[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005103345A - Method for taking out inorganic particle synthesized in aqueous system as single-particle powder - Google Patents

Method for taking out inorganic particle synthesized in aqueous system as single-particle powder Download PDF

Info

Publication number
JP2005103345A
JP2005103345A JP2003336731A JP2003336731A JP2005103345A JP 2005103345 A JP2005103345 A JP 2005103345A JP 2003336731 A JP2003336731 A JP 2003336731A JP 2003336731 A JP2003336731 A JP 2003336731A JP 2005103345 A JP2005103345 A JP 2005103345A
Authority
JP
Japan
Prior art keywords
inorganic particles
calcium carbonate
aqueous
powder
aqueous system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336731A
Other languages
Japanese (ja)
Other versions
JP4439229B2 (en
Inventor
Hisao Sugihara
久夫 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEW RAIMU KENKYUSHA KK
Original Assignee
NEW RAIMU KENKYUSHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEW RAIMU KENKYUSHA KK filed Critical NEW RAIMU KENKYUSHA KK
Priority to JP2003336731A priority Critical patent/JP4439229B2/en
Publication of JP2005103345A publication Critical patent/JP2005103345A/en
Application granted granted Critical
Publication of JP4439229B2 publication Critical patent/JP4439229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for economically and efficiently manufacturing a single-particle powder of inorganic particles of calcium carbonate or the like dispersed as single particles excellent in the improving effect of physical constitution and plysical properties. <P>SOLUTION: This method for taking out the inorganic particles synthesized in the aqueous system as the single-particle powder is composed of a process (1) for preparing an aqueous suspension of inorganic particles in the aqueous system, a process (2) for substituting a water medium with an organic solvent immediately after the process for preparing the aqueous suspension of the inorganic particles in the aqueous system and a process (3) for separating the single-particle powder of the inorganic particles from the organic solvent suspension of the inorganic particles obtained in the process (2). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、単粒子に分散した分散性に優れる炭酸カルシウム粉体などの無機粉体の製造方法に関する。
さらに詳しくは、本発明は、ゴム、樹脂、塗料、インキ等への配合に際して単分散状態で配合することができ、かつ物性向上を図ることができる単粒子に分散した高度に分散性に優れる非凝集系の無機粒子からなる単粒子粉体の新規な製造方法に関する。
The present invention relates to a method for producing an inorganic powder such as a calcium carbonate powder excellent in dispersibility dispersed in a single particle.
More specifically, the present invention can be formulated in a monodispersed state when blended with rubber, resin, paint, ink, etc., and can be improved in physical properties. The present invention relates to a novel method for producing a single particle powder composed of agglomerated inorganic particles.

無機粒子、典型的な例として合成炭酸カルシウムを挙げることができるが、前記合成炭酸カルシウムは、水酸化カルシウムの水懸濁液(石灰乳)に炭酸ガスを導入する水系での合成方法が広く知られている。   Synthetic calcium carbonate can be mentioned as a typical example of inorganic particles, and the synthetic calcium carbonate is widely known for its synthesis in an aqueous system in which carbon dioxide gas is introduced into an aqueous suspension of calcium hydroxide (lime milk). It has been.

このとき、合成条件の選択により、大きくわけて以下の2種類の炭酸カルシウムを合成することができる。
(1).石灰乳濃度を低濃度にし(3〜6%)、炭酸ガス導入量を大量にし(反応速度を早くする)、反応温度を低くする(30℃以下)、という条件設定により、0.1μm以下の膠質炭酸カルシウム(コロイド炭酸カルシウム)を合成することができる。
(2).石灰乳濃度を高濃度にし(10%以上)、炭酸ガス導入量を少量にし(反応速度を遅くする)、反応温度を高くする(30℃以上)、という条件設定により、1.0μm以上の軽微性炭酸カルシウム(軽質炭酸カルシウム)を合成することができる。
At this time, the following two types of calcium carbonate can be synthesized roughly by selecting the synthesis conditions.
(1) By setting the conditions such that the concentration of lime milk is low (3 to 6%), the amount of carbon dioxide gas introduced is large (the reaction rate is increased), and the reaction temperature is lowered (30 ° C. or lower). .. Colloidal calcium carbonate (colloidal calcium carbonate) of 1 μm or less can be synthesized.
(2). By setting the conditions such that the lime milk concentration is high (10% or more), the amount of carbon dioxide introduced is small (reaction rate is slow), and the reaction temperature is high (30 ° C. or more). It is possible to synthesize light calcium carbonate (light calcium carbonate) of 0 μm or more.

また、前記した合成炭酸カルシウム、例えば粒径が1.0μm以下の炭酸カルシウムは、表面エネルギーや凝集エネルギーの関係から粒子同士が凝集し、この傾向は粒子の粒径が小さくなればなる程強くなり、再度水に分散させても元の状態(合成直後の粒子が良好に分散した状態)には戻らないという性質をもっていることも広く知られている。   In addition, the above-mentioned synthetic calcium carbonate, for example, calcium carbonate having a particle size of 1.0 μm or less, aggregates particles due to the relationship between surface energy and aggregation energy, and this tendency becomes stronger as the particle size of the particles becomes smaller. It is also widely known that even if it is dispersed again in water, it does not return to its original state (a state in which particles immediately after synthesis are well dispersed).

前記した合成炭酸カルシウムの凝集性は、次の点からも説明することができる。
即ち、炭酸カルシウムは難溶性物質であるが、水懸濁液中では僅かではあるが水に溶解して(溶解度:0.82g/dm3 、25℃。化学便覧基礎編改定3版、日本化学会編、II−167)。従って、炭酸カルシウムを水懸濁液から乾燥すると、溶解している炭酸カルシウムが炭酸カルシウム粒子間で結合剤的に働き炭酸カルシウム粒子を凝集させる。
The cohesiveness of the synthetic calcium carbonate described above can also be explained from the following points.
That is, although calcium carbonate is a hardly soluble substance, it is slightly soluble in water suspension but dissolves in water (solubility: 0.82 g / dm 3 , 25 ° C. Chemical Handbook Basic Edition 3rd revised edition, Nippon Chemical Co., Ltd.) Ed., II-167). Therefore, when the calcium carbonate is dried from the aqueous suspension, the dissolved calcium carbonate acts as a binder between the calcium carbonate particles to aggregate the calcium carbonate particles.

当業界において、前記した凝集性の炭酸カルシウムを利用する場合、凝集性を改善した利用方法が採用されている。例えば以下のような利用方法が採用されている。
(1).粒径が0.1μm以上の炭酸カルシウムは、製紙の塗工剤として、白色度の向上やインキ受理性の向上などの目的のために利用されている。この場合 、炭酸カルシウムの水分散体を調製するために、炭酸カルシウム粒子の表面をカルボキシル基を有するアクリル酸系の有機物や縮合リン酸系化合物で処理する方法が採用されている。
In the industry, when using the above-mentioned cohesive calcium carbonate, a utilization method with improved cohesiveness is employed. For example, the following usage is adopted.
(1). Calcium carbonate having a particle size of 0.1 μm or more is used for the purpose of improving whiteness and ink acceptability as a paper coating agent. In this case, in order to prepare an aqueous dispersion of calcium carbonate, a method of treating the surface of the calcium carbonate particles with an acrylic acid-based organic substance having a carboxyl group or a condensed phosphoric acid-based compound is employed.

(2).粒径が0.04μm以上の炭酸カルシウムは、ゴム、樹脂、インキ等の充填剤や体質顔料などとして利用されている。この場合、これら有機物質(媒体)のなかでの分散を図るために、炭酸カルシウムの表面を有機物、例えば脂肪酸や樹脂酸などで処理し、炭酸カルシウムの表面を親油性にし、分散性を向上させる方法が採用されている。   (2). Calcium carbonate having a particle size of 0.04 μm or more is used as a filler, extender pigment, etc. for rubber, resin, ink and the like. In this case, in order to achieve dispersion in these organic substances (medium), the surface of calcium carbonate is treated with an organic substance such as a fatty acid or resin acid to make the surface of calcium carbonate oleophilic and improve dispersibility. The method is adopted.

しかしながら、前記した凝集性の炭酸化カルシウムの分散化向上策には限界がある。
一般的にコロイド炭酸カルシウム(粒径0.1μm以下)を脂肪酸や樹脂酸などで処理した粉体の(二次粒子の)平均粒子径は、5〜10μmである。
また、粒子径が0.04μmの炭酸カルシウムの理論上の比表面積は55.6(m2/g)であるが、市販のものは20〜30(m2/g)である。
このことは、前記した従来の脂肪酸や樹脂酸などの表面処理により分散化を図ったとしても、0.04μmの粒子が10〜20個凝集したものしか得られないことを意味している。
However, there is a limit to the measures for improving the dispersion of the cohesive calcium carbonate described above.
Generally, the average particle diameter (of secondary particles) of a powder obtained by treating colloidal calcium carbonate (particle diameter of 0.1 μm or less) with a fatty acid or resin acid is 5 to 10 μm.
The theoretical specific surface area of calcium carbonate having a particle size of 0.04 μm is 55.6 (m 2 / g), but a commercially available product is 20 to 30 (m 2 / g).
This means that only 10-20 particles of 0.04 μm aggregated can be obtained even if dispersion is achieved by surface treatment with the above-described conventional fatty acids and resin acids.

このため、炭酸カルシウムをゴム、樹脂、インキ等へ充填、配合する際、分散性を更に高めるために、例えばゴム工業においてはバンバリーミキサー、樹脂工業においてはペレタイザー、塗料工業においてはサンドグラインドミルやディゾルバー、インキ工業においては三本ロール等の強力なエネルギーを使って凝集物を単分散に近付けているのが現状である。   For this reason, in order to further enhance dispersibility when filling and blending calcium carbonate into rubber, resin, ink, etc., for example, a banbury mixer in the rubber industry, a pelletizer in the resin industry, and a sand grind mill or dissolver in the paint industry. In the ink industry, the agglomerates are brought close to monodispersion using strong energy such as three rolls.

本発明は前記した従来技術の欠点を解消すべく創案されたものである。
即ち、本発明の目的は、各種基材に体質改善等のために充填、配合される炭酸カルシウムなどの各種の無機粒子において、充填、配合時に分散化のために過度のエネルギーを必要としない単粒子に分散した高度に分散性に優れる無機粒子の単粒子粉体の新規かつ効率的な製造方法を提供することにある。
The present invention has been devised to eliminate the above-mentioned drawbacks of the prior art.
That is, the object of the present invention is to provide a simple substance that does not require excessive energy for dispersion during filling and blending in various inorganic particles such as calcium carbonate that are filled and blended in various base materials for the purpose of improving the constitution. It is an object of the present invention to provide a novel and efficient method for producing a single particle powder of inorganic particles having excellent dispersibility and dispersed in particles.

本発明を概説すれば、本発明は、水系で合成した無機粒子を単粒子粉体として取出す方法が、
(1).水系で無機粒子の水懸濁液を調製する工程、
(2).前記水系で無機粒子の水懸濁液を調製する工程の後、直ちに水媒体を有機溶媒に置換する工程、
(3).前記(2)工程により得られる無機粒子の有機溶媒懸濁液から無機粒子の単粒子粉体を分離する工程、
から成ることを特徴とする水系で合成した無機粒子を単粒子粉体として取出す方法に関するものである。
If the present invention is outlined, the present invention is a method for taking out inorganic particles synthesized in an aqueous system as a single particle powder.
(1). A step of preparing an aqueous suspension of inorganic particles in an aqueous system;
(2). A step of immediately replacing the aqueous medium with an organic solvent after the step of preparing an aqueous suspension of inorganic particles in the aqueous system,
(3). A step of separating single particle powder of inorganic particles from an organic solvent suspension of inorganic particles obtained by the step (2).
It is related with the method of taking out the inorganic particle | grains synthesize | combined by the aqueous system characterized by comprising as a single particle powder.

本発明により例えば平均粒子径が1.0μm以下の単粒子に分散した高度に分散性に優れる炭酸カルシウムなどの無機粒子の単粒子粉体を経済的かつ効率的に製造することができる。   According to the present invention, it is possible to economically and efficiently produce a single particle powder of inorganic particles such as calcium carbonate, which is dispersed in single particles having an average particle size of 1.0 μm or less and has a high degree of dispersibility.

また、本発明の単粒子に分散した高度に分散性に優れる炭酸カルシウムなどの無機粒子の単粒子粉体は、各種基材、例えばゴム、樹脂、塗料、インキ等に対する分散性が優れているため、ゴム、樹脂、塗料、インキ等の製品の製造時に、充填や配合のために特別な分散機がいらず、製造に要するエネルギー消費量を大幅に低減させることができる。   In addition, since the single particle powder of inorganic particles such as calcium carbonate dispersed in the single particles of the present invention has excellent dispersibility, it is excellent in dispersibility in various base materials such as rubber, resin, paint, and ink. When manufacturing products such as rubber, resin, paint and ink, no special disperser is required for filling and blending, and the energy consumption required for production can be greatly reduced.

更にまた、本発明の単粒子に分散した高度に分散性に優れる炭酸カルシウムなどの無機粒子の単粒子粉体は、各種基材に対する分散性が優れていることに起因して、これら基材を利用した体質改善、物性改善に優れた各種の製品を提供することができる。   Furthermore, the single particle powder of inorganic particles such as calcium carbonate dispersed in the single particles of the present invention has excellent dispersibility with respect to various substrates. It is possible to provide various products excellent in improving the constitution and physical properties.

以下、本発明の技術的構成及び実施態様について詳しく説明する。   The technical configuration and embodiments of the present invention will be described in detail below.

本発明の水系で合成した無機粒子を単粒子粉体として取出す方法について、典型例として無機粒子が炭酸カルシウム粒子であるケースを例にとり、以下、詳しく説明する。
本発明の水系で合成した炭酸カルシウム粒子を単粒子粉体として取出す方法は、
1).水の存在する水酸化カルシウム水懸濁液(石灰乳)に炭酸ガスを導入して調製した合成炭酸カルシウム、例えば粒子径が1μm以下の合成炭酸カルシウムは、生成と同時に粒子の表面エネルギー等により凝集がはじまること、
2).炭酸カルシウムは難溶性物質ではあるが、その粒子表面に水があると微量のものが溶解するため、乾燥工程で水が無くなると前記溶解物が析出し、粒子間で結合剤の作用をなして凝集を促進すること、
3).前記した溶解、溶出は、合成炭酸カルシウムの生成と同時に媒体変換により、即ち、水媒体を有機媒体に変換することにより阻止することができ、従って粒子間の凝集を防止することができること、
という知見に基づいて完成されたものである。
The method for taking out the inorganic particles synthesized in the aqueous system of the present invention as a single particle powder will be described in detail below, taking a case where the inorganic particles are calcium carbonate particles as a typical example.
The method of taking out the calcium carbonate particles synthesized in the aqueous system of the present invention as a single particle powder,
1). Synthetic calcium carbonate prepared by introducing carbon dioxide into a calcium hydroxide aqueous suspension (lime milk) containing water, for example, synthetic calcium carbonate having a particle size of 1 μm or less, aggregates due to the surface energy of the particles at the same time as the formation. That begins,
2). Calcium carbonate is a poorly soluble substance, but if there is water on the particle surface, a very small amount dissolves. Therefore, when water is lost in the drying process, the dissolved matter precipitates and acts as a binder between the particles. Promoting aggregation,
3). The dissolution and elution described above can be prevented by medium conversion simultaneously with the production of synthetic calcium carbonate, that is, by converting the aqueous medium to the organic medium, thus preventing aggregation between the particles,
It was completed based on this knowledge.

本発明の前記(1)工程の炭酸カルシウムの水懸濁液の調製工程は、合成炭酸カルシウムの利用面からその平均粒子径が1μm以下の炭酸カルシウムが得られるようにすることが好ましい。しかし、本発明の(1)工程は前記平均粒子径のものを得るものに限定されない。   In the preparation step of the aqueous calcium carbonate suspension in the step (1) of the present invention, it is preferable that calcium carbonate having an average particle size of 1 μm or less is obtained from the viewpoint of utilization of the synthetic calcium carbonate. However, the step (1) of the present invention is not limited to the step of obtaining the average particle size.

本発明の前記(2)工程の水媒体を有機溶媒(有機媒体)に置換する工程は、前記(1)工程による合成炭酸カルシウムの水懸濁液の調製後、炭酸カルシウムの生成と同時に粒子の表面エネルギー等による凝集が始まるため、前記(1)工程の直後に行うことが好ましい。   The step of substituting the aqueous medium in the step (2) of the present invention with an organic solvent (organic medium) includes the preparation of the aqueous calcium carbonate suspension in the step (1), Since aggregation due to surface energy or the like starts, it is preferably performed immediately after the step (1).

本発明において、水媒体を有機溶媒(有機媒体)に置換する方法は所望の態様で行えばよい。例えば透析または置換により行えばよい。
前記透析法としては、例えば合成炭酸カルシウムの水懸濁液をセロハンの透析チューブにいれ、メチルアルコール等の有機溶媒中で透析すればよい。この時、アルコールを数回交換して透析速度をあげたり、あるいはアルコール中に水を吸着あるいは脱水するビオライトや活性炭などを添加し、置換効率を高めてもよい。
In the present invention, the method of replacing the aqueous medium with an organic solvent (organic medium) may be performed in a desired manner. For example, dialysis or replacement may be performed.
As the dialysis method, for example, an aqueous suspension of synthetic calcium carbonate may be placed in a cellophane dialysis tube and dialyzed in an organic solvent such as methyl alcohol. At this time, the replacement efficiency may be increased by exchanging the alcohol several times to increase the dialysis rate, or by adding biolite or activated carbon that adsorbs or dehydrates water into the alcohol.

本発明において、前記有機溶媒としては、メチルアルコール、エチルアルコール、ブチルアルコール、プロピルアルコール等のアルコール類、アセトン、ペンタノン、エチルメチルケトン等のケトン類等を使用すればよい。   In the present invention, as the organic solvent, alcohols such as methyl alcohol, ethyl alcohol, butyl alcohol, and propyl alcohol, ketones such as acetone, pentanone, and ethyl methyl ketone may be used.

前記した有機溶媒として、炭酸カルシウムの合成等に使用されているものが使用できることはいうまでもない。
例えば、炭酸カルシウムの合成において有機溶媒を使用した例としては、特開平4−31315、特開平4−31316、と開閉4−31317、特開平4−292414、特開平5−155613、特開平5−294616などがある。これらは、生石灰あるいは水酸化カルシウムのメタノール懸濁液に水を添加し、炭酸ガスを導入して炭酸カルシウムを合成する方法で、生成する炭酸カルシウムは、球状、楕円球状、碁石状などの形状であり、平均粒子径は0.1〜2.0μmであり、結晶系はバテライトである。
また、炭酸カルシウムの分散媒として有機溶媒を使う方法としては、特開昭64−4239、特開昭64−4240にグリコールを分散媒として使用するものがある。なお、これらは炭酸カルシウム表面に予め他の有機物で表面処理をした炭酸カルシウムを用いている。
Needless to say, those used in the synthesis of calcium carbonate can be used as the organic solvent.
For example, examples of using an organic solvent in the synthesis of calcium carbonate include JP-A-4-31315, JP-A-4-31316, Open / Close 4-31317, JP-A-4-292414, JP-A-5-155613, JP-A-5-155613. 294616. These are methods in which water is added to a quick suspension of calcium lime or calcium hydroxide and carbon dioxide is introduced to synthesize calcium carbonate. The generated calcium carbonate has a spherical shape, an oval spherical shape, a meteorite shape, and the like. The average particle size is 0.1 to 2.0 μm, and the crystal system is vaterite.
Further, as a method of using an organic solvent as a dispersion medium for calcium carbonate, JP-A 64-4239 and JP-A 64-4240 use glycol as a dispersion medium. In addition, these use the calcium carbonate which surface-treated with the other organic substance beforehand on the calcium carbonate surface.

本発明の前記(3)工程の、単粒子に分散した炭酸カルシウム粉体の分離、回収は、所望に行えばよい。   The separation and recovery of the calcium carbonate powder dispersed in single particles in the step (3) of the present invention may be performed as desired.

本発明の水系で合成した無機粒子を単粒子粉体として取出す方法は、前記した無機粒子が炭酸カルシウムである場合に限定されない。本発明は、水系で合成される無機粒子に広く適用することができるものである。以下、この種の他の無機粒子の例について説明する。   The method of taking out the inorganic particles synthesized in the aqueous system of the present invention as a single particle powder is not limited to the case where the inorganic particles are calcium carbonate. The present invention can be widely applied to inorganic particles synthesized in water. Hereinafter, examples of other inorganic particles of this type will be described.

他の無機粒子の例としてリン酸カルシウムがある。
一般にリン酸カルシウム(非晶質リン酸カルシウム、アパタイト、リン酸三カルシウム等)の合成方法は、水溶性カルシウム塩溶液あるいは石灰乳と水溶性リン酸塩あるいはリン酸溶液とアンモニア溶液あるいはアルカリ金属水溶液を、例えばCa/P比が1.67〜1.0の条件で混合あるいは滴下して反応させる方法が採用されている。しかしながらこの種の合成方法において、低温で反応させると0.1μm以下のコロイド粒子が生成し、分離性に優れた粉体として取出すのが非常に困難である。
An example of another inorganic particle is calcium phosphate.
In general, calcium phosphate (amorphous calcium phosphate, apatite, tricalcium phosphate, etc.) is synthesized by using a water-soluble calcium salt solution or lime milk and a water-soluble phosphate or phosphoric acid solution and an ammonia solution or an alkali metal aqueous solution such as Ca A method is employed in which the reaction is carried out by mixing or dropping under the condition of / P ratio of 1.67 to 1.0. However, in this type of synthesis method, when reacted at a low temperature, colloidal particles of 0.1 μm or less are produced, and it is very difficult to take out as a powder having excellent separability.

また、他の無機粒子の例として含水シリカがある。
一般に含水シリカの合成方法は、珪酸ナトリウム水溶液と鉱酸(硫酸等)、あるいは珪酸ナトリウム水溶液と塩類(塩化マグネシウム等)と反応させ珪酸塩類を生成し、次に鉱酸(硫酸等)あるいは炭酸ガスで分解する方法がある。更に、これらの方法において酸性側で反応させてゲル化させる方法とアルカリ側で直接沈殿させる方法がある。
一般的に非晶質の含水シリカの一次粒子は10〜50nmであるが、ぶどう状に凝集した二次粒子は1〜数百μmといわれている。含水シリカは、ゴムや樹脂の補強剤として使用されているが、ロール練やバンバリー等の強い剪断力を加えることにより部分的に一次粒子まで分散することができるが、完全に分散することは不可能に近いと言われている。
Another example of inorganic particles is hydrous silica.
In general, hydrous silica is synthesized by reacting a sodium silicate aqueous solution with a mineral acid (sulfuric acid, etc.) or a sodium silicate aqueous solution and salts (magnesium chloride, etc.) to produce a silicate, and then a mineral acid (sulfuric acid etc.) or carbon dioxide. There is a method of disassembling. Further, in these methods, there are a method of reacting on the acidic side and gelation, and a method of direct precipitation on the alkali side.
In general, primary particles of amorphous hydrous silica are 10 to 50 nm, but secondary particles aggregated in a vine shape are said to be 1 to several hundred μm. Hydrous silica is used as a reinforcing agent for rubber and resin, but it can be partially dispersed to primary particles by applying a strong shearing force such as roll kneading or Banbury, but it is not possible to completely disperse. It is said that it is almost possible.

本発明の水系で合成した無機粒子を単粒子粉体として取出す方法が適用できる前記した以外の無機粉体としては、例えば、水酸化マグネシウム、炭酸マグネシウム、水酸化カルシウム、硫酸バリウム、水酸化アルミニウム、含水ケイ酸アルミニウム、酸化亜鉛、酸化チタンなどを例示することができる。   Examples of the inorganic powder other than those described above that can be applied to the method of taking out the inorganic particles synthesized in the aqueous system of the present invention as a single particle powder include, for example, magnesium hydroxide, magnesium carbonate, calcium hydroxide, barium sulfate, aluminum hydroxide, Examples thereof include hydrous aluminum silicate, zinc oxide, and titanium oxide.

以下、本発明を実施例により更に詳しく説明する。
本発明は、前記したように高度に分散性に優れた炭酸カルシウムなどの無機粒子の単粉子粒体を経済的かつ効率的に製造することに最大の特徴点がある。以下、本発明の前記した特徴点を下記の式(1)で求めた分散度(%)により実証する。
分散度(%)=〔(BET測定より求めた比表面積)/(計算式より求めた比表面積)〕×100 ………………(1)
前記計算式より求めた比表面積は、下記の式(2)で求めたものである。
S=〔6/(ρ・D)〕 ………………(2)
前記式(2)において、Sは比表面積(m2/g)、ρは真比重、Dは粒子径(直径、μm)を示す。
なお、本発明は実施例のものに限定されないことはいうまでもないことである。
Hereinafter, the present invention will be described in more detail with reference to examples.
As described above, the present invention has the greatest feature in economically and efficiently producing a single powdery granule of inorganic particles such as calcium carbonate which is highly excellent in dispersibility. Hereinafter, the above-described characteristic points of the present invention will be demonstrated by the degree of dispersion (%) obtained by the following formula (1).
Dispersity (%) = [(specific surface area determined from BET measurement) / (specific surface area determined from calculation formula)] × 100 (1)
The specific surface area obtained from the above calculation formula is obtained by the following formula (2).
S = [6 / (ρ · D)] (2)
In the formula (2), S represents a specific surface area (m 2 / g), ρ represents a true specific gravity, and D represents a particle diameter (diameter, μm).
Needless to say, the present invention is not limited to the examples.

液温20℃の5%石灰乳400mlに攪拌速度600r.p.mで25容量%の炭酸ガスを1600ml/分で導入し炭酸化を終了させた。直ちに得られた炭酸カルシウム乳液50mlをセルロースチューブ(Wako製)に密封し、1000mlの99.8%のメチルアルコール液中に浸漬した。この時、水分吸収剤としてモレキュラシーブス(Wako製)200gを投入し攪拌を12時間行い、溶媒置換終了後セルロースチューブから乳液を濾過し、110℃で1晩乾燥した。乾燥物を網の目100メッシュで篩い、約3gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.04μm、BET法による比表面積は49.2m2/g 、分散度は88%であった。粉体の電子顕微鏡写真(倍率7000倍)を図1に示す。 A stirring speed of 600 r. p. The carbonation was terminated by introducing 25 vol% carbon dioxide gas at 1600 ml / min. Immediately obtained 50 ml of calcium carbonate emulsion was sealed in a cellulose tube (manufactured by Wako) and immersed in 1000 ml of 99.8% methyl alcohol solution. At this time, 200 g of molecular sieves (manufactured by Wako) was added as a water absorbent and stirred for 12 hours. After completion of solvent replacement, the emulsion was filtered from the cellulose tube and dried at 110 ° C. overnight. The dried product was sieved with a mesh of 100 mesh to obtain about 3 g of dry powder. The powder thus prepared had an average particle diameter of about 0.04 μm by electron microscope observation, a specific surface area of 49.2 m 2 / g by BET method, and a dispersity of 88%. An electron micrograph of the powder (magnification of 7000 times) is shown in FIG.

液温20℃の5%石灰乳400mlに攪拌速度600r.p.mで25容量%の炭酸ガスを1600ml/分で導入し炭酸化を終了させた。直ちに得られた炭酸カルシウム乳液50mlをセルロースチューブに密封し、1000mlの99.5%のエチルアルコール液中に浸漬した。このエチルアルコールを3時間置きに2回交換し、3回目のエチルアルコール交換時に、水分吸収剤としてモレキュラシーブス100gを投入し攪拌を12時間行い、溶媒置換終了後セルロースチューブから乳液を濾過し、110℃で1晩乾燥した。乾燥物を網の目100メッシュで篩い、約3gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.04μm、BET法による比表面積は50.1m2/g 、分散度は90%であった。粉体の電子顕微鏡写真(倍率7000倍)を図2に示す。 A stirring speed of 600 r. p. The carbonation was terminated by introducing 25 vol% carbon dioxide gas at 1600 ml / min. Immediately after, 50 ml of the obtained calcium carbonate emulsion was sealed in a cellulose tube and immersed in 1000 ml of 99.5% ethyl alcohol solution. This ethyl alcohol was exchanged twice every 3 hours, and at the third ethyl alcohol exchange, 100 g of molecular sieves was added as a moisture absorbent and stirred for 12 hours. After completion of solvent replacement, the emulsion was filtered from the cellulose tube, and 110 Dried overnight at ° C. The dried product was sieved with a mesh of 100 mesh to obtain about 3 g of dry powder. The powder thus prepared had an average particle diameter of about 0.04 μm by electron microscope observation, a specific surface area of 50.1 m 2 / g by BET method, and a dispersity of 90%. An electron micrograph of the powder (magnification of 7000 times) is shown in FIG.

液温15℃の6%石灰乳400mlに攪拌速度1000r.p.mで25容量%の炭酸ガスを600ml/分で導入し炭酸化を終了させた。直ちに得られた炭酸カルシウム乳液50mlをセルロースチューブに密封し、1000mlの99.8%のメチルアルコール液中に浸漬した。この時、水分吸収剤としてモレキュラシーブス200gを投入し攪拌を12時間行い、溶媒置換終了後セルロースチューブから乳液を濾過し、110℃で1晩乾燥した。乾燥物を網の目100メッシュで篩い、約4gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.1μm、BET法による比表面積は20.8m2/g、分散度は95%であった。 To 400 ml of 6% lime milk having a liquid temperature of 15 ° C., a stirring speed of 1000 r. p. m, 25% by volume of carbon dioxide gas was introduced at 600 ml / min to complete the carbonation. Immediately obtained 50 ml of calcium carbonate emulsion was sealed in a cellulose tube and immersed in 1000 ml of 99.8% methyl alcohol solution. At this time, 200 g of molecular sieves as a water absorbent was added and stirred for 12 hours. After completion of solvent replacement, the emulsion was filtered from the cellulose tube and dried at 110 ° C. overnight. The dried product was sieved with a mesh of 100 mesh to obtain about 4 g of dry powder. The powder thus prepared had an average particle diameter of about 0.1 μm as observed by an electron microscope, a specific surface area of 20.8 m 2 / g by BET method, and a dispersity of 95%.

硝酸カルシウム四水和物47.23gを溶解した水溶液400mlを1000mlの容器に採り攪拌しながら、リン酸二水素アンモニウム15.85gを300mlに溶解した水溶液300mlとアンモニア水2.4mlを300mlに溶解した水溶液を、同時に滴下速度10ml/分で滴下した。この時の反応温度を10℃とし、滴下終了後12時間そのままの温度で攪拌続け、直ちに得られたリン酸カルシウム乳液100mlをセルロースチューブに密封し、1000mlの99.5%のエチルアルコール液中に浸漬した。このエチルアルコールを3時間置きに2回交換し、3回目のエチルアルコール交換時に、水分吸収剤としてモレキュラシーブス100gを投入し攪拌を12時間行い、溶媒置換終了後セルロースチューブから乳液を濾過し、80℃で1晩乾燥した。乾燥物を網の目100メッシュで篩い、約2gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.02μm、BET法による比表面積は99.7gm2/g 、分散度は90%であった。 400 ml of an aqueous solution in which 47.23 g of calcium nitrate tetrahydrate was dissolved was placed in a 1000 ml container and stirred, while 300 ml of an aqueous solution in which 15.85 g of ammonium dihydrogenphosphate was dissolved in 300 ml and 2.4 ml of aqueous ammonia were dissolved in 300 ml. The aqueous solution was simultaneously added dropwise at a dropping rate of 10 ml / min. At this time, the reaction temperature was set to 10 ° C., and the stirring was continued at the same temperature for 12 hours after completion of the dropping. Immediately after, 100 ml of the obtained calcium phosphate emulsion was sealed in a cellulose tube and immersed in 1000 ml of 99.5% ethyl alcohol solution. . The ethyl alcohol was exchanged twice every 3 hours, and at the third ethyl alcohol exchange, 100 g of molecular sieves was added as a water absorbent and stirred for 12 hours. After completion of solvent substitution, the emulsion was filtered from the cellulose tube, Dried overnight at ° C. The dried product was sieved with a mesh of 100 mesh to obtain about 2 g of dry powder. The powder thus prepared had an average particle size of about 0.02 μm by electron microscope observation, a specific surface area of 99.7 gm 2 / g by BET method, and a dispersity of 90%.

塩化カルシウム二水和物44.11gを溶解した水溶液400mlを1000mlの容器に採り攪拌しながら、ヘキサメタリン酸ナトリウム18.35gを300mlに溶解した水溶液300mlと水酸化ナトリウム16.8gを300mlに溶解した水溶液を、同時に滴下速度10ml/分で滴下した。この時の反応温度を10℃とし、滴下終了後12時間そのままの温度で攪拌続けた。反応終了後直ちに得られたリン酸カルシウム乳液50mlをセルロースチューブに密封し、100mlの99.5%のエチルアルコール液中に浸漬した。このエチルアルコールを3時間置きに2回交換し、3回目のエチルアルコール交換時に、水分吸収剤としてモレキュラシーブス100gを投入し攪拌を12時間行い、溶媒置換終了後セルロースチューブから乳液を濾過し、80℃で1晩乾燥した。乾燥物を網の目100メッシュで篩い、約39gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.02μm、BET法による比表面積は95.4m2/g 、分散度は86%であった。 400 ml of an aqueous solution in which 44.11 g of calcium chloride dihydrate was dissolved was placed in a 1000 ml container and stirred, while 300 ml of an aqueous solution in which 18.35 g of sodium hexametaphosphate was dissolved in 300 ml and an aqueous solution in which 16.8 g of sodium hydroxide was dissolved in 300 ml. Were simultaneously dropped at a dropping rate of 10 ml / min. The reaction temperature at this time was 10 ° C., and stirring was continued at that temperature for 12 hours after the completion of the dropping. Immediately after completion of the reaction, 50 ml of the calcium phosphate emulsion obtained was sealed in a cellulose tube and immersed in 100 ml of 99.5% ethyl alcohol solution. The ethyl alcohol was exchanged twice every 3 hours, and at the third ethyl alcohol exchange, 100 g of molecular sieves was added as a water absorbent and stirred for 12 hours. After completion of solvent substitution, the emulsion was filtered from the cellulose tube, Dried overnight at ° C. The dried product was sieved with a mesh of 100 mesh to obtain about 39 g of dry powder. The powder thus prepared had an average particle diameter of about 0.02 μm by electron microscope observation, a specific surface area by BET method of 95.4 m 2 / g, and a dispersity of 86%.

比較例1Comparative Example 1

炭酸カルシウム乳液を得るまでは実施例1と同様に行った。得られた炭酸カルシウム乳液を直ちに濾過し、110℃で1晩乾燥した。乾燥物を乳鉢で粉砕後、網の目100メッシュで篩い、23gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.04μm、BET法による比表面積は28.0m2/g 、分散度は51%であった。このものは実施例1のものと比較して、単分散性に劣るものであった。 The same procedure as in Example 1 was performed until a calcium carbonate emulsion was obtained. The resulting calcium carbonate emulsion was immediately filtered and dried at 110 ° C. overnight. The dried product was pulverized with a mortar and sieved with a mesh of 100 mesh to obtain 23 g of dry powder. The powder thus prepared had an average particle diameter of about 0.04 μm by electron microscope observation, a specific surface area by BET method of 28.0 m 2 / g, and a dispersity of 51%. This was inferior in monodispersity compared to that in Example 1.

比較例2Comparative Example 2

炭酸カルシウム乳液を得るまでは実施例3と同様に行った。得られた炭酸カルシウム乳液を直ちに濾過し、110℃で1晩乾燥した。乾燥物を乳鉢で粉砕後、網の目100メッシュで篩い、31gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.1μm、BET法による比表面積は15.3m2/g 、分散度は69%であった。このものは実施例3のものと比較して、単分散性に劣るものであった。 The same procedure as in Example 3 was performed until a calcium carbonate emulsion was obtained. The resulting calcium carbonate emulsion was immediately filtered and dried at 110 ° C. overnight. The dried product was pulverized in a mortar and sieved with a mesh of 100 mesh to obtain 31 g of dry powder. The powder thus prepared had an average particle size of about 0.1 μm as observed with an electron microscope, a specific surface area of 15.3 m 2 / g by BET method, and a dispersity of 69%. This was inferior in monodispersity compared to that in Example 3.

比較例3Comparative Example 3

硝酸カルシウム四水和物47.23gを溶解した水溶液400mlを1000mlの容器に採り攪拌しながら、リン酸二水素アンモニウム15.85gを300mlに溶解した水溶液300mlとアンモニア水2.4mlを300mlに溶解した水溶液を、同時に滴下速度10ml/分で滴下した。この時の反応温度を10℃とし、滴下終了後12時間そのままの温度で攪拌続け、得られたリン酸カルシウム乳液を直ちに濾過・水洗し80℃で24時間乾燥した。乾燥物を網の目100メッシュで篩い、19gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡観察による平均粒子径は約0.02μm、BET法による比表面積は55.5m2/g 、分散度は50%であった。このものは実施例4と比較して、単分散性に劣るものであった。 400 ml of an aqueous solution in which 47.23 g of calcium nitrate tetrahydrate was dissolved was placed in a 1000 ml container and stirred, while 300 ml of an aqueous solution in which 15.85 g of ammonium dihydrogenphosphate was dissolved in 300 ml and 2.4 ml of aqueous ammonia were dissolved in 300 ml. The aqueous solution was simultaneously added dropwise at a dropping rate of 10 ml / min. The reaction temperature at this time was 10 ° C., and the stirring was continued at the same temperature for 12 hours after completion of the dropping. The obtained calcium phosphate emulsion was immediately filtered, washed with water, and dried at 80 ° C. for 24 hours. The dried product was sieved with a mesh of 100 mesh to obtain 19 g of dry powder. The powder thus prepared had an average particle diameter of about 0.02 μm by electron microscope observation, a specific surface area by BET method of 55.5 m 2 / g, and a dispersity of 50%. This was inferior in monodispersibility as compared with Example 4.

比較例4Comparative Example 4

塩化カルシウム二水和物44.11gを溶解した水溶液400mlを1000mlの容器に採り攪拌しながら、ヘキサメタリン酸ナトリウム18.35gを300mlに溶解した水溶液300mlと水酸化ナトリウム16.8gを300mlに溶解した水溶液を、同時に滴下速度10ml/分で滴下した。この時の反応温度を10℃とし、滴下終了後12時間そのままの温度で攪拌を続け、得られたリン酸カルシウム乳液を直ちに濾過・水洗し80℃で24時間乾燥した。乾燥物を網の目100メッシュで篩い、29gの乾燥粉体を得た。このようにして調製された粉体は、電子顕微鏡による平均粒子径は約0.02μm、BET法による比表面積は64.6m2/g 、分散度は58%であった。このものは実施例5と比較して、単分散性に劣るものであった。 400 ml of an aqueous solution in which 44.11 g of calcium chloride dihydrate is dissolved is placed in a 1000 ml container and stirred, while 300 ml of an aqueous solution in which 18.35 g of sodium hexametaphosphate is dissolved in 300 ml and an aqueous solution in which 16.8 g of sodium hydroxide is dissolved in 300 ml. Were simultaneously dropped at a dropping rate of 10 ml / min. The reaction temperature at this time was 10 ° C., and stirring was continued at the temperature for 12 hours after the completion of the dropping. The obtained calcium phosphate emulsion was immediately filtered, washed with water, and dried at 80 ° C. for 24 hours. The dried product was sieved with a mesh of 100 mesh to obtain 29 g of dry powder. The powder thus prepared had an average particle diameter of about 0.02 μm by an electron microscope, a specific surface area by BET method of 64.6 m 2 / g, and a dispersity of 58%. This was inferior in monodispersity as compared with Example 5.

本発明の実施例1で調製した高度に単粒子に分散した炭酸カルシウム粉体のEMS(走査型電子顕微鏡)写真(倍率7000倍)である。It is an EMS (scanning electron microscope) photograph (magnification: 7000 times) of the calcium carbonate powder highly dispersed in single particles prepared in Example 1 of the present invention. 本発明の実施例2で調製した高度に単粒子に分散した炭酸カルシウム粉体のEMS(走査型電子顕微鏡)写真(倍率7000倍)である。It is an EMS (scanning electron microscope) photograph (magnification 7000 times) of the calcium carbonate powder highly dispersed in single particles prepared in Example 2 of the present invention.

Claims (4)

水系で合成した無機粒子を単粒子粉体として取出す方法が、
(1).水系で無機粒子の水懸濁液を調製する工程、
(2).前記水系で無機粒子の水懸濁液を調製する工程の後、直ちに水媒体を有機溶媒に置換する工程、
(3).前記(2)工程により得られる無機粒子の有機溶媒懸濁液から無機粒子の単粒子粉体を分離する工程、
から成ることを特徴とする水系で合成した無機粒子を単粒子粉体として取出す方法。
The method of taking out the inorganic particles synthesized in water as a single particle powder,
(1). A step of preparing an aqueous suspension of inorganic particles in an aqueous system;
(2). A step of immediately replacing the aqueous medium with an organic solvent after the step of preparing an aqueous suspension of inorganic particles in the aqueous system,
(3). A step of separating single particle powder of inorganic particles from an organic solvent suspension of inorganic particles obtained by the step (2).
A method for taking out inorganic particles synthesized in an aqueous system as a single particle powder.
(1)工程が、粒径が1μm以下の炭酸カルシウム、リン酸カルシウム、または含水シリカなどの無機粒子の水懸濁液を調製するものである請求項1に記載の水系で合成した無機粒子を単粒子粉体として取出す方法。   (1) The process comprises preparing an aqueous suspension of inorganic particles such as calcium carbonate, calcium phosphate, or hydrous silica having a particle size of 1 μm or less. How to take out as powder. (2)工程の水媒体を有機溶媒に置換する工程が、透析または置換によるものである請求項1に記載の水系で合成した無機粒子を単粒子粉体として取出す方法。   (2) The method for taking out the inorganic particles synthesized in the aqueous system as a single particle powder according to claim 1, wherein the step of replacing the aqueous medium in the step with an organic solvent is by dialysis or substitution. (2)工程の有機溶媒が、アルコール類またはケトン類である請求項1に記載の水系で合成した無機粒子を単粒子粉体として取出す方法。

(2) The organic solvent used in the step is an alcohol or a ketone. The method according to claim 1, wherein the inorganic particles synthesized in the aqueous system are taken out as a single particle powder.

JP2003336731A 2003-09-29 2003-09-29 Extracting inorganic particles synthesized in water as a single particle powder Expired - Lifetime JP4439229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336731A JP4439229B2 (en) 2003-09-29 2003-09-29 Extracting inorganic particles synthesized in water as a single particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336731A JP4439229B2 (en) 2003-09-29 2003-09-29 Extracting inorganic particles synthesized in water as a single particle powder

Publications (2)

Publication Number Publication Date
JP2005103345A true JP2005103345A (en) 2005-04-21
JP4439229B2 JP4439229B2 (en) 2010-03-24

Family

ID=34532742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336731A Expired - Lifetime JP4439229B2 (en) 2003-09-29 2003-09-29 Extracting inorganic particles synthesized in water as a single particle powder

Country Status (1)

Country Link
JP (1) JP4439229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197101A1 (en) * 2021-03-16 2022-09-22 주식회사 오스펌 Composite of calcium phosphate-based bioceramic and biodegradable polymer and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197101A1 (en) * 2021-03-16 2022-09-22 주식회사 오스펌 Composite of calcium phosphate-based bioceramic and biodegradable polymer and manufacturing method therefor

Also Published As

Publication number Publication date
JP4439229B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US5437720A (en) Spheroidal aggregate of platy synthetic hydrotalcite
TWI395711B (en) Process for producing hydrophobic silica powder
JP3444670B2 (en) Method for producing granular amorphous silica
CN104556176B (en) A kind of preparation method of aluminum oxide nanoparticle
JP3910495B2 (en) Basic magnesium carbonate and method for producing the same, and composition or structure containing the basic magnesium carbonate
JP3058255B2 (en) Method for producing precipitated calcium carbonate
US20100040885A1 (en) Highly dispersible fine powder of alkaline earth metal carbonate
JP6355628B2 (en) Production of improved microporous zirconium silicate
JP3910503B2 (en) Method for producing basic magnesium carbonate
WO2022110127A1 (en) Method for preparing cube-like nano calcium carbonate
JP2021507863A (en) Preparation of silica-coated calcium carbonate with increased surface area and mesoporous properties
JP2857806B2 (en) Precipitated calcium carbonate
CN108137345B (en) Iron oxyhydroxide nanodispersion
JPH08209029A (en) Spherical delustering agent for coating material and coating material composition
JP5019556B2 (en) Porous particles and method for producing the same
JP2007070164A (en) Silica-calcium carbonate composite particle, its producing method and pigment, filler or paper containing it
JP3454554B2 (en) Amorphous silica granules and production method thereof
JP2006206425A (en) Alkaline earth metal carbonate fine particles and method for manufacturing the same
JP4439229B2 (en) Extracting inorganic particles synthesized in water as a single particle powder
JP2001519453A (en) Generation of free-flowing particulate materials using partially neutralized fatty acids
ITMI20100713A1 (en) PROCEDURE FOR PREPARING AN AMORPHOUS AND RELATED SILICA-ALUMINA COMPOSITION
CN111533951B (en) Preparation method of aluminum silicate-white carbon black composite filler
JP4217035B2 (en) Method for producing inorganic or metal fine particle-calcium carbonate composite particle, method for producing composite composition containing the composite particle, and method for producing composite
JPS6034496B2 (en) Manufacturing method of alumina sol
JP3934184B2 (en) A novel process for producing scaly calcium hydrogen phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term