JP2005185072A - Ultrasonic motor and puncture system using the same - Google Patents
Ultrasonic motor and puncture system using the same Download PDFInfo
- Publication number
- JP2005185072A JP2005185072A JP2003426049A JP2003426049A JP2005185072A JP 2005185072 A JP2005185072 A JP 2005185072A JP 2003426049 A JP2003426049 A JP 2003426049A JP 2003426049 A JP2003426049 A JP 2003426049A JP 2005185072 A JP2005185072 A JP 2005185072A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic motor
- male screw
- female screw
- moving body
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002788 crimping Methods 0.000 claims 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 24
- 230000033001 locomotion Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 9
- 238000001356 surgical procedure Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000000386 Hypertensive Intracranial Hemorrhage Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Landscapes
- Surgical Instruments (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
本発明は、MRI装置対応の穿刺システムとその穿刺システムを駆動する超音波モータに関する。 The present invention relates to a puncture system compatible with an MRI apparatus and an ultrasonic motor that drives the puncture system.
一般に、検体の頭部を穿刺して行う手術方法に定位脳手術がある。定位脳手術とは、固定した検体の頭部をMRI(磁気共鳴画像)装置やCT(コンピューター断層撮影)装置を用いて撮影して手術目標を事前に定め、その後、この手術目標に従って低侵襲で脳深部のごく一部にある病変に対して穿刺針を正確に挿入する方法であり、高血圧性脳内出血の治療法の1つである穿頭血腫吸引術やパーキンソン病治療のDBS(脳深部刺激療法)等に用いられている。 In general, stereotactic brain surgery is a surgical method performed by puncturing the head of a specimen. Stereotaxic surgery refers to a fixed specimen head imaged using an MRI (Magnetic Resonance Imaging) device or CT (Computerized Tomography) device to determine the surgical target in advance, and then a minimally invasive procedure according to this surgical target. This is a method of accurately inserting a puncture needle into a lesion in a very small part of the deep brain, and DBS (deep brain stimulation) for bullous hematoma aspiration or Parkinson's disease treatment, which is one of the treatment methods for hypertensive intracerebral hemorrhage Therapy).
しかしながら、MRI装置は静磁場中に置かれた検体に対して特定周波数の電磁場を与えて検体内の水素原子核を励起させ、この励起された水素原子核が元の状態に戻る間に生じる特定周波数のMR信号(核磁気共鳴信号)を検出してコンピュータで処理することにより検体の断層像を得るものであるため、MRI装置を作動させた状態で断層像を見ながら手術を行うことは困難であるという課題があった。 However, the MRI apparatus applies an electromagnetic field having a specific frequency to a specimen placed in a static magnetic field to excite hydrogen nuclei in the specimen, and generates a specific frequency generated while the excited hydrogen nuclei return to the original state. Since a MR image (nuclear magnetic resonance signal) is detected and processed by a computer to obtain a tomographic image of the specimen, it is difficult to perform an operation while viewing the tomographic image while the MRI apparatus is operated. There was a problem.
このような課題に対処するため、いくつかの発明及び考案が開示されている。
例えば、特許文献1には、「処置器具」という名称で、MR像(核磁気共鳴像)を見ながら外科手術を行うことのできる処置器具に関する発明が開示されている。
In order to cope with such a problem, several inventions and devices have been disclosed.
For example, Patent Document 1 discloses an invention relating to a treatment instrument that can be operated while viewing an MR image (nuclear magnetic resonance image) under the name “treatment instrument”.
以下、図7(a)を参照しながら、特許文献1に開示された技術について説明する。
特許文献1の発明である処置器具は図7(a)に示すようにオープンマグネット型MRI装置の静磁場発生用磁石24を構成する一対のマグネット24a,24b間に形成される空間27内で用いられ、処置器具の一つに図7(a)に示すような定位脳手術装置11がある。これはオープンマグネット型MRI装置の手術台28に固設された基台21上に固定される固定環12と、これに回転可能に取り付けられた円弧状のアーム17とから構成され、固定環12には患者22の頭部23を固定するための複数の固定ピン14が、アーム17には処置用プローブや内視鏡等の処置器具20を保持した保持具19がスリット18に沿って移動可能に具備されている。また、固定環12内部にはオープンマグネット型MRI装置からのMR信号を検出するためのMR信号検出コイル13が埋設されており、これはチューナー15に設けられたコネクタ16及び信号伝送ケーブル26を介してオープンマグネット型MRI装置側のコネクタ25に接続されている。なお、処置器具20は磁界中においてほとんどあるいは全く磁化を示さずMRIにほとんど歪みを起こさない材料から構成されているものとする。
このような構造より、オープンマグネット型MRI装置の静磁場中に固定環12で頭部23を固定された患者22に対してRFコイルを用いて特定周波数の高周波磁場を与えることによって頭部23から発生されるMR信号を固定環12内部のMR信号検出コイル13で検知し、頭部23の断層像を得ることが可能である。またこれにより、得られた断層像から患者22頭部23の処置すべき患部の位置を決めて患部に向って処置器具20を挿入することにより外科的処置を行うことができる。したがって、患部に最も近い位置にMR信号検出コイル13を置く構造とすることで手術全体のシステムの簡素化が可能となる。
Hereinafter, the technique disclosed in Patent Document 1 will be described with reference to FIG.
The treatment instrument according to the invention of Patent Document 1 is used in a space 27 formed between a pair of magnets 24a and 24b constituting a static magnetic field generating magnet 24 of an open magnet type MRI apparatus as shown in FIG. One of the treatment instruments is a stereotaxic device 11 as shown in FIG. This is composed of a fixed ring 12 fixed on a base 21 fixed to an operating table 28 of an open magnet type MRI apparatus, and an arc-shaped arm 17 rotatably attached to the fixed ring 12. Includes a plurality of fixing pins 14 for fixing the head 23 of the patient 22, and a holding tool 19 holding a treatment instrument 20 such as a treatment probe or an endoscope is movable along the slit 18 on the arm 17. It is equipped with. An MR signal detection coil 13 for detecting an MR signal from the open magnet type MRI apparatus is embedded in the fixed ring 12, and this is connected via a connector 16 provided in the tuner 15 and a signal transmission cable 26. And connected to a connector 25 on the open magnet type MRI apparatus side. It is assumed that the treatment instrument 20 is made of a material that exhibits little or no magnetization in the magnetic field and hardly distorts the MRI.
From such a structure, by applying a high frequency magnetic field of a specific frequency to the patient 22 whose head 23 is fixed by the stationary ring 12 in the static magnetic field of the open magnet type MRI apparatus using an RF coil, The generated MR signal can be detected by the MR signal detection coil 13 inside the stationary ring 12 and a tomographic image of the head 23 can be obtained. In addition, the surgical procedure can be performed by determining the position of the affected part of the patient's 22 head 23 to be treated from the obtained tomographic image and inserting the treatment instrument 20 toward the affected part. Therefore, the system for the entire operation can be simplified by adopting a structure in which the MR signal detection coil 13 is placed at a position closest to the affected area.
特許文献2には、「外科手術支援装置」という名称で、手術操作において手術器具の位置及び手術過程を画面上にリアルタイムに表示することのできる外科手術支援装置に関する発明が開示されている。 Patent Document 2 discloses an invention related to a surgical operation support device that can display a position of a surgical instrument and a surgical process in real time on a screen in a surgical operation under the name “surgical operation support device”.
以下、特許文献2を引用しながら、特許文献2に開示された技術について説明する。
特許文献2の外科手術支援装置は被検体の断層像の画像データを記憶させておく画像記憶手段と、被検体が横たわっている手術台の一の端部に設けられ3次元の傾斜磁場を発生させる磁気ソースと、被検体に手術を施すための手術器具と、手術器具に具備され手術器具の3次元位置を検出する磁気センサと、画像記憶手段に記憶された所定の画像に磁気センサから得られた手術器具先端部の位置情報を演算合成して画面上に表示する実空間座標値検出手段、画像空間座標値変換手段、画像選択手段、画像合成手段及び表示手段とから構成されている。また、手術器具先端部の位置情報の演算手段には手術器具の挿入領域を算出する挿入領域演算手段やこの挿入領域演算手段で算出された手術領域の画像上の位置の画素値を別の画素値に置き換える画素値置換手段が設けられており、手術履歴画像を表示できるようになっている。したがって、あらかじめ被検体の断層像を画像記憶手段に収集記憶させておき、磁気センサによって手術器具の位置を検出して算出しこの手術器具の位置情報をもとに記憶させておいた断層像に手術器具の位置を合成表示することによって断層像を見ながらリアルタイムで手術を行うことができる。また、手術履歴画像を得ることができるという点においては手術操作を行った組織とそうでない組織を区別することができ、手術を効率よくかつ安全に行うことができる。
Hereinafter, the technique disclosed in Patent Document 2 will be described with reference to Patent Document 2.
The surgical operation support device of Patent Literature 2 generates image data that stores tomographic image data of a subject and a three-dimensional gradient magnetic field provided at one end of an operating table on which the subject lies. A magnetic source to be operated, a surgical instrument for performing an operation on the subject, a magnetic sensor provided in the surgical instrument for detecting a three-dimensional position of the surgical instrument, and a predetermined image stored in the image storage means obtained from the magnetic sensor It is composed of real space coordinate value detection means, image space coordinate value conversion means, image selection means, image composition means, and display means for computing and synthesizing the position information of the surgical instrument tip portion displayed on the screen. In addition, the calculation means for the position information of the surgical instrument tip is an insertion area calculation means for calculating the insertion area of the surgical instrument or the pixel value of the position on the image of the surgical area calculated by this insertion area calculation means as another pixel. A pixel value replacement means for replacing with a value is provided, and an operation history image can be displayed. Accordingly, the tomographic image of the subject is collected and stored in the image storage means in advance, the position of the surgical instrument is detected and calculated by the magnetic sensor, and the tomographic image stored based on the position information of the surgical instrument is stored. By synthesizing and displaying the position of the surgical instrument, surgery can be performed in real time while viewing the tomogram. Further, in terms of being able to obtain a surgery history image, it is possible to distinguish between a tissue that has undergone a surgical operation and a tissue that is not so, and surgery can be performed efficiently and safely.
特許文献3には、「手術装置」という名称で、MRI装置計測領域に手術台を設けかつ内視鏡や超音波スキャナ等を用いて局所的な画像をモニタしながら遠隔操作で手術を行うことのできる手術装置に関する発明が開示されている。 In Patent Document 3, an operation table is provided under the name of “surgical device”, and an operation table is provided in an MRI apparatus measurement area and a remote operation is performed while monitoring a local image using an endoscope, an ultrasonic scanner, or the like. An invention relating to a surgical device capable of performing the above is disclosed.
以下、特許文献3を引用しながら、特許文献3に開示された技術について説明する。
MRI装置を使用しながらマニピュレータによる遠隔手術を行うことのできる特許文献3の手術装置は、術具を支持する操作マニピュレータと、これを操作する操作入力手段と、術具の作業領域を局所的に観察するための映像手段、例えば、MRI装置、内視鏡及び超音波スキャナ等とこれらの検出結果より得られる画像を表示するモニタ等と、検体を載せる手術台とから構成されている。そして、操作マニピュレータ及びMRI装置は手術台の長手方向に対してスライド可能な構造となっており、処置あるいは撮影する患部位置に応じて移動できる構造となっている。また、操作入力手段には触覚や力を検出する手段が設けられており術具が患部組織から受ける力や感触がフィードバックされて医師等の操作入力者に伝わるとともに、モニタ上の映像を必要に応じてMR画像、内視鏡画像あるいは超音波スキャナ画像に切り替えることが可能である。さらには、危機管理制御装置を設けてMRI装置による計測中に操作マニピュレータ、内視鏡及び超音波スキャナを電気的に停止状態(機械的ロック状態)にして動作しないように制御してMRI装置により発生する磁場の影響を回避する工夫がなされており、安全性の高い手術を行うことができるようにしている。
Hereinafter, the technique disclosed in Patent Document 3 will be described with reference to Patent Document 3.
The surgical apparatus of Patent Document 3 capable of performing a remote operation with a manipulator while using an MRI apparatus has an operation manipulator that supports a surgical tool, an operation input means for operating the surgical tool, and a work area of the surgical tool locally. An image means for observation, for example, an MRI apparatus, an endoscope, an ultrasonic scanner, and the like, a monitor for displaying an image obtained from these detection results, and an operating table on which a specimen is placed. The operation manipulator and the MRI apparatus are configured to be slidable with respect to the longitudinal direction of the operating table, and are configured to be movable according to the position of the affected part to be treated or imaged. In addition, the operation input means is provided with means for detecting tactile sensation and force, and the force and feel received by the surgical tool from the affected tissue are fed back to the operation input person such as a doctor and an image on the monitor is required. Accordingly, it is possible to switch to an MR image, an endoscopic image, or an ultrasonic scanner image. Furthermore, a crisis management control device is provided to control the operation manipulator, endoscope and ultrasonic scanner to be in an electrically stopped state (mechanical lock state) during measurement by the MRI device so as not to operate. The device has been devised to avoid the influence of the generated magnetic field, so that highly safe surgery can be performed.
また、MRI装置ではその動作原理に磁界を利用しているため、MRI装置使用下で手術を行えるシステムの駆動手段としては磁界を発生せず、しかも、MRI装置によって発生される磁場の影響を受けない超音波モータを用いたアクチュエータが好適とされている。
超音波モータに関する発明には、例えば、特許文献4に「超音波モータ」という名称で、構造が簡易で安価な振動特性にばらつきの少ない超音波モータが開示されている。
In addition, since an MRI apparatus uses a magnetic field for its operating principle, it does not generate a magnetic field as a driving means for a system capable of performing an operation while using the MRI apparatus, and is also affected by the magnetic field generated by the MRI apparatus. An actuator using no ultrasonic motor is preferred.
As an invention relating to an ultrasonic motor, for example, Patent Document 4 discloses an ultrasonic motor having a simple structure and low vibration characteristics with a small variation under the name “ultrasonic motor”.
以下、図7(b)乃至(d)を参照しながら、特許文献4に開示された技術について説明する。
図7(b)に示すように超音波モータ29は振動の節の部分を支持リング33で支持したパイプ状圧電楕円運動振動子30と、このパイプ状圧電楕円運動振動子30の中空部を貫通し両端部がねじ切られている軸と、パイプ状圧電楕円運動振動子30の両端部に具備されるカップ状ローター32と、軸の両端に螺合されたねじ31とで構成され、カップ状ローター32は軸の両端部にねじ31を螺着させることによってパイプ状圧電楕円運動振動子30の両端部に圧接された構造となっている。また、パイプ状圧電楕円運動振動子30の周表面にはパイプ状圧電楕円運動振動子30の長手方向と平行に4つ分割電極34〜36が施されている(4つの分割電極のうち1つは図示せず)。そして、このような構造の超音波モータ29は、分割電極34,36を接続して一つのプラス端子とし残りの分割電極35と図示していない分割電極を接続してマイナス端子として第1の交流電圧を印加すると図7(c)に示すようにパイプ状圧電楕円運動振動子30の中央部が下側あるいは上側に膨らむように屈曲する。すなわち、パイプ状圧電楕円運動振動子30が上下方向に屈曲振動する(以下、第1の屈曲振動と呼ぶ。)。また、分割電極35,36を接続してマイナス端子とし分割電極34と図示していない分割電極を接続してプラス端子として第2の交流電圧を印加すると図7(c)におけるパイプ状圧電楕円運動振動子30の振動方向と垂直な方向、つまり、左右方向にパイプ状圧電楕円運動振動子30が屈曲振動する(以下、第2の屈曲振動と呼ぶ。)。
したがって、このような駆動原理により第1及び第2の交流電圧の位相を変え第1及び第2の屈曲振動の位相をずらすことによって、図7(d)に示すようにパイプ状圧電楕円運動振動子30を円運動または楕円運動させることができる。そして、これによりパイプ状圧電楕円運動振動子30の円運動または楕円運動による回転力が両端部のカップ状ローター32に伝達され、さらに、カップ状ローター32がパイプ状圧電楕円運動振動子30内部に貫通している軸と一緒に回転することによって超音波モータ29を駆動させることができる。なお、カップ状ローター32はねじ31でパイプ状圧電楕円運動振動子30に圧接されているため自動的に位置決めされベアリングを用いなくても安定に回転する。つまり、振動特性のばらつきが少ない超音波モータを得ることができる。
Hereinafter, the technique disclosed in Patent Document 4 will be described with reference to FIGS. 7B to 7D.
As shown in FIG. 7B, the ultrasonic motor 29 penetrates the pipe-shaped piezoelectric elliptical motion vibrator 30 in which the vibration node is supported by the support ring 33 and the hollow portion of the pipe-shaped piezoelectric elliptical motion vibrator 30. And a cup-shaped rotor 32 provided at both ends of the pipe-shaped piezoelectric elliptic motion vibrator 30 and a screw 31 screwed into both ends of the shaft. Reference numeral 32 denotes a structure in which screws 31 are screwed to both ends of the shaft so as to be in pressure contact with both ends of the pipe-like piezoelectric elliptical motion vibrator 30. Further, four divided electrodes 34 to 36 are provided on the peripheral surface of the pipe-shaped piezoelectric elliptical motion vibrator 30 in parallel with the longitudinal direction of the pipe-shaped piezoelectric elliptical motion vibrator 30 (one of the four divided electrodes). Is not shown). In the ultrasonic motor 29 having such a structure, the divided electrodes 34 and 36 are connected to form one plus terminal, and the remaining divided electrode 35 and the divided electrode (not shown) are connected to form the first AC as a minus terminal. When a voltage is applied, the central portion of the pipe-shaped piezoelectric elliptical motion vibrator 30 is bent so as to swell downward or upward as shown in FIG. That is, the pipe-shaped piezoelectric elliptical motion vibrator 30 bends and vibrates in the vertical direction (hereinafter referred to as first bending vibration). When the divided electrodes 35 and 36 are connected to form a negative terminal, the divided electrode 34 and a divided electrode (not shown) are connected to apply a second AC voltage as a positive terminal, and the pipe-shaped piezoelectric elliptical motion in FIG. The pipe-shaped piezoelectric elliptic motion vibrator 30 bends and vibrates in a direction perpendicular to the vibration direction of the vibrator 30, that is, in the left-right direction (hereinafter referred to as second bending vibration).
Therefore, by changing the phase of the first and second AC voltages and shifting the phase of the first and second bending vibrations according to such a driving principle, as shown in FIG. The child 30 can be moved circularly or elliptically. As a result, the circular motion of the pipe-shaped piezoelectric elliptical motion oscillator 30 or the rotational force due to the elliptical motion is transmitted to the cup-shaped rotor 32 at both ends, and the cup-shaped rotor 32 is further introduced into the pipe-shaped piezoelectric elliptical motion oscillator 30. The ultrasonic motor 29 can be driven by rotating together with the penetrating shaft. Since the cup-shaped rotor 32 is pressed against the pipe-shaped piezoelectric elliptic motion vibrator 30 by the screw 31, it is automatically positioned and rotates stably without using a bearing. That is, an ultrasonic motor with little variation in vibration characteristics can be obtained.
しかしながら、上述の従来の技術においては、例えば特許文献1に開示された発明においては、MR画像に歪みを発生させることなく穿刺針等の処置器具を患者の頭部に挿入することができるものの、処置器具の挿入操作は手動操作でありコンピュータ制御による遠隔操作に比べて誤動作を生じる可能性があるという課題があった。 However, in the above-described conventional technique, for example, in the invention disclosed in Patent Document 1, a treatment instrument such as a puncture needle can be inserted into the patient's head without causing distortion in the MR image. The operation of inserting the treatment instrument is a manual operation, and there is a problem that a malfunction may occur as compared with a remote operation by computer control.
また、特許文献2に開示された発明においては、手術器具に磁気センサを具備することによって磁気センサからの手術器具の位置情報をもとにあらかじめ記憶されていたMR画像にこれを合成して被検体内の手術器具の位置をMR画像上でリアルタイムで観察しながら手術を行うことができるとともに手術操作の過程を画像で追跡することができるものの、手術器具の位置情報を合成するMR画像(断層像)は手術前にあらかじめ撮影されたものを使用しているため手術時の被検体の位置情報との間に誤差が含まれる可能性があるという課題があった。 Further, in the invention disclosed in Patent Document 2, by providing a surgical instrument with a magnetic sensor, this is synthesized with an MR image stored in advance based on the position information of the surgical instrument from the magnetic sensor. Although the operation can be performed while observing the position of the surgical instrument in the specimen in real time on the MR image and the process of the surgical operation can be traced by the image, the MR image (tomographic image) that synthesizes the position information of the surgical instrument Since the image) used was taken in advance before the operation, there was a problem that an error may be included between the position information of the subject at the time of the operation.
特許文献3に開示された発明においては、MRI装置、内視鏡あるいは超音波スキャナ等を用いて得られた患者の局所的な画像を見ながらマニピュレータを用いた遠隔操作により手術を行うことができるものの、MRI装置使用中にはマニピュレータ、内視鏡及び超音波スキャナは停止された状態になっているためMRI装置による計測と手術操作を並行して行うことができないという課題があった。 In the invention disclosed in Patent Document 3, an operation can be performed by remote operation using a manipulator while viewing a local image of a patient obtained using an MRI apparatus, an endoscope, an ultrasonic scanner, or the like. However, since the manipulator, the endoscope, and the ultrasonic scanner are in a stopped state while the MRI apparatus is being used, there is a problem that the measurement by the MRI apparatus and the surgical operation cannot be performed in parallel.
特許文献4に開示された発明においては、簡単な構造で安価な超音波モータが提供されているものの、これはパイプ状圧電楕円運動振動子の周方向に励振する構造であるため高い精度を要求される穿刺手術には適していないという課題があった。 In the invention disclosed in Patent Document 4, an inexpensive ultrasonic motor with a simple structure is provided. However, since this is a structure that excites in the circumferential direction of a pipe-shaped piezoelectric elliptical motion vibrator, high accuracy is required. There is a problem that it is not suitable for puncture surgery.
本発明はかかる従来の事情に対処してなされたものであり、MRI装置により発生する磁場の影響を受けにくく高い精度で正確な位置に穿刺することのできる穿刺システムとこれに用いる超音波モータを提供することを目的とする。 The present invention has been made in response to such a conventional situation, and a puncture system that can be punctured to a precise position with high accuracy and is not easily affected by a magnetic field generated by an MRI apparatus, and an ultrasonic motor used therefor are provided. The purpose is to provide.
上記目的を達成するため、請求項1記載の発明である超音波モータは、弾性振動体に着接された圧電素子を超音波振動させることによって弾性振動体に進行波を発生させ、かつ、これに動体を圧着させることによって弾性振動体と動体との間に発生した摩擦力を駆動力として作動する超音波モータにおいて、螺旋状の第1の山部と第1の谷部と第1の側面部を備える雄ネジ部と、この雄ネジ部に螺合し螺旋状の第2の山部と第2の谷部と第2の側面部を備える雌ネジ部とを有し、圧電素子が着接された弾性振動体を第1の山部、第1の谷部あるいは第1の側面部の表面に設け、雌ネジ部を動体とするものである。
上記構成の超音波モータにおいては、一般的な超音波の原理により圧電素子が着接された弾性振動体表面に動体を加圧し圧電素子に2つの異なる位相の電圧をかけることによって弾性振動体表面に進行波を発生させ、進行波の進行方向と逆方向に動体を移動させるという作用を有する。
圧電素子が着接された弾性振動体を雄ネジ部の第1の山部あるいは第1の谷部に螺旋状に配設しこれに雌ネジ部を螺合圧着させて圧電素子に2つの異なる位相の電圧を印加することにより、雄ネジ部の第1の山部、第1の谷部あるいは第1の側面部表面に進行波を発生させ、この進行波の進行方向と逆方向に雌ネジ部の第2の谷部、第2の山部あるいは第2の側面部を移動させるという作用を有する。
In order to achieve the above object, an ultrasonic motor according to a first aspect of the present invention generates a traveling wave in an elastic vibration member by ultrasonically vibrating a piezoelectric element attached to the elastic vibration member. In the ultrasonic motor that operates by using the frictional force generated between the elastic vibrating body and the moving body as a driving force by pressing the moving body on, a spiral first peak portion, a first trough portion, and a first side surface A male threaded portion including a female threaded portion and a female threaded portion threaded into the male threaded portion and having a spiral second peak portion, a second valley portion, and a second side surface portion. The contacted elastic vibration body is provided on the surface of the first peak portion, the first valley portion, or the first side surface portion, and the female screw portion is used as a moving body.
In the ultrasonic motor having the above-described configuration, the surface of the elastic vibration body is applied by applying a voltage of two different phases to the piezoelectric element by applying pressure to the surface of the elastic vibration body to which the piezoelectric element is attached in accordance with a general ultrasonic principle. The traveling wave is generated and the moving body is moved in the direction opposite to the traveling direction of the traveling wave.
The elastic vibration member to which the piezoelectric element is attached is spirally disposed in the first peak portion or the first valley portion of the male screw portion, and the female screw portion is screwed and pressure-bonded thereto, so that two different piezoelectric elements are provided. By applying a phase voltage, a traveling wave is generated on the surface of the first crest, first trough, or first side surface of the male screw, and the female screw is opposite to the traveling direction of the traveling wave. It has the effect | action of moving the 2nd trough part of a part, a 2nd peak part, or a 2nd side part.
また、請求項2に記載の発明である超音波モータは、弾性振動体に着接された圧電素子を超音波振動させることによって弾性振動体に進行波を発生させ、かつ、これに動体を圧着させることによって弾性振動体と動体との間に発生した摩擦力を駆動力として駆動する超音波モータにおいて、螺旋状の第1の山部と第1の谷部と第1の側面部を備える雄ネジ部と、この雄ネジ部に螺合し螺旋状の第2の山部と第2の谷部と第2の側面部を備える雌ネジ部とを有し、前記圧電素子が着接された弾性振動体を前記第2の山部、第2の谷部あるいは第2の側面部の表面に設け、前記雄ネジ部を前記動体とするものである。
上記構成の超音波モータにおいては、請求項1の雌ネジ部と雄ネジ部の機能が逆になった構造であり雌ネジ部が弾性振動体として作用し雄ネジ部が動体として作用するものである。すなわち、第2の山部、第2の谷部あるいは第2の側面部に弾性振動体及び圧電素子が配設された雌ネジ部の圧電素子に2つの異なる位相の電圧を印加することによって雌ネジ部の第2の山部、第2の谷部あるいは第2の側面部に進行波を起こし雌ネジ部の第2の山部、第2の谷部あるいは第2の側面部に螺合する雄ネジ部の第1の谷部、第1の山部あるいは第1の側面部を進行波の進行方向と逆の方向に移動させるという作用を有する。
The ultrasonic motor according to the second aspect of the invention generates a traveling wave in the elastic vibration body by ultrasonically vibrating the piezoelectric element attached to the elastic vibration body, and the moving body is pressure-bonded thereto. In the ultrasonic motor that drives the frictional force generated between the elastic vibrating body and the moving body as a driving force, a male having a spiral first peak portion, a first valley portion, and a first side surface portion. A screw portion, and a female screw portion that is screwed into the male screw portion and includes a spiral second peak portion, a second valley portion, and a second side surface portion, and the piezoelectric element is attached to the screw portion An elastic vibration body is provided on the surface of the second peak portion, the second valley portion, or the second side surface portion, and the male screw portion is used as the moving body.
In the ultrasonic motor having the above configuration, the functions of the female screw portion and the male screw portion of claim 1 are reversed, the female screw portion acts as an elastic vibration body, and the male screw portion acts as a moving body. is there. That is, by applying voltages of two different phases to the piezoelectric element of the female screw part in which the elastic vibrating body and the piezoelectric element are disposed on the second peak part, the second valley part, or the second side face part, A traveling wave is generated in the second peak portion, the second valley portion, or the second side surface portion of the screw portion, and is screwed into the second peak portion, the second valley portion, or the second side surface portion of the female screw portion. It has the effect | action of moving the 1st trough part of a male screw part, a 1st peak part, or a 1st side part in the direction opposite to the advancing direction of a traveling wave.
また、請求項3に記載の発明である穿刺システムは、請求項1又は請求項2に記載の超音波モータの動体先端部に非磁性体の穿刺針を取設したものである。
上記構成の穿刺システムにおいては、請求項1又は請求項2に記載の超音波モータの動体の移動により、MRI装置の発生磁場内において検体に対して穿刺針を挿入あるいは抜出可能とするという作用を有する。
A puncture system according to a third aspect of the present invention is a puncture system in which a nonmagnetic puncture needle is provided at the moving body tip of the ultrasonic motor according to the first or second aspect.
In the puncture system having the above configuration, the puncture needle can be inserted into or extracted from the specimen within the magnetic field generated by the MRI apparatus by moving the moving body of the ultrasonic motor according to claim 1 or 2. Have
本発明の請求項1に記載の超音波モータにおいては、動体である雌ネジ部を螺旋状に回転させ雄ネジ部に対して挿脱可能とすることができる。 In the ultrasonic motor according to the first aspect of the present invention, the internal thread portion which is a moving body can be spirally rotated so that it can be inserted into and removed from the external thread portion.
また、本発明の請求項2に記載の超音波モータにおいては、請求項1に記載の超音波モータとは反対に動体である雄ネジ部を雌ネジ部に対して螺入出させることができる。 Further, in the ultrasonic motor according to claim 2 of the present invention, the male screw portion which is a moving body can be screwed into and out of the female screw portion, contrary to the ultrasonic motor according to claim 1.
本発明の請求項3に記載の穿刺システムにおいては、MRI装置使用下で遠隔操作により穿刺操作を行うことができる。また、請求項1及び請求項2に記載の超音波モータは特許文献4の超音波モータのように上下あるいは左右に大きく励振せず発生した回転運動が螺旋構造により効率よく穿刺針を水平移動させる駆動力へと変換される構造であるため、精度よく穿刺操作を行うことができる。 In the puncture system according to claim 3 of the present invention, the puncture operation can be performed by remote operation using the MRI apparatus. In addition, the ultrasonic motor according to claim 1 and claim 2 can efficiently move the puncture needle horizontally due to the spiral movement generated by the helical structure without being greatly excited vertically or horizontally like the ultrasonic motor of Patent Document 4. Since the structure is converted into driving force, the puncture operation can be performed with high accuracy.
MRI装置使用下でもMRI画像の乱れや他の装置の操作不良を生じることなく利用できる穿刺システムとこれに用いる超音波モータを提供するという目的を、複雑な構造とすることなく実現した。本発明の最良の実施の形態に係る実施例について説明する前に、まず進行波型超音波モータの駆動原理について説明する。 The objective of providing a puncture system and an ultrasonic motor used therefor that can be used without causing disturbance of the MRI image or malfunction of other apparatuses even when the MRI apparatus is used has been realized without a complicated structure. Before describing an example according to the best mode of the present invention, first, the driving principle of a traveling wave type ultrasonic motor will be described.
進行波型超音波モータは下部に圧電素子が貼り付けられたリング状の弾性振動体(ステータ)と、これの上部表面に加圧接触させたリング状の動体(ロータ)とから構成され、弾性振動体に貼付された圧電素子は交互に分極されている。そのため、圧電素子(A)に電圧(sin波)を印加させ、さらに同時に他の圧電素子(B)に電圧(cos波)を印加させると、たわみ進行波がつくりだされる。そして、これによりステータ表面上の質点が進行波の進行方向と反対方向に楕円運動を行う。よって、このように楕円運動をおこなっているステータ表面にロータを加圧接触させると摩擦によってロータがステータの進行波の進行方向と反対方向に移動する。すなわち、ロータが進行波の進行方向と逆の方向に回転する。これが進行波型超音波モータの駆動原理であり、本発明の超音波モータはこのような進行波型超音波モータを応用したものである。 A traveling wave type ultrasonic motor is composed of a ring-shaped elastic vibrating body (stator) with a piezoelectric element attached to the bottom, and a ring-shaped moving body (rotor) in pressure contact with the upper surface. Piezoelectric elements attached to the vibrating body are alternately polarized. Therefore, when a voltage (sin wave) is applied to the piezoelectric element (A) and simultaneously a voltage (cos wave) is applied to another piezoelectric element (B), a bending traveling wave is created. As a result, the mass point on the stator surface performs an elliptical motion in the direction opposite to the traveling direction of the traveling wave. Therefore, when the rotor is brought into pressure contact with the surface of the stator that is performing elliptical motion in this way, the rotor moves in a direction opposite to the traveling direction of the traveling wave of the stator by friction. That is, the rotor rotates in the direction opposite to the traveling direction of the traveling wave. This is the driving principle of a traveling wave type ultrasonic motor, and the ultrasonic motor of the present invention is an application of such a traveling wave type ultrasonic motor.
以下に、本発明の最良の実施の形態に係る超音波モータの実施例1を図1及び図2に基づき説明する。 Example 1 of an ultrasonic motor according to the best mode of the present invention will be described below with reference to FIGS.
図1(a)は本発明の実施の形態に係る実施例1の超音波モータの概念図であり、図1(b)は実施例1の超音波モータのロータを示す概念図であり、図1(c)は実施例1の超音波モータのステータを示す概念図であり、図1(d)は図1(c)中符号Cで示される方向への矢視概念図である。 FIG. 1A is a conceptual diagram of an ultrasonic motor of Example 1 according to the embodiment of the present invention, and FIG. 1B is a conceptual diagram showing a rotor of the ultrasonic motor of Example 1. FIG. 1 (c) is a conceptual diagram illustrating the stator of the ultrasonic motor according to the first embodiment, and FIG. 1 (d) is a conceptual diagram viewed in the direction indicated by the symbol C in FIG. 1 (c).
本発明の超音波モータは図1(a)に示すように雄ネジ3とこれに螺合する雌ネジ4から構成され、実施例1の超音波モータ1aでは雄ネジ3が進行波型超音波モータのステータ5aとして機能する。ロータ2aである雌ネジ4は図1(b)に示すように内周面に谷部4aと山部4bが螺旋状に形成されている。また、図1(c)に示すように雌ネジ4に螺合する雄ネジ3周面には雌ネジ4の谷部4a及び山部4bとそれぞれ螺合する山部3b及び谷部3aが形成されている。側面部3c表面には、下面に圧電素子6aを貼り付けたステータ5aが側面部3c表面と略同一面を形成するように埋設されている。そのため、雌ネジ4に雄ネジ3を螺入する際あるいは雌ネジ4から雄ネジ3を螺出させる際に雄ネジ3側面部3cのステータ5aが雌ネジ4の側面部4cに常に圧着された状態となる。 As shown in FIG. 1A, the ultrasonic motor of the present invention is composed of a male screw 3 and a female screw 4 screwed into the male screw 3. In the ultrasonic motor 1a of the first embodiment, the male screw 3 is a traveling wave type ultrasonic wave. It functions as the stator 5a of the motor. As shown in FIG. 1B, the female screw 4 which is the rotor 2a has a valley portion 4a and a peak portion 4b formed in a spiral shape on the inner peripheral surface. Further, as shown in FIG. 1 (c), a crest portion 3b and a trough portion 3a that are respectively screwed with a trough portion 4a and a crest portion 4b of the female screw 4 are formed on the circumferential surface of the male screw 3 that is screwed with the female screw 4. Has been. On the surface of the side surface portion 3c, a stator 5a having a piezoelectric element 6a attached to the lower surface is embedded so as to form substantially the same surface as the surface of the side surface portion 3c. Therefore, when the male screw 3 is screwed into the female screw 4 or when the male screw 3 is screwed out from the female screw 4, the stator 5 a of the side surface portion 3 c of the male screw 3 is always pressed against the side surface portion 4 c of the female screw 4. It becomes a state.
また、雄ネジ3の山部3bは雄ネジ3周面に螺旋状に形成されているため、側面部3cに埋設されるステータ5a及び圧電素子6aも螺旋状に形成される構造である。よって、雄ネジ3を長手方向から見ると図1(d)に示すように交互に分極した圧電素子6aとこれとλ/4及び3λ/4の間隔をおいて圧電素子6bがリング状に配置される構造となる。したがって、圧電素子6a,6bにそれぞれ交流電圧E2,E1を印加すると進行波型超音波モータの原理に基づいてステータ5a表面に進行波が発生して雄ネジ3に螺合する雌ネジ4がロータ2aとして進行波の進行方向と逆方向に回転する。図1(b)では回転方向を矢印Bとして図示している。ロータ2aである雌ネジ4の回転はステータ5a表面に発生する進行波の方向によって右回転または左回転のいずれも可能である。 Further, since the crest portion 3b of the male screw 3 is formed in a spiral shape on the peripheral surface of the male screw 3, the stator 5a and the piezoelectric element 6a embedded in the side surface portion 3c are also formed in a spiral shape. Accordingly, when the male screw 3 is viewed from the longitudinal direction, as shown in FIG. 1 (d), the alternately polarized piezoelectric elements 6a and the piezoelectric elements 6b are arranged in a ring at intervals of λ / 4 and 3λ / 4. It becomes a structure to be. Therefore, when AC voltages E 2 and E 1 are applied to the piezoelectric elements 6a and 6b, respectively, a traveling wave is generated on the surface of the stator 5a based on the principle of a traveling wave type ultrasonic motor, and the female screw 4 is screwed into the male screw 3. Rotates in the direction opposite to the traveling direction of the traveling wave as the rotor 2a. In FIG. 1B, the rotation direction is shown as an arrow B. The rotation of the female screw 4 serving as the rotor 2a can be either right-handed or left-handed depending on the direction of the traveling wave generated on the surface of the stator 5a.
図2は図1(a)のA−A線矢視断面図である。図2において、図1(a)に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。 FIG. 2 is a cross-sectional view taken along line AA in FIG. In FIG. 2, the same parts as those shown in FIG. 1A are denoted by the same reference numerals, and description of the configuration is omitted.
前述したとおり、ロータ2aである雌ネジ4は雄ネジ3との螺合によって、その側面部4cは雄ネジ3の側面部3cに埋設されたステータ5aに圧着されており、ステータ5aに着接された圧電素子6a,6bに交流電圧をかけて振動させるとロータ2aである雌ネジ4が雄ネジ3の山部3bが形成する螺旋構造に沿って螺旋を描きながら図2中符号Dで示す方向に進行する。これにより、雄ネジ3を下方へと移動させ雌ネジ4内に螺入させることができる。一方、雄ネジ3を雌ネジ4から矢印Dで示す方向へ螺出させたい場合には電圧の位相差の関係を逆にして逆方向の進行波を発生させれば矢印Dで示す方向と逆方向に雌ネジ4を移動させることができ、雄ネジ3を矢印Dで示す方向へと螺出させることができる。 As described above, the female screw 4 which is the rotor 2a is screwed with the male screw 3, and the side surface portion 4c is pressure-bonded to the stator 5a embedded in the side surface portion 3c of the male screw 3, and is attached to the stator 5a. When the piezoelectric elements 6a and 6b are vibrated by applying an AC voltage, the female screw 4 which is the rotor 2a shows a spiral along the spiral structure formed by the mountain portion 3b of the male screw 3 and is indicated by a symbol D in FIG. Proceed in the direction. Thereby, the male screw 3 can be moved downward and screwed into the female screw 4. On the other hand, when the male screw 3 is to be screwed out from the female screw 4 in the direction indicated by the arrow D, if the traveling wave in the reverse direction is generated by reversing the voltage phase difference, the direction opposite to the direction indicated by the arrow D is generated. The female screw 4 can be moved in the direction, and the male screw 3 can be screwed out in the direction indicated by the arrow D.
図3(a)は本発明の実施例2に係る超音波モータのステータを示す概念図であり、図3(b)は実施例2の超音波モータのロータを示す概念図であり、図3(c)は本発明の実施例3に係る超音波モータのロータを示す概念図であり、図3(d)は実施例3の超音波モータのステータを示す概念図であり、図3(e)は本発明の実施例4に係る超音波モータのロータを示す概念図であり、図3(f)は実施例4の超音波モータのステータを示す概念図である。図3において図1に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。 3A is a conceptual diagram showing a stator of an ultrasonic motor according to the second embodiment of the present invention, and FIG. 3B is a conceptual diagram showing a rotor of the ultrasonic motor according to the second embodiment. (C) is a conceptual diagram showing a rotor of an ultrasonic motor according to a third embodiment of the present invention, FIG. 3 (d) is a conceptual diagram showing a stator of the ultrasonic motor of the third embodiment, and FIG. ) Is a conceptual diagram showing a rotor of an ultrasonic motor according to a fourth embodiment of the present invention, and FIG. 3F is a conceptual diagram showing a stator of the ultrasonic motor of the fourth embodiment. In FIG. 3, the same parts as those shown in FIG.
実施例2の超音波モータは図1(a)に示す実施例1の超音波モータと同様にステータである雄ネジ3に対して雌ネジ4がロータとして移動する構造であるが、図3(a)に示すように実施例2の雄ネジ3は側面部3cではなく谷部3aにステータ5b及びこれに着接される圧電素子6cを埋設している。図3(b)に示す実施例2のロータ2bである雌ネジ4は図1(b)の雌ネジ4と同様の構造であり、図1(b)の矢印Bと同様に矢印Eで示される方向へ回転する。 The ultrasonic motor according to the second embodiment has a structure in which the female screw 4 moves as a rotor with respect to the male screw 3 that is a stator, similarly to the ultrasonic motor according to the first embodiment shown in FIG. As shown to a), the external thread 3 of Example 2 embeds the stator 5b and the piezoelectric element 6c attached to this in the trough part 3a instead of the side part 3c. The female screw 4 that is the rotor 2b of the second embodiment shown in FIG. 3B has the same structure as the female screw 4 in FIG. 1B, and is indicated by an arrow E as in the case of the arrow B in FIG. Rotate in the direction of
また、実施例3及び実施例4の超音波モータは実施例1及び実施例2の超音波モータとは逆に雌ネジ4ではなく雄ネジ3がロータとして機能し回転する構造となっている。
特に、実施例3の超音波モータでは図3(d)に示すように雌ネジ4の側面部4cに圧電素子6dを具備したステータ5cが埋設される構造、実施例4の超音波モータでは図3(f)に示すように雌ネジ4の山部4bにステータ5dが埋設される構造となっている。符号6eはステータ5cに着接される圧電素子である。実施例3及び実施例4のロータは図3(c)及び(e)に示すように同構造の雄ネジ3である。符号F,Gは雄ネジ3が回転する方向を表現するものである。
In contrast to the ultrasonic motors of the first and second embodiments, the ultrasonic motors of the third and fourth embodiments have a structure in which the male screw 3 instead of the female screw 4 functions as a rotor and rotates.
In particular, in the ultrasonic motor of the third embodiment, as shown in FIG. 3D, the structure in which the stator 5c having the piezoelectric element 6d is embedded in the side surface portion 4c of the female screw 4 is illustrated. As shown in FIG. 3 (f), the stator 5d is embedded in the crest 4b of the female screw 4. Reference numeral 6e denotes a piezoelectric element that is attached to the stator 5c. The rotor of Example 3 and Example 4 is the external thread 3 of the same structure as shown in FIGS. 3 (c) and 3 (e). Reference numerals F and G represent directions in which the male screw 3 rotates.
ここで、図4を用いて実施例2乃至4の超音波モータの圧電素子、ステータ及びロータの位置と超音波モータを駆動させたときの雄ネジ3及び雌ネジ4の動きについて説明する。 Here, the position of the piezoelectric element, the stator and the rotor of the ultrasonic motors of Examples 2 to 4 and the movement of the male screw 3 and the female screw 4 when the ultrasonic motor is driven will be described with reference to FIG.
図4(a)は実施例2の超音波モータの概略断面図であり、図4(b)は実施例3の超音波モータの概略断面図であり、図4(c)は実施例4の超音波モータの概略断面図である。図4において図3に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。 4A is a schematic cross-sectional view of the ultrasonic motor of the second embodiment, FIG. 4B is a schematic cross-sectional view of the ultrasonic motor of the third embodiment, and FIG. It is a schematic sectional drawing of an ultrasonic motor. 4, parts that are the same as those shown in FIG. 3 are given the same reference numerals, and descriptions thereof will be omitted.
図4(a)に示す実施例2の超音波モータ1bでは、螺旋状に谷部3aに圧電素子6c,6f及びステータ5bが埋設された雄ネジ3が雌ネジ4に螺着されている。したがって、雌ネジ4の山部4bはロータ2bとして雄ネジ3谷部3aに加圧接触している。そのため、図1(d)に示す圧電素子6a,6bと同様に圧電素子6c,6fに交流電圧を印加させて異なる位相で同波長の波を発生させるとステータ5b表面に進行波が発生して雌ネジ4の山部4bが進行波と反対方向に回転する。そして、これにより実施例1と同様に雌ネジ4が図4(a)に示すとおり符号Hで示す方向へと螺動する。言い換えると、雌ネジ4と螺合している雄ネジ3を下方へと移動させることができる。雄ネジ3を矢印Hで示す方向へ移動させたい場合には実施例1と同様に印加電圧の位相差の関係を逆にすれば可能である。 In the ultrasonic motor 1b of the second embodiment shown in FIG. 4A, the male screw 3 in which the piezoelectric elements 6c and 6f and the stator 5b are embedded in the valley 3a in a spiral shape is screwed to the female screw 4. Accordingly, the crest 4b of the female screw 4 is in pressure contact with the male screw 3 trough 3a as the rotor 2b. Therefore, as in the piezoelectric elements 6a and 6b shown in FIG. 1 (d), when an AC voltage is applied to the piezoelectric elements 6c and 6f to generate waves of the same wavelength with different phases, traveling waves are generated on the surface of the stator 5b. The crest 4b of the female screw 4 rotates in the direction opposite to the traveling wave. As a result, similarly to the first embodiment, the female screw 4 is screwed in the direction indicated by symbol H as shown in FIG. In other words, the male screw 3 screwed with the female screw 4 can be moved downward. If it is desired to move the male screw 3 in the direction indicated by the arrow H, it is possible to reverse the relationship of the phase difference of the applied voltage as in the first embodiment.
図4(b)に示す実施例3の超音波モータ1cでは圧電素子6g,6d及びステータ5cが埋設された雌ネジ4側面部4cと雄ネジ3の側面部3cが螺着している。よって、圧電素子6g,6dに交流電圧をかけて雌ネジ4の側面部4表面のステータ5cに進行波を発生させることでこれと接触している雄ネジ3の側面部3cを進行波と逆方向に移動させて雌ネジ4に対して雄ネジ3を矢印Iで示す方向へと螺動させることができる。
図4(c)に示す実施例4の超音波モータ1dにおいては圧電素子6h,6e及びステータ5dが雌ネジ4の山部4bに埋設されている。そのため、実施例3と同様に圧電素子6h,6eの振動によりステータ5d上に進行波を発生させることでロータ2dである雄ネジ3を回転させて矢印Jで示す方向に雄ネジ3を移動させることができる。また、超音波モータ1c,1dの雄ネジ3を矢印I,Jと反対の方向に螺動させたい場合には圧電素子6g,6d,6h,6eにかける印加電圧の位相差の関係を逆にするとよい。
In the ultrasonic motor 1c of the third embodiment shown in FIG. 4B, the side surface 4c of the female screw 4 and the side surface 3c of the male screw 3 in which the piezoelectric elements 6g and 6d and the stator 5c are embedded are screwed. Therefore, by applying an AC voltage to the piezoelectric elements 6g and 6d to generate a traveling wave in the stator 5c on the surface 4 of the female screw 4, the side surface 3c of the male screw 3 in contact therewith is opposite to the traveling wave. The male screw 3 can be screwed in the direction indicated by the arrow I with respect to the female screw 4 by moving in the direction.
In the ultrasonic motor 1 d according to the fourth embodiment shown in FIG. 4C, the piezoelectric elements 6 h and 6 e and the stator 5 d are embedded in the crest 4 b of the female screw 4. Therefore, as in the third embodiment, the traveling screw is generated on the stator 5d by the vibration of the piezoelectric elements 6h and 6e to rotate the male screw 3 as the rotor 2d and move the male screw 3 in the direction indicated by the arrow J. be able to. Further, when the male screw 3 of the ultrasonic motors 1c, 1d is to be screwed in the direction opposite to the arrows I, J, the relationship of the phase difference of the applied voltage applied to the piezoelectric elements 6g, 6d, 6h, 6e is reversed. Good.
図5(a)は実施例5の超音波モータの概略断面図であり、図5(b)は実施例6の超音波モータの概略断面図である。 FIG. 5A is a schematic cross-sectional view of the ultrasonic motor of the fifth embodiment, and FIG. 5B is a schematic cross-sectional view of the ultrasonic motor of the sixth embodiment.
図5(a)の実施例5の超音波モータ1eは実施例1及び実施例2と同様に雌ネジ4がロータ2eとなるものであり、図4(a)に示す実施例2とは逆に雄ネジ3の山部3bにステータ5e及び圧電素子6i,6jを埋設する構造である。このような構造においては圧電素子6i,6jに交流電圧を加えることにより、実施例2と同様に矢印Kの方向へ雌ネジ4を移動させ矢印Kと逆方向に雄ネジ3を螺出させることができる。雄ネジ3を矢印Kの方向に螺出させる場合には印加電圧の方向を逆にすることにより可能となる。超音波モータ1eの駆動原理については実施例1及び実施例2と同様であるため、ここでは説明を省略する。 The ultrasonic motor 1e according to the fifth embodiment shown in FIG. 5A has the female screw 4 as the rotor 2e as in the first and second embodiments, and is opposite to the second embodiment shown in FIG. 4A. Further, the stator 5e and the piezoelectric elements 6i and 6j are embedded in the crest 3b of the male screw 3. In such a structure, by applying an AC voltage to the piezoelectric elements 6i and 6j, the female screw 4 is moved in the direction of the arrow K and the male screw 3 is screwed out in the direction opposite to the arrow K as in the second embodiment. Can do. When the male screw 3 is screwed in the direction of the arrow K, it is possible to reverse the direction of the applied voltage. Since the driving principle of the ultrasonic motor 1e is the same as that of the first and second embodiments, the description thereof is omitted here.
図5(b)に示す実施例6の超音波モータ1fは図4(c)に示す実施例4とほぼ同じ構造であり、圧電素子及びステータが雌ネジ4の山部4bではなく谷部4aに設けられている点が異なる。超音波モータ1fの駆動原理については図4(c)の実施例4と同様に、圧電素子6k,6lに交流電圧を印加して異位相同波長の波を発生させることによってステータ5f上に進行波をつくりだし、ステータ5fが埋設された雌ネジ4谷部4aと雄ネジ3山部3bとの摩擦により雄ネジ3を矢印Lの方向へ移動させるものである。雄ネジ3を下方へ移動させるためには印加電圧の位相差の関係を逆にするとよい。 The ultrasonic motor 1f of the sixth embodiment shown in FIG. 5B has substantially the same structure as that of the fourth embodiment shown in FIG. 4C, and the piezoelectric element and the stator are not the crest 4b of the female screw 4 but the trough 4a. Is different. As for the driving principle of the ultrasonic motor 1f, as in the fourth embodiment of FIG. 4 (c), an AC voltage is applied to the piezoelectric elements 6k and 6l to generate waves of different phases and same wavelengths, and then proceed on the stator 5f. A wave is generated, and the male screw 3 is moved in the direction of the arrow L by friction between the female screw 4 trough 4a and the male screw 3 thread 3b in which the stator 5f is embedded. In order to move the male screw 3 downward, the relationship between the phase differences of the applied voltages may be reversed.
最後に、実施例1乃至実施例6の超音波モータを用いた穿刺システムについて図6を用いて説明する。 Finally, a puncture system using the ultrasonic motors of Examples 1 to 6 will be described with reference to FIG.
図6は本発明の実施の形態に係る超音波モータを用いた穿刺システムの概念図である。 FIG. 6 is a conceptual diagram of a puncture system using the ultrasonic motor according to the embodiment of the present invention.
図6に示す穿刺システムはMRI装置の発生磁場内で使用できるものであり、手術台9に設置されたマニピュレータ7を用いて検体10の頭部10aに非磁性体の穿刺針8を挿入あるいは引抜する穿刺操作を行うものである。また、マニピュレータ7は超音波モータ1f,1gの駆動によりロータ2h,2iを矢印PあるいはQ,矢印RあるいはSの方向へ移動させてロータ2h,2iの露出長さを変えることにより、アーム7aとアーム7b及びアーム7bとアーム7cとの角度及びアーム7a〜7cの全長を変えることができ、遠隔操作によって穿刺針8の位置を調整することができるとともに、MRI画像を観察しながら穿刺針8を挿入すべき位置に正確に位置させることができる。加えて、穿刺針8の挿入及び引抜操作は超音波モータ1eを駆動させてロータ2gを矢印Mで示す方向へ螺出させたり、あるいは、矢印Nで示す方向へ移動させて超音波モータ1eの雌ネジ内に螺入させたりすることによって穿刺針8を検体10頭部10aに対して挿入あるいは引抜させることができる。本発明に用いている進行波型超音波モータは生じた螺旋運動がそのまま穿刺針8をスライドさせる駆動力となるため、このようなシステムを用いることによってMRI装置による検体10の患部の断層像をリアルタイムで取得しながら高精度で穿刺操作を遠隔で行うことができる。
言うまでもないが、穿刺針8だけでなくこの穿刺システムに用いられるその他の部材、アーム7a〜7c、超音波モータ1g〜1i、ロータ2g〜2i及び手術台9はMRI装置によって発生される強い静磁場の影響を受けにくい材料のものを使用するものとする。なお、超音波モータ1g〜1iは図1乃至図5を用いて説明した実施例1乃至実施例6の超音波モータ1a〜1fのいずれかに相当するものであり、ロータ2g〜2iはそれらの超音波モータに付随するロータ2a〜2fのいずれかに相当するものである。
The puncture system shown in FIG. 6 can be used in the magnetic field generated by the MRI apparatus, and a non-magnetic puncture needle 8 is inserted or withdrawn from the head 10a of the specimen 10 using the manipulator 7 installed on the operating table 9. The puncture operation is performed. Further, the manipulator 7 moves the rotors 2h and 2i in the directions of arrows P or Q, arrows R or S by driving the ultrasonic motors 1f and 1g to change the exposed length of the rotors 2h and 2i. The angle of the arm 7b and the arm 7b and the arm 7c and the total length of the arms 7a to 7c can be changed, the position of the puncture needle 8 can be adjusted by remote control, and the puncture needle 8 can be adjusted while observing the MRI image. It can be accurately positioned at the position to be inserted. In addition, the insertion and withdrawal operation of the puncture needle 8 is performed by driving the ultrasonic motor 1e and screwing the rotor 2g in the direction indicated by the arrow M, or by moving the rotor 2g in the direction indicated by the arrow N. The puncture needle 8 can be inserted into or removed from the head 10a of the specimen 10 by being screwed into the female screw. In the traveling wave type ultrasonic motor used in the present invention, the generated spiral motion becomes a driving force for sliding the puncture needle 8 as it is, so that a tomographic image of the affected part of the specimen 10 by the MRI apparatus can be obtained by using such a system. The puncture operation can be performed remotely with high accuracy while acquiring in real time.
Needless to say, not only the puncture needle 8 but also other members used in this puncture system, arms 7a to 7c, ultrasonic motors 1g to 1i, rotors 2g to 2i and operating table 9 are strong static magnetic fields generated by the MRI apparatus. Use materials that are not easily affected by The ultrasonic motors 1g to 1i correspond to any of the ultrasonic motors 1a to 1f of the first to sixth embodiments described with reference to FIGS. 1 to 5, and the rotors 2g to 2i This corresponds to one of the rotors 2a to 2f associated with the ultrasonic motor.
MRI装置使用下でMRI画像やMRI装置周辺の装置に不具合を生じることなく穿刺操作を行うことができるとともに、遠隔操作による定位脳手術を行うのに適用できる。 While using the MRI apparatus, it is possible to perform a puncture operation without causing troubles in an MRI image or an apparatus around the MRI apparatus, and it can be applied to a stereotactic brain operation by remote operation.
1a〜1i…超音波モータ 2a〜2i…ロータ 3…雄ネジ 3a…谷部 3b…山部 3c…側面部 4…雌ネジ 4a…谷部 4b…山部 4c…側面部 5a〜5f…ステータ 6a〜6l…圧電素子 7…マニピュレータ 7a〜7c…アーム 8…穿刺針 9…手術台 10…検体 10a…頭部 11…定位脳手術装置 12…固定環 13…MR信号検出コイル 14…固定ピン 15…チューナー 16…コネクタ 17…アーム 18…スリット 19…保持具 20…処置器具 21…基台 22…患者 23…頭部 24…静磁場発生用磁石 24a,24b…マグネット 25…コネクタ 26…信号伝送ケーブル 27…空間 28…手術台 29…超音波モータ 30…パイプ状圧電楕円運動振動子 31…ねじ 32…カップ状ローター 33…支持リング 34,35,36…分割電極 E1,E2…交流電圧 DESCRIPTION OF SYMBOLS 1a-1i ... Ultrasonic motor 2a-2i ... Rotor 3 ... Male screw 3a ... Valley part 3b ... Mountain part 3c ... Side face part 4 ... Female screw 4a ... Valley part 4b ... Mountain part 4c ... Side part 5a-5f ... Stator 6a ˜6 l ... piezoelectric element 7 ... manipulators 7a-7c ... arm 8 ... puncture needle 9 ... operating table 10 ... specimen 10a ... head 11 ... stereoscopic brain surgery device 12 ... fixed ring 13 ... MR signal detection coil 14 ... fixing pin 15 ... Tuner 16 ... Connector 17 ... Arm 18 ... Slit 19 ... Holder 20 ... Treatment instrument 21 ... Base 22 ... Patient 23 ... Head 24 ... Magnet for generating a static magnetic field 24a, 24b ... Magnet 25 ... Connector 26 ... Signal transmission cable 27 ... Space 28 ... Operating table 29 ... Ultrasonic motor 30 ... Pipe-shaped piezoelectric elliptic motion vibrator 31 ... Screw 32 ... Cup-shaped rotor 33 ... Support rings 34,3 , 36 ... divided electrodes E 1, E 2 ... AC voltage
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003426049A JP4288349B2 (en) | 2003-12-24 | 2003-12-24 | Ultrasonic motor and puncture system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003426049A JP4288349B2 (en) | 2003-12-24 | 2003-12-24 | Ultrasonic motor and puncture system using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005185072A true JP2005185072A (en) | 2005-07-07 |
JP4288349B2 JP4288349B2 (en) | 2009-07-01 |
Family
ID=34785685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003426049A Expired - Lifetime JP4288349B2 (en) | 2003-12-24 | 2003-12-24 | Ultrasonic motor and puncture system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4288349B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009516491A (en) * | 2005-11-18 | 2009-04-16 | 清華大学 | Screw drive polyhedral ultrasonic motor |
JP2012519048A (en) * | 2009-03-02 | 2012-08-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Transurethral ultrasound probe for prostate treatment |
WO2013187010A1 (en) | 2012-06-15 | 2013-12-19 | Canon Kabushiki Kaisha | Medical manipulator and medical imaging system including medical manipulator |
KR101808279B1 (en) | 2017-01-23 | 2017-12-12 | 삼성전자주식회사 | Surgical instrument |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10210776A (en) * | 1997-01-27 | 1998-08-07 | Toshiba Corp | Direct rotary drive integrated ultrasonic motor and electronic apparatus incorporating it |
JP2002111089A (en) * | 2000-07-24 | 2002-04-12 | Omron Corp | Method for manufacturing actuator and strain element |
JP2003219665A (en) * | 2002-01-17 | 2003-07-31 | Kanto Auto Works Ltd | Power cylinder |
-
2003
- 2003-12-24 JP JP2003426049A patent/JP4288349B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10210776A (en) * | 1997-01-27 | 1998-08-07 | Toshiba Corp | Direct rotary drive integrated ultrasonic motor and electronic apparatus incorporating it |
JP2002111089A (en) * | 2000-07-24 | 2002-04-12 | Omron Corp | Method for manufacturing actuator and strain element |
JP2003219665A (en) * | 2002-01-17 | 2003-07-31 | Kanto Auto Works Ltd | Power cylinder |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009516491A (en) * | 2005-11-18 | 2009-04-16 | 清華大学 | Screw drive polyhedral ultrasonic motor |
JP4873269B2 (en) * | 2005-11-18 | 2012-02-08 | 清華大学 | Screw drive polyhedral ultrasonic motor |
JP2012519048A (en) * | 2009-03-02 | 2012-08-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Transurethral ultrasound probe for prostate treatment |
US10058718B2 (en) | 2009-03-02 | 2018-08-28 | Koninklijke Philips N.V. | Transurethral ultrasound probe for treatment of prostate |
WO2013187010A1 (en) | 2012-06-15 | 2013-12-19 | Canon Kabushiki Kaisha | Medical manipulator and medical imaging system including medical manipulator |
US10070925B2 (en) | 2012-06-15 | 2018-09-11 | Canon Kabushiki Kaisha | Medical manipulator and medical imaging system including medical manipulator |
KR101808279B1 (en) | 2017-01-23 | 2017-12-12 | 삼성전자주식회사 | Surgical instrument |
Also Published As
Publication number | Publication date |
---|---|
JP4288349B2 (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090069671A1 (en) | Electric Motor Tracking System and Method | |
JP6740327B2 (en) | Method of operating an apparatus for generating synthetic image data of a target area, method of imaging a target area, and apparatus for generating synthetic image data of a target area | |
JP2024059547A (en) | Device for automated insertion of penetrating member | |
US20070055131A1 (en) | Method for displaying a medical implant in an image and a medical imaging system | |
JP2001104333A (en) | Surgery support device | |
CN107920775A (en) | Guided relative to the probe sonication of anatomical features | |
WO2003005902A1 (en) | Endoscopic image pickup method and magnetic resonance imaging device using the same | |
JP2017153846A (en) | Ultrasonic measurement apparatus and ultrasonic probe | |
JP4288349B2 (en) | Ultrasonic motor and puncture system using the same | |
CN110868905A (en) | Laparoscopic adapter, echocardiographic probe, and method for coupling the adapter to the probe | |
Carvalho et al. | Study of MRI compatible piezoelectric motors by finite element modeling and high-speed digital holography | |
JP6061570B2 (en) | Medical image display device and medical image diagnostic system | |
JP6091776B2 (en) | Magnetic resonance imaging apparatus and image processing apparatus | |
JP4342197B2 (en) | Magnetic resonance elastic imaging apparatus and probe used in the apparatus | |
Gnanago et al. | Actuators for MRE: New perspectives with flexible electroactive materials | |
JP4530799B2 (en) | Ultrasonic diagnostic equipment | |
Tse et al. | A haptic unit designed for magnetic-resonance-guided biopsy | |
JP4668592B2 (en) | Body cavity probe device | |
JP2005163898A (en) | Pressure control valve, pneumatic driving system and puncturing system | |
JP2001198125A (en) | Image diagnostic device | |
JP2005058378A (en) | Operation observation system | |
RU2580199C2 (en) | Recording device with piezoelectric motor used for platen drive for environments with strong magnetic fields | |
US20230090966A1 (en) | Ultrasound-based imaging dual-array probe appartus and system | |
Neidhardt et al. | Deep Learning for High Speed Optical Coherence Elastography with a Fiber Scanning Endoscope | |
JPH03244435A (en) | Surface coil for magnetism resonance imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061128 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090305 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4288349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |