[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005106312A - Refrigerator, vacuum insulation panel and method for manufacturing the same - Google Patents

Refrigerator, vacuum insulation panel and method for manufacturing the same Download PDF

Info

Publication number
JP2005106312A
JP2005106312A JP2003336746A JP2003336746A JP2005106312A JP 2005106312 A JP2005106312 A JP 2005106312A JP 2003336746 A JP2003336746 A JP 2003336746A JP 2003336746 A JP2003336746 A JP 2003336746A JP 2005106312 A JP2005106312 A JP 2005106312A
Authority
JP
Japan
Prior art keywords
heat insulating
core material
adsorbing member
adsorbent
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003336746A
Other languages
Japanese (ja)
Inventor
Shinya Okamoto
晋哉 岡本
Kuninari Araki
邦成 荒木
Hisashi Echigoya
恒 越後屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003336746A priority Critical patent/JP2005106312A/en
Priority to CNB200410070837XA priority patent/CN1308638C/en
Priority to KR1020040059467A priority patent/KR100623101B1/en
Publication of JP2005106312A publication Critical patent/JP2005106312A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/124Insulation with respect to heat using an insulating packing material of fibrous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep the handling performance in manufacturing a vacuum heat insulating panel, and the adsorbing performance of an adsorbent for a long period without lowering the productivity, and further to keep superior heat insulating performance for a long period. <P>SOLUTION: This refrigerator comprises the vacuum heat insulating panel 1 inside of an outer case 22, and a heat insulating body is constituted by filling a foamed heat insulating material 24 between the outer case 22 and an inner case 22. The vacuum heat insulating panel 1 comprises a core material 3, an adsorbing member 4 and a covering material 2 composed of a gas barrier film and accommodating the core material 4 and the adsorbing member. The adsorbing member 4 comprises an adsorbent 9 for adsorbing at least the moisture, and a wrapping material 5 covering the adsorbent 9, through which the water vapor can penetrate, but the water droplets can not penetrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷蔵庫並びに真空断熱パネル及びその製造方法に関する。   The present invention relates to a refrigerator, a vacuum insulation panel, and a method for manufacturing the same.

近年、地球温暖化に対する観点から、家電品の消費電力量削減の必要性が叫ばれている。特に、冷蔵庫は家電品の中で特に消費電力量を多く費やす製品であり、冷蔵庫の消費電力量削減は地球温暖化対策として必要不可欠な状況にある。冷蔵庫の消費電力は、庫内の負荷量が一定であれば、庫内冷却用圧縮機の効率と庫内からの熱漏洩量に関係する断熱材の断熱性能によってその大部分が決まるため、冷蔵庫の技術開発では圧縮機の効率と断熱材の性能向上を行う必要がある。断熱材の高性能化の例として、コア材をガスバリヤ性フィルムからなる外被材で覆って内部を減圧封止した真空断熱パネルを用いることが行なわれるようになってきている。   In recent years, from the viewpoint of global warming, the necessity of reducing the power consumption of home appliances has been screamed. In particular, refrigerators are products that consume a large amount of power consumption among household electrical appliances, and reducing the power consumption of refrigerators is indispensable as a measure against global warming. If the load in the refrigerator is constant, the power consumption of the refrigerator is largely determined by the heat insulation performance of the heat insulating material related to the efficiency of the compressor for cooling the refrigerator and the amount of heat leakage from the refrigerator. In this technical development, it is necessary to improve the efficiency of the compressor and the performance of the heat insulating material. As an example of improving the performance of a heat insulating material, use of a vacuum heat insulating panel in which a core material is covered with a jacket material made of a gas barrier film and the inside is sealed under reduced pressure has been used.

従来の真空断熱パネルとしては、特開2002−48466号公報(特許文献1)に示されたものがある。この真空断熱パネルは、コア材と、少なくとも水分を吸着する吸着部材と、これらを収納し且つガスバリヤ性フィルムからなる外被材とを備える。そして、吸着剤は、撥水処理を施している耐水性和紙層と、微細孔を有しているポリエチレン層とを含む積層フィルムからなる包装材にて覆われている。なお、特許文献1には、係る真空断熱パネルが冷蔵庫等に使用されることが記載されている。   As a conventional vacuum heat insulation panel, there is one disclosed in JP-A-2002-48466 (Patent Document 1). This vacuum heat insulating panel includes a core material, an adsorbing member that adsorbs at least moisture, and an outer covering material that houses these and is made of a gas barrier film. The adsorbent is covered with a packaging material made of a laminated film including a water-resistant Japanese paper layer subjected to water repellent treatment and a polyethylene layer having micropores. Patent Document 1 describes that such a vacuum heat insulation panel is used for a refrigerator or the like.

特開2002−48466号公報JP 2002-48466 A

しかし、特許文献1の真空断熱パネルでは、吸着部材の包装材のポリエチレン層に微細孔を有しているため、真空断熱パネルの製造作業時に包装材に局部的な力が加わると、和紙層が破断される可能性がある。その包装材の和紙層が破断された場合には、破断部に、作業者の手や腕に付着した汗や水分、または装置等の結露による水分が付着すると、ポリエチレン層の微細孔のキャピラリー効果により水分が包装材内部にまで浸透し、吸着剤の吸着性能を低下させてしまうという課題があった。   However, in the vacuum heat insulation panel of Patent Document 1, since the polyethylene layer of the packaging material of the adsorbing member has micropores, when a local force is applied to the packaging material during the manufacturing operation of the vacuum heat insulation panel, the Japanese paper layer is There is a possibility of breaking. When the Japanese paper layer of the packaging material is ruptured, if the sweat or moisture adhering to the operator's hand or arm, or moisture due to condensation from the device, etc., adheres to the broken portion, the capillary effect of the micropores in the polyethylene layer As a result, moisture permeates into the inside of the packaging material, and the adsorption performance of the adsorbent is reduced.

本発明の目的は、真空断熱パネルの製造時における取扱性及び生産性を損なわずに吸着部材の吸着性能を長期に亘り維持でき、優れた断熱性能を長期に亘って維持できる冷蔵庫並びに真空断熱パネル及びその製造方法を提供することにある。   An object of the present invention is to provide a refrigerator and a vacuum insulation panel that can maintain the adsorption performance of the adsorption member for a long period without impairing the handling and productivity at the time of manufacturing the vacuum insulation panel, and can maintain the excellent insulation performance for a long period of time. And a manufacturing method thereof.

前記目的を達成するために、本発明は、外箱の内側に真空断熱パネルを配設すると共に前記外箱と内箱との間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、前記真空断熱パネルは、コア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備え、前記吸着部材は、少なくとも水分を吸着する吸着剤と、前記吸着剤を覆うと共に水滴を通さず且つ水蒸気を通す包装材とを備えることを特徴とするものである。   In order to achieve the above object, the present invention is a refrigerator in which a vacuum heat insulating panel is disposed inside an outer box and a heat insulating material is configured by filling a foam heat insulating material between the outer box and the inner box. The vacuum heat insulation panel includes a core material, an adsorbing member, and an outer jacket material that houses the core material and the adsorbing member and is made of a gas barrier film, and the adsorbing member includes an adsorbent that adsorbs at least moisture. And a packaging material that covers the adsorbent and does not allow water droplets to pass therethrough and allows water vapor to pass therethrough.

また、本発明は、外箱の内側に真空断熱パネルを配設すると共に前記外箱と内箱との間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、前記真空断熱パネルは、ガラス短繊維材及び無機バインダを有するコア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備え、前記コア材は繊維層で構成され、前記吸着剤は、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆われていると共に、前記コア材の繊維層内の中央部に配置されていることを特徴とするものである。   Further, the present invention is a refrigerator in which a vacuum heat insulating panel is disposed inside an outer box and a heat insulating material is formed by filling a foam heat insulating material between the outer box and the inner box. A core material having a short glass fiber material and an inorganic binder, an adsorbing member, and an outer jacket material containing the core material and the adsorbing member and made of a gas barrier film, the core material is composed of a fiber layer, The adsorbent is made of a laminated film of a polyamide film, a polyethylene non-woven fabric, and a polypropylene film, and is covered with a packaging material that does not have micropores, and is disposed in the center of the fiber layer of the core material. It is a feature.

また、本発明は、コア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備えた真空断熱パネルにおいて、前記吸着部材は、少なくとも水分を吸着する吸着剤と、前記吸着剤を覆うと共に水滴を通さず且つ水蒸気を通す包装材とを備えることを特徴とするものである。   Further, the present invention provides a vacuum heat insulating panel comprising a core material, an adsorbing member, and an outer cover material that houses the core material and the adsorbing member and is made of a gas barrier film, wherein the adsorbing member contains at least moisture. It comprises an adsorbent to be adsorbed and a packaging material that covers the adsorbent and does not allow water droplets to pass through and allows water vapor to pass therethrough.

また、本発明は、ガラス短繊維材及び無機バインダを有するコア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備えた真空断熱パネルにおいて、前記コア材は繊維層で構成され、前記吸着剤は、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆われていると共に、前記コア材の繊維層内の中央部に配置されていることを特徴とするものである。   The present invention also relates to a vacuum heat insulating panel comprising a core material having a short glass fiber material and an inorganic binder, an adsorbing member, and an outer jacket material containing the core material and the adsorbing member and made of a gas barrier film. The core material is composed of a fiber layer, and the adsorbent is made of a laminated film of a polyamide film, a polyethylene non-woven fabric and a polypropylene film and is covered with a packaging material having no micropores, and the fiber layer of the core material. It is arrange | positioned in the center part inside.

また、本発明は、ガラス短繊維材及び無機バインダを有するコア材と吸着部材とをガスバリヤ性フィルムからなる外被材に収納した後、前記外被材内を真空とする真空断熱パネルの製造方法において、前記コア材を繊維層で製作し、前記吸着剤を、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆い、前記包装材で覆われた前記吸着剤を繊維層内に挟持した後、前記コア材を前記外被材に収納することを特徴とするものである。   In addition, the present invention provides a method for manufacturing a vacuum heat insulating panel in which a core material having a short glass fiber material and an inorganic binder and an adsorbing member are housed in a jacket material made of a gas barrier film, and then the inside of the jacket material is evacuated. The core material is made of a fiber layer, and the adsorbent is made of a laminated film of a polyamide film, a polyethylene non-woven fabric and a polypropylene film and covered with a packaging material having no micropores, and the adsorption material covered with the packaging material After the agent is sandwiched in the fiber layer, the core material is accommodated in the jacket material.

本発明によれば、真空断熱パネルの製造時における取扱性及び生産性を損なわずに吸着剤の吸着性能を長期に亘り維持でき、優れた断熱性能を長期に亘って維持できる冷蔵庫並びに真空断熱パネル及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerator and vacuum insulation panel which can maintain the adsorption | suction performance of adsorbent for a long term, without impairing the handleability and productivity at the time of manufacture of a vacuum insulation panel, and can maintain the outstanding insulation performance for a long term. And a manufacturing method thereof.

以下、本発明の一実施例の冷蔵庫を、図1から図4を用いて説明する。本発明でいう冷蔵庫には、家庭用及び業務用の冷蔵・冷凍庫の他に、自動販売機、商品陳列棚、商品陳列ケース、保冷庫、クーラボックス、冷蔵・冷凍車等が含まれる。   Hereinafter, the refrigerator of one Example of this invention is demonstrated using FIGS. 1-4. The refrigerator in the present invention includes vending machines, merchandise display shelves, merchandise display cases, cool storage boxes, cooler boxes, refrigeration / freezer cars, etc., in addition to household and commercial refrigeration / freezers.

まず、本実施例の冷蔵庫の構成に関して図1及び図2を参照しながら説明する。図1は本発明の一実施例を示す冷蔵庫の斜視図、図2は図1の要部断面図である。   First, the configuration of the refrigerator according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of a refrigerator showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the main part of FIG.

冷蔵庫は、断熱体を構成する断熱箱体21と、断熱体を構成する断熱扉とを備えて構成されている。断熱箱体21は、金属製の外箱22と、合成樹脂製の内箱23と、外箱22の内側に配設した複数の真空断熱パネル1と、外箱22と内箱23との間に充填された発泡断熱材24とからなっている。真空断熱パネル1は外箱22の内側の所定位置に密着して設置されている。具体的には、真空断熱パネル1は、外箱22の天井、左右側面、底面、背面の内側に密着して設置されている。係る真空断熱パネル1を用いた断熱箱体21とすることによって、熱漏洩量や消費電力量の少ない冷蔵庫を提供することができる。   The refrigerator includes a heat insulating box 21 that forms a heat insulator, and a heat insulating door that forms a heat insulator. The heat insulating box 21 includes a metal outer box 22, a synthetic resin inner box 23, a plurality of vacuum heat insulating panels 1 disposed inside the outer box 22, and the outer box 22 and the inner box 23. And a foam heat insulating material 24 filled in. The vacuum heat insulation panel 1 is installed in close contact with a predetermined position inside the outer box 22. Specifically, the vacuum heat insulation panel 1 is installed in close contact with the ceiling, left and right side surfaces, the bottom surface, and the back side of the outer box 22. By setting it as the heat insulation box 21 using the vacuum heat insulation panel 1 which concerns, the refrigerator with little heat leak amount and power consumption can be provided.

断熱箱体21には、前面を開口した複数の貯蔵室が形成されている。これらの貯蔵室は、上から冷凍室及び冷蔵室の順に区画形成され、庫内に配置された冷却器によりそれぞれに適した所定の低温度に冷却される。なお、断熱箱体21の壁厚は、20mm〜50mm程度である。   The heat insulation box 21 is formed with a plurality of storage chambers whose front surfaces are open. These storage rooms are partitioned from the top in the order of the freezing room and the refrigerating room, and are cooled to a predetermined low temperature suitable for each by a cooler disposed in the storage. In addition, the wall thickness of the heat insulation box 21 is about 20 mm-50 mm.

断熱扉は、図示していないが、各貯蔵室の前面開口を開閉するように設けられている。断熱扉は、断熱箱体21と同様に、金属製の外箱と、合成樹脂製の内箱と、外箱の内側に配設した複数の真空断熱パネルと、外箱と内箱との間に充填された発泡断熱材とからなっている。ここで発泡断熱材24は、例えば硬質ウレタンフォーム,フェノールフォームやスチレンフォーム等の硬質樹脂フォームが例示される。   Although not shown, the heat insulating door is provided so as to open and close the front opening of each storage chamber. As with the heat insulating box 21, the heat insulating door includes a metal outer box, a synthetic resin inner box, a plurality of vacuum heat insulating panels disposed inside the outer box, and a space between the outer box and the inner box. It consists of foam insulation material filled in. Here, as the foam heat insulating material 24, for example, a hard resin foam such as a hard urethane foam, a phenol foam or a styrene foam is exemplified.

この中で、シクロペンタン及び水を混合発泡剤とする硬質ポリウレタンフォームが好ましい。硬質ポリウレタンフォームは、ポリオールを基本原料として、発泡剤、整泡剤、反応触媒の存在下でイソシアネートを反応させて得られるものである。   Among these, a rigid polyurethane foam using cyclopentane and water as a mixed foaming agent is preferable. The rigid polyurethane foam is obtained by reacting an isocyanate with a polyol as a basic raw material in the presence of a foaming agent, a foam stabilizer, and a reaction catalyst.

ポリオールは、m−トリレンジアミン(2,4−トリレンジアミン、2,6−トリレンジアミン)及びo−トリレンジアミン(2,3−トリレンジアミン、3,4−トリレンジアミン)からなる開始剤をプロピレンオキサイドの付加物を主に用いる。他の開始剤は、2価アルコールのプロピレングリコール,ジプロピレングリコール、3価アルコールのグリセリン,トリメチロールプロパン、多価アルコールのジグリセリン,メチルグルコシド,ソルビトール,シュークローズ,アルキレンポリアミンのエチレンジアミン,ジエチレントリアミン、アルカノールアミンのモノエタノールアミン,ジエタノールアミン,イソプロパノールアミン、その他のジアミノジフェニルメタン,ビスフェノールA,ポリメチレンポリフェニルポリアミンを種々のアルキレンオキサイドで付加物としたポリオールを用いる。   The polyol consists of m-tolylenediamine (2,4-tolylenediamine, 2,6-tolylenediamine) and o-tolylenediamine (2,3-tolylenediamine, 3,4-tolylenediamine). As an initiator, an adduct of propylene oxide is mainly used. Other initiators are dihydric alcohol propylene glycol, dipropylene glycol, trihydric alcohol glycerin, trimethylolpropane, polyhydric alcohol diglycerin, methyl glucoside, sorbitol, sucrose, alkylene polyamine ethylenediamine, diethylenetriamine, alkanol. Polyols in which amines such as monoethanolamine, diethanolamine, isopropanolamine, other diaminodiphenylmethane, bisphenol A, and polymethylene polyphenylpolyamine are added with various alkylene oxides are used.

イソシアネートは、ジフェニルメタンジイソシアネート多核体を主に使用する。ジフェニルメタンジイソシアネート多核体を用いたイソシアネートは、ポリエーテルポリオール溶液と粘度差が小さいので、ポリエーテルポリオールとの相溶性が向上する。ジフェニルメタンジイソシアネート多核体を用いることによって、初期反応は比較的速くなりゲル化や硬化が遅くなるので、脱型時のフォーム膨れ量が小さくなる。少量であればトリレンジイソシアネート異性体混合物、2,4−体100部、2,4−体/2,6−体=80/20,65/35(重量比)はもちろん、商品名三井コスモネートTRC,武田薬品のタケネート4040プレポリマーのウレタン変性トリレンジイソシアネート,アロファネート変性トリレンジイソシアネート,ビウレット性トリレンジイソシアネート,イソシアヌレート変性トリレンジイソシアネート等も使用できる。4,4′−ジフェニルメタンジイソシアネートとしては、主成分とする純品の他3核体以上の多核体を含有する商品名三井コスモネートM−200,武田薬品製のミリオネートMRのジフェニルメタンジイソシアネート多核体を使用できる。   Diisocyanate diisocyanate polynuclear is mainly used as the isocyanate. Since the isocyanate using the diphenylmethane diisocyanate polynuclear body has a small viscosity difference from the polyether polyol solution, the compatibility with the polyether polyol is improved. By using diphenylmethane diisocyanate polynuclear bodies, the initial reaction is relatively fast and the gelation and curing are slowed, so that the amount of foam expansion at the time of demolding becomes small. If it is a small amount, tolylene diisocyanate isomer mixture, 2,4-isomer 100 parts, 2,4-isomer / 2,6-isomer = 80/20, 65/35 (weight ratio) as well as trade name Mitsui Cosmonate The urethane modified tolylene diisocyanate, allophanate modified tolylene diisocyanate, biuret tolylene diisocyanate, isocyanurate modified tolylene diisocyanate, etc. of TRC, Takeda's Takenate 4040 prepolymer can also be used. As the 4,4'-diphenylmethane diisocyanate, the product name Mitsui Cosmonate M-200, which contains a polynuclear compound of three or more nuclei in addition to the pure product as the main component, diphenylmethane diisocyanate polynuclear product of Millionate MR manufactured by Takeda it can.

また、発泡剤としては、炭化水素系発泡剤のシクロペンタン及び水を用いるのが好ましい。ポリオール混合物100重量部に対し、12〜18重量部のシクロペンタン及び1.8重量部未満の水を組み合わせる。一般にシクロペンタンと水を多く用いれば容易に低密度化できるが、水が多いと気泡セル内の炭酸ガスの分圧が増加して膨れ量が大きくなり、シクロペンタンが多いと圧縮強度や寸法安定性が劣ってくる。   As the foaming agent, it is preferable to use hydrocarbon-based foaming agent cyclopentane and water. 12 to 18 parts by weight of cyclopentane and less than 1.8 parts by weight of water are combined per 100 parts by weight of the polyol mixture. In general, if a large amount of cyclopentane and water is used, the density can be easily reduced. However, if there is a large amount of water, the partial pressure of carbon dioxide in the bubble cell increases and the amount of swelling increases. Inferiority.

反応触媒としては、テトラメチルヘキサメチレンジアミン,ペンタメチルジエチレントリアミン、3量化触媒を併用して高速反応化とキュアー性を高められる。反応触媒の配合量は、ポリオール成分100重量部に対し、2〜5重量部が好ましい。それ以外に、第3級アミンのトリメチルアミノエチルピペラジン,トリエチレンジアミン,テトラメチルエチレンジアミン、3量化触媒のトリス(3−ジメチルアミノプロピル)ヘキサヒドロ−S−トリアジン、遅効性触媒のジプロピレングリコール,酢酸カリジエチレングリコール等、反応性が合致すれば使用することができる。   As a reaction catalyst, tetramethylhexamethylenediamine, pentamethyldiethylenetriamine, and a trimerization catalyst can be used in combination to increase the high-speed reaction and cure properties. The blending amount of the reaction catalyst is preferably 2 to 5 parts by weight with respect to 100 parts by weight of the polyol component. Other than that, tertiary amines such as trimethylaminoethylpiperazine, triethylenediamine, tetramethylethylenediamine, trimerization catalyst tris (3-dimethylaminopropyl) hexahydro-S-triazine, slow-acting catalyst dipropylene glycol, potassium carbonate acetate It can be used if the reactivity matches.

整泡剤としては、低表面張力の方が気泡セルの大きさがそろうので、フォームは一様に膨れ、一様な強度を有する。整泡剤の配合量は、ポリオール成分が100重量部あたり1.5〜4重量部である。例えばゴールドシュミット製のB−8461,B−8462,信越化学製のX−20−1614,X−20−1634,日本ユニカ製のSZ−1127,SZ−1671を用いる。   As the foam stabilizer, the foam is uniformly expanded and has a uniform strength because the size of the bubble cell is aligned with the lower surface tension. The blending amount of the foam stabilizer is 1.5 to 4 parts by weight per 100 parts by weight of the polyol component. For example, B-8461 and B-8462 manufactured by Goldschmidt, X-20-1614, X-20-1634 manufactured by Shin-Etsu Chemical, and SZ-1127 and SZ1671 manufactured by Nihon Unica are used.

上記材料を用いて、硬質ポリウレタンフォームを発泡する。発泡機は、例えばプロマート社製PU−30型発泡機が用いられる。発泡条件は、発泡機の種類によって多少異なるが通常は液温18〜30℃、吐出圧力80〜150kg/cm、吐出量15〜30kg/min、型箱の温度は35〜45℃が好ましい条件である。 A rigid polyurethane foam is foamed using the above materials. For example, a PU-30 type foaming machine manufactured by Promart Co., Ltd. is used as the foaming machine. The foaming conditions vary somewhat depending on the type of foaming machine, but usually a liquid temperature of 18 to 30 ° C., discharge pressure of 80 to 150 kg / cm 2 , discharge amount of 15 to 30 kg / min, and mold box temperature of 35 to 45 ° C. are preferable. It is.

次に、本実施例の真空断熱パネル1に関して、図2及び図3を参照しながら説明する。図3は図2に示す真空断熱パネル1の単独状態の断面図である。   Next, the vacuum heat insulation panel 1 of the present embodiment will be described with reference to FIGS. FIG. 3 is a sectional view of the vacuum heat insulation panel 1 shown in FIG. 2 in a single state.

真空断熱パネル1は、コア材3と、吸着部材4と、コア材3及び吸着部材4を収納し且つガスバリヤ性フィルムからなる外被材2とを備えて構成されている。この真空断熱パネル1は、コア材3と包装材5で覆われた吸着部材4とを外被材2に挿入した状態で、外被材2の内部を減圧し、外被材2の周縁部を熱融着することにより封止することによって作製されている。真空断熱パネル1の形状は、特に限定されず、適用される箇所と作業性に応じて各種形状及び厚さのものが適用可能である。   The vacuum heat insulation panel 1 includes a core material 3, an adsorbing member 4, and an outer covering material 2 that houses the core material 3 and the adsorbing member 4 and is made of a gas barrier film. The vacuum heat insulation panel 1 is configured such that the inside of the jacket material 2 is depressurized in a state where the core member 3 and the adsorbing member 4 covered with the packaging material 5 are inserted into the jacket material 2. It is manufactured by sealing by heat-sealing. The shape of the vacuum heat insulation panel 1 is not specifically limited, The thing of various shapes and thickness is applicable according to the location and workability | operativity applied.

コア材3は平均繊維径4μmのガラス短繊維材をホウ酸バインダで接着させ、板状に成形後、200℃で1時間エージング処理を行うことにより作製される。この処理により、コア材3に付着している微量の水分を除去することが可能である。なお、平均繊維経4μmのガラス短繊維材を水ガラスで固め板状に成形後200℃で1時間エージング処理を行うことによりコア材3を作製するようにしてもよい。   The core material 3 is produced by bonding a short glass fiber material having an average fiber diameter of 4 μm with a boric acid binder, forming into a plate shape, and performing an aging treatment at 200 ° C. for 1 hour. By this treatment, it is possible to remove a trace amount of water adhering to the core material 3. In addition, you may make it produce the core material 3 by performing the aging process for 1 hour at 200 degreeC after shape | molding the short glass fiber material of average fiber diameter 4micrometer with water glass, and shape | molding.

コア材3の脱水、脱ガスを目的として、外被材2への挿入前にコア在のエージングを施すことは有効である。このときの加熱温度は最低限付着水の除去が可能であるということから、110℃以上であることが望ましく、180℃以上がより好ましい。最適エージング処理温度について、含水率および吸水率等の検討を行った結果、180℃、1時間のエージング処理では板状コア材の含水率は処理無しコア材に比べ70分の1にまで減少し、吸水率も110℃、1時間エージング処理より少なくなることが判ってきた。そこで、コア材のエージング温度は180℃以上で実施することがより好ましい。   For the purpose of dehydration and degassing of the core material 3, it is effective to perform aging of the core before insertion into the jacket material 2. The heating temperature at this time is desirably 110 ° C. or higher, and more preferably 180 ° C. or higher, because it is possible to remove the adhering water as a minimum. As a result of examining the moisture content and water absorption rate, etc. for the optimal aging treatment temperature, the moisture content of the plate-like core material decreased to 1/70 of the core material without treatment in the aging treatment at 180 ° C. for 1 hour. It has also been found that the water absorption rate is less than that at 110 ° C. for 1 hour. Therefore, it is more preferable that the aging temperature of the core material is 180 ° C. or higher.

ガラス短繊維材としては、平均繊維径が3〜5μmであることが好ましい。ガラス短繊維材は平均繊維径により熱伝導率特性及びコストに大きく影響する。ガラス繊維の主流として用いられてきた平均繊維径が5μm以上のグラスウール等はコストの点では安価なため実用化し易い素材であるが、熱伝導率及び経時劣化が大きく劣る。その理由は、繊維が同一方向に配列して繊維の接触が線に近く繊維同士がサイジング材やバインダ剤で二重に接着され接触熱抵抗が小さくなり、熱伝導率が高くなり経時劣化も急激に進行すると考えられる。一方、平均繊維径が2μm未満では1枚当たりの厚みが薄く断熱性能が劣るため、シート状の無機繊維集合体を重ねて厚みを稼ぐことで熱伝導率と経時劣化の低減は可能である。しかし、シート状の無機繊維集合体を重ねて厚みを稼ぐことでコア材に用いる枚数が増え、生産性が劣ると共にコストも高騰する。また、平均繊維径が2μm未満で真空断熱パネルを作製すると、封止前後でコア材の厚み減少率が大きくなることも判明した。   As a short glass fiber material, it is preferable that an average fiber diameter is 3-5 micrometers. The short glass fiber material greatly affects the thermal conductivity characteristics and cost depending on the average fiber diameter. Glass wool having an average fiber diameter of 5 μm or more, which has been used as the mainstream of glass fibers, is a material that is easy to put into practical use because it is inexpensive in terms of cost, but its thermal conductivity and deterioration over time are greatly inferior. The reason for this is that the fibers are arranged in the same direction and the fibers are close to the line, and the fibers are double-bonded with a sizing material or a binder agent to reduce the contact thermal resistance, increase the thermal conductivity, and rapidly deteriorate with time. It is thought that it progresses to. On the other hand, if the average fiber diameter is less than 2 μm, the thickness per sheet is thin and the heat insulation performance is poor. Therefore, by increasing the thickness by stacking sheet-like inorganic fiber aggregates, it is possible to reduce thermal conductivity and deterioration with time. However, by stacking sheet-like inorganic fiber aggregates to increase the thickness, the number of sheets used for the core material increases, resulting in poor productivity and high cost. It was also found that when the vacuum heat insulating panel was produced with an average fiber diameter of less than 2 μm, the thickness reduction rate of the core material increased before and after sealing.

このように、繊維径が5μm以上になると熱伝導率が高くなるために、伝熱方向に不連続で素材間の接触抵抗を有効に活用する繊維材を選定した。また、接触熱抵抗の他に熱流路がジグザグとなり、熱抵抗が増大して熱伝導率が低くなる多くの繊維材の中から、平均繊維径が3〜5μmのガラス短繊維材を選定することにより、熱伝導率や経時劣化の低減、厚み減少率の低減及び低コスト化を両立することが可能である。   As described above, since the thermal conductivity is increased when the fiber diameter is 5 μm or more, a fiber material that is discontinuous in the heat transfer direction and that effectively uses the contact resistance between the materials is selected. In addition to the contact thermal resistance, the heat flow path becomes zigzag, and a short glass fiber material having an average fiber diameter of 3 to 5 μm is selected from many fiber materials whose thermal resistance increases and thermal conductivity decreases. Therefore, it is possible to achieve both reduction in thermal conductivity and deterioration with time, reduction in thickness reduction rate, and cost reduction.

なお、ガラス短繊維材の繊維方向については、真空断熱パネルの厚み方向に対し水平方向に並んで配列するものが断熱性能の点で好ましい。   In addition, about the fiber direction of a short glass fiber material, what is arranged along with a horizontal direction with respect to the thickness direction of a vacuum heat insulation panel is preferable at the point of heat insulation performance.

無機バインダとしては、ホウ酸、水ガラス、アルミキレート、コロイダルシリカ、アルミナゾル等が例示される。この中で、熱伝導率の経時劣化に優れ、コア材に使用するガラス短繊維材に化学作用を及ぼさないホウ酸が最も好ましい。   Examples of the inorganic binder include boric acid, water glass, aluminum chelate, colloidal silica, and alumina sol. Of these, boric acid, which has excellent thermal conductivity over time and does not exert a chemical action on the short glass fiber material used for the core material, is most preferable.

外被材2は、外層より表面保護層としてアルミニウムを蒸着したポリエチレンテレフタラートフィルム(12μm)、ガスバリヤ層としてアルミニウム箔(6μm)、熱融着層として高密度ポリエチレンフィルム(50μm)、更に耐傷つき性向上のために最外層に表面保護層としてポリアミドフィルム(15μm)を用いたラミネートフィルムにより構成されている。そして、この外被材2は、熱融着層同士を端面で貼り合わせた袋として使用される。   The outer covering material 2 is a polyethylene terephthalate film (12 μm) on which aluminum is deposited as a surface protective layer from the outer layer, an aluminum foil (6 μm) as a gas barrier layer, a high-density polyethylene film (50 μm) as a heat-sealing layer, and scratch resistance. For improvement, the outermost layer is composed of a laminate film using a polyamide film (15 μm) as a surface protective layer. And this jacket material 2 is used as a bag which bonded heat fusion layers together in the end face.

外被材2において、最外層は衝撃などに対応するためのものであり、中間層はガスバリヤ性を確保するためのものであり、最内層は熱融着によって密閉するためのものである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。また、更に改善する手段として、最外層に表面保護層を付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するフィルムを2層設けたりしてもよい。熱融着する最内層としては、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。   In the jacket material 2, the outermost layer is for responding to impacts, the intermediate layer is for ensuring gas barrier properties, and the innermost layer is for sealing by thermal fusion. Therefore, all known materials can be used as long as they meet these purposes. Further, as a means for further improvement, a puncture resistance may be improved by applying a surface protective layer to the outermost layer, or two films having an aluminum vapor deposition layer may be provided as an intermediate layer. As the innermost layer to be heat-sealed, polypropylene resin or polyacrylonitrile resin may be used.

外被材2について、さらに具体的に説明する。外被材とは、内部に気密部を設けるためにコア材を覆うものであり、材料構成としては特に限定されるものではない。例えば、最外層にポリエチレンテレフタラート樹脂、中間層にアルミニウム箔、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルム、例えば、最外層にポリエチレンテレフタラート樹脂、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂(商品名エバール、クラレ(株)製)、最内層に高密度ポリエチレン樹脂からなるプラスチックラミネートフィルムとを袋状にしたものなどが例示される。外被材のこれら各層は、最外層は衝撃などに対応するためであり、中間層はガスバリヤ性を確保するためであり、最内層は熱融着によって密閉するためである。したがって、これらの目的に適うものであれば、全ての公知材料が使用可能である。   The jacket material 2 will be described more specifically. The jacket material covers the core material in order to provide an airtight portion inside, and the material configuration is not particularly limited. For example, a plastic laminate film made of polyethylene terephthalate resin in the outermost layer, aluminum foil in the intermediate layer, and high-density polyethylene resin in the innermost layer, for example, ethylene-vinyl having a polyethylene terephthalate resin in the outermost layer and an aluminum vapor deposition layer in the intermediate layer Examples include an alcohol copolymer resin (trade name EVAL, manufactured by Kuraray Co., Ltd.), and a plastic laminate film made of a high-density polyethylene resin in the innermost layer in a bag shape. These layers of the jacket material are for the outermost layer to cope with impacts, the intermediate layer is for securing gas barrier properties, and the innermost layer is sealed by heat fusion. Therefore, all known materials can be used as long as they meet these purposes.

更に改善する手段として、最外層にポリアミド樹脂などを付与することで耐突き刺し性を向上させたり、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体樹脂を2層設けたりしてもよい。熱融着する最内層としては、シール性やケミカルアタック性などから高密度ポリエチレン樹脂が好ましいが、この他に、ポリプロピレン樹脂やポリアクリルニトリル樹脂などを用いてもよい。外被材の材料の具体的構成としては、例えば、最外層にポリアミド、第2層目にポリエチレンテレフタラート樹脂、第3層目にアルミ箔、最内層に高密度ポリエチレン樹脂からなるアルミラミネートフィルムである。   As a means for further improvement, puncture resistance may be improved by applying a polyamide resin or the like to the outermost layer, or two layers of an ethylene-vinyl alcohol copolymer resin having an aluminum vapor deposition layer may be provided as an intermediate layer. . The innermost layer to be heat-sealed is preferably a high-density polyethylene resin from the viewpoint of sealing properties, chemical attack properties, etc. In addition to this, polypropylene resin or polyacrylonitrile resin may be used. As a specific configuration of the material of the jacket material, for example, an aluminum laminated film made of polyamide for the outermost layer, polyethylene terephthalate resin for the second layer, aluminum foil for the third layer, and high-density polyethylene resin for the innermost layer. is there.

次に、吸着部材4に関して、図4を参照しながら説明する。図4は図3に示す吸着部材4の単独状態の断面図である。   Next, the adsorption member 4 will be described with reference to FIG. 4 is a sectional view of the adsorption member 4 shown in FIG. 3 in a single state.

吸着部材4は、少なくとも水分を吸着する吸着剤9と、この吸着剤9を覆うと共に水滴を通さず且つ水蒸気を通す包装材5とを備えて構成されている。   The adsorbing member 4 includes an adsorbent 9 that adsorbs at least moisture, and a packaging material 5 that covers the adsorbent 9 and does not allow water droplets to pass but allows water vapor to pass.

吸着剤9は、酸化カルシウムを93%以上含有する生石灰であり、2mmのメッシュを使い、これにより選別された2mm以下の粒状物質を用いている。換言すると、包装材5内に封入する吸着剤9としては、生石灰が好ましく、コア材3から放出される水蒸気及び外被材2を通して外部より侵入する水蒸気を吸湿し、真空断熱パネル1の経時劣化を低く抑えるものが好ましい。好ましくは、酸化カルシウム成分の含有量が93%以上、初期含水率が1.5%以下、吸湿率が40%以上のものを使用する。また、生石灰9の形状は、粉末、細粒、顆粒、錠剤、固形状等特に限定されるものではない。   The adsorbent 9 is quicklime containing 93% or more of calcium oxide, using a 2 mm mesh, and using a granular material of 2 mm or less selected by this. In other words, the adsorbent 9 enclosed in the packaging material 5 is preferably quick lime, absorbs the water vapor released from the core material 3 and the water vapor entering from the outside through the jacket material 2, and deteriorates the vacuum heat insulation panel 1 over time. What keeps low is preferable. Preferably, a calcium oxide component having a content of 93% or more, an initial moisture content of 1.5% or less, and a moisture absorption of 40% or more is used. Moreover, the shape of quicklime 9 is not specifically limited, such as a powder, a fine grain, a granule, a tablet, solid form.

また、本実施例では、吸着剤成分として生石灰を使用しているが、真空断熱パネルの信頼性を向上させるためには、必要に応じてドーソナイト,ハイドロタルサイト,金属水酸化物等のガス吸着剤やバリウム−リチウム合金等の合金を使用することも有効である。   In this example, quick lime is used as the adsorbent component. However, in order to improve the reliability of the vacuum heat insulating panel, gas adsorption of dosonite, hydrotalcite, metal hydroxide, etc. is performed as necessary. It is also effective to use an agent such as an agent or a barium-lithium alloy.

包装材5はポリアミドフィルム6、ポリエチレン不織布及びポリプロピレンフィルムのからなる微細孔のない積層フィルム7で構成されている。係る包装材5は、外部より力が局所的に加わっても破断されにくいため、真空断熱パネル1製造時における吸着部材4の挿入作業において、誤って包装材5内部の生石灰9の水分吸着性能を低下させてしまうおそれは少ない。また、最外層にポリアミドフィルム6を用いているため、コア材3に付着している水蒸気や外被材2を透過して真空断熱パネル1内部に侵入する水蒸気を透過させ、内部の生石灰9に吸着させることが可能である。その結果、真空断熱パネル1の長期に亘る断熱性能の信頼性の向上が図れる。   The packaging material 5 is composed of a laminated film 7 made of a polyamide film 6, a polyethylene non-woven fabric and a polypropylene film having no micropores. Since the packaging material 5 is not easily broken even when a force is locally applied from the outside, the moisture adsorption performance of the quicklime 9 inside the packaging material 5 is mistakenly caused in the insertion operation of the adsorption member 4 at the time of manufacturing the vacuum heat insulating panel 1. There is little risk of lowering. Moreover, since the polyamide film 6 is used for the outermost layer, the water vapor adhering to the core material 3 and the water vapor penetrating the jacket material 2 and penetrating into the vacuum heat insulating panel 1 are permeated to the quick lime 9 inside. It can be adsorbed. As a result, the reliability of the heat insulating performance over a long period of time of the vacuum heat insulating panel 1 can be improved.

また、吸着部材4は、真空断熱パネル1の製造時に、コア材3の繊維層内に挿入される。この挿入により、真空断熱パネル1の製造後において、外被材2には大気圧相当の外力が加わるが、吸着部材4の粒によって外被材2を傷つけたり破断したりすることがなく、真空断熱パネル1の断熱性能に対する信頼性を損なうことがない。   The adsorbing member 4 is inserted into the fiber layer of the core material 3 when the vacuum heat insulating panel 1 is manufactured. By this insertion, an external force equivalent to the atmospheric pressure is applied to the jacket material 2 after the manufacture of the vacuum heat insulating panel 1, but the outer shell material 2 is not damaged or broken by the particles of the adsorbing member 4, and the vacuum is applied. The reliability with respect to the heat insulation performance of the heat insulation panel 1 is not impaired.

以上のことによって、真空断熱パネル1の作製時の取扱性及び作業性を悪化させることなく、更に吸着部材4の水分吸着性能を維持することが可能であり、その結果、長期に亘り、断熱性能に優れた真空断熱パネルを提供することができる。   As described above, it is possible to further maintain the moisture adsorption performance of the adsorption member 4 without deteriorating the handleability and workability at the time of manufacturing the vacuum thermal insulation panel 1, and as a result, the thermal insulation performance over a long period of time. It is possible to provide an excellent vacuum heat insulation panel.

本発明の一実施例を示す冷蔵庫の斜視図である。It is a perspective view of the refrigerator which shows one Example of this invention. 図1の要部断面図である。It is principal part sectional drawing of FIG. 図2に示す真空断熱パネルの単独状態の断面図である。It is sectional drawing of the single state of the vacuum heat insulation panel shown in FIG. 図3に示す吸着部材の単独状態の断面図である。It is sectional drawing of the single state of the adsorption | suction member shown in FIG.

符号の説明Explanation of symbols

1…真空断熱パネル、2…ガスバリヤ性フィルムからなる外被材、3…コア材、4…吸着部材、5…包装材、6…ポリアミドフィルム、7…ポリエチレン不織布及びポリプロピレンフィルムからなる積層フィルム、9…吸着剤、21…断熱箱体、22…外箱、23…内箱、24…発泡断熱材。   DESCRIPTION OF SYMBOLS 1 ... Vacuum insulation panel, 2 ... Cover material which consists of gas barrier film, 3 ... Core material, 4 ... Adsorption member, 5 ... Packaging material, 6 ... Polyamide film, 7 ... Laminated film which consists of polyethylene nonwoven fabric and polypropylene film, 9 ... adsorbent, 21 ... heat insulation box, 22 ... outer box, 23 ... inner box, 24 ... foam insulation.

Claims (7)

外箱の内側に真空断熱パネルを配設すると共に前記外箱と内箱との間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、
前記真空断熱パネルは、コア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備え、
前記吸着部材は、少なくとも水分を吸着する吸着剤と、前記吸着剤を覆うと共に水滴を通さず且つ水蒸気を通す包装材とを備える
ことを特徴とする冷蔵庫。
In the refrigerator in which a vacuum heat insulating panel is disposed inside the outer box and a heat insulating material is configured by filling a foam heat insulating material between the outer box and the inner box,
The vacuum heat insulation panel includes a core material, an adsorbing member, and an outer covering material that houses the core material and the adsorbing member and is made of a gas barrier film.
The said adsorbing member is provided with the adsorbent which adsorb | sucks a water | moisture content at least, and the packaging material which covers the said adsorbent and does not let a water drop pass, and lets water vapor | steam pass.
外箱の内側に真空断熱パネルを配設すると共に前記外箱と内箱との間に発泡断熱材を充填して断熱体を構成した冷蔵庫において、
前記真空断熱パネルは、ガラス短繊維材及び無機バインダを有するコア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備え、
前記コア材は繊維層で構成され、
前記吸着部材は、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆われていると共に、前記コア材の繊維層に配置されている
ことを特徴とする冷蔵庫。
In the refrigerator in which a vacuum heat insulating panel is disposed inside the outer box and a heat insulating material is configured by filling a foam heat insulating material between the outer box and the inner box,
The vacuum heat insulation panel includes a core material having a short glass fiber material and an inorganic binder, an adsorption member, and an outer jacket material that houses the core material and the adsorption member and is made of a gas barrier film.
The core material is composed of a fiber layer,
The adsorbing member is made of a laminated film of a polyamide film, a polyethylene non-woven fabric, and a polypropylene film, and is covered with a packaging material having no micropores, and is disposed in the fiber layer of the core material. .
コア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備えた真空断熱パネルにおいて、
前記吸着部材は、少なくとも水分を吸着する吸着剤と、前記吸着剤を覆うと共に水滴を通さず且つ水蒸気を通す包装材とを備える
ことを特徴とする真空断熱パネル。
In a vacuum heat insulating panel comprising a core material, an adsorbing member, and a jacket material containing the core material and the adsorbing member and made of a gas barrier film,
The adsorbing member includes an adsorbent that adsorbs at least moisture, and a packaging material that covers the adsorbent and does not allow water droplets to pass but allows water vapor to pass.
前記吸着剤はポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆われていることを特徴とする請求項3に記載の真空断熱パネル。   The vacuum heat-insulating panel according to claim 3, wherein the adsorbent is made of a laminated film of a polyamide film, a polyethylene non-woven fabric, and a polypropylene film and is covered with a packaging material having no fine holes. ガラス短繊維材及び無機バインダを有するコア材と、吸着部材と、前記コア材及び前記吸着部材を収納し且つガスバリヤ性フィルムからなる外被材とを備えた真空断熱パネルにおいて、
前記コア材は繊維層で構成され、
前記吸着部材は、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆われていると共に、前記コア材の繊維層内に配置されている
ことを特徴とする真空断熱パネル。
In a vacuum insulation panel comprising a core material having a short glass fiber material and an inorganic binder, an adsorbing member, and an outer jacket material containing the core material and the adsorbing member and made of a gas barrier film,
The core material is composed of a fiber layer,
The adsorbing member is made of a laminated film of a polyamide film, a polyethylene non-woven fabric, and a polypropylene film, and is covered with a packaging material having no micropores, and is disposed in the fiber layer of the core material. Vacuum insulation panel.
前記吸着剤が生石灰であることを特徴とする請求項3から5の何れかに記載の真空断熱パネル。   The vacuum heat insulating panel according to claim 3, wherein the adsorbent is quick lime. ガラス短繊維材及び無機バインダを有するコア材と吸着部材とをガスバリヤ性フィルムからなる外被材に収納した後、前記外被材内を真空とする真空断熱パネルの製造方法において、
前記コア材を繊維層で製作し、
吸着剤を、ポリアミドフィルム、ポリエチレン不織布及びポリプロピレンフィルムの積層フィルムからなり且つ微細孔を有しない包装材で覆い、
前記包装材で覆われた前記吸着剤を繊維層内に挟持した後、
前記コア材を前記外被材に収納する
ことを特徴とする真空断熱パネルの製造方法。
In a method for manufacturing a vacuum heat insulating panel in which a core material having a short glass fiber material and an inorganic binder and an adsorbing member are housed in a jacket material made of a gas barrier film, and the inside of the jacket material is evacuated,
The core material is manufactured with a fiber layer,
The adsorbent is made of a laminated film of a polyamide film, a polyethylene non-woven fabric and a polypropylene film and covered with a packaging material having no micropores,
After sandwiching the adsorbent covered with the packaging material in a fiber layer,
The said core material is accommodated in the said jacket material. The manufacturing method of the vacuum heat insulation panel characterized by the above-mentioned.
JP2003336746A 2003-09-29 2003-09-29 Refrigerator, vacuum insulation panel and method for manufacturing the same Abandoned JP2005106312A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003336746A JP2005106312A (en) 2003-09-29 2003-09-29 Refrigerator, vacuum insulation panel and method for manufacturing the same
CNB200410070837XA CN1308638C (en) 2003-09-29 2004-07-20 Refrigerator, vacuum insulating shield and manufacturing method thereof
KR1020040059467A KR100623101B1 (en) 2003-09-29 2004-07-29 Refrigerator, vacuum insulation panel and method manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336746A JP2005106312A (en) 2003-09-29 2003-09-29 Refrigerator, vacuum insulation panel and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005106312A true JP2005106312A (en) 2005-04-21

Family

ID=34532752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336746A Abandoned JP2005106312A (en) 2003-09-29 2003-09-29 Refrigerator, vacuum insulation panel and method for manufacturing the same

Country Status (3)

Country Link
JP (1) JP2005106312A (en)
KR (1) KR100623101B1 (en)
CN (1) CN1308638C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101003A (en) * 2005-09-30 2007-04-19 Sharp Corp Refrigerator
JP2007162824A (en) * 2005-12-14 2007-06-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulating box using vacuum heat insulating material
JP2011202729A (en) * 2010-03-25 2011-10-13 Toshiba Corp Vacuum heat insulating panel
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
JP2014503054A (en) * 2010-12-24 2014-02-06 エルジー・ハウシス・リミテッド CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING THE SAME AND PROCESS FOR PRODUCING THE SAME
JP2015504503A (en) * 2011-12-02 2015-02-12 エルジー・ハウシス・リミテッドLg Hausys,Ltd. High temperature vacuum insulation
KR101513777B1 (en) 2012-04-16 2015-04-23 (주)엘지하우시스 Composite insulation board comprising opacifier and method for producing it
CN105805487A (en) * 2016-05-25 2016-07-27 合肥华凌股份有限公司 Vacuum heat insulating plate and household appliance

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336722A (en) * 2005-06-01 2006-12-14 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP4690809B2 (en) * 2005-07-25 2011-06-01 日立アプライアンス株式会社 Vacuum heat insulating material and manufacturing method thereof
KR101202503B1 (en) * 2010-03-09 2012-11-16 (주)엘지하우시스 Core material for vacuum insulation pannel and method for fabricating the same
CN101900473A (en) * 2010-07-27 2010-12-01 王欣南 Built-in integral L-shaped vacuum heat insulation slab for refrigerator and processing method thereof
DE102011087037A1 (en) * 2011-11-24 2013-05-29 BSH Bosch und Siemens Hausgeräte GmbH Heat insulation housing for a refrigeration device
KR101752669B1 (en) 2013-12-10 2017-06-30 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
JP6314060B2 (en) * 2014-08-25 2018-04-18 日立アプライアンス株式会社 Hot water storage tank unit
US20160169575A1 (en) * 2014-12-12 2016-06-16 Honeywell International Inc. Abs liners and cooling cabinets containing same
CN112610807A (en) * 2020-12-18 2021-04-06 四川迈科隆真空新材料有限公司 Manufacturing and cutting method of multi-section strip-shaped vacuum heat-insulating plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191505A (en) * 1982-05-06 1983-11-08 Nippon Telegr & Teleph Corp <Ntt> Antenna suppressing cross polarized wave
JP3016801B2 (en) * 1989-11-29 2000-03-06 日本合成化学工業株式会社 Packaging bag for dehumidification
US5532034A (en) * 1994-12-06 1996-07-02 Whirlpool Corporation Getter system for vacuum insulation panel
US5773105A (en) * 1996-03-07 1998-06-30 United Catalysts Inc. - Desiccants Absorbent packet
TW470837B (en) * 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3507776B2 (en) * 2000-08-07 2004-03-15 松下冷機株式会社 refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101003A (en) * 2005-09-30 2007-04-19 Sharp Corp Refrigerator
JP2007162824A (en) * 2005-12-14 2007-06-28 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulating box using vacuum heat insulating material
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
JP2011202729A (en) * 2010-03-25 2011-10-13 Toshiba Corp Vacuum heat insulating panel
JP2014503054A (en) * 2010-12-24 2014-02-06 エルジー・ハウシス・リミテッド CORE MATERIAL FOR VACUUM INSULATION MATERIAL COMPRISING PHENOL RESIN CURED FOAM, VACUUM INSULATION MATERIAL USING THE SAME AND PROCESS FOR PRODUCING THE SAME
JP2015504503A (en) * 2011-12-02 2015-02-12 エルジー・ハウシス・リミテッドLg Hausys,Ltd. High temperature vacuum insulation
US9404663B2 (en) 2011-12-02 2016-08-02 Lg Hausys, Ltd. High temperature vacuum insulation panel
KR101513777B1 (en) 2012-04-16 2015-04-23 (주)엘지하우시스 Composite insulation board comprising opacifier and method for producing it
CN105805487A (en) * 2016-05-25 2016-07-27 合肥华凌股份有限公司 Vacuum heat insulating plate and household appliance

Also Published As

Publication number Publication date
CN1603730A (en) 2005-04-06
KR20050031361A (en) 2005-04-06
CN1308638C (en) 2007-04-04
KR100623101B1 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
JP2005106312A (en) Refrigerator, vacuum insulation panel and method for manufacturing the same
US10456962B2 (en) Heat-insulating wall, and heat-insulating housing and method for producing the same
KR100507783B1 (en) Heat insulation box, and vacuum heat insulation material used therefor
JP4671895B2 (en) Insulation panel, insulation box and method for producing insulation panel
CN100441932C (en) Vacuum insulation material and refrigerator using it
WO2017098694A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
US20130306655A1 (en) Heat-insulating box
KR20000006467A (en) Open-celled rigid polyurethane foam and method for producing the same
WO2005119118A1 (en) Vacuum heat insulation material and cold reserving apparatus with the same
KR20140137108A (en) refrigerator and manufacturing method thereof
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
US20150344173A1 (en) Vacuum heat insulation material, heat insulation box comprising same, and method for manufacturing vacuum heat insulation material
JP2011241988A (en) Heat insulation box and refrigerator
JP2006194559A (en) Insulated box using vacuum insulation
WO2015186345A1 (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall employing same
KR100790662B1 (en) Vacuum insulation and refrigerator using it
JP3795615B2 (en) Heat insulation box
JP2007056973A (en) Vacuum insulation panel and refrigerator using the same
JP2005283059A (en) refrigerator
JP2004084847A (en) Vacuum insulation panel and refrigerator using the same
JP2017015319A (en) Heat insulation box
JP6778774B2 (en) Manufacturing method of vacuum insulation panel
JP2000171148A (en) Cooling device
JP2004011706A (en) Vacuum heat insulating material, and equipment using it
JP2022110869A (en) insulated container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080818