[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005157104A - Transflective liquid crystal display device - Google Patents

Transflective liquid crystal display device Download PDF

Info

Publication number
JP2005157104A
JP2005157104A JP2003397590A JP2003397590A JP2005157104A JP 2005157104 A JP2005157104 A JP 2005157104A JP 2003397590 A JP2003397590 A JP 2003397590A JP 2003397590 A JP2003397590 A JP 2003397590A JP 2005157104 A JP2005157104 A JP 2005157104A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
transflective liquid
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003397590A
Other languages
Japanese (ja)
Other versions
JP4407258B2 (en
Inventor
Shinichiro Tanaka
慎一郎 田中
Takeshi Suzaki
剛 須崎
Shunsuke Yamaura
俊介 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2003397590A priority Critical patent/JP4407258B2/en
Publication of JP2005157104A publication Critical patent/JP2005157104A/en
Application granted granted Critical
Publication of JP4407258B2 publication Critical patent/JP4407258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transflective liquid crystal display device of which the viewing angle dependence or the directivity of reflected light on the periphery of an opening part edge of a transmissive part is improved. <P>SOLUTION: In the transflective liquid crystal display device equipped with the rectangular transmissive part 24 and a reflective part 28 arranged on the periphery of the transmissive part 24 and having a plurality of projecting parts 43 on an interlayer film for each pixel, the outsides of at least a pair of opposing edges of the transmissive part 24 form a pair of strip shaped reflective parts 44, 45. Arrangement patterns of the plurality of projecting parts 43 formed on the pair of strip shaped reflective parts 44, 45 on the respective sides are made to be different from each other so as to make the directivity of the reflected light on the respective sides different from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半透過型液晶表示装置に関し、特に透過部の開口部エッジ周辺での視角依存性ないしは反射光の指向性を改良した半透過型液晶表示装置に関する。   The present invention relates to a transflective liquid crystal display device, and more particularly to a transflective liquid crystal display device in which the viewing angle dependency or the directivity of reflected light around an opening edge of a transmissive portion is improved.

近年、情報通信機器のみならず一般の電気機器においても液晶表示装置の適用が急速に普及している。特に、携帯型のものについては消費電力を減少させるためにバックライトを必要としない反射型の液晶表示装置が多く用いられているが、この反射型液晶表示装置は、外光を光源として用いるために、暗い室内などでは見えにくくなってしまう。そこで、近年に至り特に透過型と反射型の性質を併せ持つ半透過型の液晶表示装置の開発が進められてきている。(特許文献1、2参照)
この半透過型液晶表示装置は、一つの画素内に透明電極を備えた透過部と反射電極を備えた反射部を有しており、暗い場所においてはバックライトを点灯して画素領域の透過部を利用して画像を表示し、明るい場所においてはバックライトを点灯することなく反射部において外光を利用して画像を表示しているため、常時バックライトを点灯する必要がなくなるので、消費電力を大幅に低減させることができるという利点を有している。
In recent years, the application of liquid crystal display devices has rapidly spread not only in information communication equipment but also in general electric equipment. In particular, for portable devices, a reflective liquid crystal display device that does not require a backlight is used in order to reduce power consumption. However, this reflective liquid crystal display device uses external light as a light source. Moreover, it becomes difficult to see in a dark room. Thus, in recent years, development of a transflective liquid crystal display device having both transmissive and reflective properties has been underway. (See Patent Documents 1 and 2)
This transflective liquid crystal display device has a transmissive portion having a transparent electrode and a reflective portion having a reflective electrode in one pixel, and in a dark place, the backlight is turned on to transmit the transmissive portion of the pixel region. Since the image is displayed using the external light in the reflection part without turning on the backlight in a bright place, it is not necessary to always turn on the backlight. Can be greatly reduced.

この半透過型液晶表示装置においては、周囲光を利用して明るい表示を行なうためには、あらゆる角度からの入射光に対して表示画面に垂直な方向へ散乱する光の強度を増加させる必要があり、そのため、あらゆる角度からの入射光に対して観察者の方向へ散乱させるような最適な反射特性を有する光利用効率の高い反射手段が必要となっている。   In this transflective liquid crystal display device, in order to perform bright display using ambient light, it is necessary to increase the intensity of light scattered in a direction perpendicular to the display screen with respect to incident light from all angles. For this reason, there is a need for a reflection means with high light utilization efficiency having optimum reflection characteristics that scatter incident light from all angles in the direction of the observer.

また、この反射手段は、反射モードで良好なペーパホワイト特性を有する表示を実現するために、反射層が適度な拡散反射特性(配光分布)を有することが必要である。反射面が鏡面に近いと正反射(鏡面反射)が強くなり、周囲の像の写り込みが生じ、逆に、拡散反射性が強すぎると輝度が低下するという問題が生じる。   In addition, this reflecting means requires that the reflective layer has an appropriate diffuse reflection characteristic (light distribution) in order to realize a display having a good paper white characteristic in the reflection mode. When the reflecting surface is close to a mirror surface, specular reflection (specular reflection) becomes strong and a surrounding image is reflected, and conversely, if the diffuse reflection property is too strong, the luminance is lowered.

このような半透過型液晶表示装置の一例を図1〜図3を用いて説明する、図1は半透過型液晶表示装置の一画素分の平面図であり、図2は図1のA−A’線に沿った断面図であり、また、図3は図1のB−B’線に沿った断面図である。   An example of such a transflective liquid crystal display device will be described with reference to FIGS. 1 to 3. FIG. 1 is a plan view of one pixel of the transflective liquid crystal display device, and FIG. FIG. 3 is a cross-sectional view taken along line A ′, and FIG. 3 is a cross-sectional view taken along line BB ′ of FIG.

この半透過型液晶表示装置10は、透明な絶縁性を有するガラス基板12上に、アルミニウムやクロム等の金属からなる複数の走査線32が略等間隔で平行に形成されており、また、隣り合う走査線32間の略中央には走査線32と同時に補助容量線Csが平行して形成されている。そして、走査線32からはゲート電極Gが延設されている。   In the transflective liquid crystal display device 10, a plurality of scanning lines 32 made of a metal such as aluminum or chrome are formed in parallel at substantially equal intervals on a glass substrate 12 having a transparent insulating property. The auxiliary capacitance line Cs is formed in parallel with the scanning line 32 at the approximate center between the matching scanning lines 32. A gate electrode G extends from the scanning line 32.

ガラス基板12上には、走査線32、補助容量線Cs、ゲート電極Gを覆うようにして窒化シリコンや酸化シリコンなどからなるゲート絶縁膜14が積層され、このゲート電極Gの上には、ゲート絶縁膜14を介して非晶質シリコンや多結晶シリコンなどからなる半導体層15が形成され、またゲート絶縁膜14上には複数の映像線34が走査線32と直交するようにして形成されている。なお、この映像線34は図示しないが下部をAlとし、上部をCrにより形成した2層構造をしている。また、映像線34からはソース電極Sが延設され、このソース電極Sは半導体層15と接続している。   A gate insulating film 14 made of silicon nitride, silicon oxide, or the like is laminated on the glass substrate 12 so as to cover the scanning lines 32, the auxiliary capacitance lines Cs, and the gate electrode G. A semiconductor layer 15 made of amorphous silicon, polycrystalline silicon, or the like is formed through the insulating film 14, and a plurality of video lines 34 are formed on the gate insulating film 14 so as to be orthogonal to the scanning lines 32. Yes. Although not shown, the video line 34 has a two-layer structure in which the lower part is made of Al and the upper part is made of Cr. A source electrode S extends from the video line 34, and the source electrode S is connected to the semiconductor layer 15.

さらに、映像線34、ソース電極Sと同一の材料でかつ同時形成されたドレイン電極Dがゲート絶縁膜14上に設けられており、半導体層15と接続している。   Further, a drain electrode D, which is the same material as the video line 34 and the source electrode S and is formed simultaneously, is provided on the gate insulating film 14 and is connected to the semiconductor layer 15.

ここで、走査線32と映像線34とに囲まれた長方形状の領域が1画素に相当する。そしてゲート電極G、ゲート絶縁膜14、半導体層15、ソース電極S、ドレイン電極Dによってスイッチング素子となるTFT素子16が構成され、それぞれの画素にこのTFT素子16が形成される。この場合、ドレイン電極Dと補助容量線Csによって各画素の補助容量を形成することになる。   Here, a rectangular area surrounded by the scanning lines 32 and the video lines 34 corresponds to one pixel. The gate electrode G, the gate insulating film 14, the semiconductor layer 15, the source electrode S, and the drain electrode D constitute a TFT element 16 serving as a switching element, and the TFT element 16 is formed in each pixel. In this case, the storage capacitor of each pixel is formed by the drain electrode D and the storage capacitor line Cs.

映像線34、TFT素子16、ゲート絶縁膜14を覆うようにして例えば無機の絶縁膜からなる層間絶縁膜(絶縁保護膜18)が積層され、この絶縁保護膜18上に、有機絶縁膜からなり、表面に凸部が形成された層間膜20が積層されている。そして絶縁保護膜18と層間膜20には、TFT素子16のドレイン電極Dに対応する位置にコンタクトホール22が、またTFT素子16から離れた位置に開口部24が長方形状に形成されている。   An interlayer insulating film (insulating protective film 18) made of, for example, an inorganic insulating film is laminated so as to cover the video line 34, the TFT element 16, and the gate insulating film 14, and an organic insulating film is formed on the insulating protective film 18. The interlayer film 20 having a convex portion formed on the surface is laminated. In the insulating protective film 18 and the interlayer film 20, a contact hole 22 is formed in a rectangular shape at a position corresponding to the drain electrode D of the TFT element 16 and a position away from the TFT element 16.

それぞれの画素において、層間膜20上、コンタクトホール22上及び開口部24の表面には例えばITO(Indium Tin Oxide)からなる透明電極17が形成されており、そのうち層間膜20及びコンタクトホール22上に位置する透明電極17上にはアルミニウムからなる反射電極26が設けられている。アルミニウムは、反射率が高く低抵抗であるため、反射電極26の材料として一般的に用いられている。この他、反射電極26の材料としてはアルミニウムを含む合金、銀などが使用できる。   In each pixel, a transparent electrode 17 made of, for example, ITO (Indium Tin Oxide) is formed on the interlayer film 20, the contact hole 22, and the surface of the opening 24, and of these, on the interlayer film 20 and the contact hole 22. A reflective electrode 26 made of aluminum is provided on the transparent electrode 17 positioned. Aluminum is generally used as a material for the reflective electrode 26 because of its high reflectivity and low resistance. In addition, the reflective electrode 26 can be made of an alloy containing aluminum, silver, or the like.

ガラス基板12の底面方向から見た場合、反射電極26は隣接する反射電極26と接しないで、かつ走査線32、映像線34とに若干重なるようにして形成され、また、開口部24の周囲を囲むようにして形成されている。   When viewed from the bottom surface direction of the glass substrate 12, the reflective electrode 26 is formed so as not to contact the adjacent reflective electrode 26 and slightly overlap the scanning line 32 and the video line 34, and around the opening 24. Is formed so as to surround.

そして、ガラス基板12の下方には、図示しない周知の光源、導光板、拡散シート等を有するバックライト装置が配置されており、また、開口部24及び反射電極26の上方には総ての画素を覆うように配向膜が積層され、そして、それぞれの画素に対応して形成されるR、G、B3色のカラーフィルタ、対向電極等が設けられているカラーフィルタ基板(図示せず)をこのガラス基板12と対向させ、両基板を貼り合せ、両基板間に液晶を注入することにより半透過型液晶表示装置10となる。   A backlight device having a well-known light source, a light guide plate, a diffusion sheet, and the like (not shown) is disposed below the glass substrate 12, and all the pixels are above the opening 24 and the reflective electrode 26. A color filter substrate (not shown) on which an alignment film is laminated so as to cover the surface and provided with R, G, B3 color filters, counter electrodes and the like formed corresponding to the respective pixels. The transflective liquid crystal display device 10 is formed by facing the glass substrate 12, bonding the substrates together, and injecting liquid crystal between the substrates.

この半透過型液晶表示装置10において、開口部24より透明電極17が覗いている範囲が透過部であり、この透過部においてバックライト装置から出射してきた光が通過し、また反射電極26が積層されている範囲が反射部28であり、この反射部28において外光が反射される。   In this transflective liquid crystal display device 10, the range where the transparent electrode 17 is viewed from the opening 24 is a transmissive portion, in which light emitted from the backlight device passes, and the reflective electrode 26 is laminated. The reflected area is the reflecting portion 28, and external light is reflected by the reflecting portion 28.

この場合、反射部28の凸部の形状は、反射層が適度な拡散反射特性を持つようにするために、図4に示したように、凸部の裾の径dは約10μm程度、凸部の高さhは約0.5μm程度、また、凸部の傾斜角度θは10°以下、好ましくは7°程度に形成される。また、一画素における透過部及び反射部28の占める割合は調整可能であるが、あまり透過部の占める割合が多くなってしまうと反射部28の割合が少なくなるので、外光の反射量は減ってしまう。逆に透過部の占める割合が少なすぎると外光の不足をバックライトの光で補うには不十分となってしまう。通常は透過部の占める割合が約20%となっている。
特開2001−350158号公報(2〜3頁、図4) 特開2000−25882号公報(3〜4頁、図1、図2)
In this case, the shape of the convex portion of the reflective portion 28 is such that the diameter d of the skirt of the convex portion is about 10 μm, as shown in FIG. 4, so that the reflective layer has an appropriate diffuse reflection characteristic. The height h of the portion is about 0.5 μm, and the inclination angle θ of the convex portion is 10 ° or less, preferably about 7 °. The ratio of the transmissive part and the reflective part 28 in one pixel can be adjusted. However, if the ratio of the transmissive part increases too much, the ratio of the reflective part 28 decreases, so the amount of reflection of external light decreases. End up. On the other hand, if the proportion of the transmissive part is too small, it becomes insufficient to compensate for the lack of external light with the light of the backlight. Usually, the proportion occupied by the transmission part is about 20%.
JP 2001-350158 A (2-3 pages, FIG. 4) JP 2000-25882 (pages 3 to 4, FIG. 1 and FIG. 2)

上述のような従来の半透過型液晶表示装置は、暗い場所においてはバックライトを点灯して画素領域の透過部を利用して画像を表示し、明るい場所においてはバックライトを点灯することなく反射部において外光を利用して画像を表示しているため、常時バックライトを点灯する必要がなくなるので、消費電力を大幅に低減させることができるが、液晶表示画面をじっくり眺めると、視角により明るさが微妙に変化することが認められた。   The conventional transflective liquid crystal display device as described above lights a backlight in a dark place and displays an image using a transmission part of a pixel area, and reflects without turning on a backlight in a bright place. Since the external light is used to display images in the screen, it is not necessary to turn on the backlight at all times, so power consumption can be greatly reduced. However, if you look closely at the liquid crystal display screen, Was found to change slightly.

本発明者はこの原因につき検討を重ねた結果、視角による明るさの変化は各画素の開口部付近における反射光量が視角により変化することに基づくものであることに気がついた。   As a result of repeated studies on this cause, the present inventor has found that the change in brightness depending on the viewing angle is based on the fact that the amount of reflected light near the opening of each pixel varies with the viewing angle.

すなわち各画素の開口部周辺に形成された一対の細長い形状の反射部において形成された凸パターンにより、反射光が例えば上下方向に片寄ってしまう。従って視角により観察者に認識される反射光量が上下方向と、左右方向で異なってしまう。   That is, the reflected light is shifted in the vertical direction, for example, by the convex pattern formed in the pair of elongated reflecting portions formed around the opening of each pixel. Accordingly, the amount of reflected light recognized by the observer depending on the viewing angle differs in the vertical direction and the horizontal direction.

そこで、発明者らは更に開口部のエッジ周辺での明るさの視角依存性を改善すべく種々検討を重ねた結果、エッジ周辺の層間膜上の凸部パターンの配置を制御することにより、視角による明るさの変化を制御することができることを見出し、半透過型液晶表示装置において、各画素の開口部エッジ周辺の存在によって生じる視角による明るさの変化を抑えた半透過型液晶表示装置を提供することを目的とする。   Therefore, as a result of various studies to further improve the viewing angle dependency of the brightness around the edge of the opening, the inventors have controlled the viewing angle by controlling the arrangement of the convex pattern on the interlayer film around the edge. It is found that it is possible to control the change in brightness due to light, and in a transflective liquid crystal display device, a transflective liquid crystal display device that suppresses the change in brightness due to the viewing angle caused by the presence of the periphery of the opening edge of each pixel is provided The purpose is to do.

本発明の上記目的は以下の構成により達成し得る。すなわち、本願の請求項1に係る半透過型液晶表示装置の発明は、矩形状の各画素に、矩形状の透過部と、前記透過部の周囲に設けられた複数の凸部を有する反射部とを備えた半透過型液晶表示装置において、前記透過部の少なくとも一対の対向する辺の外側が一対の細長い形状の反射部を形成しており、一方の側の細長い形状の反射部における反射光の指向性と、他方の側の細長い形状の反射部における反射光の指向性とが互いに補いあうように該一対の細長い形状の反射部における凸部が形成されていることを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, in the invention of the transflective liquid crystal display device according to claim 1 of the present application, each rectangular pixel has a rectangular transmissive portion and a reflective portion having a plurality of convex portions provided around the transmissive portion. And at least a pair of opposing sides of the transmissive portion form a pair of elongated reflecting portions, and the reflected light from the elongated reflecting portion on one side. The projecting portions of the pair of elongated reflecting portions are formed so that the directivity of the reflected light and the directivity of the reflected light in the elongated reflecting portion on the other side complement each other.

また請求項2に係る発明は、請求項1に記載の半透過型液晶表示装置において、前記一対の細長い形状の反射部は、前記一方の側における複数の凸部のピーク位置が前記細長い形状の反射部の略中央に整列して配置され、前記他方の側における複数の凸部のピーク位置が前記細長い形状の反射部の中央からずれた位置に整列して配置されていることを特徴とする。   According to a second aspect of the present invention, in the transflective liquid crystal display device according to the first aspect, in the pair of elongated reflecting portions, the peak positions of a plurality of convex portions on the one side are the elongated shape. A plurality of convex portions on the other side are arranged in alignment at substantially the center of the reflecting portion, and are arranged in alignment with positions shifted from the center of the elongated reflecting portion. .

また請求項3に係る発明は、請求項1に記載の半透過型液晶表示装置において、前記一対の細長い形状の反射部は、前記一方の側における複数の凸部のピーク位置が前記細長い形状の反射部の両側端部に整列して配置され、前記他方の側における複数の凸部のピーク位置が前記細長い形状の反射部の中央からずれた位置に整列して配置されていることを特徴とする。   According to a third aspect of the present invention, in the transflective liquid crystal display device according to the first aspect, in the pair of elongated reflecting portions, the peak positions of the plurality of convex portions on the one side have the elongated shape. A plurality of convex portions on the other side are arranged in alignment at both side end portions of the reflecting portion, and are arranged in alignment with positions shifted from the center of the elongated reflecting portion. To do.

また請求項4に係る発明は、矩形状の各画素毎に、矩形状の透過部と、前記透過部の周囲に設けられ、層間膜上に複数の凸部を有する反射部とを備えた半透過型液晶表示装置において、前記透過部の少なくとも一対の対向する辺の外側が一対の細長い形状の反射部を形成しており、一方の側の細長い形状の反射部における反射光の指向性は左右方向に比べ上下方向へ強くなっており、他方の側の細長い形状の反射部における反射光の指向性は上下方向に比べ左右方向へ強くなっていることを特徴とする。   According to a fourth aspect of the present invention, there is provided a semiconductor device comprising a rectangular transmissive portion and a reflective portion provided around the transmissive portion and having a plurality of convex portions on an interlayer film for each rectangular pixel. In the transmissive liquid crystal display device, at least a pair of opposing sides of the transmissive portion form a pair of elongated reflective portions, and the directivity of reflected light in the elongated reflective portion on one side is left and right. It is characterized in that it is stronger in the vertical direction than in the direction, and the directivity of the reflected light in the elongated reflecting portion on the other side is stronger in the horizontal direction than in the vertical direction.

本発明の半透過型液晶表示装置は、上述のような構成を採用することにより、各画素の開口部エッジ周辺部分の存在によって生じる観察者の視角による明るさの変化を抑えることができるようになる。   The transflective liquid crystal display device of the present invention adopts the above-described configuration so that the change in brightness due to the viewing angle of the observer caused by the presence of the peripheral portion of the opening edge of each pixel can be suppressed. Become.

以下、本発明を実施するための最良の形態を、実施例及び比較例により詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to Examples and Comparative Examples.

まず、開口部周辺の層間膜の凸部の位置と反射光の指向性の関係について図5を用いて説明する。図5(a)〜図5(e)において、上下に伸びる2本の直線Y、Y’はそれぞれ半透過型液晶表示装置の各画素における開口部のエッジ部分ないしは走査線及び/または映像線との境界部の急傾斜部分を表し、2本の直線Y、Y’の間が各画素の開口部周辺に存在する細長い反射部であり、また、丸印は反射電極の凸部41の裾部分を示す。この場合、図5(a)〜図5(e)の急傾斜部分を表す直線Yの左側もしくはY’の右側が開口部、すなわち透過部となる。なお、この凸部41は、フォトレジストにより層間膜を形成するとともにその表面に多数の凸状パターンを形成させた後に熱処理して表面の角落としを行うことにより作製される。また凸部41の形状は、適度な拡散反射特性を持つようにするために、凸部41の裾の径dは約10μm程度、凸部41の高さhは約0.5μm程度、また、凸部41の傾斜角度θは10°以下、具体的には7°程度に形成される。   First, the relationship between the position of the convex portion of the interlayer film around the opening and the directivity of the reflected light will be described with reference to FIG. In FIG. 5A to FIG. 5E, two straight lines Y and Y ′ extending vertically correspond to the edge portion of the opening or the scanning line and / or the video line in each pixel of the transflective liquid crystal display device. 2 represents a steeply inclined portion of the boundary portion, and between the two straight lines Y and Y ′ is an elongated reflecting portion existing around the opening of each pixel, and a circle is a skirt portion of the convex portion 41 of the reflecting electrode Indicates. In this case, the left side of the straight line Y or the right side of Y ′ representing the steeply inclined portion in FIGS. In addition, this convex part 41 is produced by forming an interlayer film with a photoresist and forming a large number of convex patterns on the surface, and then heat-treating the corners of the surface. Further, the shape of the convex portion 41 has an appropriate diffuse reflection characteristic so that the skirt diameter d of the convex portion 41 is about 10 μm, the height h of the convex portion 41 is about 0.5 μm, The inclination angle θ of the convex portion 41 is 10 ° or less, specifically about 7 °.

図5(a)は、凸部41のピーク位置が2本の直線Y、Y’の中央部に整列して配置された状態を示す。この場合、凸部41が形成される反射電極の領域は左右方向の幅に比べ上下方向の幅が広い。また左右方向は反射部の両側が急傾斜面となっているため表示に寄与しない。したがって左右方向に比べ上下方向に反射する光が強くなり、上下方向に指向性を有している。   FIG. 5A shows a state in which the peak position of the convex portion 41 is arranged in alignment with the central portion of the two straight lines Y and Y ′. In this case, the region of the reflective electrode where the convex portion 41 is formed is wider in the vertical direction than in the horizontal direction. Further, in the left-right direction, both sides of the reflecting portion are steeply inclined surfaces, and thus do not contribute to display. Therefore, the light reflected in the vertical direction is stronger than that in the horizontal direction, and has directivity in the vertical direction.

この凸部41のピークの位置を2本の直線Y、Y’の中央部から右方向(図5(b)参照)又は左方向(図5(c)参照)に若干ずらしても上下方向の反射光が主のままである。これは、急傾斜部分での反射光は表示に寄与せず、急傾斜部分が存在する側への反射が減少していくからである。すなわち、図5(b)の場合は図面において右側への反射光が少なくなり、また、図5(c)の場合は図面において左側への反射光が少なくなるため、共に図面において左右方向よりも上下方向への反射光が多くなる。   Even if the peak position of the convex portion 41 is slightly shifted from the center of the two straight lines Y and Y ′ in the right direction (see FIG. 5B) or the left direction (see FIG. 5C), The reflected light remains the main. This is because the reflected light at the steeply inclined portion does not contribute to the display, and the reflection toward the side where the steeply inclined portion exists decreases. That is, in the case of FIG. 5B, the reflected light to the right side in the drawing is reduced, and in the case of FIG. 5C, the reflected light to the left side in the drawing is reduced. The amount of reflected light in the vertical direction increases.

凸部41のピークの位置を右方向又は左方向に更にずらしていくと、左隣又は右隣の凸部42の裾部分が徐々に表れてくるために、左右方向の反射光が徐々に増加しだし、最終的に凸部41及び42のうちの少なくとも一方のピークは2本の直線Y、Y’の位置、即ち細長い反射部の両側端に整列して位置するようになる(図5(d)参照)。この状態では図面において左側の端部に凸部41のピークが位置する場合は右方向への反射光が主となり、右側の端部に凸部42のピークが位置する場合には左方向への反射光が主となり、結果として図5(d)の状態では図面において左右方向への反射光が最も多くなる。なお、図5(d)では凸部41及び42の配置を互い違いに整列して配置したものを示したが、図5(e)に示したように、凸部41及び42の配置を縦横に整列された状態に配置しても同様の効果が得られる。またこの効果は凸部41及び42がそれぞれ同時に両側端部に整列して位置したときが最良となる。   When the peak position of the convex portion 41 is further shifted to the right or left, the left and right ridges of the convex portion 42 gradually appear, so the reflected light in the left and right directions gradually increases. However, finally, the peak of at least one of the convex portions 41 and 42 comes to be positioned in alignment with the positions of the two straight lines Y and Y ′, that is, both side ends of the elongated reflecting portion (FIG. 5 ( d)). In this state, in the drawing, when the peak of the convex portion 41 is located at the left end, the reflected light is mainly reflected in the right direction, and when the peak of the convex portion 42 is located at the right end, the leftward direction is assumed. Reflected light is mainly used. As a result, in the state of FIG. 5D, the reflected light in the left-right direction is the largest in the drawing. In FIG. 5D, the projections 41 and 42 are arranged in a staggered arrangement. However, as shown in FIG. 5E, the projections 41 and 42 are arranged vertically and horizontally. The same effect can be obtained even if they are arranged in an aligned state. Further, this effect is best when the convex portions 41 and 42 are simultaneously aligned with both side end portions.

また、凸部の形状としては、図5に示したような裾部が円形となるもの以外に、図6に示したような多角形状となるものを採用しても同様の効果を生じる。なお、図6(a)〜図6(e)は、それぞれ図5(a)〜図5(e)に対応する図であり、それぞれ図5(a)〜図5(e)に示したものと同様の反射指向性を示す。   Further, as the shape of the convex portion, the same effect can be obtained even when a polygonal shape as shown in FIG. 6 is adopted in addition to a shape having a circular skirt as shown in FIG. 6 (a) to 6 (e) correspond to FIGS. 5 (a) to 5 (e), respectively, and are shown in FIGS. 5 (a) to 5 (e), respectively. Shows the same reflection directivity.

したがって、各画素の透過部周囲にある少なくとも1対の細長い反射部の凸部41及び42の位置を制御することにより、反射光の指向性を制御することが可能となり、一対の細長い反射部においてそれぞれ相違する反射光の指向性を与える配置を選択することにより、実質的に視角による明るさの変化をなくすことができるようになるわけである。   Therefore, it is possible to control the directivity of the reflected light by controlling the positions of the convex portions 41 and 42 of at least one pair of elongated reflecting portions around the transmissive portion of each pixel. By selecting an arrangement that gives different directivity of reflected light, it is possible to substantially eliminate the change in brightness due to the viewing angle.

図7は本発明の第1の実施例に対応し、図8は本発明の第2の実施例に対応し、また、図9は比較例に対応する半透過型液晶表示装置の一画素分の開口部及び反射部を表した平面図である。   7 corresponds to the first embodiment of the present invention, FIG. 8 corresponds to the second embodiment of the present invention, and FIG. 9 corresponds to one pixel of the transflective liquid crystal display device corresponding to the comparative example. It is a top view showing an opening part and a reflection part.

図7〜図9において、半透過型液晶表示装置の矩形状に形成された画素は、それぞれ開口部24と反射電極26からなる反射部28とからなり、開口部24と反射部28との境界部分には急傾斜部分が形成されている。またこの反射部28の周囲には走査線及び映像線が配置され(図1参照)、反射部28と走査線又は映像線との境界部分にも急傾斜部分が形成されている。丸印(半円状のもの、円弧状のものも含む。)は反射電極の凸部43の裾部分を示す。   7 to 9, each pixel formed in a rectangular shape of the transflective liquid crystal display device includes an opening 24 and a reflective portion 28 including a reflective electrode 26, and the boundary between the opening 24 and the reflective portion 28. A steeply inclined portion is formed in the portion. Further, a scanning line and a video line are arranged around the reflecting portion 28 (see FIG. 1), and a steeply inclined portion is formed at a boundary portion between the reflecting portion 28 and the scanning line or the video line. A circle (including a semicircular shape and an arc shape) indicates a skirt portion of the convex portion 43 of the reflective electrode.

比較例に相当する図9に記載の半透過型液晶表示装置の画素は、長方形状の開口部24の左右に映像線に沿って細い反射部44及び45が形成されており、反射部44及び45に形成されている凸部43の配置はランダムである。凸部43の配置がランダムであるため反射部44及び45で生じる指向性により観察者の視角により明るさの変化が生じてしまう。なお図9では左右方向に比べると上下方向に指向性を有しているため、観察者は左右方向から観察する場合に比べ、上下方向から観察する場合の方が明るく見える。   The pixel of the transflective liquid crystal display device shown in FIG. 9 corresponding to the comparative example has thin reflective portions 44 and 45 formed along the video lines on the left and right sides of the rectangular opening 24. The arrangement of the protrusions 43 formed in 45 is random. Since the arrangement of the convex portions 43 is random, the directivity generated by the reflecting portions 44 and 45 causes a change in brightness depending on the viewing angle of the observer. In FIG. 9, since the directivity is higher in the vertical direction than in the horizontal direction, the observer looks brighter when observing from the vertical direction than when observing from the horizontal direction.

これに対し、本発明の第1の実施例に相当する図7に記載の各画素は、前記比較例の場合と同様に長方形状の開口部24の長辺側に沿った左右側に、細い反射部44及び45が形成されている。このうち右側の反射部45では、総ての凸部43のピークは、図5(a)に示したものと同様に、反射部45の略中央に位置する構成となっており、この部分では左右方向に対し上下方向により強い指向性となっている。そして左側の反射部44の凸部43のピークは、図5(e)に示したものと同様に、細長い反射部の両側端部に位置する配置となっており、この部分では上下方向に対し左右方向により強い指向性となっている。したがって、上下方向と、左右方向という異なる指向性を有する反射部44と45により、画素の開口部周辺の存在によって生じる観察者の視角による明るさの変化を抑えることができるようになる。また反射部44と45の形状は規則的な形状であるため、作成も容易であり、反射部44と45における少ないスペースを有効に活用して外光を効率良く利用することができる。   On the other hand, each pixel shown in FIG. 7 corresponding to the first embodiment of the present invention is thin on the left and right sides along the long side of the rectangular opening 24 as in the comparative example. Reflecting portions 44 and 45 are formed. Among them, in the right reflection part 45, the peaks of all the convex parts 43 are configured to be located at substantially the center of the reflection part 45, similar to that shown in FIG. The directivity is stronger in the vertical direction than in the horizontal direction. And the peak of the convex part 43 of the reflection part 44 on the left side is arranged at both end portions of the elongated reflection part, similar to that shown in FIG. 5 (e). The directivity is stronger in the left-right direction. Therefore, the reflection portions 44 and 45 having different directivities in the vertical direction and the horizontal direction can suppress a change in brightness due to the viewing angle of the observer caused by the presence of the periphery of the pixel opening. Moreover, since the shape of the reflection parts 44 and 45 is a regular shape, preparation is also easy and it can utilize external light efficiently, utilizing effectively the small space in the reflection parts 44 and 45. FIG.

なお、上部の細い反射部46部分については、反対側の反射部の面積が大きいので、この部分の反射光の指向性が全体の指向性に与える影響は少ないため、特に指向性を制御する必要はないが、反対側の反射部も細くなっている場合は前記反射部44及び45の場合と同様に反射光の指向性を制御する必要が生じる。   In addition, since the area of the reflective part on the opposite side is large for the thin reflective part 46 at the upper part, the directivity of the reflected light of this part has little influence on the overall directivity, so it is necessary to control the directivity in particular. However, if the reflecting part on the opposite side is also thin, it is necessary to control the directivity of the reflected light as in the case of the reflecting parts 44 and 45.

また、本発明の第2の実施例に相当する図8に記載の各画素は、長方形状の開口部24の左右に細い反射部44及び45が形成されており、このうち左側における反射部44の凸部のピークは、図5(b)に示したものと同様に、細長い反射部44の中央から右側に若干ずれた位置に整列して配置され、この部分では図面において上下方向に指向性が生じる。また、右側の反射部45の凸部43のピークは、図5(d)に示したものと同様に、細長い反射部45の両側端部に整列して配置され、この部分では図面において左右方向に指向性が生じる。したがって、この第2の実施例においても、観察者の視角が変化してもどちらかの反射光が観察者側に達することができるので、半透過型液晶表示装置の各画素の開口部周辺の存在によって生じる観察者の視角による明るさの変化を大きく抑えることができる。   Further, in each pixel shown in FIG. 8 corresponding to the second embodiment of the present invention, thin reflective portions 44 and 45 are formed on the left and right sides of the rectangular opening 24, and the reflective portion 44 on the left side of these is formed. Similar to the peak shown in FIG. 5 (b), the peaks of the convex portions are aligned at a position slightly shifted from the center of the elongated reflecting portion 44 to the right side. Occurs. Further, the peak of the convex portion 43 of the right reflecting portion 45 is arranged in alignment with both side end portions of the elongated reflecting portion 45 in the same manner as shown in FIG. The directivity is generated. Therefore, also in this second embodiment, either reflected light can reach the viewer side even if the viewer's viewing angle changes, so the area around the aperture of each pixel of the transflective liquid crystal display device can be reduced. The change in brightness due to the viewing angle of the observer caused by the presence can be greatly suppressed.

なお、上記第1の実施例及び第2の実施例では、凸部の形状として裾部が円形となるものについて説明したが、図6に示したような多角形状となるものを採用しても同様の効果を生じることは当業者にとり自明であろう。   In the first embodiment and the second embodiment described above, the convex portion has a circular shape at the skirt, but a polygonal shape as shown in FIG. 6 may be adopted. It will be apparent to those skilled in the art that similar effects are produced.

半透過型液晶表示装置の一画素分の平面図である。It is a top view for one pixel of a transflective liquid crystal display device. 図1のA−A’線に沿った断面図である。It is sectional drawing along the A-A 'line of FIG. 図1のB−B’線に沿った断面図である。It is sectional drawing along the B-B 'line of FIG. 反射部の凸部の形状を説明する図である。It is a figure explaining the shape of the convex part of a reflection part. 凸部の裾部が円形の場合の凸部の位置と反射光の指向性の関係を説明するための図である。It is a figure for demonstrating the relationship between the position of a convex part in the case where the skirt part of a convex part is circular, and the directivity of reflected light. 凸部の裾部が六角形の場合の凸部の位置と反射光の指向性の関係を説明するための図である。It is a figure for demonstrating the relationship between the position of a convex part and the directivity of reflected light in case the skirt part of a convex part is a hexagon. 本願の第1の実施例の一画素分の平面図である。It is a top view for one pixel of the 1st example of this application. 本願の第2の実施例の一画素分の平面図である。It is a top view for one pixel of the 2nd example of this application. 本願の比較例の一画素分の平面図である。It is a top view for one pixel of the comparative example of this application.

符号の説明Explanation of symbols

10 半透過型液晶表示装置
12 ガラス基板
14 ゲート絶縁膜
15 半導体層
16 TFT素子
17 透明電極
24 開口部(透過部)
26 反射電極
28 反射部
32 走査線
34 映像線
41〜43 凸部
44〜46 細い反射部
DESCRIPTION OF SYMBOLS 10 Semi-transmissive liquid crystal display device 12 Glass substrate 14 Gate insulating film 15 Semiconductor layer 16 TFT element 17 Transparent electrode 24 Opening part (transmission part)
26 reflective electrode 28 reflective part 32 scanning line 34 video lines 41-43 convex part 44-46 thin reflective part

Claims (4)

矩形状の各画素に、矩形状の透過部と、前記透過部の周囲に設けられた複数の凸部を有する反射部とを備えた半透過型液晶表示装置において、前記透過部の少なくとも一対の対向する辺の外側が一対の細長い形状の反射部を形成しており、一方の側の細長い形状の反射部における反射光の指向性と、他方の側の細長い形状の反射部における反射光の指向性とが互いに補いあうように該一対の細長い形状の反射部における凸部が形成されていることを特徴とする半透過型液晶表示装置。   In a transflective liquid crystal display device comprising a rectangular transmissive portion and a reflective portion having a plurality of convex portions provided around the transmissive portion in each rectangular pixel, at least a pair of the transmissive portions The outer sides of the opposing sides form a pair of elongated reflectors, the directivity of reflected light in the elongated reflector on one side, and the reflected light directivity in the elongated reflector on the other side A transflective liquid crystal display device, wherein convex portions of the pair of elongated reflecting portions are formed so as to complement each other. 前記一対の細長い形状の反射部は、前記一方の側における複数の凸部のピーク位置が前記細長い形状の反射部の略中央に整列して配置され、前記他方の側における複数の凸部のピーク位置が前記細長い形状の反射部の中央からずれた位置に整列して配置されていることを特徴とする請求項1に記載の半透過型液晶表示装置。   The pair of elongated reflecting portions are arranged such that the peak positions of the plurality of convex portions on the one side are aligned with the approximate center of the elongated shape reflecting portion, and the peaks of the plurality of convex portions on the other side are arranged. 2. The transflective liquid crystal display device according to claim 1, wherein the transflective liquid crystal display device is arranged in alignment with a position shifted from a center of the elongated reflecting portion. 前記一対の細長い形状の反射部は、前記一方の側における複数の凸部のピーク位置が前記細長い形状の反射部の両側端部に整列して配置され、前記他方の側における複数の凸部のピーク位置が前記細長い形状の反射部の中央からずれた位置に整列して配置されていることを特徴とする請求項1に記載の半透過型液晶表示装置。   The pair of elongated reflecting portions are arranged such that peak positions of the plurality of convex portions on the one side are aligned with both side ends of the elongated reflecting portion, and the plurality of convex portions on the other side are arranged. 2. The transflective liquid crystal display device according to claim 1, wherein a peak position is arranged in alignment with a position shifted from a center of the elongated reflecting portion. 矩形状の各画素毎に、矩形状の透過部と、前記透過部の周囲に設けられ、層間膜上に複数の凸部を有する反射部とを備えた半透過型液晶表示装置において、前記透過部の少なくとも一対の対向する辺の外側が一対の細長い形状の反射部を形成しており、一方の側の細長い形状の反射部における反射光の指向性は左右方向に比べ上下方向へ強くなっており、他方の側の細長い形状の反射部における反射光の指向性は上下方向に比べ左右方向へ強くなっていることを特徴とする半透過型液晶表示装置。   In the transflective liquid crystal display device including a rectangular transmissive portion and a reflective portion provided around the transmissive portion and having a plurality of convex portions on an interlayer film, for each rectangular pixel. The outside of at least a pair of opposing sides of the part forms a pair of elongated reflecting parts, and the directivity of reflected light in the elongated reflecting part on one side is stronger in the vertical direction than in the horizontal direction. A transflective liquid crystal display device characterized in that the directivity of reflected light in the elongated reflecting portion on the other side is stronger in the left-right direction than in the up-down direction.
JP2003397590A 2003-11-27 2003-11-27 Transflective liquid crystal display device Expired - Fee Related JP4407258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397590A JP4407258B2 (en) 2003-11-27 2003-11-27 Transflective liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397590A JP4407258B2 (en) 2003-11-27 2003-11-27 Transflective liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2005157104A true JP2005157104A (en) 2005-06-16
JP4407258B2 JP4407258B2 (en) 2010-02-03

Family

ID=34722706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397590A Expired - Fee Related JP4407258B2 (en) 2003-11-27 2003-11-27 Transflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4407258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025690A (en) * 2005-07-19 2007-02-01 Samsung Electronics Co Ltd Method for manufacturing liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025690A (en) * 2005-07-19 2007-02-01 Samsung Electronics Co Ltd Method for manufacturing liquid crystal display
JP4564473B2 (en) * 2005-07-19 2010-10-20 三星電子株式会社 Manufacturing method of liquid crystal display device
US7875477B2 (en) 2005-07-19 2011-01-25 Samsung Electronics Co., Ltd. Manufacturing method of liquid crystal display

Also Published As

Publication number Publication date
JP4407258B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US20220344407A1 (en) Display apparatus and method of manufacturing the same
KR101517034B1 (en) An array substrate for trans -flective liquid crystal display device and fabrication method of the same
JP4943454B2 (en) Liquid crystal display
JP2001075091A (en) Semitransmitting liquid crystal display device
WO2001004695A1 (en) Translucent liquid crystal display device
CN109656052B (en) Liquid crystal display panel, manufacturing method thereof and display device
US11112665B2 (en) Wiring substrate and display device including wiring substrate
JP2004310057A (en) Reflection and transmission type liquid crystal display device
JP2005157105A (en) Transflective liquid crystal display device
CN205787482U (en) Semi-reflecting and semi-transparent liquid crystal display panel and display device comprising same
JP2004233957A (en) Optical element, planar lighting device, and liquid crystal display device
JP4407258B2 (en) Transflective liquid crystal display device
US20200110305A1 (en) Display and display panel, array substrate thereof
US20230102042A1 (en) Micro led transparent display
JP2003066447A (en) Liquid crystal display and electronic instrument
JP4929795B2 (en) Liquid crystal display device having a reflective portion
JP4112663B2 (en) Liquid crystal display
JP2008116528A (en) Liquid crystal display panel
JP2006227267A (en) Reflective display device
KR20070055211A (en) Liquid crystal display and terminal using the same
KR100823362B1 (en) Transflective type liquid crystal display device
US20090290112A1 (en) Display device
JP2008233137A (en) Liquid crystal display device
JP2024521591A (en) Array substrate and total reflection type liquid crystal display panel
JP2004053935A (en) Liquid crystal display

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees