[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005189205A - Three-dimensional shape measuring apparatus and method - Google Patents

Three-dimensional shape measuring apparatus and method Download PDF

Info

Publication number
JP2005189205A
JP2005189205A JP2003434050A JP2003434050A JP2005189205A JP 2005189205 A JP2005189205 A JP 2005189205A JP 2003434050 A JP2003434050 A JP 2003434050A JP 2003434050 A JP2003434050 A JP 2003434050A JP 2005189205 A JP2005189205 A JP 2005189205A
Authority
JP
Japan
Prior art keywords
measurement
dimensional shape
dimensional
measurement object
dimensional coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003434050A
Other languages
Japanese (ja)
Inventor
Hiroyuki Miyake
弘之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2003434050A priority Critical patent/JP2005189205A/en
Publication of JP2005189205A publication Critical patent/JP2005189205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain entire perimeter range data of an object, even if it has in part a complicated shape, using means of a similar operation to objects of simple shape. <P>SOLUTION: On a rotating table 2, a measured object 3 is held at relatively fixed position to the rotating table 2. An irradiation device 4 for laser beam irradiates laser beam 5 directed toward the central axis of the rotating table 2, as shown by the dashed line. The emitted laser beam 5 is reflected by the measured object 3, because the measured object 3 is arranged such that it covers the central axis of the rotating table 2. A reflection spot photodetector 108 identifies reflection spots, and, for example, when reflection spots disappear, a corresponding angle position is added as an additional stopping angle by deciding that the surface shape of the concerned part is complicated. After the rotating table 2 is forced to stop at the stopping angle of default and an additional stopping angle, the three-dimensional coordinates of the measured object 3 are acquired from a three-dimensional coordinate acquiring system 1, to be combined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,対象物の3次元形状を取得する3次元形状計測技術に関し,とくに,対象物を3次元座標取得部に対して相対的に回転させて,対象物の全周形状を取得する3次元形状測定技術に関する。   The present invention relates to a three-dimensional shape measurement technique for acquiring a three-dimensional shape of an object, and in particular, acquires the entire circumference shape of the object by rotating the object relative to a three-dimensional coordinate acquisition unit. The present invention relates to a dimensional shape measurement technique.

3次元形状を取得する手法には,アクティブ手法(Active vision)とパッシブ手法(Passive vision)がある。アクティブ手法は,(1)レーザー光を発して,対象物からの反射光量や到達時間を計測し,奥行き情報を抽出するレーザ手法や,(2)スリット光などの特殊なパターン光源を用いて,対象表面パターンの幾何学的変形等の画像情報より対象形状を推定するパターン投影方法や,(3)光学的処理によってモアレ縞により等高線を形成させて,3次元情報を得る方法などがある。一方,パッシブ手法は,対象物の見え方,光源,照明,影情報等に関する知識を利用して,一枚の画像から3次元情報を推定する単眼立体視,三角測量原理で各画素の奥行き情報を推定するステレオ法等がある。上述の手法を適用して得られる計測対象の距離情報は,計測対象の表面形状を表すデータであり,レンジデータと呼ばれる。レンジデータは測定対象上におけるある1点の距離データ・サンプル点の集合データである。   There are two methods for acquiring a three-dimensional shape: an active method and an passive method. The active method uses (1) a laser method that emits laser light, measures the amount of light reflected from the object and the arrival time, extracts depth information, and (2) uses a special pattern light source such as slit light. There are a pattern projection method for estimating a target shape from image information such as geometric deformation of a target surface pattern, and (3) a method for obtaining three-dimensional information by forming contour lines with moire fringes by optical processing. On the other hand, the passive method uses knowledge about the object's appearance, light source, illumination, shadow information, etc., and uses the monocular stereoscopic method to estimate 3D information from a single image, and the depth information of each pixel by the triangulation principle. There is a stereo method for estimating. The distance information of the measurement target obtained by applying the above-described method is data representing the surface shape of the measurement target and is called range data. The range data is a set of distance data and sample points at a certain point on the measurement target.

ところで,一般にレンジデータは単一回の測定においては,その測定が行われたある一視点での視野内における測定対象のレンジデータが求められるのみである。したがって,物体全体の3次元形状を求める場合は,複数の測定点からのレンジデータを測定位置ごとに位置合わせて合成する処理が必要になる。複数のレンジデータの位置合わせには,例えば特許文献1に開示されるように,測定対象を回転ステージの上に設置し,撮影方向と回転ステージの回転角度を対応付けて複数のレンジデータを取得して,回転ステージの回転角度に基づいて回転変換を行い,複数のレンジデータの合成を行う方法が知られている。
特開2002−328013公報
By the way, in general, the range data only needs to be the range data to be measured in the field of view from a certain viewpoint where the measurement was performed in a single measurement. Therefore, when obtaining the three-dimensional shape of the entire object, it is necessary to perform processing for aligning and synthesizing range data from a plurality of measurement points for each measurement position. For alignment of a plurality of range data, for example, as disclosed in Patent Document 1, a measurement object is set on a rotary stage, and a plurality of range data is acquired by associating an imaging direction with a rotation angle of the rotary stage. A method is known in which rotation conversion is performed based on the rotation angle of the rotary stage, and a plurality of range data is synthesized.
JP 2002-328013 A

しかしながら従来の手法では,予め回転角度を定めておいて複数のレンジデータを取得することが一般的で,形状の複雑な対象物は,その複雑な部分が一部分であっても細かい回転角度を指定してレンジデータを取得する回数が多くなり計測全体にかかる時間や,後工程で複数のレンジデータを合成する手間がかかるといった問題があった。逆にこのような対象物を大まかな回転角度を指定すると,形状が複雑な部分のレンジデータを正確に取得できない。   However, in the conventional method, it is common to acquire a plurality of range data by setting the rotation angle in advance. For a complex object, specify a fine rotation angle even if the complicated part is a part. As a result, the number of times the range data is acquired increases, and there are problems such as the time required for the entire measurement and the time and effort required to synthesize a plurality of range data in a later process. Conversely, if a rough rotation angle is specified for such an object, range data of a complicated shape cannot be obtained accurately.

本発明はこのような課題に鑑みなされたもので,一部に複雑な形状を有する対象物であっても,単純な形状の対象物と同様な操作で全周レンジデータの取得が可能な3次元形状測定方法および装置を提供することを目的とする。   The present invention has been made in view of such a problem, and even if an object has a complicated shape in part, it is possible to acquire all-round range data by an operation similar to that of an object having a simple shape. It is an object of the present invention to provide a dimension shape measuring method and apparatus.

この発明によれば,上述の目的を達成するために,特許請求の範囲に記載のとおりの構成を採用している。ここでは,発明を詳細に説明するのに先だって,特許請求の範囲の記載について補充的に説明を行なっておく。   According to this invention, in order to achieve the above-mentioned object, the configuration as described in the claims is adopted. Here, prior to explaining the invention in detail, a supplementary explanation will be given of the claims.

なお,便宜上,図1の実施例を参考にその符号を用いて説明するが,これに限定されるものではないことはもちろんである。   For convenience, the embodiment will be described with reference to the embodiment shown in FIG. 1, but the present invention is not limited to this.

すなわち,この発明の一側面によれば,上述の目的を達成するために,測定空間に設置される測定対象物3の3次元形状を計測する3次元形状計測装置に:前記測定対象物を,測定の間,保持手段本体に対する相対位置が変化しないように保持する保持手段2と;前記測定対象物上における複数の点の3次元座標を画像入力素子によって取得する3次元座標取得手段1と;前記測定対象物に対して光線を照射する光線照射手段4と;前記保持手段と前記3次元座標取得手段との間の相対位置を変化させて当該相対位置の各々について前記3次元座標取得手段による測定を行う複数回測定制御手段106と;前記光線照射手段から照射された光線が前記測定対象物に当った反射光の様子によって前記保持手段と前記3次元座標取得手段との相対位置の変化の大きさを制御する相対位置制御手段104とを設けるようにしている。   That is, according to one aspect of the present invention, in order to achieve the above-mentioned object, a three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a measurement object 3 installed in a measurement space: Holding means 2 for holding the relative position with respect to the holding means main body so as not to change during measurement; three-dimensional coordinate acquisition means 1 for acquiring three-dimensional coordinates of a plurality of points on the measurement object by an image input element; A light beam irradiating means 4 for irradiating the measurement object with a light beam; a relative position between the holding means and the three-dimensional coordinate acquiring means is changed, and each of the relative positions is determined by the three-dimensional coordinate acquiring means; A plurality of measurement control means 106 that performs measurement; and the relative relationship between the holding means and the three-dimensional coordinate acquisition means according to the state of reflected light that the light emitted from the light irradiation means hits the measurement object. And it is provided with a relative position control means 104 for controlling the magnitude of the change in location.

この構成においては,反射スポットの振る舞いに基づいて測定対象物の個々の位置の複雑さを判定し,必要に応じて細かく測定位置を設定して必要な3次元座標データを取得することができる。   In this configuration, it is possible to determine the complexity of each position of the measurement object based on the behavior of the reflection spot, and to set the measurement position finely as necessary to obtain the necessary three-dimensional coordinate data.

また,この構成において,前記保持手段を回転ステージとすることが好ましい。この場合,前記複数測定制御手段は前記回転ステージの回転制御手段を含み,前記相対位置制御手段は前記回転ステージの回転角度制御手段を含む。   In this configuration, it is preferable that the holding means is a rotary stage. In this case, the plurality of measurement control means includes rotation control means for the rotary stage, and the relative position control means includes rotation angle control means for the rotation stage.

また,前記画像入力素子をカメラであり,前記光線照射手段をレーザー光照射装置とすることが好ましい。   Preferably, the image input element is a camera, and the light beam irradiation means is a laser beam irradiation device.

また,前記光線照射装置を前記3次元座標取得手段の両側に設けてもよい。   Further, the light beam irradiation device may be provided on both sides of the three-dimensional coordinate acquisition means.

また,前記光線照射装置は,点滅駆動されるようにしてもよい。   The light beam irradiation device may be driven to blink.

また,前記光線照射装置は,複数位置に照射スポットを実質的に同時に生成するようにしても良い。   The light beam irradiation device may generate irradiation spots at a plurality of positions substantially simultaneously.

なお,本発明は装置またはシステムとして実現できるのみでなく,方法としても実現可能である。また,そのような発明の一部をソフトウェアとして構成することができることはもちろんである。またそのようなソフトウェアをコンピュータに実行させるために用いるソフトウェア製品もこの発明の技術的な範囲に含まれることも当然である。   The present invention can be realized not only as an apparatus or a system but also as a method. Of course, part of such an invention can be configured as software. Of course, software products used to cause a computer to execute such software are also included in the technical scope of the present invention.

本発明の上述の側面および他の側面は特許請求の範囲に記載され以下実施例を用いて詳述される。   The above and other aspects of the invention are set forth in the appended claims and are described in detail below using examples.

本発明によれば,測定対象物の全周形状を計測するような3次元形状計測において,測定対象物に計測方向とは異なる方向から光線を照射しその反射画像を計測方向からモニターすることで測定対象物の表面形状の複雑さの場所(方向)を検知することが可能となり,その方向からの計測を必ず行なうようにすることで取得データ欠けのない正確な全周の3次元計測がおこなえる。   According to the present invention, in the three-dimensional shape measurement that measures the entire circumference of the measurement object, the measurement object is irradiated with light from a direction different from the measurement direction, and the reflected image is monitored from the measurement direction. It is possible to detect the location (direction) of the complexity of the surface shape of the object to be measured, and by performing measurement from that direction without fail, accurate three-dimensional measurement of the entire circumference without missing data is possible. .

以下,この発明の実施例について説明する。   Embodiments of the present invention will be described below.

本発明に係る3次元形状計測装置の実施例を,図を基にして説明する。   An embodiment of a three-dimensional shape measuring apparatus according to the present invention will be described with reference to the drawings.

図1は,本発明の実施例の3次元形状計測装置を模式的に示しており,この図において,3次元形状計測装置は,3次元座標取得装置1,回転テーブル(回転ステージ、回転台ともいう)2,レーザー光照射装置4,制御装置100を含んで構成されている。回転テーブル2上には測定対象物3が回転テーブル2に対して相対的に固定した配置で保持されている。レーザー光照射装置4は,回転テーブル2の中心軸に向けて破線で示すようにレーザー光5を照射する。測定対象物3は、回転テーブル2の中心軸を覆うように配置されるので、レーザー光5は測定対象物3により反射される。制御装置100はたとえばパーソナルコンピュータであり,3次元座標取得装置1,回転テーブル2,レーザー光照射装置4等に接続され,各部の動作制御,座標演算等を行なう。   FIG. 1 schematically shows a three-dimensional shape measuring apparatus according to an embodiment of the present invention. In this figure, the three-dimensional shape measuring apparatus includes a three-dimensional coordinate acquisition device 1, a rotary table (both a rotary stage and a rotary table). 2) includes a laser beam irradiation device 4 and a control device 100. On the rotary table 2, the measurement object 3 is held in an arrangement that is fixed relative to the rotary table 2. The laser beam irradiation device 4 irradiates the laser beam 5 toward the central axis of the turntable 2 as indicated by a broken line. Since the measurement object 3 is arranged so as to cover the central axis of the turntable 2, the laser beam 5 is reflected by the measurement object 3. The control device 100 is, for example, a personal computer, and is connected to the three-dimensional coordinate acquisition device 1, the rotary table 2, the laser light irradiation device 4, etc., and performs operation control of each part, coordinate calculation, and the like.

制御装置100は,例えば,3次元座標取得部101,3次元座像合成部102,反射スポット判別部103,追加停止角度決定部104,デフォルト停止角度記憶部105,回転駆動制御部106,照射駆動制御部107等の機能ブロックを含む。   The control device 100 includes, for example, a three-dimensional coordinate acquisition unit 101, a three-dimensional sitting image synthesis unit 102, a reflected spot determination unit 103, an additional stop angle determination unit 104, a default stop angle storage unit 105, a rotation drive control unit 106, and irradiation drive control. A functional block such as the unit 107 is included.

回転駆動制御部106は,回転テーブル2を回転させてこれを所望の角度位置に配置するものである。回転テーブル2が回転することにより,3次元座標取得部101から回転テーブル2上の測定対象物3への視点が順次変更される。基本的には所定の角度間隔例えば60度ずつ回転テーブル2が回転駆動され視点が変更されていく。この角度間隔はデフォルトのものであり,デフォルト停止角度記憶部104に記憶されている。デフォルト停止角度は計測対象に応じてユーザが可変しても良い。   The rotation drive control unit 106 rotates the rotary table 2 and arranges it at a desired angular position. As the rotary table 2 rotates, the viewpoint from the three-dimensional coordinate acquisition unit 101 to the measurement object 3 on the rotary table 2 is sequentially changed. Basically, the rotary table 2 is rotationally driven by a predetermined angular interval, for example, 60 degrees, and the viewpoint is changed. This angle interval is a default value and is stored in the default stop angle storage unit 104. The default stop angle may be changed by the user according to the measurement target.

3次元座標取得部101,各視点について測定対象物3上の複数の点の3次元座標(3次元画像)を取得する。3次元座標取得装置1は,特にその方式を限定するものではないが,複数回の撮像を行う必要があるため,特開2000−65542公報に開示されたようなCCDカメラを内蔵して一回の撮像で距離情報が取得できるような方式のものが,測定に必要とする時間的な観点からは望ましい。3次元座標取得装置1の例についてはのちに図3〜図5を参照して説明する。   The three-dimensional coordinate acquisition unit 101 acquires three-dimensional coordinates (three-dimensional images) of a plurality of points on the measurement object 3 for each viewpoint. The three-dimensional coordinate acquisition apparatus 1 is not particularly limited in its method, but since it is necessary to perform imaging a plurality of times, a CCD camera as disclosed in Japanese Patent Application Laid-Open No. 2000-65542 is incorporated once. From the viewpoint of time required for measurement, it is desirable that the distance information can be obtained by imaging. An example of the three-dimensional coordinate acquisition apparatus 1 will be described later with reference to FIGS.

3次元座標合成部102は,3次元座標取得部101により各視点について取得された3次元座標を合成して測定対象物の全周データをえる。   The three-dimensional coordinate synthesis unit 102 synthesizes the three-dimensional coordinates acquired for each viewpoint by the three-dimensional coordinate acquisition unit 101 to obtain the entire circumference data of the measurement object.

照射駆動制御部107は,レーザー光照射装置4を駆動するものである。レーザー光の反射スポットの判別が容易になるようにレーザー光照射装置4を点滅駆動してもよい。反射スポットは,例えば3次元座標取得装置1のカメラ(後述する)により兼用する反射スポット受光素子108により判別される。追加停止角度決定部104は,反射スポット受光素子108の判別出力に基づいて反射スポットの振る舞いに応じて付加的な停止角度位置を決定する。すなわち,反射スポットの振る舞いにより,スポット位置の計測対象の表面形状が複雑と判断されるときには,対応する角度位置を付加的な停止角度位置とする。この実施例では,後述するように,反射スポットが視野からはずれたときに,計測対象の当該表面形状が複雑と判別する。   The irradiation drive control unit 107 drives the laser beam irradiation device 4. The laser light irradiation device 4 may be driven to blink so that the reflection spot of the laser light can be easily identified. The reflected spot is determined by the reflected spot light receiving element 108 which is also used by, for example, a camera (described later) of the three-dimensional coordinate acquisition apparatus 1. The additional stop angle determination unit 104 determines an additional stop angle position according to the behavior of the reflection spot based on the discrimination output of the reflection spot light receiving element. That is, when the surface shape of the measurement target of the spot position is determined to be complicated due to the behavior of the reflected spot, the corresponding angular position is set as an additional stop angular position. In this embodiment, as described later, when the reflected spot deviates from the field of view, it is determined that the surface shape of the measurement target is complicated.

回転駆動制御部106は上述のデフォルトの停止角度位置に加えて付加的な停止角度位置でも回転テーブル2を停止して測定対象物3の3次元座標を取得する。   The rotation drive control unit 106 stops the rotation table 2 at an additional stop angle position in addition to the default stop angle position described above, and acquires the three-dimensional coordinates of the measurement object 3.

3次元座標取得装置1の例を図3に示す。図3において,3次元座標取得装置1は,投影装置(プロジェクタ)11,モニタ用撮像装置(第1カメラ。CCDカメラ)12,三角測量用撮像装置(第2カメラ。CCDカメラ)13およびハーフミラー14を含んで構成されている。投影装置11は,3次元座標取得を行うためにパターンを測定対象に対して投影する。モニタ用撮像装置12は,投影装置11と,ほぼ同一主点,同一光軸に配置されパターンをモニタする。三角測量用撮像装置13は撮影装置と異なる光軸に配置されている。この点は先の特開2000−65542公報に記載のものと同様の構成である。投影装置11は,プロジェクタもしくはレーザスリット投影系を用いる。この投影装置11はあらかじめ定められたコードに対応する輝度値によって投影パターンを形成し,投影を行う。投影パターンは,図4に示すような濃淡のあるスリットパターンを用い,例えば,図4の右側に図示されている物体(測定対象)にパターン投影する。投影パターンはハーフミラー14を介して測定対象に投影され,その反射光がハーフミラー14で反射されてモニタ用撮像装置12に入射する。測定対象からの反射光はモニタ用撮像装置12とは異なる光路を経て三角測量用撮像装置13に入射する。   An example of the three-dimensional coordinate acquisition apparatus 1 is shown in FIG. In FIG. 3, a three-dimensional coordinate acquisition device 1 includes a projection device (projector) 11, a monitor imaging device (first camera, CCD camera) 12, a triangulation imaging device (second camera, CCD camera) 13, and a half mirror. 14. The projection device 11 projects a pattern onto a measurement target in order to acquire three-dimensional coordinates. The monitor imaging device 12 is arranged at substantially the same principal point and the same optical axis as the projection device 11 and monitors the pattern. The triangulation imaging device 13 is arranged on an optical axis different from that of the imaging device. This is the same configuration as that described in Japanese Patent Laid-Open No. 2000-65542. The projector 11 uses a projector or a laser slit projection system. The projection apparatus 11 forms a projection pattern with a luminance value corresponding to a predetermined code and performs projection. For the projection pattern, a slit pattern with shading as shown in FIG. 4 is used, and for example, the pattern is projected onto the object (measurement target) shown on the right side of FIG. The projection pattern is projected onto the measurement object via the half mirror 14, and the reflected light is reflected by the half mirror 14 and enters the monitor imaging device 12. The reflected light from the measurement object enters the triangulation image pickup device 13 through an optical path different from that of the monitor image pickup device 12.

図5も用いてパターン投影およびその撮像について詳細に説明する。モニタ用撮像装置(カメラ1)12と投影装置(プロジェクタ)11は,先に述べたようにハーフミラー14などを用いて,ほぼ同一主点,同一光軸に配置される。三角測量用撮像装置(第2カメラ)13は,別光軸上に配置される。投影装置(プロジェクタ)11により図4に示すようなストライプパターンを投影する。ほぼ同主点,同光軸のモニタ用撮像装置(第1カメラ)12で観測された画像(第1カメラの撮像画像)から再符号化を実施し,さらに,モニタ用撮像装置(カメラ1)12で観測された画像(第1カメラの撮像画像)と三角測量用撮像装置(第2カメラ)13で観測された画像(第2カメラの撮像画像)とから距離画像を算出する。再符号化は高精度の計測に必要であるが,必須なわけではない。   The pattern projection and its imaging will be described in detail with reference to FIG. The monitor imaging device (camera 1) 12 and the projection device (projector) 11 are arranged at substantially the same principal point and the same optical axis by using the half mirror 14 or the like as described above. The triangulation imaging device (second camera) 13 is disposed on another optical axis. A projection device (projector) 11 projects a stripe pattern as shown in FIG. Re-encoding is performed from an image (captured image of the first camera) observed by the monitor imaging device (first camera) 12 having substantially the same principal point and the same optical axis, and further, the monitoring imaging device (camera 1) A distance image is calculated from the image observed at 12 (captured image of the first camera) and the image observed by the triangulation imaging device (second camera) 13 (captured image of the second camera). Re-encoding is necessary for high-precision measurements, but is not essential.

図1の反射スポット受光素子は,モニタ用撮像装置12,三角測量用撮像装置13のいずれでもよいし,また,別途設けるようにしても良い。   The reflection spot light receiving element of FIG. 1 may be either the monitor imaging device 12 or the triangulation imaging device 13 or may be provided separately.

3次元座標取得装置1と回転テーブル2とレーザー光照射装置4の位置関係を図2に示す。レーザー光照射装置4は回転テーブル2の回転中心に向かってレーザー光を照射するように設置され,さらにこの回転中心を軸として3次元座標取得装置1と特定の角度を持つように配置される。この角度は0度から90度までは理論的に設定可能であるが,好ましくは30度から60度程度に設定する。以下の説明では45度を例にとっている。   The positional relationship among the three-dimensional coordinate acquisition device 1, the rotary table 2, and the laser beam irradiation device 4 is shown in FIG. The laser beam irradiation device 4 is installed so as to irradiate the laser beam toward the rotation center of the turntable 2, and is arranged so as to have a specific angle with the three-dimensional coordinate acquisition device 1 with the rotation center as an axis. This angle can be theoretically set from 0 degrees to 90 degrees, but is preferably set to about 30 degrees to 60 degrees. In the following description, 45 degrees is taken as an example.

図6および図7は本実施例の原理について簡単に説明したものである。図6に示す測定対象物3aのように形状が滑らかで単純なものは,レーザー光照射装置4からレーザー光を照射しながら回転テーブル2を回転させて,3次元座標取得装置1内のカメラでモニターすると,カメラ画像上ではレーザー反射スポットが現れ,全周中消えることはない。一方,図7に示す測定対象物3bのように一部で凸凹が大きく形状の複雑なものは,3次元座標取得装置1内のカメラのモニター画像で,レーザー反射スポットが消える角度領域(回転テーブル制御用入力データでθa〜θbとする)が発生する。このようにレーザー反射スポットが消える場合には形状の凸凹が激しいと判定する。そこで回転テーブル制御用入力データでθa〜θbに45度を加えた角度データθA〜θB近辺では必ず計測を行なう必要がある。   6 and 7 briefly describe the principle of this embodiment. A measurement object 3a as shown in FIG. 6 having a smooth and simple shape is obtained by rotating the rotary table 2 while irradiating laser light from the laser light irradiation device 4, and using a camera in the three-dimensional coordinate acquisition device 1. When monitored, a laser reflection spot appears on the camera image and does not disappear throughout the entire circumference. On the other hand, a part of the measurement object 3b shown in FIG. 7 that is partially uneven and has a complicated shape is an angle region (rotation table) where the laser reflection spot disappears in the monitor image of the camera in the three-dimensional coordinate acquisition apparatus 1. The input data for control is θa to θb). When the laser reflection spot disappears in this way, it is determined that the shape unevenness is severe. Therefore, it is necessary to always perform measurement in the vicinity of angle data θA to θB obtained by adding 45 degrees to θa to θb as input data for rotating table control.

図8を用いて詳細に説明する。図8の測定対象物の断面形状は凹みを有している。凹みが無ければ通常6方向からの計測で充分な全周形状が得られるが,凹みがあるために太字曲線で示した部分の形状は良好に計測できない。これを図1のような構成においてみると,回転テーブル制御用入力データでθ1からθ3までの間では,3次元座標取得装置1内のカメラのモニター画像で,レーザー反射スポットが消える。従って,回転テーブル制御用入力データで45度+θ1から45度+θ3までで追加の計測を行なう必要がある。ここでは45度+θ1から45度+θ3までの中間値である45度+θ2で追加の計測を行なうことにするが,例えば45度+θ1と45度+θ2と45度+θ3との3回の追加計測など,45度+θ1から45度+θ3までの範囲内であればよいことはいうまでもない。   This will be described in detail with reference to FIG. The cross-sectional shape of the measurement object in FIG. 8 has a dent. If there is no dent, usually a sufficient circumference shape can be obtained by measurement from six directions. However, because of the dent, the shape of the portion indicated by the bold curve cannot be measured well. In the configuration as shown in FIG. 1, the laser reflected spot disappears in the monitor image of the camera in the three-dimensional coordinate acquisition apparatus 1 between θ1 and θ3 in the input data for rotation table control. Therefore, it is necessary to perform additional measurement from 45 degrees + θ1 to 45 degrees + θ3 with the input data for rotating table control. Here, additional measurement is performed at 45 degrees + θ2 which is an intermediate value from 45 degrees + θ1 to 45 degrees + θ3. For example, three additional measurements of 45 degrees + θ1 and 45 degrees + θ2 and 45 degrees + θ3 are performed. Needless to say, it may be within the range of 45 degrees + θ1 to 45 degrees + θ3.

つぎに本発明の実施例の計測手順を説明する。   Next, the measurement procedure of the embodiment of the present invention will be described.

図9は,計測手順の1つを示しており,図10は他の計測手順を示している。   FIG. 9 shows one measurement procedure, and FIG. 10 shows another measurement procedure.

図9の例では,測定対象物3の3次元座標の計測に先立ってレーザ照射を用いた停止位置の決定処理を行なう。図10の例では,測定対象物3の3次元座標の計測と並行してレーザ照射を用いた停止位置の決定処理を行なう。   In the example of FIG. 9, the stop position determination process using laser irradiation is performed prior to the measurement of the three-dimensional coordinates of the measurement object 3. In the example of FIG. 10, the stop position determination process using laser irradiation is performed in parallel with the measurement of the three-dimensional coordinates of the measurement object 3.

図9の処理は以下のとおりである。
[ステップS10]:デフォルトの停止角度を設定する。
[ステップS11]:回転テーブル2を1回転させつつレーザー光を測定対象物3に照射して反射スポットをモニターする。
[ステップS12]:反射スポットが消失したことに基づいて,あるいは消失している角度範囲に基づいて追加の停止角度を設定する。こののち,ステップS13〜S16において,デフォルトの停止角度おおび追加の停止角度について,回転テーブル2が回転駆動され,3次元座標取得が行なわれる。
[ステップS13]:次回の停止角度位置まで回転デーブル2を回転させる。
[ステップS14]:停止角度位置で,計測条件を設定する。
[ステップS15]:停止角度位置で,計測条件の下,測定対象物上の複数の点の3次元座標を取得する。
[ステップS16]:すべての停止角度位置で処理が終了したか判別する。終了していない場合にはステップS13へ戻り,処理を繰り返す。終了している場合にはステップS17へ進む。
[ステップS17]:各停止角度での3次元座標データを貼り合わせて全周データを取得する。
The process of FIG. 9 is as follows.
[Step S10]: A default stop angle is set.
[Step S11]: The measurement object 3 is irradiated with laser light while rotating the rotary table 2 once to monitor the reflected spot.
[Step S12]: An additional stop angle is set based on the disappearance of the reflection spot or based on the disappearing angle range. Thereafter, in steps S13 to S16, the rotary table 2 is rotationally driven for the default stop angle and the additional stop angle, and three-dimensional coordinate acquisition is performed.
[Step S13]: The rotary table 2 is rotated to the next stop angle position.
[Step S14]: Measurement conditions are set at the stop angle position.
[Step S15]: At the stop angle position, three-dimensional coordinates of a plurality of points on the measurement object are acquired under measurement conditions.
[Step S16]: It is determined whether the processing is completed at all stop angle positions. If not completed, the process returns to step S13 to repeat the process. If completed, the process proceeds to step S17.
[Step S17]: Three-dimensional coordinate data at each stop angle are pasted together to obtain all-round data.

図10の処理は以下のとおりである。
[ステップS20]:デフォルトの停止角度を設定する。
[ステップS21]:計測条件を設定する。
[ステップS22]:当初の停止角度位置で最初の3次元座標の計測を行なう。
[ステップS23]:回転テーブル2を次の停止角度を目標値として回転駆動する。
[ステップS24]:ステップ2の回転駆動と並行してレーザー光を測定対象物3に照射して反射スポットをモニターする。
[ステップS25]:反射スポットが消失したかどうかを判別する。消失したと判別した場合にはステップS26へ進み,そうでない場合には,ステップS27へ進む。
[ステップS26]:反射スポットが消えたときの角度に所定角度を加えた角度位置を付加的な停止角度として追加する。
[ステップS27]:目標の停止角度で停止する。
[ステップS28]:停止角度位置で,測定対象物上の複数の点の3次元座標を取得する。
[ステップS29]:すべての停止角度で計測を終了したかどうかを判別する。終了していない場合にはステップS23へ戻り,処理を繰り返す。終了している場合にはステップS30へ進む。
[ステップS30]:各停止角度での3次元座標データを貼り合わせて全周データを取得する。
The process of FIG. 10 is as follows.
[Step S20]: A default stop angle is set.
[Step S21]: Measurement conditions are set.
[Step S22]: The first three-dimensional coordinates are measured at the initial stop angle position.
[Step S23]: The rotary table 2 is rotationally driven with the next stop angle as a target value.
[Step S24]: In parallel with the rotational drive in Step 2, the measurement object 3 is irradiated with laser light to monitor the reflected spot.
[Step S25]: It is determined whether or not the reflection spot has disappeared. If it is determined that it has disappeared, the process proceeds to step S26, and if not, the process proceeds to step S27.
[Step S26]: An angle position obtained by adding a predetermined angle to the angle when the reflection spot disappears is added as an additional stop angle.
[Step S27]: Stop at the target stop angle.
[Step S28]: Three-dimensional coordinates of a plurality of points on the measurement object are acquired at the stop angle position.
[Step S29]: It is determined whether or not the measurement is completed at all stop angles. If not completed, the process returns to step S23 to repeat the process. If completed, the process proceeds to step S30.
[Step S30]: Three-dimensional coordinate data at each stop angle are pasted together to obtain all-round data.

以上で本実施例の説明を終了する。なお,この発明は上述の実施例に限定されるものではなくその趣旨を逸脱しない範囲で種々変更が可能である。例えば,図11に示すように2つのレーザー光照射装置4aと4bを3次元座標取得装置1を挟むように配置してもよい。この場合,通常はカメラ画像に2つのレーザー反射スポットが現れるが,2つのレーザー光は回転台の中心に向けて照射され,かつ回転台の中心には必ず測定対象物が被るように置かれるので,カメラ画像の左半分にあるレーザー反射スポットは左からのレーザー光,右半分は右からのレーザー光と判別可能である。また2つのレーザー光の波長を変えて判別するようにしても良い。   This is the end of the description of this embodiment. The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. For example, as shown in FIG. 11, two laser light irradiation devices 4 a and 4 b may be arranged so as to sandwich the three-dimensional coordinate acquisition device 1. In this case, two laser reflection spots usually appear in the camera image, but the two laser beams are directed toward the center of the rotating table, and the center of the rotating table is always placed so that the measurement object is covered. The laser reflection spot in the left half of the camera image can be distinguished from the laser light from the left, and the right half from the laser light from the right. Further, the determination may be made by changing the wavelengths of the two laser beams.

また上述の実施例では,レーザー光を垂直方向に1本のみとしているが,垂直方向に複数本のレーザー光を照射するようにしてもよく,そのためにレーザー光照射装置を複数設けてもよいし,1台のレーザー光照射装置の光線を分岐してもよい。さらにレーザー光を高速に振動させて反射光が線状になるように照射しても同様の効果を実現できる。   In the above-described embodiment, only one laser beam is used in the vertical direction. However, a plurality of laser beams may be irradiated in the vertical direction. For this purpose, a plurality of laser beam irradiation devices may be provided. , The beam of one laser beam irradiation device may be branched. Further, the same effect can be realized even when laser light is vibrated at high speed and the reflected light is irradiated in a linear shape.

また,レーザー光を点滅させて反射スポットの認識を容易にしても良い。この場合たとえば画像を微分して反射スポットを認識しても良い。   Further, the laser beam may be blinked to facilitate the recognition of the reflected spot. In this case, for example, the reflected spot may be recognized by differentiating the image.

また,上述の例では,回転テーブルを用いたが,回転テーブルの代わりに固定テーブルを用い,1または複数の3次元座標取得装置を移動させるようにしてもよい。この場合,レーザー光照射装置も同様に移動させる。   In the above example, the rotary table is used. However, a fixed table may be used instead of the rotary table, and one or more three-dimensional coordinate acquisition devices may be moved. In this case, the laser beam irradiation device is moved in the same manner.

またレーザー光以外の光源を用いても良い。   A light source other than laser light may be used.

本発明の実施例の構成を全体として示す図である。It is a figure which shows the structure of the Example of this invention as a whole. 上述実施例の3次元座標取得装置とレーザー光照射装置との位置関係を説明する図である。It is a figure explaining the positional relationship of the three-dimensional coordinate acquisition apparatus of the above-mentioned Example, and a laser beam irradiation apparatus. 上述実施例の3次元座標取得装置の構成例を説明する図である。It is a figure explaining the structural example of the three-dimensional coordinate acquisition apparatus of the said Example. 図3の3次元座標取得装置を説明する図である。It is a figure explaining the three-dimensional coordinate acquisition apparatus of FIG. 図3の3次元座標取得装置を説明する図である。It is a figure explaining the three-dimensional coordinate acquisition apparatus of FIG. 上述実施例の動作を説明する図である。It is a figure explaining operation | movement of the said Example. 上述実施例の動作を説明する図である。It is a figure explaining operation | movement of the said Example. 上述実施例の動作を説明する図である。It is a figure explaining operation | movement of the said Example. 上述実施例の計測手順の1つを説明するフローチャートである。It is a flowchart explaining one of the measurement procedures of the above-mentioned Example. 上述実施例の他の計測手順を説明するフローチャートである。It is a flowchart explaining the other measurement procedure of the above-mentioned Example. 上述実施例の変形例を説明する図である。It is a figure explaining the modification of the above-mentioned Example.

符号の説明Explanation of symbols

1 3次元座標取得装置
2 回転テーブル
2 回転テーブル
3 測定対象物
4 レーザー光照射装置
5 レーザー光
11 投影装置
12 モニタ用撮像装置
13 三角測量用撮像装置
14 ハーフミラー
100 制御装置
101 3次元座標取得部
102 3次元座像合成部
103 反射スポット判別部
104 デフォルト停止角度記憶部
104 追加停止角度決定部
105 デフォルト停止角度記憶部
106 回転駆動制御部
107 照射駆動制御部
108 反射スポット受光素子
DESCRIPTION OF SYMBOLS 1 3D coordinate acquisition apparatus 2 Rotation table 2 Rotation table 3 Measuring object 4 Laser beam irradiation apparatus 5 Laser beam 11 Projection apparatus 12 Imaging device for monitor 13 Imaging device for triangulation 14 Half mirror 100 Control apparatus 101 3D coordinate acquisition part 102 three-dimensional sitting image composition unit 103 reflection spot discrimination unit 104 default stop angle storage unit 104 additional stop angle determination unit 105 default stop angle storage unit 106 rotation drive control unit 107 irradiation drive control unit 108 reflection spot light receiving element

Claims (7)

測定空間に設置される測定対象物の3次元形状を計測する3次元形状計測装置であって,
前記測定対象物を,測定の間,保持手段本体に対する相対位置が変化しないように保持する保持手段と,
前記測定対象物上における複数の点の3次元座標を画像入力素子によって取得する3次元座標取得手段と,
前記測定対象物に対して光線を照射する光線照射手段と,
前記保持手段と前記3次元座標取得手段との間の相対位置を変化させて当該相対位置の各々について前記3次元座標取得手段による測定を行う複数回測定制御手段と,
前記光線照射手段から照射された光線が前記測定対象物に当った反射光の様子によって前記保持手段と前記3次元座標取得手段との相対位置の変化の大きさを制御する相対位置制御手段と,
を有することを特徴とする3次元形状計測装置。
A three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a measurement object installed in a measurement space,
Holding means for holding the measurement object so that the relative position with respect to the holding means main body does not change during measurement;
Three-dimensional coordinate acquisition means for acquiring three-dimensional coordinates of a plurality of points on the measurement object by an image input element;
A light beam irradiation means for irradiating the measurement object with a light beam;
A plurality of measurement control means for changing the relative position between the holding means and the three-dimensional coordinate acquisition means and performing measurement by the three-dimensional coordinate acquisition means for each of the relative positions;
A relative position control means for controlling the magnitude of a change in the relative position between the holding means and the three-dimensional coordinate acquisition means according to the state of reflected light that has been irradiated from the light beam irradiating means on the measurement object;
A three-dimensional shape measuring apparatus comprising:
請求項1に記載の3次元形状計測装置であって,前記保持手段が回転ステージであり,前記複数測定制御手段は前記回転ステージの回転制御手段を含み,前記相対位置制御手段は前記回転ステージの回転角度制御手段を含む3次元形状計測装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein the holding unit is a rotary stage, the plurality of measurement control units include a rotation control unit of the rotary stage, and the relative position control unit is a rotation stage of the rotary stage. A three-dimensional shape measuring apparatus including a rotation angle control means. 請求項1または請求項2に記載の3次元形状計測装置であって,前記画像入力素子はカメラであり,前記光線照射手段はレーザー光照射装置である3次元形状計測装置。   3. The three-dimensional shape measuring apparatus according to claim 1, wherein the image input element is a camera and the light beam irradiation means is a laser beam irradiation apparatus. 請求項1,請求項2または請求項3に記載の3次元形状計測装置であって,前記光線照射装置を前記3次元座標取得手段の両側に設ける3次元形状計測装置。   4. The three-dimensional shape measuring apparatus according to claim 1, 2, or 3, wherein the light irradiation device is provided on both sides of the three-dimensional coordinate acquisition means. 請求項1〜4のいずれかに記載の3次元形状計測装置であって,前記光線照射装置は,点滅駆動される3次元形状計測装置。   5. The three-dimensional shape measuring apparatus according to claim 1, wherein the light beam irradiation device is driven to blink. 請求項1〜5のいずれかに記載の3次元形状計測装置であって,前記光線照射装置は,前記保持手段と前記3次元座標取得手段との間の相対位置を変化させるときの移動平面に直角の方向に間隔を置いて前記測定対象物上に複数の照射スポットを形成する3次元形状計測装置。   The three-dimensional shape measuring apparatus according to any one of claims 1 to 5, wherein the light beam irradiation device is a moving plane when changing a relative position between the holding unit and the three-dimensional coordinate obtaining unit. A three-dimensional shape measuring apparatus for forming a plurality of irradiation spots on the measurement object at intervals in a perpendicular direction. 測定空間に設置される測定対象物の3次元形状を計測する3次元形状計測方法であって,
前記測定対象物を,測定の間,保持手段に対する相対位置が変化しないように保持手段に保持するステップと,
3次元座標取得手段により,前記保持手段と前記3次元座標取得手段との間の相対位置を変化させて当該相対位置の各々について前記測定対象物の3次元形状を計測するステップと,
前記3次元座標取得手段と異なる方向から前記測定対象物に対して光線を照射するステップと,
前記光線照射手段から照射された光線が前記測定対象物に当った反射光の様子によって前記保持手段と前記3次元座標取得手段との相対位置の変化の大きさを制御するステップと,
を有することを特徴とする3次元形状計測方法。
A three-dimensional shape measurement method for measuring a three-dimensional shape of a measurement object installed in a measurement space,
Holding the measurement object on the holding means so that the relative position with respect to the holding means does not change during measurement;
Measuring a three-dimensional shape of the measurement object for each of the relative positions by changing a relative position between the holding unit and the three-dimensional coordinate acquisition unit by a three-dimensional coordinate acquisition unit;
Irradiating the measurement object with a light beam from a different direction from the three-dimensional coordinate acquisition means;
Controlling the magnitude of the change in relative position between the holding means and the three-dimensional coordinate acquisition means according to the state of the reflected light that the light emitted from the light irradiation means hits the measurement object;
A three-dimensional shape measuring method characterized by comprising:
JP2003434050A 2003-12-26 2003-12-26 Three-dimensional shape measuring apparatus and method Pending JP2005189205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434050A JP2005189205A (en) 2003-12-26 2003-12-26 Three-dimensional shape measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434050A JP2005189205A (en) 2003-12-26 2003-12-26 Three-dimensional shape measuring apparatus and method

Publications (1)

Publication Number Publication Date
JP2005189205A true JP2005189205A (en) 2005-07-14

Family

ID=34791223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434050A Pending JP2005189205A (en) 2003-12-26 2003-12-26 Three-dimensional shape measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP2005189205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164571A (en) * 2007-01-05 2008-07-17 Nikon Corp Measurement device
JP2015125621A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Information processing device and information processing method
JP2017040505A (en) * 2015-08-18 2017-02-23 ブラザー工業株式会社 Three-dimensional object reading system
WO2017029887A1 (en) * 2015-08-19 2017-02-23 ソニー株式会社 Information processing device, information processing method, and program
CN110030951A (en) * 2019-05-14 2019-07-19 武汉大学 A kind of diversion vertical shaft defect inspection method based on three-dimensional laser scanning technique
CN110030940A (en) * 2018-01-11 2019-07-19 广州微易轨道交通科技有限公司 A kind of body surface high precision three-dimensional measurement method and device thereof based on rotary coding technology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164571A (en) * 2007-01-05 2008-07-17 Nikon Corp Measurement device
JP2015125621A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Information processing device and information processing method
JP2017040505A (en) * 2015-08-18 2017-02-23 ブラザー工業株式会社 Three-dimensional object reading system
WO2017029887A1 (en) * 2015-08-19 2017-02-23 ソニー株式会社 Information processing device, information processing method, and program
CN107923742A (en) * 2015-08-19 2018-04-17 索尼公司 Information processor, information processing method and program
JPWO2017029887A1 (en) * 2015-08-19 2018-06-07 ソニー株式会社 Information processing apparatus, information processing method, and program
US10852131B2 (en) 2015-08-19 2020-12-01 Sony Corporation Information processing apparatus and information processing method
CN110030940A (en) * 2018-01-11 2019-07-19 广州微易轨道交通科技有限公司 A kind of body surface high precision three-dimensional measurement method and device thereof based on rotary coding technology
CN110030951A (en) * 2019-05-14 2019-07-19 武汉大学 A kind of diversion vertical shaft defect inspection method based on three-dimensional laser scanning technique

Similar Documents

Publication Publication Date Title
CA2834192C (en) Optical measurement method and measurement system for determining 3d coordinates on a measurement object surface
US7508529B2 (en) Multi-range non-contact probe
CN104903680B (en) Method for controlling linear dimensions of three-dimensional object
WO2017162981A1 (en) Automated registration method and device for a surgical robot
JP2006514739A5 (en)
JP2008241643A (en) Three-dimensional shape measuring device
JP2006514739A (en) Dental laser digitizer system
JPH09273910A (en) Optical measuring apparatus
JP2012122844A (en) Surface inspection device
JP6461609B2 (en) Interference objective lens and optical interference measurement apparatus
JP2714152B2 (en) Object shape measurement method
JP5776282B2 (en) Shape measuring apparatus, shape measuring method, and program thereof
JP2001082940A (en) Apparatus and method for generating three-dimensional model
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP2005189205A (en) Three-dimensional shape measuring apparatus and method
US9741109B2 (en) Tire inner surface imaging method and device
JP7276050B2 (en) Spectacle frame shape measuring device and lens processing device
JP2007093412A (en) Three-dimensional shape measuring device
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JP2000146542A (en) Noncontact surface shape measuring device
JP2008164491A (en) Device and method for measuring human body shape
TW202117830A (en) Thickness measuring apparatus
JP3013690B2 (en) Method and apparatus for measuring three-dimensional curved surface shape
JPH07120232A (en) Non-contact type 3-d shape measurement device
JPH0886616A (en) Method and apparatus for measuring three-dimensional image