JP2005194425A - Method for producing fine particle and fine particle - Google Patents
Method for producing fine particle and fine particle Download PDFInfo
- Publication number
- JP2005194425A JP2005194425A JP2004003249A JP2004003249A JP2005194425A JP 2005194425 A JP2005194425 A JP 2005194425A JP 2004003249 A JP2004003249 A JP 2004003249A JP 2004003249 A JP2004003249 A JP 2004003249A JP 2005194425 A JP2005194425 A JP 2005194425A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- flow path
- liquid
- reaction
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Polymerisation Methods In General (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、形状及び大きさが均一であり、しかも非球状の微粒子をも容易に、かつ、効率
よく連続的に製造することができる微粒子の製造方法、及び、該微粒子の製造方法により
製造されてなる微粒子に関する。
The present invention is produced by a method for producing fine particles having a uniform shape and size, and capable of producing non-spherical fine particles easily and efficiently, and a method for producing the fine particles. It relates to fine particles.
化学、医療、電子材料分野等において樹脂等からなる微粒子が広く利用さている。例えば
、樹脂からなる微粒子の表面に金属導電層を設けた導電性微粒子は、ICチップ等の電子
部品間の導電接続を行う異方性導電材料として用いられている。
近年、これらの微粒子の応用範囲が拡大するにつれて、粒子径等が極めて均一に揃った微
粒子が求められるようになってきている。また、導電性微粒子用等、その用途によっては
、従来の球状の微粒子ばかりではなく、楕円形状や立方体形状等の非球形の微粒子も求め
られるようになってきている。しかも、このような非球形の微粒子についても、高いレベ
ルでその形状や大きさが均一であることが求められている。
Fine particles made of resin or the like are widely used in the chemical, medical, electronic material fields and the like. For example, conductive fine particles in which a metal conductive layer is provided on the surface of fine particles made of resin are used as an anisotropic conductive material for conducting conductive connection between electronic components such as IC chips.
In recent years, as the application range of these fine particles expands, fine particles having a very uniform particle diameter and the like have been demanded. In addition, depending on the application, such as for conductive fine particles, not only conventional spherical fine particles but also non-spherical fine particles such as an elliptical shape and a cubic shape have been demanded. Moreover, such non-spherical fine particles are also required to have a uniform shape and size at a high level.
樹脂微粒子を製造する方法としては、例えば、懸濁重合法が知られている。懸濁重合法は
、攪拌機を備えた反応槽に分散安定剤を溶解した水性媒体を仕込み、この水性媒体を攪拌
しながら重合開始剤を溶解させた重合性単量体を投入、加熱することにより重合性単量体
を重合させて樹脂微粒子を得る方法である。しかし、懸濁重合法により得られる樹脂微粒
子の粒径分布は広く、カラム充填材、スペーサー、トナー、発泡体等のように、樹脂微粒
子の粒径に精密性が要求される用途では分級等の分別操作が別途必要となり非常に煩雑で
あった。
As a method for producing resin fine particles, for example, a suspension polymerization method is known. In the suspension polymerization method, an aqueous medium in which a dispersion stabilizer is dissolved is charged into a reaction vessel equipped with a stirrer, and a polymerizable monomer in which a polymerization initiator is dissolved is charged and heated while stirring the aqueous medium. This is a method for obtaining resin fine particles by polymerizing a polymerizable monomer. However, the particle size distribution of the resin fine particles obtained by the suspension polymerization method is wide, and in applications where the particle size of the resin fine particles is required to be precise, such as column fillers, spacers, toners, foams, etc. A separate operation was required, which was very complicated.
そこで、粒径をより均一に調整すべく、高速攪拌機、ホモジナイザー、インラインミキサ
ー等の乳化手段を用いた乳化重合法が提案されている。乳化重合法によれば、懸濁重合法
に比べてより粒径の揃った樹脂微粒子を得ることができる。しかしながら、乳化重合法に
おいても、高速攪拌機、ホモジナイザー、インラインミキサー等の乳化手段により剪断力
の働く領域が、乳化翼のごく近傍に限られているため、乳化翼からの距離によって剪断力
が不均一になり、分散分散相の粒子径分布が広くなって、やはり得られる樹脂微粒子の粒
径分布が広くなるという問題があった。
Therefore, an emulsion polymerization method using an emulsifying means such as a high-speed stirrer, a homogenizer, or an in-line mixer has been proposed in order to adjust the particle size more uniformly. According to the emulsion polymerization method, resin fine particles having a uniform particle diameter can be obtained as compared with the suspension polymerization method. However, even in the emulsion polymerization method, since the region where the shearing force is applied by the emulsifying means such as a high-speed stirrer, homogenizer, and in-line mixer is limited to the vicinity of the emulsifying blade, the shearing force is uneven depending on the distance from the emulsifying blade Thus, there is a problem that the particle size distribution of the dispersed dispersed phase is widened, and the particle size distribution of the resin fine particles obtained is also widened.
また、粒子を連続的に製造する方法としては、例えば、特許文献1に、マイクロミキサー
を利用したシリカゲル、樹脂粒子の連続製造方法が記載されている。この方法では、マイ
クロミキサーで原料を混合することでエマルジョンを作製し、マイクロミキサーに接続さ
れた反応管と後反応ゾーンによって重合反応を進行させる。
しかし、特許文献1に記載された技術では、ある程度粒径が均一な粒子は得られるものの
、厳しい均一性が求められる用途では、更に分級等の後処理で粒径を均一にする必要があ
った。
As a method for continuously producing particles, for example,
However, in the technique described in
一方、非球状の微粒子については、個々の微粒子ごとの形状はかなり精密に制御できるよ
うになってきたものの、数百以上の集合体として均一であるといえるものはなかった。特
許文献2には、ビニル系重合体微粒子からなる種粒子の存在下に、(メタ)アクリル酸エ
ステル系モノマーを主成分とし、かつ架橋性ビニル系モノマーを含むモノマー混合物を、
水溶性重合開始剤を用いて、水性媒体中、非水溶性有機溶剤の非存在下で乳化重合させる
偏平状異形微粒子の製造方法が開示されている。この方法は、重合の際の重合収縮を利用
したものであり、赤血球に似た偏平状の微粒子が得られる。しかしながら、この方法で得
られる微粒子の形状は偏平状に限られ、また、得られた微粒子の形状や粒径は均一とはい
えないものであった。
On the other hand, for non-spherical fine particles, the shape of each fine particle can be controlled fairly precisely, but none can be said to be uniform as an aggregate of several hundred or more.
Disclosed is a method for producing flat, irregularly shaped microparticles that are emulsion-polymerized in an aqueous medium in the absence of a water-insoluble organic solvent using a water-soluble polymerization initiator. This method utilizes polymerization shrinkage during polymerization, and flat microparticles resembling erythrocytes are obtained. However, the shape of the fine particles obtained by this method is limited to a flat shape, and the shape and particle size of the obtained fine particles are not uniform.
本発明は、上記に鑑み、形状及び大きさが均一であり、しかも非球状の微粒子をも容易に
、かつ、効率よく連続的に製造することができる微粒子の製造方法、及び、該微粒子の製
造方法により製造されてなる微粒子を提供することを目的する。
In view of the above, the present invention provides a method for producing fine particles having uniform shape and size and capable of producing non-spherical fine particles easily and efficiently, and production of the fine particles. It aims at providing the microparticles | fine-particles manufactured by the method.
本発明は、反応により固体化する液体からなる分散相が前記液体と実質的に混和しない連
続相中に分散した分散液を流路内に流しながら前記分散相を固体化させる微粒子の製造方
法である。
以下に本発明を詳述する。
The present invention relates to a method for producing fine particles in which a dispersed phase composed of a liquid that is solidified by a reaction is dispersed in a continuous phase that is substantially immiscible with the liquid, and the dispersed phase is solidified while flowing into the flow path. is there.
The present invention is described in detail below.
本発明の微粒子の製造方法では、反応により固体化する液体からなる分散相が上記液体と
実質的に混和しない連続相中に分散した分散液を流路内に流しながら上記分散相を固体化
させる。
本発明の微粒子の製造方法により製造される微粒子としては、分散相(溶液)状態から、
反応・固体化して微粒子になるものであり、従来からエマルジョン状態から得られるもの
として知られているものであれば特に限定されず、例えば、シリカ等の無機微粒子やスチ
レン、アクリル等の有機(樹脂)微粒子等が挙げられる。なかでも、本発明の微粒子の製
造方法は、化学、医療、電子材料等の分野において使用される樹脂微粒子を製造するのに
適している。
上記反応により固体化する液体として重合性モノマーを用いることにより、本発明の微粒
子の製造方法で樹脂微粒子を製造することができ、また、光重合開始剤や熱重合開始剤を
併用することにより、上記重合性モノマーからなる分散相は、熱又は活性光線等により重
合され固体化することができる。
In the method for producing fine particles according to the present invention, the dispersed phase is solidified while flowing the dispersed liquid in the continuous phase in which the dispersed phase composed of the liquid solidified by the reaction is substantially immiscible with the liquid. .
As the fine particles produced by the method for producing fine particles of the present invention, from the dispersed phase (solution) state,
There is no particular limitation as long as it is known to be obtained from an emulsion state, for example, inorganic fine particles such as silica, and organic (resin such as styrene and acrylic). ) Fine particles. Especially, the manufacturing method of the microparticles | fine-particles of this invention is suitable for manufacturing the resin microparticles | fine-particles used in field | areas, such as a chemistry, a medical treatment, and an electronic material.
By using a polymerizable monomer as a liquid that is solidified by the reaction, resin fine particles can be produced by the method for producing fine particles of the present invention, and by using a photopolymerization initiator or a thermal polymerization initiator in combination, The dispersed phase composed of the polymerizable monomer can be polymerized and solidified by heat or active light.
上記重合性モノマーとしては特に限定されず、従来から懸濁重合法等により重合され得る
もの等が挙げられる。本発明を親水性の連続相中に親油性の分散相を分散させて行う場合
(以下、水中油相系ともいう)、上記重合性モノマーとしては、例えば、スチレン、ビニ
ルナフタレン、アルキル置換スチレン等のモノビニル芳香族化合物;ブロモ−又はクロロ
−スチレン等のハロ置換スチレン;ジビニルベンゼン、ジビニルトルエン、ジビニルキシ
レン、ジビニルナフタレン、トリビニルベンゼン、ジビニルジフェニルエーテル、ジビニ
ルジフェニルスルホン等のポリビニル芳香族化合物;塩化ビニル等のハロオレフィン、ハ
ロゲン化ビニル;アクリル酸又はメタクリル酸のエステル等のα−β−エチレン性不飽和
カルボン酸のエステル、メチルメタクリレート、エチルアクリレート、酢酸ビニル等の油
溶性重合性単量体が挙げられる。これらは、単独で用いられてもよく、2種以上が併用さ
れてもよい。
The polymerizable monomer is not particularly limited, and examples thereof include those that can be conventionally polymerized by a suspension polymerization method or the like. When the present invention is carried out by dispersing a lipophilic dispersed phase in a hydrophilic continuous phase (hereinafter also referred to as an oil-in-water system), examples of the polymerizable monomer include styrene, vinyl naphthalene, alkyl-substituted styrene, etc. Monovinyl aromatic compounds such as bromo- or chloro-styrene; halo-substituted styrenes such as bromo- or chloro-styrene; polyvinyl aromatic compounds such as divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, trivinylbenzene, divinyldiphenylether, divinyldiphenylsulfone; Haloolefins, vinyl halides; esters of α-β-ethylenically unsaturated carboxylic acids such as esters of acrylic acid or methacrylic acid, and oil-soluble polymerizable monomers such as methyl methacrylate, ethyl acrylate, vinyl acetate. . These may be used independently and 2 or more types may be used together.
また、本発明を親油性の連続相中に親水性の分散相を分散させて行う場合(以下、油中水
相系ともいう)、上記重合性モノマーとしては、例えば、アクリルアミド、メタクリルア
ミド、フマルアミド、エタクリルアミド等のエチレン性不飽和カルボキザミド、不飽和カ
ルボン酸のアミノアルキルエステル及び酸無水物、アクリル酸、メタクリル酸等のエチレ
ン性不飽和カルボン酸等の水溶性重合性単量体を用いることができる。
When the present invention is carried out by dispersing a hydrophilic dispersed phase in an oleophilic continuous phase (hereinafter also referred to as a water-in-oil system), examples of the polymerizable monomer include acrylamide, methacrylamide, and fumaramide. Water-soluble polymerizable monomers such as ethylenically unsaturated carboxamides such as ethacrylamide, aminoalkyl esters of unsaturated carboxylic acids and acid anhydrides, ethylenically unsaturated carboxylic acids such as acrylic acid and methacrylic acid can be used. .
上記反応により固体化する液体が重合性モノマーからなる場合、上記分散相又は連続相中
には重合開始剤が含まれていることが好ましい。
上記重合開始剤としては特に限定されず、従来公知のものが挙げられ、本発明を水中油相
系で行う場合、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、メチル
エチルケトンパーオキサイド、過硫酸カリウム、アゾビスイソブチロニトリル、アゾビス
バレロニトリル等の油溶性重合開始剤が挙げられる。また、本発明を油中水相系で行う場
合、上記重合開始剤としては、例えば、過硫酸塩、過酸化水素、ハイドロパーオキサイド
等の水溶性重合開始剤等を用いることができる。
なお、上記重合性モノマーを重合させる手段に応じて、光重合開始剤や、連鎖移動剤等の
公知の重合助剤が併用されてもよい。更に、上記重合性モノマーの重合に影響を与えない
範囲で、その他の増感剤、溶媒、表面張力調整のために界面活性剤等が併用されてもよい
。
When the liquid solidified by the reaction is composed of a polymerizable monomer, it is preferable that a polymerization initiator is contained in the dispersed phase or the continuous phase.
The polymerization initiator is not particularly limited and includes conventionally known ones. When the present invention is carried out in an oil-in-water system, for example, benzoyl peroxide, lauroyl peroxide, methyl ethyl ketone peroxide, potassium persulfate, azobis Examples thereof include oil-soluble polymerization initiators such as isobutyronitrile and azobisvaleronitrile. When the present invention is carried out in a water-in-oil system, examples of the polymerization initiator include water-soluble polymerization initiators such as persulfate, hydrogen peroxide, and hydroperoxide.
In addition, according to the means for polymerizing the polymerizable monomer, a known polymerization aid such as a photopolymerization initiator or a chain transfer agent may be used in combination. Further, other sensitizers, solvents, surfactants for adjusting the surface tension and the like may be used in combination as long as they do not affect the polymerization of the polymerizable monomer.
本発明の微粒子の製造方法では、上記反応により固体化する液体と実質的に混和しない連
続相中に分散した分散液を流路内に流しながら上記分散相を固体化させる。
上記連続相としては、上記反応により固体化する液体と実質的に混和しないものであれば
特に限定されず、上記反応により固体化する液体の種類等に応じて適宜決定される。
なお、本発明において、実質的に混和しないとは、例えばppmオーダーで相溶する程度
は構わないという意味である。
In the method for producing fine particles of the present invention, the dispersed phase is solidified while a dispersion dispersed in a continuous phase that is substantially immiscible with the liquid that is solidified by the reaction is flowed into the flow path.
The continuous phase is not particularly limited as long as it is substantially immiscible with the liquid that is solidified by the reaction, and is appropriately determined according to the type of liquid that is solidified by the reaction.
In the present invention, the phrase “substantially not miscible” means that the degree of miscibility is, for example, in the order of ppm.
本発明の微粒子の製造方法を水中油相系で行う場合、上記連続相としては、通常、水が使
用される。
また、この場合、上記分散相を分裂、合着させないために分散安定剤を添加することが好
ましい。
上記分散安定剤としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、カル
ボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース、澱粉、ゼラチン
等の水溶性高分子、リン酸三カルシウム等の難水溶性無機塩等が挙げられる。
また、上記連続相には、その他、表面張力調整のための界面活性剤、比重調整剤等が添加
されていてもよい。
When the method for producing fine particles of the present invention is carried out in an oil-in-water system, water is usually used as the continuous phase.
In this case, it is preferable to add a dispersion stabilizer so as not to split or coalesce the dispersed phase.
Examples of the dispersion stabilizer include cellulose such as polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose, and hydroxymethyl cellulose, water-soluble polymers such as starch and gelatin, and poorly water-soluble inorganic salts such as tricalcium phosphate.
In addition, a surfactant for adjusting surface tension, a specific gravity adjusting agent, and the like may be added to the continuous phase.
また、本発明の微粒子の製造方法を油中水相系で行う場合、上記連続相としては、例えば
、n−ヘキサン、n−オクタン等の脂肪族炭化水素系;四塩化炭素等のハロゲン化炭化水
素系;トルエン、キシレン等の芳香族炭化水素系等が挙げられる。
また、この場合、界面活性剤として、例えば、アルキルベンゼンスルホン酸ナトリウム等
が添加されていてもよい。
Further, when the method for producing fine particles of the present invention is carried out in a water-in-oil system, examples of the continuous phase include aliphatic hydrocarbons such as n-hexane and n-octane; halogenated carbonization such as carbon tetrachloride. Hydrogen-based; aromatic hydrocarbons such as toluene and xylene are included.
In this case, for example, sodium alkylbenzene sulfonate may be added as a surfactant.
上記分散液を流す流路としては特に限定されず、例えば、断面形状が円、楕円、多角形、
星型、不定形等任意の形状の管状部材が挙げられる。
The flow path for flowing the dispersion is not particularly limited. For example, the cross-sectional shape is a circle, an ellipse, a polygon,
Examples include a tubular member having an arbitrary shape such as a star shape or an indefinite shape.
本発明の微粒子の製造方法において、上記反応により固体化する液体は、予め連続相中に
分散させて分散液を調製しておき、該分散液を上記流路内に流す方法であってもよいが、
上記反応により固体化する液体からなる分散相を、上記流路内を流れる上記連続相中に、
上記流路に接続された開口部より上記液体を吐出することにより分散させることが好まし
い。流路内を流れる連続相中への上記分散相の吐出量を一定にすることにより、製造され
る微粒子の体積を一定にでき、確実に形状及び大きさの揃った微粒子を製造することがで
きるからである。また、流路を組み合わせるだけでよいので装置を単純化することもでき
る。
In the method for producing fine particles of the present invention, the liquid that is solidified by the reaction may be prepared by previously dispersing in a continuous phase to prepare a dispersion, and flowing the dispersion into the flow path. But,
In the continuous phase flowing in the flow path, the dispersed phase composed of the liquid that solidifies by the reaction,
It is preferable to disperse the liquid by discharging it from an opening connected to the flow path. By making the discharge amount of the dispersed phase into the continuous phase flowing in the flow path constant, the volume of the produced fine particles can be made constant, and fine particles having a uniform shape and size can be produced reliably. Because. Further, the apparatus can be simplified because only the flow paths need to be combined.
図1は、本発明の微粒子の製造方法において、連続相の流れる流路に分散相を添加する様
子を模式的に示す断面図である。
図1に示すように、連続相2が流れる管状の流路1に、開口部3が設けられており、この
開口部3には、反応により固体化する液体5を流路1に供給するための管状の供給管4が
接続されている。すなわち、供給管4から開口部3を通って流路1内に所定量吐出された
液体5が、連続相2の流れによって開口部3部分で切り離されることにより、流路1内に
分散相6が形成される。
FIG. 1 is a cross-sectional view schematically showing how a dispersed phase is added to a flow path through which a continuous phase flows in the method for producing fine particles of the present invention.
As shown in FIG. 1, an opening 3 is provided in a
本発明の微粒子の製造方法では、少なくとも、上記分散相を固体化させる際の上記流路内
における上記分散液は層流であることが好ましい。この場合、上記反応により固体化する
液体は、上記流路内で固体化される際に、上記連続相から受ける圧力が略均一なものとな
り、その結果、製造される微粒子の形状は非常に揃ったものとなる。
上記流路を流れる分散液を層流とするには、上記流路を流れる分散液のレイノルズ数を小
さくすればよく、その方法としては種々考えられるが、上記流路を細くする方法が簡便で
ある。
In the method for producing fine particles of the present invention, it is preferable that at least the dispersion in the flow path when solidifying the dispersed phase is a laminar flow. In this case, the liquid that is solidified by the reaction has a substantially uniform pressure applied from the continuous phase when solidified in the flow path, and as a result, the shapes of the produced fine particles are very uniform. It will be.
In order to make the dispersion flowing through the flow path laminar, it is sufficient to reduce the Reynolds number of the dispersion flowing through the flow path. Various methods are conceivable, but a method of narrowing the flow path is simple. is there.
本発明の微粒子の製造方法では、上記分散相を固体化させる際の流路の等価直径が1mm
以下であることが好ましく、より好ましくは0.5mm以下であり、更に好ましくは0.
2mm以下である。上記流路の等価直径を1mm以下とすることで、上記流路内を流れる
分散液をほぼ層流とすることができる。
なお、上記等価直径とは、相当(直)径とも呼ばれ、機械工学の分野で用いられる用語で
ある。任意断面形状の配管(本発明では流路)に対し等価な円管を想定するとき、その等
価円管の直径を等価直径といい、下記式(1)で定義される。
In the method for producing fine particles of the present invention, the equivalent diameter of the flow path when solidifying the dispersed phase is 1 mm.
Or less, more preferably 0.5 mm or less, and still more preferably 0.
2 mm or less. By setting the equivalent diameter of the channel to 1 mm or less, the dispersion flowing in the channel can be made almost laminar.
The equivalent diameter is also called an equivalent (straight) diameter and is a term used in the field of mechanical engineering. When an equivalent circular pipe is assumed for a pipe having an arbitrary cross-sectional shape (a flow path in the present invention), the diameter of the equivalent circular pipe is called an equivalent diameter, which is defined by the following formula (1).
deq=4A/p (1) d eq = 4 A / p (1)
上記式(1)中、deqは、等価直径を表し、Aは、配管の断面積を現し、pは、配管の
ぬれぶち長さ(周長)を表す。
In the above formula (1), d eq represents the equivalent diameter, A represents the cross-sectional area of the pipe, and p represents the wetted length (circumferential length) of the pipe.
上記流路が円管である場合、上記等価直径はその円管直径に一致し、この等価直径は、等
価円管のデータを基に、流路の流動又は熱伝達特性を推定するのに用いられ、現象の空間
的スケール(代表的長さ)を表す。例えば、一辺の長さがaの正四角形管の等価直径de
qは、deq=4a2/4a=aとなり、一辺aの正三角形管の等価直径deqは、de
q=a/3−2となり、路高さhの平行平板間の流れでは等価直径deqは、deq=2
hとなる(日本機械学会編「機械工学辞典」、1997年、丸善参照)。
If the flow path is a circular pipe, the equivalent diameter matches the diameter of the circular pipe, and this equivalent diameter is used to estimate the flow or heat transfer characteristics of the flow path based on the data of the equivalent circular pipe. And represents the spatial scale (typical length) of the phenomenon. For example, the equivalent diameter d e of a side length of square tubes of a
q is, d eq = 4a 2 / 4a = a , and the equivalent diameter d eq of an equilateral triangle tube side a, d e
q = a / 3-2 , and the equivalent diameter d eq is d eq = 2 in the flow between the parallel plates with the path height h.
(Refer to “Mechanical Engineering Dictionary” edited by the Japan Society of Mechanical Engineers, 1997, Maruzen).
上記反応により固体化する液体が上述した重合性モノマーからなる場合、上記重合性モノ
マーからなる分散相を重合させて樹脂微粒子を製造する。
上記重合性モノマーを熱により重合させる場合、上記分散相には、予め熱重合開始剤を加
えておき、ヒーター等の加熱機構により上記重合性モノマーからなる分散相を加熱するこ
とにより連続的に重合させ、樹脂微粒子を連続的に製造することができる。また、この場
合、続けて攪拌機能付きの反応槽に製造した樹脂微粒子を搬送し、該反応槽にて加熱して
更に重合させてもよい。
また、上記重合性モノマーからなる分散相を光により重合させる場合、上記分散相には、
予め光重合開始剤を加えておき、上記流路に紫外線等の活性光線を照射することにより連
続的に重合させ、樹脂微粒子を連続的に製造することができる。
When the liquid solidified by the reaction is composed of the above-described polymerizable monomer, resin fine particles are produced by polymerizing the dispersed phase composed of the polymerizable monomer.
When the polymerizable monomer is polymerized by heat, a thermal polymerization initiator is added to the dispersed phase in advance, and the polymerized monomer is continuously polymerized by heating the dispersed phase composed of the polymerizable monomer by a heating mechanism such as a heater. Resin fine particles can be continuously produced. In this case, the resin fine particles produced may be transferred to a reaction tank with a stirring function and heated in the reaction tank for further polymerization.
Further, when the dispersed phase composed of the polymerizable monomer is polymerized by light, the dispersed phase includes:
A photopolymerization initiator is added in advance, and the resin is continuously polymerized by irradiating the above-mentioned flow path with an actinic ray such as ultraviolet rays, whereby resin fine particles can be continuously produced.
本発明の微粒子の製造方法によれば、分散液中で反応により固体化する液体からなる分散
相の反応を行って微粒子を製造するため、微粒子を容易に、かつ、効率よく連続的に製造
することができる。とりわけ、分散相を固体化させる際の流路の等価直径を1mm以下と
した場合には、反応時に上記分散相が連続相から受ける圧力が均一になるため、形状及び
大きさの非常に揃った微粒子を容易に、かつ、効率よく連続的に製造することができる。
According to the method for producing fine particles of the present invention, fine particles can be produced easily and efficiently continuously because the fine particles are produced by reacting a dispersed phase comprising a liquid that is solidified by reaction in the dispersion. be able to. In particular, when the equivalent diameter of the flow path when solidifying the dispersed phase is 1 mm or less, the pressure that the dispersed phase receives from the continuous phase during the reaction becomes uniform, so the shape and size are very uniform. Fine particles can be easily and efficiently produced continuously.
本発明の微粒子の製造方法では、上記流路の分散液の流れる方向に垂直な断面(以下、単
に流路の断面ともいう)の形状、及び、上記反応により固体化する液体からなる分散相の
体積を、適宜変更、制御等することにより、形状及び大きさの揃った真球状又は非真球状
の微粒子を容易に、かつ、効率よく連続的に製造することができる。
この場合において、上記流路の断面形状の変更等は、少なくとも、上記分散相を反応させ
る部分について行えばよく、必ずしも上記流路全体の断面形状の変更等を行う必要はない
。
In the method for producing fine particles of the present invention, the shape of the cross section perpendicular to the flow direction of the dispersion liquid in the flow path (hereinafter, also simply referred to as the cross section of the flow path) and the dispersed phase composed of the liquid solidified by the reaction are obtained. By appropriately changing or controlling the volume, it is possible to easily and efficiently continuously produce spherical or non-spherical fine particles having a uniform shape and size.
In this case, the change in the cross-sectional shape of the flow path may be performed at least in the portion where the dispersed phase is reacted, and the cross-sectional shape of the entire flow path is not necessarily changed.
本発明の微粒子の製造方法において、上記反応により固体化する液体からなる分散相の体
積直径が、上記流路の断面の内側に描くことのできる最大の円の直径よりも小さくなるよ
うに調整することで、真球状の微粒子を容易に、かつ、効率よく連続的に製造することが
できる。
この場合、上記分散相は、上記流路内を流れる連続相中で表面張力が最小となる球状とな
るため、真球状の微粒子が製造される。
なお、上記「体積直径」とは、上記分散相の体積に相当する真球の直径を意味する。
In the method for producing fine particles of the present invention, the volume diameter of the dispersed phase composed of the liquid solidified by the reaction is adjusted to be smaller than the diameter of the maximum circle that can be drawn inside the cross section of the flow path. Thus, spherical particles can be easily and efficiently produced continuously.
In this case, since the dispersed phase becomes a sphere having a minimum surface tension in the continuous phase flowing in the flow path, true spherical particles are produced.
The “volume diameter” means the diameter of a true sphere corresponding to the volume of the dispersed phase.
一方、本発明の微粒子の製造方法において、上記反応により固体化する液体からなる分散
相の体積直径が、上記流路の断面の面積直径よりも大きくなるように調整することで、非
真球状の微粒子を容易に、かつ、効率よく連続的に製造することができる。
この場合、上記分散相は、上記流路の断面全体に広がることとなるため、製造される微粒
子は、細長く、その長手方向に垂直な断面形状が上記流路の断面形状と略同じ形状の微粒
子となる。
なお、上記「面積直径」とは、上記流路の断面の面積に相当する真円の直径を意味する。
On the other hand, in the method for producing fine particles of the present invention, the volume diameter of the dispersed phase composed of the liquid that is solidified by the reaction is adjusted so as to be larger than the area diameter of the cross section of the flow path. Fine particles can be easily and efficiently produced continuously.
In this case, since the disperse phase spreads over the entire cross section of the flow path, the produced fine particles are elongated, and the cross section perpendicular to the longitudinal direction has substantially the same shape as the cross section of the flow path. It becomes.
The “area diameter” means the diameter of a perfect circle corresponding to the cross-sectional area of the flow path.
図2〜図5は、本発明の微粒子の製造方法により非真球状の微粒子を製造する際に使用す
る流路と製造される微粒子とを模式的に示す図であり、各図中(a)は、流路の分散液の
流れに垂直な方向の断面形状を示す断面図であり、(b)は、製造される微粒子の正面図
あり、(c)は、微粒子の平面図である。
2-5 is a figure which shows typically the flow path used when manufacturing non-spherical microparticles | fine-particles with the manufacturing method of the microparticles | fine-particles of this invention, and the microparticles | fine-particles manufactured, (a) in each figure. These are sectional drawings which show the cross-sectional shape of the direction perpendicular | vertical to the flow of the dispersion liquid of a flow path, (b) is a front view of the microparticles | fine-particles manufactured, (c) is a top view of microparticles | fine-particles.
図2(a)に示すように、断面形状が略正方形の流路20に、流路20の断面の面積直径
よりも大きな体積直径となる量の分散相を添加すると、製造される微粒子は、(b)及び
(c)に示す微粒子21のように、正面視略正方形の細長い形状となる。
As shown in FIG. 2 (a), when a dispersed phase is added to the
また、図3(a)に示すように、断面形状が略長方形の流路30に、流路30の断面の面
積直径よりも大きな体積直径となる量の分散相を添加すると、製造される微粒子は、(b
)及び(c)に示す微粒子31のように、正面視略長方形の細長い形状となる。
Further, as shown in FIG. 3 (a), fine particles produced by adding a dispersed phase in an amount that makes the volume diameter larger than the area diameter of the cross section of the
) And a
また、図4(a)に示すように、断面形状が円形の流路40に、流路40の断面の面積直
径(断面そのものの直径)よりも大きな体積直径となる量の分散相を添加すると、製造さ
れる微粒子は、(b)及び(c)に示す微粒子41のように、正面視略円形の細長い形状
(俵状)となる。
Further, as shown in FIG. 4A, when a dispersed phase is added to the
また、図5(a)に示すように、断面形状が略三角形の流路50に、流路50の断面の面
積直径よりも大きな体積直径となる量の分散相を添加すると、製造される微粒子は、(b
)及び(c)に示す微粒子51のように、正面視略三角形の細長い形状となる。
Further, as shown in FIG. 5 (a), when the dispersed phase is added to the
) And a
従来、非真球状微粒子を容易に、かつ、効率よく連続的に製造することは非常に困難であ
り実現されていなかったが、本発明の微粒子の製造方法によれば、非真球状微粒子を容易
に、かつ、効率よく連続的に製造することができ、更に、上述のように層流で分散相の反
応を行うことにより、非常に形状及び大きさの揃った非真球状微粒子を容易に、かつ、効
率よく連続的に製造することができる。
Conventionally, it has been difficult and easy to produce non-spherical fine particles easily and efficiently continuously, but according to the method for producing fine particles of the present invention, non-spherical fine particles can be easily produced. In addition, it can be produced efficiently and continuously, and further, by carrying out the reaction of the dispersed phase in a laminar flow as described above, non-spherical fine particles having a very uniform shape and size can be easily obtained. And it can manufacture efficiently and continuously.
このような本発明の微粒子の製造方法により製造されてなる微粒子もまた、本発明の1つ
である。
なお、以下の本発明の微粒子の説明において微粒子とは、特にことわらない限りにおいて
は、少なくとも数百以上の微粒子の集合体を意味する。
The fine particles produced by the fine particle production method of the present invention are also one aspect of the present invention.
In the following description of the fine particles of the present invention, the fine particles mean an aggregate of at least several hundred fine particles unless otherwise specified.
本発明の微粒子は、体積直径の変動係数が10%以下であることが好ましい。本発明の微
粒子において、体積直径とは、個々の微粒子の体積に相当する真球の直径を意味し、従っ
て、体積直径は微粒子の大きさを意味する値である。体積直径の変動係数が10%を超え
ると、微粒子の大きさが不揃いとなり、例えば、導電性微粒子等の用途に用いることがで
きないことがある。なかでも、本発明の微粒子の形状が球状である場合には、体積直径の
変動係数が1%以下であることが好ましい。
The fine particles of the present invention preferably have a volume diameter variation coefficient of 10% or less. In the fine particles of the present invention, the volume diameter means the diameter of a true sphere corresponding to the volume of each fine particle, and thus the volume diameter is a value that means the size of the fine particles. If the coefficient of variation of the volume diameter exceeds 10%, the sizes of the fine particles are not uniform and may not be used for applications such as conductive fine particles. Especially, when the shape of the fine particles of the present invention is spherical, the volume diameter variation coefficient is preferably 1% or less.
本発明の微粒子は、略相似形であることが好ましい。即ち、数百以上の微粒子の集合体か
ら選択した任意の微粒子同士を比較したときに、その形状はほぼ同一であることが好まし
い。
従って、本発明の微粒子は、形状と大きさとが極めて均一な微粒子の集合体であるといえ
る。
The fine particles of the present invention are preferably substantially similar. That is, when arbitrary fine particles selected from an aggregate of several hundred or more fine particles are compared with each other, the shapes are preferably substantially the same.
Therefore, it can be said that the fine particles of the present invention are aggregates of fine particles having extremely uniform shapes and sizes.
本発明の微粒子の形状としては球状であってもよく、非球状であってもよい。また、非球
状である場合には、微粒子の長手方向に垂直な断面としては、例えば、円形、楕円形、多
角形、星型等の任意の形状が挙げられる。
また、本発明の微粒子の製造方法により製造されてなる非球状の微粒子もまた、本発明の
1つである。
The shape of the fine particles of the present invention may be spherical or non-spherical. In the case of a non-spherical shape, examples of the cross section perpendicular to the longitudinal direction of the fine particles include arbitrary shapes such as a circle, an ellipse, a polygon, and a star.
In addition, non-spherical fine particles produced by the method for producing fine particles of the present invention are also one aspect of the present invention.
本発明の微粒子は、本発明の微粒子の製造方法により製造されてなるため、真球状又は非
真球状のいずれの形状であっても、容易に、かつ、効率よく連続的に製造される。また、
本発明の微粒子が略層流で流れる分散液中で反応により固体化する液体からなる分散相の
反応を行うことにより製造されたものであると、形状と大きさとが極めて均一なものとな
り、化学、医療、電子材料分野等において、形状と大きさとに厳しい均一性が求められる
用途に好適に用いることができる。なかでも、導電性微粒子の基材粒子として特に好適で
ある。
本発明の微粒子からなる基材粒子と、前記基材粒子の表面に形成された導電層とからなる
導電性微粒子もまた、本発明の1つである。
Since the fine particles of the present invention are produced by the method for producing fine particles of the present invention, they can be produced easily and efficiently continuously, regardless of whether they are spherical or non-spherical. Also,
If the fine particles of the present invention are produced by carrying out a reaction of a dispersed phase consisting of a liquid that solidifies by reaction in a dispersion flowing in a substantially laminar flow, the shape and size are extremely uniform, In the medical and electronic material fields, etc., it can be suitably used for applications requiring strict uniformity in shape and size. Among these, it is particularly suitable as a base particle for conductive fine particles.
Conductive fine particles comprising substrate particles comprising the fine particles of the present invention and a conductive layer formed on the surface of the substrate particles are also one aspect of the present invention.
本発明の導電性微粒子としては、球状であってもよいが、非球状であることが好ましい。
導電性微粒子を用いて導電接続を行う場合、非球状の導電性微粒子を用いれば、球状の導
電性微粒子を用いる場合に比べて電極との接触面積を充分にとれることから好ましいと考
えられる。従来の技術では、大きさや形が揃った非球状の導電性微粒子を製造することが
できなかった。本発明の導電性微粒子では、本発明の微粒子を基材粒子として用いること
により、充分に大きさや形が揃ったものとすることができ実用に供することができる。
The conductive fine particles of the present invention may be spherical, but are preferably non-spherical.
When conducting conductive connection using conductive fine particles, it is considered preferable to use non-spherical conductive fine particles because a sufficient contact area with the electrode can be obtained compared to the case of using spherical conductive fine particles. In the prior art, non-spherical conductive fine particles having a uniform size and shape could not be produced. In the conductive fine particles of the present invention, by using the fine particles of the present invention as the base material particles, the size and shape can be sufficiently obtained and can be put to practical use.
このような非球状の導電性微粒子としては、例えば、表面の少なくとも一部に略平坦な平
面部を有する形状であることが好ましい。
本明細書において、上記平面部が略平坦であるとは、上記平面部は、厳密に見ると僅かな
凹凸や湾曲が存在しているが、導電性微粒子表面の上記平面部以外の部分と比べると極め
て平坦であることをいう。このような平面部の形状としては特に限定されず、例えば、円
形、楕円形、多角形、不定形等任意の形状が挙げられる。
Such non-spherical conductive fine particles preferably have, for example, a shape having a substantially flat plane portion on at least a part of the surface.
In the present specification, the plane portion is substantially flat. The plane portion has slight irregularities and curvatures when viewed strictly, but is compared with a portion other than the plane portion on the surface of the conductive fine particles. It means extremely flat. The shape of such a plane portion is not particularly limited, and examples thereof include an arbitrary shape such as a circle, an ellipse, a polygon, and an indefinite shape.
上記表面の少なくとも一部に略平坦な平面部を有する形状の導電性微粒子は、上記平面部
と被接続物とが面接触となり、接触面積が増大することから、接続信頼性が極めて優れた
ものとなる。とりわけ、上記平面部が導電性微粒子の表面の2ヶ所以上に形成されており
、しかも、これらの平面部が相対している場合には、本発明の導電性微粒子を用いて2つ
の被接続物の間を導電接続する場合、導電性微粒子をいずれの被接続物に対しても面接触
とすることができ、更に接続信頼性を向上させることができる。
The conductive fine particles having a shape having a substantially flat plane part on at least a part of the surface have excellent connection reliability because the plane part and the object to be connected are in surface contact and the contact area increases. It becomes. In particular, when the planar portion is formed at two or more locations on the surface of the conductive fine particles, and these planar portions are opposed to each other, two connected objects using the conductive fine particles of the present invention are used. When conductively connecting between the conductive particles, the conductive fine particles can be brought into surface contact with any object to be connected, and connection reliability can be further improved.
上記平面部の大きさとしては、その面積が本発明の導電性微粒子の体積直径に相当する円
の面積の50%以上であることが好ましい。50%未満であると、上記導電性微粒子の表
面に形成された平面部が小さすぎ、被接続物と導電接続させる際に上記平面部が被接続物
側に来ないことがある。また、上記平面部が被接続物側に来た場合であっても、被接続物
との接触面積が小さくなって接続信頼性に劣ることがある。
As the size of the flat portion, the area is preferably 50% or more of the area of a circle corresponding to the volume diameter of the conductive fine particles of the present invention. If it is less than 50%, the flat portion formed on the surface of the conductive fine particles is too small, and the flat portion may not come to the connected object side when conducting conductive connection with the connected object. Further, even when the flat portion comes to the connected object side, the contact area with the connected object may be reduced and the connection reliability may be inferior.
また、上記導電性微粒子は、上記平面部に垂直な方向の径よりも上記平面部に平行な方向
の径の方が長いことが好ましい。即ち、本発明の導電性微粒子は、上記平面部を底面及び
/又は上面とする扁平形状であることが好ましい。このような扁平形状の導電性微粒子は
、被接続物との導電接続の際に確実に上記平面部が被接続物側に来るようにすることがで
きるため、両者の接触を面接触とすることができ、接続信頼性を優れたものとすることが
できる。更に、導電性微粒子が扁平形状であると、その高さを低くすることができるため
、例えば、複数の半導体パッケージを上記扁平形状の導電性微粒子で導電接続して3次元
的に積層する場合、得られる3次元的に積層された半導体パッケージの低背化を図ること
ができる。
Moreover, it is preferable that the conductive fine particles have a longer diameter in a direction parallel to the planar portion than a diameter in a direction perpendicular to the planar portion. That is, it is preferable that the conductive fine particles of the present invention have a flat shape having the above-mentioned flat portion as a bottom surface and / or a top surface. Such flat conductive fine particles can ensure that the flat portion comes to the connected object side during conductive connection with the connected object, so that the contact between the two is a surface contact. And the connection reliability can be improved. Furthermore, when the conductive fine particles have a flat shape, the height can be lowered. For example, when a plurality of semiconductor packages are conductively connected with the flat conductive fine particles to be three-dimensionally stacked, The obtained three-dimensionally stacked semiconductor package can be reduced in height.
本発明の導電性微粒子を製造する方法としては特に限定されず、上記基材粒子上に、電解
めっき、非電解めっき等の従来公知の方法により導電層を設ける方法が挙げられる。上記
導電層としては特に限定されず、例えば、金、銀、白金、銅、ニッケル、錫、鉛、コバル
ト、亜鉛、ビスマス、パラジウム等の金属やこれらの合金、錫ドープ酸化インジウム(I
TO)、酸化亜鉛、酸化錫等の金属酸化物、TiN等の金属窒化物等からなるもの等が挙
げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。
The method for producing the conductive fine particles of the present invention is not particularly limited, and examples thereof include a method of providing a conductive layer on the substrate particles by a conventionally known method such as electrolytic plating or non-electrolytic plating. The conductive layer is not particularly limited. For example, a metal such as gold, silver, platinum, copper, nickel, tin, lead, cobalt, zinc, bismuth, palladium, or an alloy thereof, tin-doped indium oxide (I
TO), metal oxides such as zinc oxide and tin oxide, and metal nitrides such as TiN. These may be used independently and 2 or more types may be used together.
本発明の導電性微粒子により接続される被接続物としては、例えば、表面に電極若しくは
導電パターンが形成された基板、又は、フィルム、半導体パッケージ、半導体チップ等の
微細な電子部品や、スイッチ、コネクタ等を含む電子部品等が挙げられる。
Examples of an object to be connected by the conductive fine particles of the present invention include a substrate having an electrode or a conductive pattern formed on the surface, a fine electronic component such as a film, a semiconductor package, or a semiconductor chip, a switch, or a connector. Etc. include electronic parts.
本発明によれば、形状及び大きさが均一であり、しかも非球状の微粒子をも容易に、かつ
、効率よく連続的に製造することができる微粒子の製造方法、及び、該微粒子の製造方法
により製造されてなる微粒子を提供できる。
According to the present invention, a method for producing fine particles having a uniform shape and size and capable of producing non-spherical fine particles easily and efficiently, and a method for producing the fine particles are provided. Fine particles produced can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定
されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
図1に示すような幅200μm、深さ100μmの溝状の流路1に、幅100μm、深さ
100μmの溝状の流路4が開口部3において接続されたマイクロミキサーを作製し、流
路1の上流側と供給管4の上流側とにシリンジポンプ(図示せず)を接続するとともに、
流路1の下流側に加熱反応管(図示せず)を接続し、更に、加熱反応管の下流に攪拌槽を
接続し、加熱により分散相を反応させる微粒子製造装置を作製した。
(Example 1)
A micromixer in which a groove-
A heating reaction tube (not shown) was connected to the downstream side of the
反応により固体化する液体として、重合開始剤及び過酸化ベンゾイルを添加したジビニル
ベンゼン溶液を調製し、連続相として、ポバール(日本合成化学社製、GL−03)3%
溶液を用意した。
次に、シリンジポンプを用いて、連続相を30mL/hrの流量で流路1に送液し、一方
、ジビニルベンゼン溶液を0.1mL/hrの流量で供給管4に送液して開口部3から流
路1中に供給し、分散相を連続相中に分散させた。
加熱反応管で分散液を80℃に加熱することで、分散相を重合させて微粒子とし、更に、
微粒子を含む分散液を攪拌槽にて更に重合させることにより樹脂微粒子を製造した。
A divinylbenzene solution to which a polymerization initiator and benzoyl peroxide are added is prepared as a liquid to be solidified by reaction, and 3% of poval (GL-03, manufactured by Nippon Gosei Kagaku Co., Ltd.) as a continuous phase
A solution was prepared.
Next, using a syringe pump, the continuous phase is fed to the
By heating the dispersion to 80 ° C. in a heated reaction tube, the dispersed phase is polymerized to form fine particles,
Resin fine particles were produced by further polymerizing the dispersion containing the fine particles in a stirring vessel.
得られた樹脂微粒子をSEMで観察したところ略真球状であった。また、樹脂微粒子の粒
径をコールターカウンターにより測定したところ、平均粒子径81μm、粒子径のCV値
1.8%であった。
When the obtained resin fine particles were observed with an SEM, they were substantially spherical. Further, when the particle size of the resin fine particles was measured with a Coulter counter, the average particle size was 81 μm, and the CV value of the particle size was 1.8%.
(実施例2)
反応により固体化する液体として、イソアミルアクリレート50重量部、トリメチロール
プロパントリアクリレート50重量部に、光重合開始剤として2,2−ジフェニルエタン
1−オン(チバスペシャリティーケミカルズ社製「イルカギュア651」)0.5重量部
を添加溶解させた反応溶液を調製し、連続相として、3%のポリビニルアルコール(日本
合成化学社製「GL−03」)を用意した。
実施例1と同様の装置を用い、シリンジポンプを用いて、連続相を30mL/hrの流量
で流路1に送液し、一方、反応溶液を0.1mL/hrの流量で供給管4に送液して開口
部3から流路1中に供給し、分散相を連続相中に分散させた。
その後、紫外線照射装置により紫外線を分散液に照射することで分散相を重合させて樹脂
微粒子を製造した。
(Example 2)
As a liquid solidified by reaction, 50 parts by weight of isoamyl acrylate, 50 parts by weight of trimethylolpropane triacrylate, and 2,2-diphenylethane 1-one (“Iluca 651” manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator A reaction solution in which 0.5 part by weight was added and dissolved was prepared, and 3% polyvinyl alcohol (“GL-03” manufactured by Nippon Synthetic Chemical Co., Ltd.) was prepared as a continuous phase.
Using the same apparatus as in Example 1, using a syringe pump, the continuous phase is sent to the
Thereafter, the dispersion phase was polymerized by irradiating the dispersion with ultraviolet rays using an ultraviolet irradiation device to produce resin fine particles.
得られた樹脂微粒子をSEMで観察したところ略真球状であった。また、樹脂微粒子の粒
径をコールターカウンターにより測定したところ、平均粒子径84μm、粒子径のCV値
2.2%であった。
When the obtained resin fine particles were observed with an SEM, they were substantially spherical. Further, when the particle diameter of the resin fine particles was measured by a Coulter counter, the average particle diameter was 84 μm, and the CV value of the particle diameter was 2.2%.
(実施例3)
実施例2で調製した反応溶液及び連続相を用いて、非球状の樹脂微粒子を製造した。
実施例1で作製した微粒子製造装置における流路の分散液の流れに垂直な方向の断面形状
を、図3に示した流路30のように、略長方形とした。この流路の断面の短辺は30μm
とした。
シリンジポンプを用いて、連続相を72mL/hrの流量で流路1に送液し、一方、反応
溶液を0.1mL/hrの流量で供給管4に送液して開口部3から流路1中に供給し、分
散相を連続相中に分散させた。
その後、紫外線照射装置により紫外線を分散液に照射することで分散相を重合させて樹脂
微粒子を製造した。
得られた樹脂微粒子をSEMで観察したところ、全て正面形状が略長方形の細長い形状で
あり、その大きさも揃ったものであった。
(Example 3)
Using the reaction solution and the continuous phase prepared in Example 2, non-spherical resin fine particles were produced.
The cross-sectional shape in the direction perpendicular to the flow of the dispersion liquid in the flow channel in the fine particle production apparatus produced in Example 1 was substantially rectangular like the
It was.
Using a syringe pump, the continuous phase is sent to the
Thereafter, the dispersion phase was polymerized by irradiating the dispersion with ultraviolet rays using an ultraviolet irradiation device to produce resin fine particles.
When the obtained resin fine particles were observed with an SEM, all of the front shapes were elongated with a substantially rectangular shape, and the sizes were uniform.
(実施例4)
実施例2で調製した反応溶液及び連続相を用いて、非球状の樹脂微粒子を製造した。
実施例1で作製した微粒子製造装置における流路の分散液の流れに垂直な方向の断面形状
を、図4に示した反応部40のように、円形とした。この光反応部の断面の直径は30μ
mとした。
シリンジポンプを用いて、連続相を72mL/hrの流量で流路1に送液し、一方、反応
溶液を0.1mL/hrの流量で供給管4に送液して開口部3から流路1中に供給し、分
散相を連続相中に分散させた。
その後、紫外線照射装置により紫外線を分散液に照射することで分散相を重合させて樹脂
微粒子を製造した。
得られた樹脂微粒子をSEMで観察したところ、全て正面形状が円形の細長い形状であり
、その大きさも揃ったものであった。
Example 4
Using the reaction solution and the continuous phase prepared in Example 2, non-spherical resin fine particles were produced.
The cross-sectional shape in the direction perpendicular to the flow of the dispersion liquid in the flow channel in the fine particle production apparatus produced in Example 1 was circular as in the
m.
Using a syringe pump, the continuous phase is sent to the
Thereafter, the dispersion phase was polymerized by irradiating the dispersion with ultraviolet rays using an ultraviolet irradiation device to produce resin fine particles.
When the obtained resin fine particles were observed with an SEM, all of the front shapes were circular and elongated, and the sizes were uniform.
(実施例5)
実施例2で調製した反応溶液及び連続相を用いて、非球状の樹脂微粒子を製造した。
実施例1で作製した微粒子製造装置における流路の分散液の流れに垂直な方向の断面形状
を、図5に示した反応部50のように、略三角形とした。この光反応部の断面の深さは5
0μmとした。
シリンジポンプを用いて、連続相を72mL/hrの流量で流路1に送液し、一方、反応
溶液を0.1mL/hrの流量で供給管4に送液して開口部3から流路1中に供給し、分
散相を連続相中に分散させた。
その後、紫外線照射装置により紫外線を分散液に照射することで分散相を重合させて樹脂
微粒子を製造した。
得られた樹脂微粒子をSEMで観察したところ、全て正面形状が略三角形の細長い形状で
あり、その大きさも揃ったものであった。
(Example 5)
Using the reaction solution and the continuous phase prepared in Example 2, non-spherical resin fine particles were produced.
The cross-sectional shape in the direction perpendicular to the flow of the dispersion liquid in the flow channel in the fine particle production apparatus produced in Example 1 was substantially triangular like the
It was set to 0 μm.
Using a syringe pump, the continuous phase is sent to the
Thereafter, the dispersion phase was polymerized by irradiating the dispersion with ultraviolet rays using an ultraviolet irradiation device to produce resin fine particles.
When the obtained resin fine particles were observed with an SEM, all of the front shapes were elongated with a substantially triangular shape, and the sizes were uniform.
(実施例6)
実施例1〜5で得られた樹脂微粒子を基材粒子として、この表面に無電解メッキ法により
厚さ1μmの金からなる導電層を形成して導電性微粒子を得た。
得られた導電性微粒子をSEMで観察したところ、全て基材粒子と同様の形状を有し、そ
の大きさも極めて揃ったものであった。
(Example 6)
Using the resin fine particles obtained in Examples 1 to 5 as base particles, a conductive layer made of gold having a thickness of 1 μm was formed on the surface by electroless plating to obtain conductive fine particles.
When the obtained conductive fine particles were observed with an SEM, they all had the same shape as the base particles, and their sizes were extremely uniform.
本発明によれば、形状及び大きさが均一であり、しかも非球状の微粒子をも容易に、かつ
、効率よく連続的に製造することができる微粒子の製造方法、及び、該微粒子の製造方法
により製造されてなる微粒子を提供できる。
According to the present invention, a method for producing fine particles having a uniform shape and size and capable of producing non-spherical fine particles easily and efficiently, and a method for producing the fine particles are provided. Fine particles produced can be provided.
1、20、30、40、50 流路
2 連続相
3 開口部
4 供給管
5 反応により固体化する液体
6 分散相
21、31、41、51 微粒子
1, 20, 30, 40, 50
Claims (10)
散した分散液を流路内に流しながら前記分散相を固体化させることを特徴とする微粒子の
製造方法。 A method for producing fine particles, characterized in that a dispersed phase composed of a liquid that solidifies by a reaction is dispersed in a continuous phase that is substantially immiscible with the liquid, and the dispersed phase is solidified while flowing in the flow path. .
直な断面の面積直径よりも大きいことを特徴とする請求項1記載の微粒子の製造方法。 2. The method for producing fine particles according to claim 1, wherein the volume diameter of the dispersed phase composed of the liquid solidified by the reaction is larger than the area diameter of the cross section perpendicular to the flow direction of the dispersion liquid in the flow path.
又は2記載の微粒子の製造方法。 2. The equivalent diameter of the flow path when solidifying the dispersed phase is 1 mm or less.
Or the manufacturing method of microparticles | fine-particles of 2.
記載の微粒子の製造方法。 4. The liquid that solidifies by reaction is a polymerizable monomer.
The manufacturing method of microparticles | fine-particles of description.
ない連続相中に、前記流路に接続された開口部より前記液体を吐出することにより分散さ
れることを特徴とする請求項1、2、3又は4記載の微粒子の製造方法。 A dispersed phase composed of a liquid that solidifies by reaction is dispersed by discharging the liquid from an opening connected to the flow path in a continuous phase that is substantially immiscible with the liquid flowing in the flow path. The method for producing fine particles according to claim 1, 2, 3 or 4.
する微粒子。 6. Fine particles produced by the method for producing fine particles according to claim 1, 2, 3, 4 or 5.
7記載の微粒子。 8. The fine particles according to claim 7, wherein the shape of a cross section perpendicular to the longitudinal direction is a circle, an ellipse, a polygon or a star.
又は8記載の微粒子。 The coefficient of variation of the volume diameter is 10% or less and is substantially similar.
Or the fine particles according to 8.
れた導電層とからなることを特徴とする導電性微粒子。 Conductive fine particles comprising base particles composed of the fine particles according to claim 6, 7, 8, or 9, and a conductive layer formed on a surface of the base particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004003249A JP2005194425A (en) | 2004-01-08 | 2004-01-08 | Method for producing fine particle and fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004003249A JP2005194425A (en) | 2004-01-08 | 2004-01-08 | Method for producing fine particle and fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005194425A true JP2005194425A (en) | 2005-07-21 |
Family
ID=34818217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004003249A Withdrawn JP2005194425A (en) | 2004-01-08 | 2004-01-08 | Method for producing fine particle and fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005194425A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008523192A (en) * | 2004-12-10 | 2008-07-03 | コミツサリア タ レネルジー アトミーク | Method and apparatus for producing polymer foam beads or balloons |
JP2012236922A (en) * | 2011-05-12 | 2012-12-06 | Dic Corp | Emulsion dispersion and method for producing the same |
JP2018154798A (en) * | 2017-03-21 | 2018-10-04 | 日立化成株式会社 | Method for producing polymer particle |
JP2019046801A (en) * | 2017-09-06 | 2019-03-22 | 積水化学工業株式会社 | Base material particle, conductive particle, conductive material and connection structure |
JP2020504776A (en) * | 2016-12-16 | 2020-02-13 | ピュロライト(チャイナ) カンパニー リミテッド | Method for producing uniform polymer beads by vibration injection using superhydrophobic membrane |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167488A (en) * | 1984-09-11 | 1986-04-07 | Hitachi Plant Eng & Constr Co Ltd | Preparation of immobilized microorganism |
JPH0465403A (en) * | 1990-07-06 | 1992-03-02 | Sekisui Fine Chem Kk | Production of polymer fine particle having uniform particle size and apparatus therefor |
JPH0536306A (en) * | 1991-07-26 | 1993-02-12 | Sekisui Fine Chem Kk | Conductive fine-grain, electrode connection structural body and manufacture thereof |
JPH05279486A (en) * | 1991-10-29 | 1993-10-26 | Xerox Corp | Method for forming bichromal ball |
JPH0710912A (en) * | 1993-06-24 | 1995-01-13 | Japan Synthetic Rubber Co Ltd | Production of spherical particle |
JP2001181309A (en) * | 1999-12-27 | 2001-07-03 | Natl Food Res Inst | Method for manufacturing fine mono disperse solid particle |
JP2002544309A (en) * | 1999-05-06 | 2002-12-24 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Method for producing bead polymer |
US20030201022A1 (en) * | 2002-04-25 | 2003-10-30 | Tosoh Corporation | Fine channel device, fine particle producing method and solvent extraction method |
JP2004059802A (en) * | 2002-07-30 | 2004-02-26 | Japan Science & Technology Corp | Preparation method of solid fine particulate and its apparatus |
JP2004067953A (en) * | 2002-08-09 | 2004-03-04 | Toshiro Higuchi | Process and apparatus for producing monodisperse resin particle |
JP2004197083A (en) * | 2002-12-06 | 2004-07-15 | Soken Chem & Eng Co Ltd | Method for micro-channel-manufacturing of colored spherical particle and micro-channel-type manufacturing apparatus used therefor |
JP2004202476A (en) * | 2002-11-06 | 2004-07-22 | Tosoh Corp | Particle production method and microchannel structure therefor |
JP2004250630A (en) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | Process for producing hydrophobic liquid droplet, process and apparatus for producing polymer bead and process for producing ion exchange resin |
-
2004
- 2004-01-08 JP JP2004003249A patent/JP2005194425A/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167488A (en) * | 1984-09-11 | 1986-04-07 | Hitachi Plant Eng & Constr Co Ltd | Preparation of immobilized microorganism |
JPH0465403A (en) * | 1990-07-06 | 1992-03-02 | Sekisui Fine Chem Kk | Production of polymer fine particle having uniform particle size and apparatus therefor |
JPH0536306A (en) * | 1991-07-26 | 1993-02-12 | Sekisui Fine Chem Kk | Conductive fine-grain, electrode connection structural body and manufacture thereof |
JPH05279486A (en) * | 1991-10-29 | 1993-10-26 | Xerox Corp | Method for forming bichromal ball |
JPH0710912A (en) * | 1993-06-24 | 1995-01-13 | Japan Synthetic Rubber Co Ltd | Production of spherical particle |
JP2002544309A (en) * | 1999-05-06 | 2002-12-24 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Method for producing bead polymer |
JP2001181309A (en) * | 1999-12-27 | 2001-07-03 | Natl Food Res Inst | Method for manufacturing fine mono disperse solid particle |
US20030201022A1 (en) * | 2002-04-25 | 2003-10-30 | Tosoh Corporation | Fine channel device, fine particle producing method and solvent extraction method |
JP2004059802A (en) * | 2002-07-30 | 2004-02-26 | Japan Science & Technology Corp | Preparation method of solid fine particulate and its apparatus |
JP2004067953A (en) * | 2002-08-09 | 2004-03-04 | Toshiro Higuchi | Process and apparatus for producing monodisperse resin particle |
JP2004202476A (en) * | 2002-11-06 | 2004-07-22 | Tosoh Corp | Particle production method and microchannel structure therefor |
JP2004197083A (en) * | 2002-12-06 | 2004-07-15 | Soken Chem & Eng Co Ltd | Method for micro-channel-manufacturing of colored spherical particle and micro-channel-type manufacturing apparatus used therefor |
JP2004250630A (en) * | 2003-02-21 | 2004-09-09 | Mitsubishi Chemicals Corp | Process for producing hydrophobic liquid droplet, process and apparatus for producing polymer bead and process for producing ion exchange resin |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008523192A (en) * | 2004-12-10 | 2008-07-03 | コミツサリア タ レネルジー アトミーク | Method and apparatus for producing polymer foam beads or balloons |
JP2012236922A (en) * | 2011-05-12 | 2012-12-06 | Dic Corp | Emulsion dispersion and method for producing the same |
JP2020504776A (en) * | 2016-12-16 | 2020-02-13 | ピュロライト(チャイナ) カンパニー リミテッド | Method for producing uniform polymer beads by vibration injection using superhydrophobic membrane |
JP7106570B2 (en) | 2016-12-16 | 2022-07-26 | ピュロライト(チャイナ) カンパニー リミテッド | Production method of uniform polymer beads by vibrating jet using superhydrophobic membrane |
JP2018154798A (en) * | 2017-03-21 | 2018-10-04 | 日立化成株式会社 | Method for producing polymer particle |
JP2019046801A (en) * | 2017-09-06 | 2019-03-22 | 積水化学工業株式会社 | Base material particle, conductive particle, conductive material and connection structure |
JP7335687B2 (en) | 2017-09-06 | 2023-08-30 | 積水化学工業株式会社 | Substrate particles, conductive particles, conductive materials and connection structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3587206T2 (en) | Process for the preparation of polymers with uniform particle size. | |
EP0051210B2 (en) | Process for preparing uniform size spheroidal polymer beads | |
Serra et al. | Microfluidic‐assisted synthesis of polymer particles | |
Nie et al. | Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly | |
Luo et al. | Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process | |
JP3635575B2 (en) | Monodisperse resin particle production method and production apparatus | |
JPH04363303A (en) | Continuous polymerization and apparatus therefor | |
JP5108556B2 (en) | Method for producing acrylic resin particles and method for producing resin particles | |
Meng et al. | Fabrication of a composite colloidal particle with unusual Janus structure as a high-performance solid emulsifier | |
JP2005194425A (en) | Method for producing fine particle and fine particle | |
JP2008031419A (en) | Method for producing highly monodisperse fine particle | |
Ouzineb et al. | Continuous tubular reactors for latex production: conventional emulsion and miniemulsion polymerizations | |
US20180022837A1 (en) | Reverse-phase polymerisation process incorporating a microfluidic device | |
Alroaithi et al. | Uniform polymer beads by membrane emulsification-assisted suspension polymerisation | |
Li et al. | Liquid–liquid two‐phase flow in pore array microstructured devices for scaling‐up of nanoparticle preparation | |
JP2005272779A (en) | Process for production of monodispersed resin particle | |
JP5875027B2 (en) | Method for producing emulsified dispersion | |
JP5297846B2 (en) | Suspension production method and polymer particle production method | |
JP2002322203A (en) | Method for producing fine resin particles and fine resin particles | |
Alroaithi | Chemical Engineering Approaches to the Fabrication of Uniform Polymeric Particles and Structures | |
JP2018048298A (en) | Method for producing gel fine particle | |
JP5144982B2 (en) | Method for producing monodisperse particles | |
US20240262938A1 (en) | Semicontinuous suspension polymerization of polyacrylates in a capillary reactor | |
JPH08169907A (en) | Production of polymer particle uniform in size | |
JP2010090240A (en) | Method of manufacturing acrylic resin particle, and method of manufacturing resin particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090114 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090218 |