[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005172653A - Lifetime monitoring device of power supply device - Google Patents

Lifetime monitoring device of power supply device Download PDF

Info

Publication number
JP2005172653A
JP2005172653A JP2003414343A JP2003414343A JP2005172653A JP 2005172653 A JP2005172653 A JP 2005172653A JP 2003414343 A JP2003414343 A JP 2003414343A JP 2003414343 A JP2003414343 A JP 2003414343A JP 2005172653 A JP2005172653 A JP 2005172653A
Authority
JP
Japan
Prior art keywords
power supply
ripple
voltage
supply device
ripple voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414343A
Other languages
Japanese (ja)
Inventor
Kenichi Ito
憲一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003414343A priority Critical patent/JP2005172653A/en
Publication of JP2005172653A publication Critical patent/JP2005172653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for always monitoring automatically accurately the lifetime of a power supply device. <P>SOLUTION: The lifetime of the power supply device is determined by utilizing the fact that the lifetime of the power supply device is originated in the lifetime of an electrolytic capacitor and that the lifetime of the electrolytic capacitor appears as an increase of a ripple voltage of an output voltage of the device. Since a noise component has the most adverse effect on a load, in the ripple voltage, the lifetime is determined from the increasing rate of the noise component in the ripple voltage. A ripple voltage detection part 11 always detects the ripple voltage included in the output voltage from the power supply device, and acquires a lifetime determination output of the power supply device when the ripple voltage exceeds a set level. Detection of the ripple voltage is performed relative to the noise component. A band selecting circuit 12 selects and sets from among an AC ripple noise, a ripple, a noise, a switching ripple and an AC ripple included in the output voltage. A standard setting circuit 13 sets the set level for increase detection of the ripple voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、変電所などライフラインに直結する社会インフラの保護監視制御システム用電源装置など、高い信頼性が要求される電源装置の寿命を判定するための監視装置に関する。   The present invention relates to a monitoring device for determining the life of a power supply device that requires high reliability, such as a power supply device for a protection monitoring control system of a social infrastructure directly connected to a lifeline such as a substation.

変電所などライフラインに直結する社会インフラの保護監視制御システムには、23年の設計寿命をしばしば求められる。   Social infrastructure protection monitoring control systems that are directly connected to lifelines such as substations often require a design life of 23 years.

そのような保護監視制御システムに電源を供給する電源装置には、電解コンデンサの交換に代表されるメンテナンスの間隔期間を広くするようなニーズが大きい。   There is a great need for a power supply device that supplies power to such a protection monitoring control system so as to widen a maintenance interval represented by replacement of an electrolytic capacitor.

予防保全の関係から定期的な交換をするユーザの他に、他のインタロックを準備し、電源装置が壊れてから交換するユーザに大別されるが、後者についても電源装置の実寿命を予め実測することにより、定期的でなく壊れる寸前にメンテナンスしたいというニーズが高まりつつある。   In addition to users who regularly replace for preventive maintenance, other interlocks are prepared and users are replaced after the power supply breaks down. There is a growing need to perform maintenance on the verge of breaking rather than regularly.

現在、無停電電源装置に用いられる蓄電池やコンデンサに流れるリップル電流を測定し、このリップル電流値からコンデンサや蓄電池の劣化状況を監視するものがある(例えば、特許文献1参照)。   Currently, there is one that measures a ripple current flowing in a storage battery or a capacitor used in an uninterruptible power supply and monitors the deterioration state of the capacitor or the storage battery from the ripple current value (see, for example, Patent Document 1).

他に電解コンデンサの温度を計測し、マイコンにて寿命計算を繰り返す方式がある(例えば、特許文献2参照)。   Another method is to measure the temperature of the electrolytic capacitor and repeat the life calculation with a microcomputer (for example, see Patent Document 2).

なお、寿命監視対象となる電源装置には、直流電源と交流電源がある。直流電源にはその小型・軽量化を図るためスイッチング電源方式が多く採用され。また、交流電源には固定電圧・固定周波数のCVCFインバータで構成する無停電電源が多く採用される。
特開平09−121471号公報 特開2001−165979号公報
In addition, there are a DC power source and an AC power source as power supply devices to be monitored for life. In order to reduce the size and weight of DC power supplies, many switching power supply systems are adopted. In addition, an uninterruptible power supply composed of a CVCF inverter having a fixed voltage and a fixed frequency is often used as the AC power supply.
Japanese Patent Laid-Open No. 09-121471 Japanese Patent Laid-Open No. 2001-165879

特許文献1の方式では、コンデンサ等に流れる電源基本周波数成分のリップル電流の計測のため、コンデンサや蓄電池単体の劣化判定になり、電源装置の寿命判定にはならない。   In the method of Patent Document 1, since the ripple current of the fundamental frequency component of the power source flowing in the capacitor or the like is measured, the deterioration of the capacitor or the storage battery alone is determined, and the life of the power supply device is not determined.

特許文献2のように、電解コンデンサの温度を計測し、マイコンにて寿命計算を繰り返す方式では、あくまでも計算値であって、実際の寿命との誤差が大きい。また、複雑で大掛かりな処理装置が必要となる。   In the method of measuring the temperature of the electrolytic capacitor and repeating the lifetime calculation with a microcomputer as in Patent Document 2, it is a calculated value to the last and has a large error from the actual lifetime. In addition, a complicated and large-scale processing apparatus is required.

現在、電源装置の寿命監視には、市販のリップルノイズメータを使い、所定の判定基準を準備してリップルノイズをマンパワーにて実測し、保守の要否を判定することが考えられるが、運用としては本格化していない。   Currently, it is conceivable to use a commercially available ripple noise meter to monitor the life of a power supply, prepare predetermined criteria, measure ripple noise with manpower, and determine whether maintenance is necessary. Is not in full swing.

本発明の目的は、電源装置の寿命監視に、自在性を有し、装置構成を複雑にすることなく、正確に常時自動監視ができる監視装置を提供することにある。     SUMMARY OF THE INVENTION An object of the present invention is to provide a monitoring device that has flexibility in monitoring the life of a power supply device, and that can always perform automatic monitoring accurately without complicating the device configuration.

本発明は、電源装置の寿命が装置内に使用される電解コンデンサの寿命として捉えることができ、装置に多く設けられる電解コンデンサのいずれかの寿命が電源装置の出力に含まれるリップル電圧の増大として現れることに着目し、電源装置の出力端のリップル電圧を検出して電源装置の寿命を判定し、さらに、リップル電圧のうちノイズ成分が負荷に最も悪影響を及ぼすことに着目し、電源装置の出力電圧に含まれるリップル電圧のうち、ノイズ成分が設定レベルを越えたか否かから寿命を判定することで、前記の課題を解決したもので、以下の構成を特徴とする。   In the present invention, the life of the power supply device can be regarded as the life of the electrolytic capacitor used in the device, and any one of the electrolytic capacitors provided in the device is increased as the ripple voltage included in the output of the power supply device. Focus on the fact that it appears, determine the life of the power supply by detecting the ripple voltage at the output terminal of the power supply, and pay attention to the fact that the noise component of the ripple voltage has the most adverse effect on the load. Of the ripple voltage included in the voltage, the life is determined from whether or not the noise component has exceeded the set level, thereby solving the above-mentioned problems and characterized by the following configuration.

(1)電源装置の寿命を判定するための監視装置であって、
電源装置の出力電圧に含まれるリップル電圧を常時検出し、このリップル電圧が設定レベルを越えたときに電源装置の寿命と判定することを特徴とする。
(1) A monitoring device for determining the life of a power supply device,
A ripple voltage included in the output voltage of the power supply device is always detected, and when the ripple voltage exceeds a set level, the life of the power supply device is determined.

(2)前記リップル電圧の検出は、リップル電圧のうち、ノイズが設定レベルを越えたときに電源装置の寿命判定出力を得ることを特徴とする。   (2) The detection of the ripple voltage is characterized in that when the noise of the ripple voltage exceeds a set level, a life determination output of the power supply device is obtained.

(3)前記リップル電圧の検出は、ACリップルノイズ、リップル、ノイズ、スイッチングリップル、ACリップルのうち、検出するリップル電圧を選択設定可能にしたことを特徴とする。   (3) The detection of the ripple voltage is characterized in that a ripple voltage to be detected can be selected and set among AC ripple noise, ripple, noise, switching ripple, and AC ripple.

(4)前記リップル電圧の検出は、前記設定レベルを設定可能にしたことを特徴とする。   (4) The detection of the ripple voltage is characterized in that the set level can be set.

以上のとおり、本発明によれば、電源装置の出力電圧に含まれるリップル電圧を基にして電源装置の寿命を判定し、さらに、リップル電圧のうち、ノイズ成分から寿命を判定するようにしたため、以下の効果がある。   As described above, according to the present invention, the life of the power supply device is determined based on the ripple voltage included in the output voltage of the power supply device, and further, the life is determined from the noise component of the ripple voltage. It has the following effects.

(1)電源装置の多くの設けられる電解コンデンサの寿命が電源装置の出力電圧のリップル電圧として現れることを基にして電源装置の寿命を判定するため、寿命を確実に監視・判定ができる。これに伴い、電源寿命ぎりぎりまで使うことができ、ユーザの保守費用を軽減できる。   (1) Since the life of the power supply device is determined based on the fact that the life of many electrolytic capacitors provided in the power supply device appears as a ripple voltage of the output voltage of the power supply device, the life can be reliably monitored and judged. Along with this, it can be used to the end of the power supply life, and the maintenance cost of the user can be reduced.

(2)寿命到を常時監視することによって、巡視費用を削減できる。   (2) The inspection cost can be reduced by constantly monitoring the end of life.

(3)実際のリップル増加を監視するため誤差が小さい。   (3) Since the actual ripple increase is monitored, the error is small.

(4)監視リップル波形の設定、増加量などの判定基準を設定をできることにより、負荷毎に、ユーザが自在に安全マージンを設定できる。   (4) Since it is possible to set judgment criteria such as setting of monitoring ripple waveform and increase amount, the user can freely set a safety margin for each load.

(5)リップル電圧のうち、ノイズ成分の増加から寿命を判定する場合には、コンピュータなどの重要な負荷の電源装置として信頼性を高めることができる。   (5) When the life is determined from an increase in the noise component of the ripple voltage, reliability can be improved as a power supply device for an important load such as a computer.

(6)装置構成が複雑になることなく、安価になる。   (6) The apparatus configuration is not complicated and is inexpensive.

図1は、本発明の実施形態を示す監視装置の機能ブロック図である。図において、1〜6は保護監視制御システム用の電源装置の構成例を示し、スイッチング方式の電源装置で示す。   FIG. 1 is a functional block diagram of a monitoring apparatus showing an embodiment of the present invention. In the figure, reference numerals 1 to 6 denote configuration examples of the power supply device for the protection monitoring control system, which are shown as switching type power supply devices.

整流器などで構成する直流電源1の直流出力から、電解コンデンサなどで構成する入力平滑回路2でリップル等を除去する。高周波トランスと半導体スイッチで構成するスイッチング部3は、制御部4による半導体スイッチの高周波スイッチング制御によって所定電圧の高周波電力に変換出力する。フィルタ5は、スイッチング部3の出力からスイッチング周波数成分を除去する。出力平滑回路6は、フィルタ5を通した高周波電力を整流・平滑して直流電力に変換し、コンピュータなどの負荷7に所定電圧の直流電力を供給する。   Ripple or the like is removed from the direct current output of the direct current power source 1 composed of a rectifier or the like by an input smoothing circuit 2 composed of an electrolytic capacitor or the like. The switching unit 3 composed of a high-frequency transformer and a semiconductor switch converts and outputs high-frequency power of a predetermined voltage by high-frequency switching control of the semiconductor switch by the control unit 4. The filter 5 removes a switching frequency component from the output of the switching unit 3. The output smoothing circuit 6 rectifies and smoothes the high-frequency power passed through the filter 5 to convert it into DC power, and supplies DC power of a predetermined voltage to a load 7 such as a computer.

このような電源装置において、その寿命は電解コンデンサの寿命として捉えることができる。すなわち、電源装置の使用部品の中で、アルミニウム電解コンデンサが最も寿命が短い部品である。その他の寿命のある部品には、絶縁材などの樹脂があるが、それらは20〜30年以上の寿命があり、一般的な電子機器を対象とした場合は、殆ど問題にならない。   In such a power supply device, the lifetime can be regarded as the lifetime of the electrolytic capacitor. That is, among the components used in the power supply device, the aluminum electrolytic capacitor is the component having the shortest life. Other parts having a lifetime include a resin such as an insulating material, but they have a lifetime of 20 to 30 years or more, and hardly cause a problem when a general electronic device is targeted.

したがって、本実施形態では、アルミニウム電解コンデンサの寿命を検出して電源装置の寿命と判定する。この電解コンデンサの寿命は静電容量が許容値を下回ったり(ドライアップ:電解コンデンサで使用している電解液の蒸発現象)、誘電正接(tanδ)が大きくなったり、漏れ電流が大きくなった状態を呈し、これら現象でリップル電圧の増大として現れるため、このリップル電圧を検出し、電解コンデンサの寿命、すなわち電源装置の寿命を判定する。   Therefore, in this embodiment, the lifetime of the aluminum electrolytic capacitor is detected to determine the lifetime of the power supply device. The life of this electrolytic capacitor is such that the capacitance falls below the allowable value (dry up: evaporation phenomenon of the electrolyte used in the electrolytic capacitor), the dielectric loss tangent (tan δ) increases, or the leakage current increases. Since this phenomenon appears as an increase in the ripple voltage, the ripple voltage is detected to determine the life of the electrolytic capacitor, that is, the life of the power supply device.

ここで、電源装置内でアルミニウム電解コンデンサが使用される回路部分は、主に入出力平滑回路2、6、内部補助電源回路、制御部4の位相補正回路などに設けられ、どの回路のコンデンサが寿命になったかで、電源に与える影響は異なる。   Here, the circuit portion in which the aluminum electrolytic capacitor is used in the power supply device is mainly provided in the input / output smoothing circuits 2 and 6, the internal auxiliary power supply circuit, the phase correction circuit of the control unit 4, etc. The effect on the power supply differs depending on the end of the service life.

・入力平滑回路:リップル電圧大→電源停止
・出力平滑回路:リップル電圧大→矩形波状の出力電圧
・補助電源回路:制御動作が停止→電源停止
・制御回路の位相補正:補正不能→出力発振
本実施形態では、上記のいずれの回路に使用される電解コンデンサの劣化にも、出力平滑回路6の出力にリップル電圧の増大として現れること、および出力に含まれるリップル電圧が負荷の動作に最も大きく影響することに着目し、電源装置の出力電圧に含まれるリップル電圧が装置寿命を判定する。
・ Input smoothing circuit: High ripple voltage → Power supply stop ・ Output smoothing circuit: High ripple voltage → Rectangular wave output voltage ・ Auxiliary power supply circuit: Control operation stopped → Power supply stop ・ Phase correction of control circuit: Uncorrectable → Output oscillation In the embodiment, the deterioration of the electrolytic capacitor used in any of the above circuits appears as an increase in the ripple voltage at the output of the output smoothing circuit 6, and the ripple voltage included in the output has the greatest influence on the operation of the load. Paying attention to this, the ripple voltage included in the output voltage of the power supply apparatus determines the life of the apparatus.

図1において、11〜14は本実施形態による監視装置を示す。リップル検出部11は、整流平滑回路6から負荷7に供給する直流出力に含まれるリップル電圧を検出し、このリップル電圧の監視で電源装置の寿命を判定する。   In FIG. 1, reference numerals 11 to 14 denote monitoring apparatuses according to the present embodiment. The ripple detection unit 11 detects a ripple voltage included in a DC output supplied from the rectifying / smoothing circuit 6 to the load 7 and determines the life of the power supply device by monitoring the ripple voltage.

ここで、リップル電圧は、図2に示すようになり、下記5種類に大別できる。   Here, the ripple voltage is as shown in FIG. 2, and can be roughly classified into the following five types.

(a)ACリップルノイズ
(b)リップル
(c)ノイズ
(d)スイッチングリップル
(e)ACリップル
このうち、リップル電圧の増大が、負荷7であるコンピュータなどに対して悪影響を及ぼすのは一般に、ノイズであることから、上記の(c)ノイズの電圧増加率(または増加量)を予め設定しておき、これを越えた時点で寿命と判定するのが好ましい。
(A) AC ripple noise (b) Ripple (c) Noise (d) Switching ripple (e) AC ripple Of these, the increase in ripple voltage generally has an adverse effect on computers such as the load 7 in general. For this reason, it is preferable that the voltage increase rate (or increase amount) of the above (c) noise is set in advance, and the life is determined when it exceeds this.

帯域選択回路12は、リップル電圧検出部11で検出する帯域を上記の5種類のリップル電圧のうち、検出しようとするリップルの帯域を選択・設定可能にする。この設定は、例えば帯域フィルタの回路定数を可変にし、(c)ノイズの帯域に設定する。基準設定回路13は、例えばリップル電圧検出部11で検出するノイズ電圧の増加率を設定する。この設定は、例えば基準電圧の分圧回路の分圧比を可変にし、例えば50%に設定可能にする。   The band selection circuit 12 makes it possible to select and set the band of the ripple to be detected among the above five types of ripple voltages as the band detected by the ripple voltage detector 11. In this setting, for example, the circuit constant of the band filter is made variable, and (c) a noise band is set. The reference setting circuit 13 sets the increase rate of the noise voltage detected by the ripple voltage detection unit 11, for example. In this setting, for example, the voltage dividing ratio of the voltage dividing circuit for the reference voltage is made variable and can be set to 50%, for example.

リップル電圧検出部11は、これら帯域選択回路12と基準設定回路13による設定の基に、ノイズ成分が設定される増加率を越えたか否かを検出する。判定出力部14は、リップル電圧検出部11に検出出力がなされたときに、電源装置の寿命判定出力を発生する。   The ripple voltage detection unit 11 detects whether or not the noise component has exceeded the set increase rate based on the settings by the band selection circuit 12 and the reference setting circuit 13. The determination output unit 14 generates a life determination output of the power supply device when a detection output is made to the ripple voltage detection unit 11.

リップル電圧検出部11は、負荷7の電源ラインの電圧信号を狭帯域のフィルタを通すことで、例えば(c)ノイズの電圧成分のみを抽出し、このノイズ電圧を増幅器で増幅し、この増幅した電圧をダイオードで整流およびコンデンサで平滑して直流電圧に変換し、この直流電圧が設定される増加率を越えるレベルに達したか否かを電圧比較回路で検出する構成で実現される。   The ripple voltage detection unit 11 extracts only the voltage component of (c) noise, for example, by passing the voltage signal of the power line of the load 7 through a narrow band filter, amplifies the noise voltage with an amplifier, and amplifies this The voltage is rectified by a diode and smoothed by a capacitor and converted to a DC voltage, and the voltage comparison circuit detects whether or not the DC voltage has reached a level exceeding a set increase rate.

以上までの監視装置は、スイッチング方式の電源装置の監視に適用する場合を示すが、無停電電源などの交流電源の監視に適用して同等の作用効果を得ることができる。   Although the above monitoring apparatus shows the case where it applies to monitoring of a switching type power supply device, it can apply to monitoring of AC power supplies, such as an uninterruptible power supply, and can obtain an equivalent effect.

本発明の実施形態を示す監視装置の機能ブロック図。The functional block diagram of the monitoring apparatus which shows embodiment of this invention. リップル電圧の種類を説明する波形図。The wave form diagram explaining the kind of ripple voltage.

符号の説明Explanation of symbols

1 直流電源
2 入力平滑回路
3 スイッチング部
4 制御部
5 フィルタ
6 出力平滑回路
7 負荷
11 リップル電圧検出部
12 帯域選択回路
13 基準設定回路
14 判定出力部
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Input smoothing circuit 3 Switching part 4 Control part 5 Filter 6 Output smoothing circuit 7 Load 11 Ripple voltage detection part 12 Band selection circuit 13 Reference setting circuit 14 Judgment output part

Claims (4)

電源装置の寿命を判定するための監視装置であって、
電源装置の出力電圧に含まれるリップル電圧を常時検出し、このリップル電圧が設定レベルを越えたときに電源装置の寿命と判定することを特徴とする電源装置の寿命監視装置。
A monitoring device for determining the life of a power supply device,
A life monitoring device for a power supply device, characterized in that a ripple voltage included in an output voltage of the power supply device is always detected, and the life of the power supply device is determined when the ripple voltage exceeds a set level.
前記リップル電圧の検出は、リップル電圧のうち、ノイズが設定レベルを越えたときに電源装置の寿命判定出力を得ることを特徴とする請求項1に記載の電源装置の寿命監視装置。   2. The power supply device life monitoring apparatus according to claim 1, wherein the ripple voltage is detected by obtaining a life determination output of the power supply device when noise exceeds a set level in the ripple voltage. 前記リップル電圧の検出は、ACリップルノイズ、リップル、ノイズ、スイッチングリップル、ACリップルのうち、検出するリップル電圧を選択設定可能にしたことを特徴とする請求項1または2に記載の電源装置の寿命監視装置。   The life of the power supply apparatus according to claim 1 or 2, wherein the ripple voltage is detected by selecting a ripple voltage to be detected from AC ripple noise, ripple, noise, switching ripple, and AC ripple. Monitoring device. 前記リップル電圧の検出は、前記設定レベルを設定可能にしたことを特徴とする請求項1〜3のいずれか1項に記載の電源装置の寿命監視装置。   The life monitoring apparatus for a power supply apparatus according to any one of claims 1 to 3, wherein the setting of the setting level is enabled for detection of the ripple voltage.
JP2003414343A 2003-12-12 2003-12-12 Lifetime monitoring device of power supply device Pending JP2005172653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414343A JP2005172653A (en) 2003-12-12 2003-12-12 Lifetime monitoring device of power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414343A JP2005172653A (en) 2003-12-12 2003-12-12 Lifetime monitoring device of power supply device

Publications (1)

Publication Number Publication Date
JP2005172653A true JP2005172653A (en) 2005-06-30

Family

ID=34734165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414343A Pending JP2005172653A (en) 2003-12-12 2003-12-12 Lifetime monitoring device of power supply device

Country Status (1)

Country Link
JP (1) JP2005172653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830296A (en) * 2011-06-16 2012-12-19 上海天祥质量技术服务有限公司 Power supply ripple interference test method and system
KR101316972B1 (en) 2012-05-04 2013-10-11 청주대학교 산학협력단 Circuit for sensing life time of switching power supply
DE102016109198A1 (en) 2015-05-26 2016-12-01 Fanuc Corporation SWITCHING POWER SUPPLY WITH PREVENTIVE MAINTENANCE FUNCTION
KR101732938B1 (en) 2015-11-17 2017-05-08 에스케이텔레시스 주식회사 Smart Power Supply Unit
US10476386B2 (en) 2016-04-15 2019-11-12 Fanuc Corporation Digitally controlled power supply apparatus and production management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252505A (en) * 1991-01-29 1992-09-08 Fujitsu Ltd Power supply ripple measurement device
JPH06273451A (en) * 1993-03-22 1994-09-30 Keisoku Gijutsu Kenkyusho:Kk Ripple voltage-measuring apparatus
JPH0819247A (en) * 1994-07-01 1996-01-19 Nippon Avionics Co Ltd Circuit for predicting life of switching power supply
JPH09264913A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Continuous diagnosing device of dc stabilizing supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252505A (en) * 1991-01-29 1992-09-08 Fujitsu Ltd Power supply ripple measurement device
JPH06273451A (en) * 1993-03-22 1994-09-30 Keisoku Gijutsu Kenkyusho:Kk Ripple voltage-measuring apparatus
JPH0819247A (en) * 1994-07-01 1996-01-19 Nippon Avionics Co Ltd Circuit for predicting life of switching power supply
JPH09264913A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Continuous diagnosing device of dc stabilizing supply

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830296A (en) * 2011-06-16 2012-12-19 上海天祥质量技术服务有限公司 Power supply ripple interference test method and system
KR101316972B1 (en) 2012-05-04 2013-10-11 청주대학교 산학협력단 Circuit for sensing life time of switching power supply
DE102016109198A1 (en) 2015-05-26 2016-12-01 Fanuc Corporation SWITCHING POWER SUPPLY WITH PREVENTIVE MAINTENANCE FUNCTION
US9647530B2 (en) 2015-05-26 2017-05-09 Fanuc Corporation Switching power supply with preventive maintenance function
KR101732938B1 (en) 2015-11-17 2017-05-08 에스케이텔레시스 주식회사 Smart Power Supply Unit
US10476386B2 (en) 2016-04-15 2019-11-12 Fanuc Corporation Digitally controlled power supply apparatus and production management system

Similar Documents

Publication Publication Date Title
US8520345B2 (en) Protection circuit applied to wind power generation system employing double-fed induction generator
US8411397B2 (en) Power supply apparatus and method
US8736215B2 (en) Motor drive device having function of varying DC link low-voltage alarm detection level
US9793753B2 (en) Power quality detector
US20170187215A1 (en) Charging device
US9698697B2 (en) Power supply device, and method of controlling power supply device
KR102492612B1 (en) System for detecting ground faults in energy storage and/or generation systems using DC-AC power conversion systems
KR101376725B1 (en) Solar cell module connecting apparatus
US20170005588A1 (en) Converter and power conversion device
JP2011024294A (en) Control circuit of power conversion circuit and power conversion equipment including the control circuit
JP2007166815A (en) Inverter device and method of protecting overvoltage thereof
JP5305070B2 (en) Detection device
JP2010028947A (en) Power supply apparatus
JP2005172653A (en) Lifetime monitoring device of power supply device
KR101316972B1 (en) Circuit for sensing life time of switching power supply
JP2009038854A (en) Switching power supply
KR101265866B1 (en) Life time sensor module for switching power supply
JP5188536B2 (en) Power supply inspection device, power supply inspection method, power supply device
KR101732938B1 (en) Smart Power Supply Unit
JP5188551B2 (en) Power supply inspection device, power supply inspection method, power supply device
JP5147897B2 (en) Rectifier circuit inspection device, rectifier circuit inspection method
JP2009148085A (en) Power converter
KR101254982B1 (en) Uninterruptable power supply apparatus
JP2016127663A (en) Electric power converter
KR101709484B1 (en) Power supplying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120