JP2005177570A - Scr catalyst excellent in characteristic at high temperature - Google Patents
Scr catalyst excellent in characteristic at high temperature Download PDFInfo
- Publication number
- JP2005177570A JP2005177570A JP2003419745A JP2003419745A JP2005177570A JP 2005177570 A JP2005177570 A JP 2005177570A JP 2003419745 A JP2003419745 A JP 2003419745A JP 2003419745 A JP2003419745 A JP 2003419745A JP 2005177570 A JP2005177570 A JP 2005177570A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- ion
- type zeolite
- exchanged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、ディーゼルエンジン排ガス中の窒素酸化物の還元処理に用いられる排ガス浄化用触媒に関する。 The present invention relates to an exhaust gas-purifying catalyst used for reduction treatment of nitrogen oxides in diesel engine exhaust gas.
近年、窒素酸化物(以下、「NOx」という)等に関する排ガス規制がますます厳しい条件となっており、その対策が喫緊の課題となっている。 In recent years, exhaust gas regulations relating to nitrogen oxides (hereinafter referred to as “NOx”) have become increasingly severe conditions, and countermeasures have become an urgent issue.
従来から、高温燃焼系からのNOx含有排ガスを浄化する方法としては、種々の方法が提案されている。そして、NOxの固定発生源である大型ボイラー等の排ガスについては、一般に、還元剤としてアンモニアを用いる選択的接触還元法(以下、「SCR法」という)が採用され、実用化されている。 Conventionally, various methods have been proposed as a method for purifying NOx-containing exhaust gas from a high-temperature combustion system. For exhaust gases such as large boilers which are fixed sources of NOx, a selective catalytic reduction method (hereinafter referred to as “SCR method”) using ammonia as a reducing agent is generally adopted and put into practical use.
このSCR法においては、下記反応式:
4NO+4NH3+O2 → 4N2+6H2O、
2NO2+4NH3+O2 → 3N2+6H2O、および
NO+NO2+2NH3 → 2N2+3H2O
に従って、NOxが還元され無害な窒素ガスおよび水蒸気に転換される。
In this SCR method, the following reaction formula:
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O,
2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O and NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O
Accordingly, NOx is reduced and converted into harmless nitrogen gas and water vapor.
このSCR法用の触媒(以下、「SCR触媒」という)としては、例えば、アルミナ、ジルコニア、バナジア/チタニア等の金属酸化物系触媒、ゼオライト系触媒等が採用されている。また、チタンとタングステンとバナジウム、モリブデン、鉄の何れか1種以上を含有する触媒を用いること(特許文献1)、特定組成のシリカ/アルミナを有する鉄・ZSM−5モノシリック構造ゼオライトを用いること(特許文献2)も提案されている。 As the catalyst for the SCR method (hereinafter referred to as “SCR catalyst”), for example, a metal oxide catalyst such as alumina, zirconia, vanadia / titania, a zeolite catalyst, or the like is employed. In addition, a catalyst containing at least one of titanium, tungsten, vanadium, molybdenum, and iron is used (Patent Document 1), and an iron / ZSM-5 monosilic structure zeolite having silica / alumina having a specific composition is used ( Patent Document 2) has also been proposed.
また、地球温暖化物質である亜酸化窒素(N2O)をアンモニアで還元して排ガスから除去することを目的として、触媒として鉄を担持したペンタシル型ゼオライト(ZSM-5)を用いること(特許文献3参照)、同様に鉄を担持したβ型ゼオライトを用いること(特許文献4参照)が提案されている。
しかし、これらはいずれもNOxの移動発生源であるトラック、バス等のディーゼルエンジンの排ガスの浄化方法に関するものではない。
In addition, for the purpose of reducing nitrous oxide (N 2 O), which is a global warming substance, with ammonia and removing it from the exhaust gas, pentasil-type zeolite (ZSM-5) supporting iron is used as a catalyst (patent) Similarly, it has been proposed to use β-type zeolite supporting iron (see Patent Document 4).
However, none of these relates to a method for purifying exhaust gas from diesel engines such as trucks and buses that are sources of NOx migration.
上記SCR法において、還元剤として用いられるアンモニアは刺激臭および毒性があり、圧力容器を用いた運搬および貯蔵が必要であるので、安全性、取り扱い作業性等の点で問題がある。特に、トラック、バス等のディーゼルエンジンの排ガスの脱硝処理システムに適用することは、実用性が低い。 In the SCR method, ammonia used as a reducing agent has an irritating odor and toxicity, and needs to be transported and stored using a pressure vessel. Therefore, there are problems in terms of safety and handling workability. In particular, application to a denitration treatment system for exhaust gas from diesel engines such as trucks and buses is not practical.
アンモニアに代えて、分解してアンモニアを発生する炭酸アンモニウム、尿素、シアヌル酸、メラミン等の常温で固体の化合物を使用することができる。これらは、取り扱い作業性が良好で漏洩等安全面の問題がないことから好ましく、中でも尿素は入手が容易であることからより実用的である。 Instead of ammonia, a solid compound at room temperature such as ammonium carbonate, urea, cyanuric acid or melamine which decomposes to generate ammonia can be used. These are preferable because of good handling workability and no safety problems such as leakage, and urea is more practical because it is easily available.
また、尿素は、下記反応式:
(NH3)2CO+H2O → 2NH3+CO2
に従って加水分解反応によりアンモニアを生成し、該アンモニアが上記のとおりに還元剤として作用し、排ガス中のNOxの還元反応が生じる。尿素は固体であるから、その前記反応系への供給方法としては、例えば、水溶液として噴霧供給する等の方法が採用される。
Urea has the following reaction formula:
(NH 3 ) 2 CO + H 2 O → 2NH 3 + CO 2
Accordingly, ammonia is generated by a hydrolysis reaction, and the ammonia acts as a reducing agent as described above, and a reduction reaction of NOx in the exhaust gas occurs. Since urea is a solid, the supply method to the reaction system is, for example, a method such as spray supply as an aqueous solution.
上記のとおり、排ガス中の亜酸化窒素をアンモニアにより還元除去する方法において、鉄を担持したβ型ゼオライトを触媒として用いること自体は公知である。しかし、従来のSCR法で採用されている触媒を、ディーゼルエンジンの排ガス中のNOx還元反応に適用した場合、前記排ガスの温度範囲全般にわたってNOxの還元が十分に行われないこと、特に高温領域における触媒性能が不十分であることから、前記排ガス中のNOx還元に適したSCR触媒が要求されていた。 As described above, in the method of reducing and removing nitrous oxide in exhaust gas with ammonia, it is known per se to use β-type zeolite carrying iron as a catalyst. However, when the catalyst employed in the conventional SCR method is applied to the NOx reduction reaction in the exhaust gas of a diesel engine, NOx is not sufficiently reduced over the entire temperature range of the exhaust gas, particularly in a high temperature range. Since the catalyst performance is insufficient, an SCR catalyst suitable for NOx reduction in the exhaust gas has been demanded.
従って、本発明の課題は、ディーゼルエンジンの排ガスを対象とし、SCR法によりNOxを還元処理する方法において、特に高温領域における脱硝性能に優れたSCR触媒を提供することである。 Therefore, the subject of this invention is providing the SCR catalyst excellent in the denitration performance in the high temperature area | region especially in the method which carries out reduction processing of NOx by the SCR method for the exhaust gas of a diesel engine.
本発明者らは、上記従来技術を踏まえ、特に高温領域における脱硝性能が高く、水熱安定性に優れるSCR触媒を得るべく、鋭意検討した結果、本発明を完成させるに至った。 Based on the above prior art, the present inventors have intensively studied to obtain an SCR catalyst having high denitration performance particularly in a high temperature region and excellent hydrothermal stability, and as a result, the present invention has been completed.
即ち、本発明は、
ディーゼルエンジン排ガス中の窒素酸化物をアンモニアにより還元する排ガス浄化法に用いられる触媒であって、鉄およびランタンによってイオン交換されたβ型ゼオライトを含む触媒を提供するものである。
That is, the present invention
The present invention provides a catalyst for use in an exhaust gas purification method for reducing nitrogen oxides in diesel engine exhaust gas with ammonia, which comprises a β-type zeolite ion-exchanged with iron and lanthanum.
ディーゼルエンジン排ガス中のNOxをアンモニアにより還元することによって排ガスを浄化する方法において、本発明の触媒は、特に高温領域において優れた脱硝性能を有する。 In the method of purifying exhaust gas by reducing NOx in diesel engine exhaust gas with ammonia, the catalyst of the present invention has excellent denitration performance particularly in a high temperature region.
以下、本発明について詳細に検討する。
先ず、本発明の触媒が好適に用いられる、アンモニア源として尿素を使用するSCR法によるディーゼルエンジン排ガス処理プロセスの該略を図2を参照しながら説明する。なお、この図2はあくまで説明の都合上示したものであり、SCR法はこれに限定されず、また、実用的プロセスとするには、更に、種々の改変が必要とされる。なお、本発明の触媒の適用対象を限定するとの趣旨ではない。
Hereinafter, the present invention will be discussed in detail.
First, the outline of the diesel engine exhaust gas treatment process by the SCR method using urea as an ammonia source in which the catalyst of the present invention is suitably used will be described with reference to FIG. Note that FIG. 2 is only shown for convenience of explanation, and the SCR method is not limited to this, and various modifications are further required to make it a practical process. It is not intended to limit the application target of the catalyst of the present invention.
ディーゼルエンジン1で発生する排ガスは、排ガス管路中の第一酸化触媒2、SCR触媒3、および第二酸化触媒4を経て外部に排出される。予め設定されたプログラムに基づくエンジンコントロールユニット5の制御により、尿素水供給ユニット6は、尿素水を尿素水供給管7を経て排ガス管路中のノズル8に圧送し噴霧させる。噴霧された尿素水は高温の排ガスと混合され、加水分解されてアンモニアを生じ、このアンモニアがSCR触媒3の機能によって排ガス中のNOxを還元する。
Exhaust gas generated in the diesel engine 1 is discharged to the outside through the
第一酸化触媒2は、排ガス中のNOをNO2に転換し、SCR触媒3に供給される排ガス中NO/NO2比を調整するとともに、可溶性有機成分(SOF)を酸化して分解する機能を有する。また、第二酸化触媒4は、主として未反応のアンモニアを酸化する機能を有する。
[β型ゼオライト]
本発明の触媒を調製するために、β型ゼオライトが用いられる。
ゼオライトは、一般に、下記平均組成式:
Mn/xAlnSi(1-n)O2
(式中、Mはカチオン種であり、xは前記Mの価数であり、nは0を越え1未満の数である)
で表される組成を有する多孔性物質である。前記Mのカチオン種としては、Na+等が挙げられる。また、ゼオライトには、例えば、A型、X型、Y型、ZSM-5、MOR等の種々の異なるタイプのものがある。
[Β-type zeolite]
Β-type zeolite is used to prepare the catalyst of the present invention.
Zeolites generally have the following average composition formula:
M n / x Al n Si (1-n) O 2
(Wherein M is a cationic species, x is the valence of M, and n is a number greater than 0 and less than 1)
It is a porous substance which has the composition represented by these. Examples of the M cation species include Na + and the like. There are various different types of zeolite such as A-type, X-type, Y-type, ZSM-5, and MOR.
それらの中でも、β型ゼオライトは単位胞組成が下記平均組成式:
Mm/x[AlmSi(64−m)O128]・pH2O
(式中、Mおよびxは前記と同じであり、mは0を越え 64未満の数であり、pは0以上の数である)
で表される組成を有し、かつ正方晶系である合成ゼオライトとして分類されるものである。そして、β型ゼオライトは、一般に、比較的大きな径を有する一方方向に整列した直線的細孔とこれに交わる曲線的細孔とからなる比較的複雑な3次元細孔構造を有し、イオン交換時のカチオンの拡散およびアンモニア等のガス分子の拡散が容易になされる等の性質を有していることから、本発明の触媒の原料として好適に用いられる。
Among them, β-type zeolite has a unit cell composition of the following average composition formula:
M m / x [Al m Si (64-m) O 128 ] · pH 2 O
(Wherein M and x are the same as above, m is a number greater than 0 and less than 64, and p is a number greater than or equal to 0)
And is classified as a synthetic zeolite having a tetragonal system. Β-type zeolite generally has a relatively complicated three-dimensional pore structure composed of linear pores having a relatively large diameter and aligned in one direction, and curved pores intersecting the linear pores. It is suitably used as a raw material for the catalyst of the present invention because it has properties such as easy diffusion of cations and diffusion of gas molecules such as ammonia.
また、ゼオライトの基本構造は、四面体構造の4頂点に酸素原子を有する構造単位、即ち、[SiO4/2]単位と[AlO4/2]−単位とからなる3次元的結晶構造であり、後者の[AlO4/2]−単位は上記カチオン種とイオン対を形成している。そして、前記イオン対構造を含むことから、他のカチオン種とのイオン交換能を有している。 The basic structure of the zeolite, the structural unit having an oxygen atom in the 4 vertices of the tetrahedron structure, i.e., [SiO 4/2] units and [AlO 4/2] - has a three-dimensional crystal structure consisting of units , the latter [AlO 4/2] - units form the cationic species and the ion pair. And since it contains the said ion pair structure, it has ion exchange ability with other cation species.
本発明の触媒用には、特に、カチオン種が第4級アンモニウムイオン(NH4 +)であり、かつ、SiO2/Al2O3のモル比(以下、「SAR」という)が 15〜300、好ましくは 15〜100、更に好ましくは 15〜60である組成のβ型ゼオライトを用いるのがよい。 For the catalyst of the present invention, in particular, the cation species is quaternary ammonium ion (NH 4 + ), and the molar ratio of SiO 2 / Al 2 O 3 (hereinafter referred to as “SAR”) is 15 to 300. It is preferable to use β-type zeolite having a composition of preferably 15 to 100, more preferably 15 to 60.
SARが前記範囲内であれば、排ガス中に含まれる水分および排ガス温度に起因するゼオライト骨格構造からのAlの脱離が起こり、イオン交換サイト構造または骨格構造の破壊が生じて、触媒の耐久安定性が損なわれ触媒活性の低下が生じやすくなるという問題が生じることなく、活性に富む触媒を容易に得ることができる。 If the SAR is within the above range, the desorption of Al from the zeolite framework structure due to the moisture contained in the exhaust gas and the exhaust gas temperature occurs, the ion exchange site structure or the framework structure is destroyed, and the durability of the catalyst is stabilized. Thus, a catalyst having high activity can be easily obtained without causing the problem that the catalytic activity is deteriorated and the catalytic activity is likely to be lowered.
そして、第4級アンモニウムイオン(NH4 +)は、イオン交換に際して副生する残留成分である塩が、触媒毒となって触媒活性に悪影響を及ぼすことがないことから、本発明で用いるβ型ゼオライトのカチオン種として好ましい。 The quaternary ammonium ion (NH 4 + ) is a β-type used in the present invention because the salt, which is a residual component by-product during ion exchange, does not adversely affect the catalytic activity as a catalyst poison. Preferred as a cationic species for zeolite.
[イオン交換]
本発明の触媒は、イオン交換反応により、上記β型ゼオライトに鉄イオン(Fe3+)を導入するとともに、特に、ランタンイオン(La3+)を導入したものを用いる点に最大の特徴を有するものである。
[Ion exchange]
The catalyst of the present invention has the greatest feature in that iron ions (Fe 3+ ) are introduced into the β-type zeolite by an ion exchange reaction, and in particular, lanthanum ions (La 3+ ) are used. is there.
本発明では、上記の鉄およびランタンによってイオン交換されたβ型ゼオライト(以下、「イオン交換ゼオライト」という)中の鉄原子の含有量が、通常、0.15〜4.1重量%、好ましくは 0.2〜2.0重量%、更に好ましくは 0.50〜0.75重量%、また、鉄原子/ランタン原子のモル比が、通常、1.6〜6.4、好ましくは 2.0〜4.0、更に好ましくは 2.5〜3.5 の範囲内の量とするのがよい。 In the present invention, the content of iron atoms in the β-type zeolite ion-exchanged with iron and lanthanum (hereinafter referred to as “ion-exchanged zeolite”) is usually 0.15 to 4.1% by weight, preferably 0.2 to 2.0% by weight. %, More preferably 0.50 to 0.75% by weight, and the molar ratio of iron atom / lanthanum atom is usually 1.6 to 6.4, preferably 2.0 to 4.0, more preferably 2.5 to 3.5. Good.
鉄およびランタンの含有量が前記範囲内のものであれば、本発明の触媒の調製が容易となり、また、触媒活性が十分に高く、特に高温領域における触媒活性が向上した触媒を得ることができる。 If the content of iron and lanthanum is within the above range, the catalyst of the present invention can be easily prepared, and a catalyst having sufficiently high catalytic activity, particularly improved catalytic activity in a high temperature region can be obtained. .
なお、イオン交換ゼオライトを得る方法は、特に制限されず、常法により、β型ゼオライトを鉄含有化合物(例えば、硝酸第二鉄)の水溶液およびランタン含有化合物(例えば、硝酸ランタン)の水溶液を用いてイオン交換処理すればよい。 The method for obtaining ion-exchanged zeolite is not particularly limited, and β-type zeolite is used in an ordinary manner using an aqueous solution of an iron-containing compound (eg, ferric nitrate) and an aqueous solution of a lanthanum-containing compound (eg, lanthanum nitrate). And ion exchange treatment.
[支持体の使用、支持体担持触媒の調製]
本発明の触媒は、イオン交換ゼオライトを支持体上に担持させたものであることが好ましく、また、ディーゼルエンジン排ガス浄化用触媒として実用的である。
[Use of support, preparation of support-supported catalyst]
The catalyst of the present invention is preferably a catalyst in which ion-exchanged zeolite is supported on a support, and is practical as a diesel engine exhaust gas purification catalyst.
前記支持体としては、フロースルー型のセラミック製もしくは金属製の耐熱性3次元構造体を用いるのがよい。前記3次元構造体としては、例えば、セル断面形状が矩形、正方形、三角形等のハニカムモノリス体、フォーム、メッシュ等が挙げられ、中でもコージェライト等のセラミック製のハニカムモノリス体が好ましい。また、前記ハニカムモノリス体のセル密度としては、通常、100〜900 cpsi、好ましくは 300〜600 cpsi程度とするのがよい。 As the support, it is preferable to use a flow-through ceramic or metal heat-resistant three-dimensional structure. Examples of the three-dimensional structure include honeycomb monoliths having a cell cross-sectional shape of rectangle, square, triangle, etc., foams, meshes, etc. Among them, ceramic honeycomb monoliths such as cordierite are preferable. The cell density of the honeycomb monolith body is usually about 100 to 900 cpsi, preferably about 300 to 600 cpsi.
支持体に担持された形態の本発明の触媒は、公知のウオッシュコート法、即ち、イオン交換ゼオライトを含むスラリー中に前記支持体を浸漬し、引き上げた後に、エアブローにより過剰量のスラリーを除去して、支持体に所定重量のイオン交換ゼオライトを担持させた後、乾燥および焼成を行うことにより調製することができる。前記ウオッシュコート法の諸条件については、特に制限されない。また、支持体に担持されたイオン交換ゼオライトの量は、対象エンジンの容量等によって設計される事項であるが、支持体の単位体積当り、通常、25〜270g/L、好ましくは 35〜240g/L、更に好ましくは 55〜190g/L程度とするのがよい。 The catalyst of the present invention in a form supported on a support is obtained by immersing the support in a well-known wash coat method, that is, by immersing the support in a slurry containing ion exchange zeolite, and then removing excess slurry by air blowing. Then, after a predetermined weight of ion-exchanged zeolite is supported on the support, it can be prepared by drying and calcining. There are no particular restrictions on the conditions of the washcoat method. The amount of ion-exchanged zeolite supported on the support is a matter designed according to the capacity of the target engine, etc., but is usually 25 to 270 g / L, preferably 35 to 240 g / L per unit volume of the support. L, more preferably about 55 to 190 g / L.
以下に、実施例および比較例を示し、本発明をより具体的に説明する。
[実施例]
イオン交換ゼオライト(SAR=22、鉄原子含有量=0.50重量%、ランタン原子含有量=0.38重量%、鉄原子/ランタン原子(モル比)=3.3)の水性スラリーを調製した。このスラリーに、正方形セルを有するコージェライト製モノリス体(400 cpsi)を浸漬し、引き上げた後、エアブローにより過剰量のスラリーを除去し、180℃で 15分間乾燥させ、次いで電気炉中で 450℃で 30分間焼成して、本発明の触媒を得た。イオン交換ゼオライトの担持量は、117g/Lであった。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[Example]
An aqueous slurry of ion-exchanged zeolite (SAR = 22, iron atom content = 0.50 wt%, lanthanum atom content = 0.38 wt%, iron atom / lanthanum atom (molar ratio) = 3.3) was prepared. A cordierite monolith body (400 cpsi) having square cells is immersed in this slurry, pulled up, excess slurry is removed by air blowing, dried at 180 ° C. for 15 minutes, and then 450 ° C. in an electric furnace. And calcined for 30 minutes to obtain the catalyst of the present invention. The amount of ion-exchanged zeolite supported was 117 g / L.
得られた触媒のNOx還元によるディーゼルエンジン排ガスの脱硝性能を、下記評価手法に従って評価した。
[評価手法]
<脱硝性能測定用試料の調製>
実機搭載時の脱硝性能を評価するため、触媒を、ガス流通式電気炉を用いて、水分 10vol%の雰囲気中で 800℃×5時間加熱して、耐久処理を施した。前記耐久処理済み触媒を下記脱硝性能測定用の試料とした。
The NOx reduction performance of diesel engine exhaust gas by NOx reduction of the obtained catalyst was evaluated according to the following evaluation method.
[Evaluation method]
<Preparation of denitration performance measurement sample>
In order to evaluate the denitration performance when the actual equipment was installed, the catalyst was heated at 800 ° C. for 5 hours in an atmosphere of 10 vol% moisture using a gas flow type electric furnace and subjected to durability treatment. The durability-treated catalyst was used as a sample for the following denitration performance measurement.
<脱硝性能の測定>
測定条件
・エンジン容量:8.0L (T/I)
・使用燃料:軽油(硫黄含量=50 ppm 未満)
・運転条件:1500 rpm(負荷を調整して、評価温度を設定した)
・試料評価温度:200℃、300℃、350℃、400℃、および 450℃の5点
・排ガス空間速度:72,000 h-1(一定)
・使用尿素水濃度:32.5 重量%
・尿素水噴霧量:
(上記評価温度が 200℃、300℃の場合)アンモニア換算量/排ガス中のNOx含有量(モル比)=1.0
(上記評価温度が 350℃、400℃、450℃の場合)アンモニア換算量/排ガス中のNOx含有量(モル比)=0.8
・NOx浄化率測定装置:エンジン排ガス管路中に、上流側より順に、サンプリング装置、触媒化DPF(白金金属量:2g/L)、尿素水噴射ノズル、耐久処理済み触媒、およびサンプリング装置が配設されているものを使用した。
<Measurement of denitration performance>
Measurement conditions and engine capacity: 8.0L (T / I)
・ Fuel used: Light oil (Sulfur content = less than 50 ppm)
・ Operating conditions: 1500 rpm (Evaluation temperature is set by adjusting the load)
・ Sample evaluation temperature: 5 points of 200 ℃, 300 ℃, 350 ℃, 400 ℃, and 450 ℃ ・ Exhaust gas space velocity: 72,000 h- 1 (constant)
・ Urea concentration used: 32.5% by weight
・ Urea water spray amount:
(When the evaluation temperature is 200 ° C. and 300 ° C.) Ammonia conversion amount / NOx content in exhaust gas (molar ratio) = 1.0
(When the evaluation temperature is 350 ° C, 400 ° C, 450 ° C) Ammonia equivalent / NOx content in exhaust gas (molar ratio) = 0.8
NOx purification rate measuring device: A sampling device, catalyzed DPF (platinum metal amount: 2 g / L), urea water injection nozzle, endurance treated catalyst, and sampling device are arranged in the engine exhaust gas pipeline in order from the upstream side. We used what was provided.
測定方法
エンジン排ガスをサンプリングして、浄化処理前のNOx(IN)濃度(ppm)を測定した。上記条件で管路中に尿素水をノズルから噴霧した。耐久処理済み触媒を通過した後の排ガス中をサンプリングして、浄化処理後のNOx(OUT)濃度(ppm)を測定し、NOx浄化率(%)を次式により算出した。
Measuring method The engine exhaust gas was sampled, and the NOx (IN) concentration (ppm) before the purification treatment was measured. Under the above conditions, urea water was sprayed from the nozzle into the pipe. The exhaust gas after passing through the durability-treated catalyst was sampled, the NOx (OUT) concentration (ppm) after the purification treatment was measured, and the NOx purification rate (%) was calculated by the following equation.
NOx浄化率(%)=[{NOx(IN)−NOx(OUT)}/NOx(IN)]×100
上記5点の評価温度におけるNOx浄化率(%)の測定結果を、図1に示す。
NOx purification rate (%) = [{NOx (IN) −NOx (OUT)} / NOx (IN)] × 100
The measurement results of the NOx purification rate (%) at the five evaluation temperatures are shown in FIG.
[比較例]
上記実施例に記載のイオン交換ゼオライトに代えて、鉄原子含有量=0.75重量%の、鉄でイオン交換されたβ型ゼオライトを用いること以外は、実施例と同じにして、触媒および脱硝性能測定用試料を調製し、NOx浄化率を測定した。測定結果を、図1に示す。
[Comparative example]
In place of the ion-exchanged zeolite described in the above example, a catalyst and denitration performance measurement were performed in the same manner as in the example except that a β-type zeolite ion-exchanged with iron having an iron atom content = 0.75% by weight was used. Samples were prepared and the NOx purification rate was measured. The measurement results are shown in FIG.
[考察]
実施例および比較例の結果から、ランタンを含む本発明の触媒が、特に排ガス温度が 350〜400℃の高温領域において優れた脱硝性能を示すことは明らかである。
[Discussion]
From the results of Examples and Comparative Examples, it is clear that the catalyst of the present invention containing lanthanum exhibits excellent denitration performance particularly in a high temperature range where the exhaust gas temperature is 350 to 400 ° C.
1 ディーゼルエンジン
2 第一酸化触媒
3 SCR触媒
4 第二酸化触媒
5 エンジンコントロールユニット
6 尿素水供給ユニット
7 尿素水供給菅
8 ノズル
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003419745A JP2005177570A (en) | 2003-12-17 | 2003-12-17 | Scr catalyst excellent in characteristic at high temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003419745A JP2005177570A (en) | 2003-12-17 | 2003-12-17 | Scr catalyst excellent in characteristic at high temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005177570A true JP2005177570A (en) | 2005-07-07 |
JP2005177570A5 JP2005177570A5 (en) | 2006-12-28 |
Family
ID=34781543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003419745A Pending JP2005177570A (en) | 2003-12-17 | 2003-12-17 | Scr catalyst excellent in characteristic at high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005177570A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077957A (en) * | 2005-09-16 | 2007-03-29 | Hino Motors Ltd | Exhaust emission control device |
WO2007138874A1 (en) | 2006-05-29 | 2007-12-06 | Cataler Corporation | NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND METHOD FOR REDUCING NOx |
WO2008038422A1 (en) | 2006-09-27 | 2008-04-03 | Tosoh Corporation | β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE |
WO2009011236A1 (en) * | 2007-07-17 | 2009-01-22 | Honda Motor Co., Ltd. | NOx PURIFYING CATALYST |
WO2009011237A1 (en) * | 2007-07-17 | 2009-01-22 | Honda Motor Co., Ltd. | NOx PURIFYING CATALYST |
JP2009262098A (en) * | 2008-04-28 | 2009-11-12 | Ne Chemcat Corp | Exhaust gas clarifying method using selective reduction catalyst |
WO2009139088A1 (en) | 2008-05-15 | 2009-11-19 | 三井金属鉱業株式会社 | Catalyst for purifying nitrogen oxide |
WO2009141884A1 (en) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | Honeycomb structure |
WO2009141883A1 (en) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | Honeycomb structure |
WO2010021315A1 (en) * | 2008-08-19 | 2010-02-25 | 東ソー株式会社 | Highly heat-resistant β-zeolite and scr catalyst using same |
JP2010215414A (en) * | 2006-05-29 | 2010-09-30 | Ibiden Co Ltd | Honeycomb structure |
WO2011024847A1 (en) | 2009-08-27 | 2011-03-03 | 東ソー株式会社 | Highly heat-resistant aqueous scr catalyst and manufacturing method therefor |
JPWO2009141878A1 (en) * | 2008-05-20 | 2011-09-22 | イビデン株式会社 | Honeycomb structure |
JP2012152744A (en) * | 2012-04-05 | 2012-08-16 | Ne Chemcat Corp | Selective reduction catalyst for cleaning exhaust gas and exhaust gas cleaning device using the catalyst |
JP2012521288A (en) * | 2009-03-24 | 2012-09-13 | コリア インスティチュート オブ エナジー リサーチ | Zeolite catalyst loaded with iron ions, method for producing the same, and method for reducing nitrous oxide alone or nitrous oxide and nitric oxide simultaneously with an ammonia reducing agent using the catalyst |
JP2013139035A (en) * | 2013-03-05 | 2013-07-18 | Ne Chemcat Corp | Exhaust gas purifying method using selective reduction catalyst |
CN103585867A (en) * | 2013-11-26 | 2014-02-19 | 天津大学 | Flue gas desulphurization and denitration method as well as its apparatus |
JP2014139440A (en) * | 2008-01-31 | 2014-07-31 | Basf Corp | Catalyst, system and method utilizing non-zeolite type metal including molecular sieve having cha crystal structure |
CN104437608A (en) * | 2014-10-09 | 2015-03-25 | 南开大学 | Catalyst for performing selective catalytic reduction on nitrogen oxide by ammonia |
WO2018151289A1 (en) * | 2017-02-20 | 2018-08-23 | 株式会社キャタラー | Exhaust gas purifying catalyst |
CN109862956A (en) * | 2015-10-28 | 2019-06-07 | 卡萨尔公司 | The method that denitrification is removed from gas using the zeolite catalyst that iron exchanges |
CN111420703A (en) * | 2020-03-13 | 2020-07-17 | 大连理工大学 | Preparation method and application of motor vehicle exhaust denitration treatment catalyst with high hydrothermal stability |
CN111921556A (en) * | 2020-08-06 | 2020-11-13 | 大连海事大学 | Composite molecular sieve catalyst for NO decomposition and denitration, and preparation method and application thereof |
-
2003
- 2003-12-17 JP JP2003419745A patent/JP2005177570A/en active Pending
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077957A (en) * | 2005-09-16 | 2007-03-29 | Hino Motors Ltd | Exhaust emission control device |
WO2007138874A1 (en) | 2006-05-29 | 2007-12-06 | Cataler Corporation | NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND METHOD FOR REDUCING NOx |
JP2010215414A (en) * | 2006-05-29 | 2010-09-30 | Ibiden Co Ltd | Honeycomb structure |
US9061241B2 (en) | 2006-09-27 | 2015-06-23 | Tosoh Corporation | β-Zeolite for SCR catalyst and method for purifying nitrogen oxides using same |
WO2008038422A1 (en) | 2006-09-27 | 2008-04-03 | Tosoh Corporation | β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE |
WO2009011236A1 (en) * | 2007-07-17 | 2009-01-22 | Honda Motor Co., Ltd. | NOx PURIFYING CATALYST |
WO2009011237A1 (en) * | 2007-07-17 | 2009-01-22 | Honda Motor Co., Ltd. | NOx PURIFYING CATALYST |
JP2009022821A (en) * | 2007-07-17 | 2009-02-05 | Honda Motor Co Ltd | NOx PURIFYING CATALYST |
JP2009022820A (en) * | 2007-07-17 | 2009-02-05 | Honda Motor Co Ltd | NOx PURIFYING CATALYST |
US8425869B2 (en) | 2007-07-17 | 2013-04-23 | Honda Motor Co., Ltd. | NOx purifying catalyst |
US8372366B2 (en) | 2007-07-17 | 2013-02-12 | Honda Motor Co., Ltd. | NOx purifying catalyst |
JP2014139440A (en) * | 2008-01-31 | 2014-07-31 | Basf Corp | Catalyst, system and method utilizing non-zeolite type metal including molecular sieve having cha crystal structure |
US10105649B2 (en) | 2008-01-31 | 2018-10-23 | Basf Corporation | Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
JP2009262098A (en) * | 2008-04-28 | 2009-11-12 | Ne Chemcat Corp | Exhaust gas clarifying method using selective reduction catalyst |
US8551901B2 (en) | 2008-05-15 | 2013-10-08 | Mitsui Mining & Smelting Co., Ltd. | Catalyst for purifying nitrogen oxide |
WO2009139088A1 (en) | 2008-05-15 | 2009-11-19 | 三井金属鉱業株式会社 | Catalyst for purifying nitrogen oxide |
WO2009141883A1 (en) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | Honeycomb structure |
JP5356220B2 (en) * | 2008-05-20 | 2013-12-04 | イビデン株式会社 | Honeycomb structure |
US8202601B2 (en) | 2008-05-20 | 2012-06-19 | Ibiden Co., Ltd. | Honeycomb structure and manufacturing method of the honeycomb structure |
EP2130603A2 (en) * | 2008-05-20 | 2009-12-09 | Ibiden Co., Ltd. | Honeycomb structure |
JPWO2009141878A1 (en) * | 2008-05-20 | 2011-09-22 | イビデン株式会社 | Honeycomb structure |
WO2009141884A1 (en) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | Honeycomb structure |
WO2010021315A1 (en) * | 2008-08-19 | 2010-02-25 | 東ソー株式会社 | Highly heat-resistant β-zeolite and scr catalyst using same |
US8722560B2 (en) | 2008-08-19 | 2014-05-13 | Tosoh Corporation | Highly heat-resistant β-type zeolite and SCR catalyst employing the same |
JP2010070450A (en) * | 2008-08-19 | 2010-04-02 | Tosoh Corp | Highly heat-resistant beta-zeolite and scr catalyst using same |
JP2012521288A (en) * | 2009-03-24 | 2012-09-13 | コリア インスティチュート オブ エナジー リサーチ | Zeolite catalyst loaded with iron ions, method for producing the same, and method for reducing nitrous oxide alone or nitrous oxide and nitric oxide simultaneously with an ammonia reducing agent using the catalyst |
US9138685B2 (en) | 2009-08-27 | 2015-09-22 | Tosoh Corporation | Highly hydrothermal-resistant SCR catalyst and manufacturing method therefor |
WO2011024847A1 (en) | 2009-08-27 | 2011-03-03 | 東ソー株式会社 | Highly heat-resistant aqueous scr catalyst and manufacturing method therefor |
KR20120046722A (en) | 2009-08-27 | 2012-05-10 | 도소 가부시키가이샤 | Highly heat-resistant aqueous scr catalyst and manufacturing method therefor |
JP2012152744A (en) * | 2012-04-05 | 2012-08-16 | Ne Chemcat Corp | Selective reduction catalyst for cleaning exhaust gas and exhaust gas cleaning device using the catalyst |
JP2013139035A (en) * | 2013-03-05 | 2013-07-18 | Ne Chemcat Corp | Exhaust gas purifying method using selective reduction catalyst |
CN103585867A (en) * | 2013-11-26 | 2014-02-19 | 天津大学 | Flue gas desulphurization and denitration method as well as its apparatus |
CN104437608A (en) * | 2014-10-09 | 2015-03-25 | 南开大学 | Catalyst for performing selective catalytic reduction on nitrogen oxide by ammonia |
CN109862956A (en) * | 2015-10-28 | 2019-06-07 | 卡萨尔公司 | The method that denitrification is removed from gas using the zeolite catalyst that iron exchanges |
WO2018151289A1 (en) * | 2017-02-20 | 2018-08-23 | 株式会社キャタラー | Exhaust gas purifying catalyst |
CN110325276A (en) * | 2017-02-20 | 2019-10-11 | 株式会社科特拉 | Exhaust gas purification catalyst |
JPWO2018151289A1 (en) * | 2017-02-20 | 2019-12-12 | 株式会社キャタラー | Exhaust gas purification catalyst |
US11202991B2 (en) | 2017-02-20 | 2021-12-21 | Cataler Corporation | Exhaust gas purifying catalyst |
US11701615B2 (en) | 2017-02-20 | 2023-07-18 | Cataler Corporation | Exhaust gas purifying catalyst |
CN111420703A (en) * | 2020-03-13 | 2020-07-17 | 大连理工大学 | Preparation method and application of motor vehicle exhaust denitration treatment catalyst with high hydrothermal stability |
CN111921556A (en) * | 2020-08-06 | 2020-11-13 | 大连海事大学 | Composite molecular sieve catalyst for NO decomposition and denitration, and preparation method and application thereof |
CN111921556B (en) * | 2020-08-06 | 2023-08-22 | 大连海事大学 | Composite molecular sieve catalyst for NO decomposition and denitration, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4745968B2 (en) | Denitration catalyst with excellent low temperature characteristics | |
JP2005177570A (en) | Scr catalyst excellent in characteristic at high temperature | |
KR101974704B1 (en) | Bifunctional catalysts for selective ammonia oxidation | |
ES2542510T3 (en) | CHA copper zeolite catalysts | |
ES2396441T3 (en) | Denitrification catalyst, optionally applied as a coating on a support with honeycomb structure, and exhaust gas denitrification method that uses it | |
ES2618452T3 (en) | Exhaust gas treatment system comprising zeolite catalysts of copper CHA type | |
EP2113296A2 (en) | Exhaust gas purification method using selective reduction catalyst | |
EP2659974B1 (en) | Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same | |
KR100765413B1 (en) | An oxidation catalyst for NH3 and an apparatus for treating slipped or scrippedd NH3 | |
US20110064632A1 (en) | Staged Catalyst System and Method of Using the Same | |
AU3877501A (en) | A process and catalyst for reducing nitrogen oxides | |
JP2014528394A (en) | Low linchaba site | |
EP1904229A1 (en) | An oxidation catalyst for nh3 and an apparatus for treating slipped or scrippedd nh3 | |
KR102486612B1 (en) | SCR catalyst device containing vanadium oxide and iron containing molecular sieve | |
JP2023026798A (en) | Waste gas processing system of ammonia engine and waste gas processing method of ammonia engine | |
JP2006289211A (en) | Ammonia oxidation catalyst | |
JP4316901B2 (en) | Diesel exhaust gas treatment method and treatment apparatus | |
JPS637826A (en) | Removing method for nitrous oxide in gas mixture | |
JP3944597B2 (en) | Nitrogen oxide removing catalyst and nitrogen oxide removing method | |
JP3970093B2 (en) | Ammonia decomposition removal method | |
RU2822826C2 (en) | ZEOLITE PROMOTED V/Ti/W CATALYSTS | |
JPH06343868A (en) | Production of denitrating agent | |
JPH06269674A (en) | Production of denitration agent and denitration method | |
JPH06269673A (en) | Production of denitration agent and denitration method | |
BRPI0808091B1 (en) | CATALYST, EXHAUST GAS TREATMENT SYSTEM, PROCESS FOR REDUCTION OF NITROGEN OXIDES, AND CATALYST ARTICLE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20090814 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20090819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091117 |