties and their roles in mitigating challenges with anaerobic digestion | |
Hoang et al. | Production of biochar from crop residues and its application for anaerobic digestion | |
Contreras et al. | Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process | |
EP2663397B1 (en) | Production of biochar absorbent from anaerobic digestate | |
CN112387269A (en) | Method for preparing biochar by co-pyrolysis of excess sludge and hazelnut shells and photocatalytic modification method of biochar | |
Surra et al. | Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review | |
CN112456488B (en) | Hierarchical pore biochar and preparation method and application thereof | |
CN103274572A (en) | Treatment method of organic solid waste | |
WO2019114385A1 (en) | Method for preparing biomass fuel using urban domestic sludge | |
CN101775412A (en) | Method for preparing biogas by using lignocellulose | |
Nakashimada et al. | Ammonia–methane two-stage anaerobic digestion of dehydrated waste-activated sludge | |
CN202461100U (en) | Hydrothermal reactor for treating biomass pollutants | |
CN103789365B (en) | Reclaim the method that light oil produces microbial grease | |
CN109650535B (en) | Application of lignin and derived carbon thereof in anaerobic digestion | |
CN109912150B (en) | Process method for treating residual activated sludge by anaerobic drying | |
CN109321607A (en) | The method for preparing biogas using wood fiber raw material anaerobic fermentation | |
Mohan et al. | Pretreatment of biocatalyst as viable option for sustained production of biohydrogen from wastewater treatment | |
JP4631204B2 (en) | Dry methane fermentation of organic waste | |
CN108148879A (en) | A kind of preprocess method of maize straw | |
JP2005112960A (en) | Method for producing refuse-derived solid fuel | |
CN101434967B (en) | Method for preparing automobile power fuel from domestic garbage | |
Song et al. | Effect of Ca (OH) 2 pretreatment on biogas production of rice straw fermentation | |
CN102173558B (en) | Technical method for disposing residual sludge by desulfuration lime | |
Zhang et al. | Anaerobic digestion of waste for biogas production | |
Li et al. | Methane production from wheat straw pretreated with CaO 2/cellulase |