[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005156438A - Gas-liquid two phase sample analyzer and analysis method - Google Patents

Gas-liquid two phase sample analyzer and analysis method Download PDF

Info

Publication number
JP2005156438A
JP2005156438A JP2003397404A JP2003397404A JP2005156438A JP 2005156438 A JP2005156438 A JP 2005156438A JP 2003397404 A JP2003397404 A JP 2003397404A JP 2003397404 A JP2003397404 A JP 2003397404A JP 2005156438 A JP2005156438 A JP 2005156438A
Authority
JP
Japan
Prior art keywords
sample
liquid
gas
pipe
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397404A
Other languages
Japanese (ja)
Inventor
Katsutoshi Hirose
勝敏 広瀬
Akinobu Moriyama
明信 森山
Shuji Torii
修司 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003397404A priority Critical patent/JP2005156438A/en
Publication of JP2005156438A publication Critical patent/JP2005156438A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine the quantities of a gas sample and a liquid sample W0 in the sample flowing in a sample main tube 1 respectively with excellent response. <P>SOLUTION: The sample is introduced into sample detection cell parts 13, 23 through two sample collection introduction tubes 11, 21 having different diameters D1, D2 from fluid flowing in the sample main tube 1. Infrared analyzers 10, 20 analyze the introduced sample and output results respectively. A quality operation device 8 determines the qualities of the gas sample and the liquid sample in the sample main tube 1 on the basis of output results from the infrared analyzers 10, 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気液2相試料分析装置及び分析方法に関する。   The present invention relates to a gas-liquid two-phase sample analyzer and an analysis method.

気液混合流体中の水分を測定する従来技術として、特許文献1に記載されている蒸気の質制御装置がある。この装置の赤外線式湿り度検出手段は、焦電素子を用いて、所定の波長(略1.9μm)の赤外線が水滴に非常に良く吸収されることを利用して蒸気の湿り度を検出するものであり、蒸気配管中の水滴の量により吸収される赤外線量の変化を測定することによって、湿り度を測定するものである。   As a conventional technique for measuring moisture in a gas-liquid mixed fluid, there is a steam quality control device described in Patent Document 1. The infrared wetness detecting means of this apparatus uses a pyroelectric element to detect the wetness of steam by utilizing the fact that infrared rays of a predetermined wavelength (approximately 1.9 μm) are absorbed very well by water droplets. The wetness is measured by measuring the change in the amount of infrared rays absorbed by the amount of water droplets in the steam pipe.

ここで湿り度とは、蒸気の質、すなわち湿り飽和蒸気1キログラム中に含まれる液体の質量を表すものである。湿り度は、蒸気の単位体積あたりの全質量に対する乾き飽和水蒸気の占める質量の割合を乾き度xとすると、(1−x)として表される指標である。
特許第2873640号公報
Here, the wetness represents the quality of the vapor, that is, the mass of the liquid contained in 1 kilogram of wet saturated vapor. The wetness is an index expressed as (1-x), where the dryness x represents the ratio of the mass of dry saturated steam to the total mass per unit volume of steam.
Japanese Patent No. 2873640

しかしながら、特許文献1に記載の赤外線式湿り度検出手段は、試料本管から採取したサンプル内に含まれる水分総量を検出することはできるが、気相中に含まれる水蒸気量と、液相の水滴量とを分離して測定するものではなかった。このため、例えば試料本管内が、蒸気配管のように過飽和水蒸気状態にあって凝縮水が水滴として流れている状態と、試料本管内が不飽和水蒸気状態にあっても試料配管内の別の個所で発生あるいは存在していた水が高速流れによって飛沫状になって流れ飛んでくる過渡的な状態とを局所的なサンプリングによって区別することができないという問題点があった。   However, the infrared wetness detection means described in Patent Document 1 can detect the total amount of water contained in the sample collected from the sample main tube, but the amount of water vapor contained in the gas phase and the liquid phase The amount of water droplets was not measured separately. For this reason, for example, the inside of the sample main is in a supersaturated water vapor state like a steam pipe and the condensed water flows as water droplets, and another part in the sample pipe even if the inside of the main sample is in an unsaturated water vapor state There is a problem that it is impossible to distinguish the transient state in which water generated or existed in the water is spattered by high-speed flow and flies away by local sampling.

この問題点を図7にて補足説明する。図7は、試料配管を流れる流体を時間経過と共に段階的(H1〜H4)に増して行ったときの赤外線分析計の出力例を示す図であり、横軸は経過時間、縦軸は水分量を示している。
供給水分量が少ない低湿度領域(A領域)では、気体試料である水蒸気量に見合って赤外線が吸収される。次に供給水分量を少し増して細かい水滴を間歇的に吸引するようなB領域では、吸引した水滴によって「ひげ」状の重畳出力を示す。間歇的に「ひげ」状の重畳出力が発生するB領域では、気体水分量H3は間歇的発生であるが故に判別しやすくなっているので、この水分量H3を差し引いた「ひげ」状部分の重畳出力分の液体水分量を求めることが可能である。
This problem will be supplementarily described with reference to FIG. FIG. 7 is a diagram showing an output example of the infrared analyzer when the fluid flowing through the sample pipe is increased stepwise (H1 to H4) with the passage of time, the horizontal axis is the elapsed time, and the vertical axis is the moisture content. Is shown.
In the low humidity region (A region) where the amount of supplied water is small, infrared rays are absorbed in accordance with the amount of water vapor that is a gas sample. Next, in the B region where the amount of supplied water is slightly increased and fine water droplets are intermittently sucked, a “beard” -shaped superimposed output is shown by the sucked water droplets. In the region B where the “beard” -like superimposed output is intermittently generated, the gas moisture amount H3 is easily generated because it is intermittently generated. Therefore, the “beard” -like portion obtained by subtracting this moisture amount H3 is easy to distinguish. It is possible to determine the liquid moisture content for the superimposed output.

しかしながら、さらに供給水分量を増して行くと水滴の発生頻度が高まり、その水滴吸入頻度が増加するC領域では、図8(a)に示したように観察される「ひげ」状の重畳出力分が、図8(b)のように重なり合っているために、「ひげ」状波形の見かけの底部が気体試料分量に相当しないことになるので、重畳出力分を明確に判別できないという問題点があった。つまり、気体試料分と液体試料分の境が明確にならず、見かけの誤差を生じるという問題点があった。   However, when the amount of supplied water is further increased, the frequency of occurrence of water droplets increases, and in the region C where the frequency of water droplet inhalation increases, the “beard” -shaped superimposed output component observed as shown in FIG. However, since they overlap as shown in FIG. 8B, the apparent bottom of the “whisker” waveform does not correspond to the amount of gas sample, so that there is a problem that the superimposed output cannot be clearly determined. It was. That is, there is a problem that the boundary between the gas sample and the liquid sample is not clear and an apparent error occurs.

なお、このような気液2相状態において、気相水分量を測るために一般に用いられる湿度計を適用しても液体試料による影響で湿度計の指示値が上限に張りついて戻らなくなるため、あるいは出力値がダウンするなど不安定な状態に陥るため、また仮に湿度を測れた場合でも応答性が良くないため、湿度計の使用は困難であった。
本発明は、このような問題点に着目してなされたもので、試料本管を流れる試料中の気体試料及び液体試料の分量をそれぞれ応答良く求めることを目的とする。
In such a gas-liquid two-phase state, even if a hygrometer generally used for measuring gas phase moisture content is applied, the indicated value of the hygrometer does not return to the upper limit due to the influence of the liquid sample, or The hygrometer is difficult to use because the output value is unstable, such as a decrease in the output value, and the responsiveness is not good even if the humidity is measured.
The present invention has been made paying attention to such problems, and an object of the present invention is to determine the amounts of a gas sample and a liquid sample in a sample flowing through a sample main tube with good response.

そのため本発明では、試料本管を流れる流体から、少なくとも異なる2種類の試料採取導入管によってそれぞれ試料採取して得た分析計の出力情報に基づいて、流体試料中の気体試料及び液体試料の分量を求める。
また本発明では、試料本管若しくは試料本管の流れを分岐する分流管の流れを一時遮断する切換弁を備え、試料採取導入管を切換弁の近傍の試料本管若しくは分流管に接続し、切換弁の切り換えによってこれらの流れの状態を選択的に変え、それぞれ採取した試料を分析計により流体試料中の気体試料及び液体試料の分量を求める。
Therefore, in the present invention, the amount of the gas sample and the liquid sample in the fluid sample based on the output information of the analyzer obtained by sampling each of the fluid flowing through the sample main by at least two different types of sampling inlet pipes. Ask for.
Further, in the present invention, a switching valve that temporarily shuts off the flow of the sample main pipe or the flow of the flow dividing pipe of the sample main pipe is provided, the sample collection introducing pipe is connected to the sample main pipe or the flow dividing pipe near the switching valve, The state of these flows is selectively changed by switching the switching valve, and the amount of the gas sample and the liquid sample in the fluid sample is obtained from the collected sample by the analyzer.

本発明によれば、試料本管を流れる流体試料が、飛沫水滴が多く発生しているような状態であっても液体試料の分量を正確且つ応答良く求めることができるという効果がある。   According to the present invention, there is an effect that the amount of the liquid sample can be accurately and responsively obtained even when the fluid sample flowing through the sample main pipe is in a state where many droplets of water droplets are generated.

以下、図面を用いて本発明の実施形態について説明する。
図1は、本発明の第1の実施形態に係る気液2相試料分析装置を示す構成図である。
気液2相試料分析装置は、大別して試料本管1を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料(例えばH2O)を赤外線により分析する第1及び第2の赤外線分析装置(分析計)10,20と、これらの装置10,20の出力情報に基づいて流体試料中の気体試料及び液体試料の分量(濃度、量)を求める分量演算装置8とから構成されている。なお、W0は試料本管1内の液体試料を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a gas-liquid two-phase sample analyzer according to the first embodiment of the present invention.
The gas-liquid two-phase sample analyzer is roughly divided into a first gas sample and a second gas sample that analyze a vapor gas sample and a condensed liquid sample (for example, H 2 O) mixed in the fluid flowing through the sample main tube 1 with infrared rays. Infrared analyzers (analyzers) 10 and 20 and a quantity calculation device 8 for obtaining quantities (concentrations and quantities) of the gas sample and the liquid sample in the fluid sample based on the output information of these apparatuses 10 and 20. ing. Note that W0 indicates a liquid sample in the sample main tube 1.

第1赤外線分析装置10は、試料本管1に接続された第1試料採取導入管11を介して、本管1を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を採取する。ここで採取した試料は、第1試料検出セル部13へ導入される。
試料検出セル部13は、試料排出管15及びこれに接続される負圧吸引機構(ポンプ)16により内部圧力が調整されている。なお第1試料採取導入管11と第2試料採取導入管21とは仕様が異なっており、第1試料採取導入管11の径D1は、第2試料採取導入管21の径D2よりも径が小さく形成されている(D1<D2)。このため、負圧吸引機構16により吸引された試料(液体試料W0)は、細かく霧化して試料検出セル部13内に供給される。なお、W1は試料検出セル部13内の液体試料を示している。
The first infrared analyzer 10 collects a vapor state gas sample and a condensed liquid sample mixed in the fluid flowing through the main tube 1 via a first sample collection introduction tube 11 connected to the sample main tube 1. To do. The sample collected here is introduced into the first sample detection cell unit 13.
The internal pressure of the sample detection cell unit 13 is adjusted by a sample discharge pipe 15 and a negative pressure suction mechanism (pump) 16 connected to the sample discharge pipe 15. Note that the specifications of the first sample collection and introduction tube 11 and the second sample collection and introduction tube 21 are different, and the diameter D1 of the first sample collection and introduction tube 11 is larger than the diameter D2 of the second sample collection and introduction tube 21. It is formed small (D1 <D2). Therefore, the sample (liquid sample W 0) sucked by the negative pressure suction mechanism 16 is finely atomized and supplied into the sample detection cell unit 13. W1 indicates a liquid sample in the sample detection cell unit 13.

試料検出セル部13の一端(図示の上側)及び他端(図示の下側)には透過窓(図示せず)がそれぞれ設けられ、これらの透過窓を介して赤外線を透過させるように、一端には赤外線光源12が配置され、他端には試料検出機構14が配置されている。
試料検出機構14は、図示していないが、例えば赤外線断続チョッパを介して赤外線受光器により、赤外線光源12から発せられた赤外線の減衰量を検出する。赤外線受光器の出力信号はアンプ17及び信号処理装置18を経て赤外線の減衰量を演算して試料検出セル13内部の試料を定量するように構成されている。
A transmission window (not shown) is provided at one end (upper side in the figure) and the other end (lower side in the figure) of the sample detection cell unit 13, respectively, so that infrared rays are transmitted through these transmission windows. Is provided with an infrared light source 12, and a sample detection mechanism 14 is provided at the other end.
Although not shown, the sample detection mechanism 14 detects the amount of attenuation of infrared rays emitted from the infrared light source 12 by using an infrared receiver via an infrared intermittent chopper, for example. The output signal of the infrared light receiver is configured to calculate the amount of attenuation of infrared light through the amplifier 17 and the signal processing device 18 to quantify the sample in the sample detection cell 13.

また第2赤外線分析装置20は、第1赤外線分析装置10と同じように設けられている。
第2赤外線分析装置20は、前述の第1試料採取導入管11より径の大きい第2試料採取導入管21により、第1試料採取導入管11が設けられた試料本管1のほぼ同じ位置の試料を採取する。
The second infrared analyzer 20 is provided in the same manner as the first infrared analyzer 10.
The second infrared analyzing apparatus 20 is located at substantially the same position as the sample main pipe 1 provided with the first sample collecting and introducing pipe 11 by the second sample collecting and introducing pipe 21 having a diameter larger than that of the first sample collecting and introducing pipe 11 described above. Take a sample.

第2試料検出セル部23は、試料排出管25及びこれに接続される負圧吸引機構26により内部圧力が調整されている。なお第2試料採取導入管21の径D2は、前述の第1試料採取導入管11の径D1よりも径が大きく形成されている(D2>D1)。このため、負圧吸引機構26により吸引された試料(液体試料W0)は、比較的大きな粒径の霧として試料検出セル部23内に供給される。なお、W2は試料検出セル部23内の液体試料を示している。   The internal pressure of the second sample detection cell unit 23 is adjusted by a sample discharge pipe 25 and a negative pressure suction mechanism 26 connected thereto. The diameter D2 of the second sampling / introducing tube 21 is larger than the diameter D1 of the first sampling / introducing tube 11 (D2> D1). Therefore, the sample (liquid sample W0) sucked by the negative pressure suction mechanism 26 is supplied into the sample detection cell unit 23 as a mist having a relatively large particle size. W2 indicates the liquid sample in the sample detection cell unit 23.

なお赤外線光源22、試料検出セル部23、試料検出機構24、試料排出管25、負圧吸引機構(ポンプ)26、アンプ27及び信号処理装置28については、前述の分析装置10に用いたものと同じものを用いている。
分量演算装置8は、第1及び第2の赤外線分析装置10,20により算出された各出力信号が入力される。そしてこれらに基づいて、後述する流体試料中の気体試料及び液体試料の分量を算出する。
The infrared light source 22, the sample detection cell unit 23, the sample detection mechanism 24, the sample discharge pipe 25, the negative pressure suction mechanism (pump) 26, the amplifier 27, and the signal processing device 28 are the same as those used in the analysis device 10 described above. The same thing is used.
The quantity calculation device 8 receives the output signals calculated by the first and second infrared analysis devices 10 and 20. And based on these, the quantity of the gas sample in the fluid sample mentioned later and a liquid sample is calculated.

また分析装置10,20ともに負圧吸引機構16,26によって試料検出セル部13,23内に導入された試料は速やかに排出されるようになっているため、試料本管1内の液体試料W0の分量が試料検出部13,23内で霧化された液体試料W1,W2の分量にほぼ等しいという関係が実現できている。
次にこの装置の作用について説明する。
In addition, since the samples introduced into the sample detection cell units 13 and 23 by the negative pressure suction mechanisms 16 and 26 in both the analyzers 10 and 20 are quickly discharged, the liquid sample W0 in the sample main pipe 1 is discharged. Of the liquid sample W1, W2 atomized in the sample detectors 13 and 23 is substantially equal.
Next, the operation of this apparatus will be described.

一般に、赤外線の減衰は吸収と散乱とによって生じる。主として吸収は水蒸気(H2O)のような3原子分子によって生じる。一方、散乱は水滴などによって生じる。なお散乱は水滴などの粒子の大きさと赤外線の波長との関係でその程度が変わることが知られている(代表的な参考文献として例えば、久野治義、「赤外線工学」、社団法人電子情報通信学会、平成6年3月20日初版がある)。 In general, infrared attenuation is caused by absorption and scattering. Absorption is mainly caused by triatomic molecules such as water vapor (H 2 O). On the other hand, scattering is caused by water droplets. It is known that the degree of scattering varies depending on the relationship between the size of particles such as water droplets and the wavelength of infrared rays (as representative references, for example, Haruyoshi Kuno, “Infrared Engineering”, The Institute of Electronics, Information and Communication Engineers) The first edition is March 20, 1994).

試料分析装置10,20は前述したように試料採取導入管11,21の管径D1,D2が異なっていたとしても、試料本管1を流れる試料が気体試料だけであれば、負圧吸引して検出セル部13,23内に導入された試料の状態は気体試料のままで変わらないこととなる。
しかし、本管1を流れる試料に液体試料W0が混在して、これを吸引する場合には、同じように負圧吸引しても、試料採取導入管11,21の径D1,D2が異なっているため、それぞれの検出セル13,23内に導入されたときの液体試料W1,W2の霧化状態が異なる。前述の通り、試料分析装置10の試料採取導入管11,21の径D1,D2がD1<D2なる関係があるとすれば、試料本管1を流れる試料が試料採取管11を介して検出セル13に導入される際に、噴霧微粒化されて粒子W1の平均径は相対的に小さくなる。一方、試料分析装置20の検出セル23に導入される試料(液体試料W2)は、噴霧微粒化されて粒子の平均径は相対的に大きくなっている。
Even if the sample diameters D1 and D2 of the sample collection introduction pipes 11 and 21 are different as described above, the sample analyzers 10 and 20 perform negative pressure suction if the sample flowing through the sample main pipe 1 is only a gas sample. Thus, the state of the sample introduced into the detection cell units 13 and 23 remains as a gas sample.
However, when the liquid sample W0 is mixed in the sample flowing through the main pipe 1 and sucked, the diameters D1 and D2 of the sample collection introduction pipes 11 and 21 are different even if the negative pressure is sucked in the same manner. Therefore, the atomization states of the liquid samples W1 and W2 when introduced into the respective detection cells 13 and 23 are different. As described above, if the diameters D1 and D2 of the sample collection introduction pipes 11 and 21 of the sample analyzer 10 have a relationship of D1 <D2, the sample flowing through the sample main pipe 1 is detected via the sample collection pipe 11. When it is introduced into the nozzle 13, it is atomized and the average diameter of the particles W1 becomes relatively small. On the other hand, the sample (liquid sample W2) introduced into the detection cell 23 of the sample analyzer 20 is atomized and the average diameter of the particles is relatively large.

検出セル内13,23に導入された液体試料W1,W2が噴霧状になると、赤外線は噴霧粒子による散乱によって減衰するが、上述のように噴霧粒子径が異なるために赤外線の散乱の程度が異なることになる。
そこで、第1及び第2の試料分析装置10,20の出力差を採ると、気体試料による影響分は両試料分析装置10,20で共通のため相殺消去され、液体試料が関与する散乱による影響分は、散乱の程度が両試料分析装置10,20で異なるために残る。
When the liquid samples W1 and W2 introduced into the detection cells 13 and 23 are sprayed, the infrared light is attenuated by scattering by the spray particles. However, since the spray particle diameter is different as described above, the degree of infrared scattering is different. It will be.
Therefore, when the output difference between the first and second sample analyzers 10 and 20 is taken, the influence due to the gas sample is shared by both sample analyzers 10 and 20 and is canceled out. Minutes remain because the degree of scattering differs between the two sample analyzers 10,20.

このため分量演算装置8は、これらの出力差を演算し、予め取得しておいた出力差と液体試料の分量との相関データを利用して両試料分析装置10,20の出力差の値から液体試料の分量を求める。これにより試料本管1を流れる試料が、前述の図7のCパターンおよびDパターンの状態である場合においても、分析装置10,20の試料検出セル部13,23には、試料本管1の液体試料W0を微粒化した液体試料W1,W2が供給され、これらの状態を分析することにより、試料本管1の液体試料W0または試料検出セル部13,23内の液体試料W1,W2の分量を求めることができることとなる。   For this reason, the quantity calculation device 8 calculates these output differences, and uses the correlation data between the output difference acquired in advance and the quantity of the liquid sample, based on the output difference values of both sample analyzers 10 and 20. Determine the volume of the liquid sample. Thus, even when the sample flowing through the sample main tube 1 is in the state of the C pattern and the D pattern in FIG. 7 described above, the sample detection cell units 13 and 23 of the analyzers 10 and 20 have the sample main tube 1 The liquid samples W1 and W2 obtained by atomizing the liquid sample W0 are supplied, and by analyzing these states, the amounts of the liquid samples W1 and W2 in the sample main tube 1 or the sample detection cell units 13 and 23 are analyzed. Can be obtained.

そして、液体試料W0,W1,W2の分量を算出した後は、試料分析装置10,20の一方の出力情報から気体試料の分量を算出する。
また、試料分析装置10,20の一方の出力波形から、試料本管1内または検出セル部13,23内の液体試料W0,W1,W2の状態を凡そ知ることができる。前述したように図7は液体試料の供給を段階的に増して行ったときの赤外線式分析装置の出力波形例を示したものであり、Aパターンでは「ひげ」状の山が無いことから水滴を採取していないことが判る。Bパターンでは「ひげ」状の山の高さから水滴の大きさが判る。Cパターンでは「ひげ」状の発生頻度から水滴の多さが判る。またDパターンのように急激な立ち上がり特性に対して、立下り特性が著しく悪い場合は、分析装置の試料検出セル内が水滴過多または水滴の滞留によりテイリング(tailing:後引き)現象を起こしていることが判る。これらの情報を活用して試料本管1内の液体の状態、すなわち本管1内の液滴の有無、液滴の大きさと多さ、あるいは分析装置10,20の試料検出セル部13,23内の液滴が過多であるか否か、を定性的に求める。
After calculating the quantities of the liquid samples W0, W1, and W2, the quantity of the gas sample is calculated from the output information of one of the sample analyzers 10 and 20.
Further, from the output waveform of one of the sample analyzers 10 and 20, the state of the liquid samples W0, W1 and W2 in the sample main tube 1 or the detection cell units 13 and 23 can be roughly known. As described above, FIG. 7 shows an output waveform example of the infrared analyzer when the supply of the liquid sample is increased step by step. It turns out that it is not collected. In the B pattern, the size of the water droplet can be determined from the height of the “beard” -shaped mountain. In the C pattern, the number of water droplets can be seen from the frequency of occurrence of the “beard” shape. In addition, when the fall characteristic is remarkably poor with respect to the sudden rise characteristic as in the D pattern, a tailing phenomenon is caused in the sample detection cell of the analyzer due to excessive water droplets or retention of water droplets. I understand that. Utilizing these pieces of information, the state of the liquid in the sample main tube 1, that is, the presence or absence of droplets in the main tube 1, the size and number of droplets, or the sample detection cell units 13 and 23 of the analyzers 10 and 20. It is qualitatively determined whether or not there are excessive droplets.

なお、試料分析装置10,20の両方の波形情報で液体試料W1,W2の状態を探ると、さらに検出精度の確からしさが増す。あるいはテイリングを発生する水分量は、試料採取導入管の管径D1,D2を変えたことにより若干異なるため、水分量に関する情報のビット数が増すことになって、液体試料の状態推定に関してより確からしさを増すことができる。液体試料の状態がおよそ推定できると、気体試料の分量と組み合わせて、試料本管1内の流体がどのような状態にあるかを推定しやすくなる。   If the state of the liquid samples W1 and W2 is searched with the waveform information of both the sample analyzers 10 and 20, the accuracy of detection accuracy further increases. Alternatively, the amount of moisture that generates tailing is slightly different depending on the changes in the diameters D1 and D2 of the sampling and introduction pipes. Therefore, the number of bits of information related to the amount of moisture increases, and the state of the liquid sample is more reliably estimated. You can increase the quality. When the state of the liquid sample can be estimated approximately, it becomes easy to estimate the state of the fluid in the sample main pipe 1 in combination with the amount of the gas sample.

本実施形態によれば、試料本管1を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を採取する試料採取導入管と、内部圧力が調整された試料検出セル部13,23と、試料を試料採取導入管から試料検出セル部13,23に負圧によって吸引して導く負圧吸引機構16,26と、試料検出セル部13,23に導かれた試料を検出する試料検出機構17,27と、を備えた気液2相試料分析装置において、試料採取導入管として少なくとも異なる2種類の試料採取導入管11,21を有し、これらの試料採取導入管11,21を介してそれぞれ採取した試料を分析する分析計(赤外線分析装置)10,20と、分析計10,20の出力情報に基づいて流体試料中の気体試料及び液体試料の分量を求める分量演算装置8と、を備える。このため、試料本管1を流れる流体試料が、飛沫水滴が多く発生しているような状態であっても液体試料の分量を正確且つ応答良く求めることができる。   According to the present embodiment, a sample collection introduction tube for collecting a vapor state gas sample and a condensed liquid sample mixed in the fluid flowing through the sample main tube 1, the sample detection cell unit 13 whose internal pressure is adjusted, 23, a negative pressure suction mechanism 16, 26 for sucking and guiding the sample from the sample collection introduction pipe to the sample detection cell unit 13, 23 by negative pressure, and a sample for detecting the sample guided to the sample detection cell unit 13, 23 The gas-liquid two-phase sample analyzer having the detection mechanisms 17 and 27 has at least two different types of sample collection and introduction pipes 11 and 21 as sample collection and introduction pipes. Analyzers (infrared analyzers) 10 and 20 for analyzing samples collected through the respective devices, and a quantity calculation device 8 for obtaining quantities of a gas sample and a liquid sample in a fluid sample based on output information of the analyzers 10 and 20; , Provided. For this reason, even if the fluid sample flowing through the sample main pipe 1 is in a state where many splashed water droplets are generated, the amount of the liquid sample can be obtained accurately and with good response.

また本実施形態によれば、少なくとも異なる2種類の試料採取導入管11,21は、それぞれ異なる径D1,D2を有する。このため、試料検出セル部13,23内に導入される試料の液体試料W1,W2の状態(液体試料の粒径)がそれぞれ異なり、これらの液体試料W1,W2に対して検出される出力値の差分を取ることによって、気体試料の影響を相殺でき、液体試料W1,W2の分量に関連を持つ出力情報(例えば、試料本管1の液体試料W0の分量)だけを得ることができ、液体試料の分量を正確に応答良く求め易くできる。   Further, according to the present embodiment, at least two different types of sampling / introducing pipes 11 and 21 have different diameters D1 and D2, respectively. Therefore, the states of the liquid samples W1 and W2 of the samples introduced into the sample detection cell sections 13 and 23 (particle diameters of the liquid samples) are different, and the output values detected for these liquid samples W1 and W2 By taking the difference, the influence of the gas sample can be offset, and only output information related to the amount of the liquid samples W1 and W2 (for example, the amount of the liquid sample W0 in the sample main tube 1) can be obtained. The amount of the sample can be accurately and easily obtained with good response.

また本実施形態によれば、試料本管1を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を試料採取導入管11,21に採取し、内部圧力が調整された試料検出セル部13,23に、採取された試料を負圧によって吸引して導き、試料検出セル部13,23に導かれた試料を検出する気液2相試料分析方法であって、少なくとも異なる2種類の試料採取導入管13,23によってそれぞれ試料採取して得た分析計(赤外線分析装置)10,20の出力情報に基づいて、流体試料中の気体試料及び液体試料の分量を求める。このため、方程式を解くかのように複合的に出力情報を利用することになり、気体試料および/または液体試料の計測に及ぼす、好ましくない他の量の影響を効果的に除去もしくは低減することができる。   In addition, according to the present embodiment, a gas sample in a vapor state and a liquid sample in a condensed state mixed in the fluid flowing through the sample main pipe 1 are collected in the sample collection introducing pipes 11 and 21, and the sample detection in which the internal pressure is adjusted is detected. A gas-liquid two-phase sample analysis method for detecting a sample guided to the sample detection cell units 13 and 23 by sucking a sample collected into the cell units 13 and 23 with a negative pressure, and at least two different types On the basis of the output information of the analyzers (infrared analyzers) 10 and 20 obtained by sampling with the sample collection introduction tubes 13 and 23, the amounts of the gas sample and the liquid sample in the fluid sample are obtained. For this reason, the output information is used in a complex manner as if solving the equation, and the effect of other undesirable amounts on the measurement of gas samples and / or liquid samples is effectively removed or reduced. Can do.

また本実施形態によれば、液体試料の分量に基づいて液体の状態を推定する。このため、液滴の有無、液滴の大きさと多さ、あるいは分析計10,20の試料検出セル部13,23内の液滴が過多であるか否か、つまり出力が正しいかどうかを判断することができる。
次に図2,3を用いて本発明の第2の実施形態について説明する。
According to this embodiment, the state of the liquid is estimated based on the amount of the liquid sample. Therefore, it is determined whether or not there are droplets, the size and size of the droplets, or whether or not the number of droplets in the sample detection cell units 13 and 23 of the analyzers 10 and 20 is excessive, that is, whether the output is correct. can do.
Next, a second embodiment of the present invention will be described with reference to FIGS.

本実施形態では、図示の通り、試料本管1に連通する試料採取管2と、この採取管2に接続される選択切換弁3とを新たに設け、これらにより試料本管1から赤外線分析装置(分析計)10,20に試料を導くように構成している。試料採取導入管11,21は、選択切換弁3に接続している。
選択切換弁3は、試料本管1から採取管2を介して導入された試料を、第1試料採取導入管11または第2試料採取導入管21の一方に導入する。これにより、試料本管1を流れる試料を選択的に第1赤外線分析装置10または第2赤外線分析装置20に導く。
In the present embodiment, as shown in the figure, a sample collection tube 2 communicating with the sample main tube 1 and a selection switching valve 3 connected to the sample tube 2 are newly provided, whereby the sample main tube 1 is connected to the infrared analyzer. (Analyzer) 10 and 20 are configured to guide the sample. The sample collection introduction pipes 11 and 21 are connected to the selection switching valve 3.
The selection switching valve 3 introduces the sample introduced from the sample main pipe 1 through the collection pipe 2 into one of the first sample collection introduction pipe 11 and the second sample collection introduction pipe 21. Thereby, the sample flowing through the sample main pipe 1 is selectively guided to the first infrared analysis device 10 or the second infrared analysis device 20.

この場合においても試料採取導入管11,21の径D1,D2を異なるように構成させている(例えばD1<D2)。なお図2における他の構成は第1の実施形態において説明したものと同じでも良いので説明を省略する。
また図3では、図2と異なり、分析装置30を1つにして、この装置30内に選択切換弁3を設け、1つの試料採取管2を介して試料本管1を流れる試料を採取し、これを切換弁3により、径D1’,D2’が異なる(例えばD1’<D2’)2つの試料採取導入管11a,11bにそれぞれ切り換えて導入可能な構成にしている。なお、分量演算装置8は分析装置10内に組み込んでおり、信号処理装置18と一緒に示している。
Even in this case, the diameters D1 and D2 of the sample collection introduction pipes 11 and 21 are configured to be different (for example, D1 <D2). The other configurations in FIG. 2 may be the same as those described in the first embodiment, and thus description thereof is omitted.
3, unlike FIG. 2, the analyzer 30 is provided as one, the selection switching valve 3 is provided in the apparatus 30, and the sample flowing through the sample main pipe 1 is collected via the single sample collection pipe 2. The switching valve 3 is configured so that the diameters D1 ′ and D2 ′ are different (for example, D1 ′ <D2 ′) and can be switched to and introduced into two sampling introduction pipes 11a and 11b, respectively. The quantity calculation device 8 is incorporated in the analysis device 10 and is shown together with the signal processing device 18.

図2及び図3では、切換弁3を切り換えることで仕様の異なる(径の異なる)試料導入管(11,21または11a,11b)を介して試料を交互に検出セル部(13または13,23)に導入し、液体試料が関与する散乱影響分を時系列での出力差分として求めることができる。なお試料採取導入管(11,21または11a,11b)は、試料採取管2を共有しており、この採取管2は試料本管1の1箇所の位置から試料を採取しているため、試料本管1の複数箇所から試料採取する場合に比べて、試料採取管2が赤外線分析装置10,20の出力値の差分に影響を及ぼさない。   2 and 3, the sample is alternately detected through the sample introduction pipes (11, 21 or 11a, 11b) having different specifications (different diameters) by switching the switching valve 3 (13, 13, 23). ) And the scattering influence part involving the liquid sample can be obtained as an output difference in time series. Note that the sample collection introduction pipe (11, 21 or 11a, 11b) shares the sample collection pipe 2, and this collection pipe 2 collects the sample from one position of the sample main pipe 1, so that the sample Compared to the case of sampling from a plurality of locations on the main tube 1, the sampling tube 2 does not affect the difference between the output values of the infrared analyzers 10 and 20.

本実施形態によれば、試料本管1に連通する採取管2と、この採取管2に接続される選択切換弁3と、を備え、選択切換弁3は、採取管2から採取された試料を、少なくとも異なる2種類の試料採取導入管(11,21または11a,11b)に選択的に導入する。このため、試料本管1からの試料採取位置による影響を受けずに、液体試料の分量の算出精度を高めることができる。そして、図3に示すような構成にすれば、径D1’,D2’の異なる試料採取導入管(11,21または11a,11b)だけが2種で、試料採取管2、試料検出セル部13、負圧吸引機構16、試料検出機構14などは共通で用いることにより、2種類の分析装置10,20の器差ばらつきや試料本管1に連通する採取管2の取付け方によるばらつき等が出力値の差分に含まれないようにすることができる。即ち試料検出セル部13内に導入される試料の液体試料状態の差だけが出力値の差分に反映することができるため、結果として液体試料分の算出精度を高めることができる。   According to the present embodiment, the sampling tube 2 communicated with the sample main tube 1 and the selection switching valve 3 connected to the sampling tube 2 are provided. The selection switching valve 3 is a sample collected from the sampling tube 2. Are selectively introduced into at least two different types of sampling introduction pipes (11, 21 or 11a, 11b). For this reason, the calculation accuracy of the amount of the liquid sample can be improved without being affected by the position of sampling from the sample main pipe 1. 3, there are only two types of sampling inlet pipes (11, 21 or 11a, 11b) having different diameters D1 ′ and D2 ′, the sampling pipe 2 and the sample detection cell section 13. By using the negative pressure suction mechanism 16 and the sample detection mechanism 14 in common, variations in instrumentalities between the two types of analyzers 10 and 20 and variations due to the way in which the sampling tube 2 communicating with the sample main tube 1 is attached are output. It is possible not to be included in the value difference. That is, since only the difference in the liquid sample state of the sample introduced into the sample detection cell unit 13 can be reflected in the difference in the output value, the calculation accuracy for the liquid sample can be increased as a result.

次に図4を用いて本発明の第3の実施形態について説明する。
本実施形態では、デッドボリューム装置40を新たに設けている。デッドボリューム装置40は、採取管41により試料本管1と接続している。採取管41と、デッドボリューム部43及び負圧吸引機構26を連通する管にはそれぞれ切換弁42,45が設けられている。
Next, a third embodiment of the present invention will be described with reference to FIG.
In the present embodiment, a dead volume device 40 is newly provided. The dead volume device 40 is connected to the sample main tube 1 by a sampling tube 41. Switching valves 42 and 45 are provided in the pipe that communicates the collection pipe 41 with the dead volume section 43 and the negative pressure suction mechanism 26, respectively.

切換弁42,45は、試料本管1からの試料を採取管41を介して採取し、選択的にデッドボリューム部43に吸引して導くことを可能としている。
デッドボリューム装置40には、切換弁3と接続される連通配管44が配設されている。なお図示のように、デッドボリューム部43内には突起壁43aが連通配管44を覆うように形成され、これにより連通配管44が採取管41から吸引した噴霧を直接吸引しないようにしている。
The switching valves 42 and 45 are capable of collecting a sample from the sample main tube 1 via the collection tube 41 and selectively sucking and guiding the sample to the dead volume unit 43.
The dead volume device 40 is provided with a communication pipe 44 connected to the switching valve 3. As shown in the figure, a projection wall 43 a is formed in the dead volume portion 43 so as to cover the communication pipe 44, so that the communication pipe 44 does not directly suck the spray sucked from the collection pipe 41.

次に本実施形態の作用について説明する。
切換弁3,42,45の連通切換による作動モードは、少なくとも次の2つの試料採取モードを実現できる。
その1つは、デッドボリューム部43の前後に配置された切換弁42,45が遮断されて、デッドボリューム部43の内部には流れのない状態にした上で、赤外線分析装置10が試料本管1から切り離されてデッドボリューム43内の試料を採取するようにするモード(デッドボリューム部43内からの吸引モード)である。これにより、閉じられたデッドボリューム部43内の試料を吸引する場合における気体試料分を求められる。
Next, the operation of this embodiment will be described.
The operation mode by the communication switching of the switching valves 3, 42, 45 can realize at least the following two sampling modes.
One of them is that the switching valves 42 and 45 arranged before and after the dead volume section 43 are blocked so that there is no flow inside the dead volume section 43, and the infrared analyzer 10 is connected to the sample main pipe. This is a mode in which the sample in the dead volume 43 is collected by being separated from 1 (a suction mode from within the dead volume unit 43). Thereby, the gas sample component in the case of sucking the sample in the closed dead volume portion 43 is obtained.

もう1つは、赤外線分析装置10が試料本管1の試料を採取し、デッドボリューム部43にも試料本管1の試料を導入するモード(試料本管1からの吸引モード)である。試料本管吸引モードでは気体試料と液体試料とを採取するので、デッドボリューム内吸引モードで求めた気体試料を差し引くことで液体試料の分量を求めることができる。これら2つの作動モードは、交互に作動し、少なくともデッドボリューム部内試料吸引モードは、短時間のうちに切り換えられる。   The other is a mode in which the infrared analyzer 10 collects a sample of the sample main tube 1 and introduces the sample of the sample main tube 1 into the dead volume section 43 (aspiration mode from the sample main tube 1). Since the gas sample and the liquid sample are collected in the sample main tube suction mode, the amount of the liquid sample can be obtained by subtracting the gas sample obtained in the dead volume suction mode. These two operation modes operate alternately, and at least the dead volume portion sample suction mode is switched in a short time.

本実施形態によれば、試料本管1から採取した試料を滞留させるデッドボリューム部43を備え、少なくとも異なる2種類の試料採取導入管2,11,41,44,のうち1種類が、デッドボリューム部43を介して試料採取するように構成し、デッドボリューム部43内のデッドボリュームの状態(デッドボリュームの有無またはデッドボリュームの大小)を選択的に切り換えて、試料検出セル部13に接続した。このため、試料本管1から一時的に遮断されたデッドボリューム部43内の試料を採取することで、液体試料のない気体試料だけの試料を採取することができ、この結果、気体試料及び液体試料の分量を容易に分離することができる。   According to the present embodiment, the dead volume section 43 for retaining the sample collected from the sample main pipe 1 is provided, and at least one of two different types of sample collection introduction pipes 2, 11, 41, 44 is a dead volume. The sample was collected via the unit 43, and the state of the dead volume in the dead volume unit 43 (the presence or absence of dead volume or the size of the dead volume) was selectively switched and connected to the sample detection cell unit 13. For this reason, by collecting the sample in the dead volume portion 43 that is temporarily cut off from the sample main pipe 1, it is possible to collect only the gas sample without the liquid sample. As a result, the gas sample and the liquid The sample volume can be easily separated.

次に図5,6を用いて本発明の第4の実施形態について説明する。
図5では、試料本管1を分流する分流管51を新たに設け、この分流管51に2つの切換弁52,53を配設して、これらの切換弁52,53の間に分析装置10の試料採取導入管11を接続している。
また図6では、分流管51の試料採取部分より上流側に1つの切換弁52を配設している。そして分流管51と同様に、もう1つ別の分流管54を試料本管1に設け、この分流管54の上流側に1つの切換弁55を配設している。
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
In FIG. 5, a branch pipe 51 for splitting the sample main pipe 1 is newly provided, and two switching valves 52 and 53 are provided in the branch pipe 51, and the analyzer 10 is provided between these switching valves 52 and 53. The sampling introduction pipe 11 is connected.
In FIG. 6, one switching valve 52 is disposed upstream of the sampling portion of the flow dividing pipe 51. Similarly to the flow dividing pipe 51, another flow dividing pipe 54 is provided in the sample main pipe 1, and one switching valve 55 is disposed on the upstream side of the flow dividing pipe 54.

図5での切換弁52または図6での切換弁52により、分流管51中の流れを遮断、開放可能である。なお、試料本管1に直接切換弁が配置可能である場合、すなわち試料本管1中の流れを直接に遮断、開放可能である場合には、分流管51,54を設定する必要は無い。この場合は試料採取部分を試料本管1に配設された切換弁の下流にする。
次に本実施形態の作用について説明する。
The switching valve 52 in FIG. 5 or the switching valve 52 in FIG. 6 can block and open the flow in the flow dividing pipe 51. When the switching valve can be arranged directly on the sample main pipe 1, that is, when the flow in the sample main pipe 1 can be directly cut off and opened, it is not necessary to set the flow dividing pipes 51 and 54. In this case, the sample collection part is located downstream of the switching valve disposed in the sample main pipe 1.
Next, the operation of this embodiment will be described.

先ず、図5の切換弁52,53を開放させた状態、すなわち試料本管1から気体試料と液体試料とを分流管51に流入させる(第1モード)。次に、少なくとも切換弁52を遮断させた状態、すなわち分流管51の上流からの流れを止めた状態(第2モード)で気体試料だけを採取する。これにより流れ飛ぶ水滴分が無い試料状態を作り出す。
赤外線分析装置10は、試料採取導入管11を介して分流管51から試料検出セル部13へ導入し、これら2つのモードにおける時系列出力値から、気体試料及び液体試料の分量を同定する。
First, a state in which the switching valves 52 and 53 in FIG. 5 are opened, that is, a gas sample and a liquid sample are allowed to flow from the sample main pipe 1 into the branch pipe 51 (first mode). Next, only the gas sample is collected in a state where at least the switching valve 52 is shut off, that is, in a state where the flow from the upstream side of the branch pipe 51 is stopped (second mode). This creates a sample state with no water droplets flying away.
Infrared analyzer 10 introduces into sample detection cell part 13 from distribution pipe 51 via sample collection introduction pipe 11, and identifies the quantity of a gas sample and a liquid sample from the time series output value in these two modes.

ここで、図6に示す切換弁55は、切換弁52と開/閉が逆の動きとなるよう連動して作動する。これによって、分流管51に流れるガスの遮断による弊害を小さくしている。すなわち、切換弁51が閉じたとき、その分を分流管54でバイパスさせることで、上流側および下流側への影響を小さくしている。なお分流量を小さくすること等により、ガスの遮断による弊害が無視できれば分流管54、切換弁55を設定する必要は無い。   Here, the switching valve 55 shown in FIG. 6 operates in conjunction with the switching valve 52 so that the opening / closing movement is reversed. As a result, adverse effects caused by the blockage of the gas flowing through the flow dividing pipe 51 are reduced. That is, when the switching valve 51 is closed, the flow is bypassed by the flow dividing pipe 54, thereby reducing the influence on the upstream side and the downstream side. It should be noted that if the adverse effects due to the shutoff of the gas can be ignored by reducing the diversion flow rate, it is not necessary to set the diversion pipe 54 and the switching valve 55.

また、試料本管1に切換弁を配置して本管1の流れを直接に遮断する場合は、試料本管1と同等のバイパス管(図6の分流管54に相当)と切換弁55(図6の切換弁55に相当)とを設ける構成とすれば、本実施形態と同様の作用効果が得られることは言うまでもない。
以上は、試料として水蒸気(H2O)を分析するものについて示してきたが、本発明の意図する所は、H2Oに限らず、他の流体中に気相と液相とで混在する試料、気相流体中に液相試料が流れ飛んでくる試料場の分析にも適用することができる。
Further, when a switching valve is arranged in the sample main pipe 1 and the flow of the main pipe 1 is directly cut off, a bypass pipe equivalent to the sample main pipe 1 (corresponding to the shunt pipe 54 in FIG. 6) and a switching valve 55 ( Needless to say, the same effect as that of the present embodiment can be obtained.
Although the above has shown about analyzing water vapor (H 2 O) as a sample, the present invention is not limited to H 2 O, but is mixed in a gas phase and a liquid phase in other fluids. The present invention can also be applied to analysis of a sample field where a liquid phase sample flows and flows into a sample or a gas phase fluid.

本実施形態によれば、試料本管1を流れる流体中の試料を採取する試料採取導入管11と、内部圧力が調整された試料検出セル部13と、試料を試料採取導入管11から試料検出セル部13に負圧によって吸引して導く負圧吸引機構16と、試料検出セル部13に導かれた試料を検出する試料検出機構14と、を備えた気液2相試料分析装置において、試料本管1若しくは試料本管1の流れを分岐する分流管51,52と、この分流管51,52の流れを一時遮断する切換弁52,53,55と、を備え、試料採取導入管11を切換弁52の近傍の試料本管1若しくは分流管51に接続し、切換弁52の切り換えによってこれらの流れの状態を選択的に変え、それぞれ採取した試料を分析計10により流体試料中の気体試料及び液体試料の分量を求める。このため、流れ飛ぶ水滴分が無い試料状態を作り出すことができ、このときの赤外線分析装置10の出力情報から気体試料の分量を容易に求めることができる。   According to the present embodiment, the sample collection introduction tube 11 for collecting a sample in the fluid flowing through the sample main tube 1, the sample detection cell unit 13 in which the internal pressure is adjusted, and the sample detection from the sample collection introduction tube 11. In a gas-liquid two-phase sample analyzer including a negative pressure suction mechanism 16 that sucks and guides to a cell unit 13 by a negative pressure, and a sample detection mechanism 14 that detects a sample guided to the sample detection cell unit 13. The main pipe 1 or the sample main pipe 1 is provided with branch pipes 51 and 52 that branch off the flow, and the branch valves 51, 52, and the switching valves 52, 53, and 55 that temporarily shut off the flow of the branch pipes 51 and 52. A sample main pipe 1 or a diversion pipe 51 in the vicinity of the switching valve 52 is connected, and the flow state is selectively changed by switching the switching valve 52, and each sample collected is gas sample in the fluid sample by the analyzer 10. And liquid sample fractions The seek. Therefore, it is possible to create a sample state in which there is no flowing water droplets, and the amount of the gas sample can be easily obtained from the output information of the infrared analysis device 10 at this time.

また本実施形態によれば、試料本管1を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を試料採取導入管11に採取し、内部圧力が調整された試料検出セル部13に前記採取された試料を負圧によって吸引して導き、試料検出セル部13に導かれた試料を検出する気液2相試料分析方法において、少なくとも異なる2種類の試料採取導入管11によってそれぞれ試料採取して得た分析計(赤外線分析装置10)の出力情報に基づいて、流体試料中の気体試料及び液体試料の分量を求める。このため、方程式を解くかのように複合的に出力情報を利用することになるため、気体試料および/または液体試料の計測に及ぼす好ましくない他の量の影響を効果的に除去もしくは低減することができる。   In addition, according to the present embodiment, the vapor detection gas sample and the condensed liquid sample mixed in the fluid flowing through the sample main pipe 1 are collected in the sample collection introduction pipe 11, and the sample detection cell section in which the internal pressure is adjusted. In the gas-liquid two-phase sample analysis method for detecting the sample led to the sample detection cell unit 13 by sucking the sample collected by negative pressure and guiding the sample to the sample detection cell unit 13, the sample is introduced by at least two different types of sample collection introduction pipes 11. Based on the output information of the analyzer (infrared analyzer 10) obtained by sampling, the amounts of the gas sample and the liquid sample in the fluid sample are obtained. This effectively removes or reduces the effects of other undesirable amounts on the measurement of gas and / or liquid samples, since the output information is used in a complex way as if solving the equation. Can do.

第1の実施形態の構成を示す図The figure which shows the structure of 1st Embodiment. 第2の実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment. 第2の実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment. 第3の実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment. 第4の実施形態の構成を示す図The figure which shows the structure of 4th Embodiment. 第4の実施形態の構成を示す図The figure which shows the structure of 4th Embodiment. 液体試料別波形パターンを示す図Diagram showing waveform pattern for each liquid sample 従来の問題点(図7のCパターン部)を示す図The figure which shows the conventional problem (C pattern part of FIG. 7)

符号の説明Explanation of symbols

1 燃料本管
2 採取管
3 切換弁
8 分量演算装置
10,20,30 赤外線分析装置
11,21 試料採取導入管
12,22 赤外線光源
13,23 試料検出セル
14,24 試料検出機構
15,25 試料排出管
16,26 負圧ポンプ
17,27 アンプ
18,28 信号処理装置
40 デッドボリューム装置
41 試料採取導入管
42,45 切換弁
43 デッドボリューム部
44 連通配管
46 負圧ポンプ
51,54 分流管
52,53,55 切換弁
DESCRIPTION OF SYMBOLS 1 Fuel main pipe 2 Sampling pipe 3 Switching valve 8 Quantity calculating device 10,20,30 Infrared analyzer 11,21 Sample collection introduction pipe 12,22 Infrared light source 13,23 Sample detection cell 14,24 Sample detection mechanism 15,25 Sample Discharge pipes 16 and 26 Negative pressure pumps 17 and 27 Amplifiers 18 and 28 Signal processing device 40 Dead volume device 41 Sampling introduction pipes 42 and 45 Switching valve 43 Dead volume section 44 Communication pipe 46 Negative pressure pumps 51 and 54 Dividing pipe 52 53,55 selector valve

Claims (8)

試料本管を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を採取する試料採取導入管と、内部圧力が調整された試料検出セル部と、前記試料を前記試料採取導入管から前記試料検出セル部に負圧によって吸引して導く負圧吸引機構と、前記試料検出セル部に導かれた試料を検出する試料検出機構と、を備えた気液2相試料分析装置において、
前記試料採取導入管として少なくとも異なる2種類の試料採取導入管を有し、
前記試料採取導入管を介してそれぞれ採取した試料を分析する分析計と、
前記分析計の出力情報に基づいて流体試料中の気体試料及び液体試料の分量を求める分量演算装置と、
を備えることを特徴とする気液2相試料分析装置。
A sample collection introduction tube for collecting a vapor state gas sample and a condensed liquid sample mixed in the fluid flowing through the sample main pipe, a sample detection cell section whose internal pressure is adjusted, and the sample collection introduction tube A gas-liquid two-phase sample analyzer comprising: a negative pressure suction mechanism that sucks and guides to the sample detection cell portion from the sample detection cell portion; and a sample detection mechanism that detects the sample guided to the sample detection cell portion;
Having at least two different types of sampling inlet pipes as the sampling inlet pipe;
An analyzer for analyzing each sample collected through the sampling introduction tube;
A quantity calculation device for obtaining quantities of a gas sample and a liquid sample in a fluid sample based on output information of the analyzer;
A gas-liquid two-phase sample analyzer, comprising:
前記少なくとも異なる2種類の試料採取導入管は、それぞれ異なる径を有することを特徴とする請求項1記載の気液2相試料分析装置。   2. The gas-liquid two-phase sample analyzer according to claim 1, wherein the at least two different types of sampling and introducing pipes have different diameters. 前記試料本管に連通する採取管と、
前記採取管に接続される選択切換弁と、を備え、
前記選択切換弁は、前記採取管から採取された試料を前記少なくとも異なる2種類の試料採取導入管に選択的に導入することを特徴とする請求項1または請求項2記載の気液2相試料分析装置。
A sampling tube communicating with the sample main pipe,
A selection switching valve connected to the sampling pipe,
The gas-liquid two-phase sample according to claim 1 or 2, wherein the selective switching valve selectively introduces the sample collected from the collection tube into the at least two different types of sample collection introduction tubes. Analysis equipment.
前記試料本管から採取した試料を滞留させるデッドボリューム部を備え、
前記少なくとも異なる2種類の試料採取導入管のうち1種類が、前記デッドボリューム部を介して試料採取するように構成し、前記デッドボリューム部内のデッドボリュームの状態を選択的に切り換えて、前記試料検出セル部に接続したことを特徴とする請求項1〜請求項3のいずれか1つに記載の気液2相試料分析装置。
A dead volume part for retaining a sample collected from the sample main pipe,
One of the at least two different sample collection and introduction tubes is configured to sample through the dead volume section, and the sample detection is performed by selectively switching the state of the dead volume in the dead volume section. The gas-liquid two-phase sample analyzer according to any one of claims 1 to 3, wherein the gas-liquid two-phase sample analyzer is connected to a cell unit.
試料本管を流れる流体中の試料を採取する試料採取導入管と、内部圧力が調整された試料検出セル部と、前記試料を前記試料採取導入管から前記試料検出セル部に負圧によって吸引して導く負圧吸引機構と、前記試料検出セル部に導かれた試料を検出する試料検出機構と、を備えた気液2相試料分析装置において、
試料本管の流れを分岐する分流管と、
前記試料本管若しくは前記分流管の流れを一時遮断する切換弁と、を備え、
前記試料採取導入管を前記切換弁の近傍の試料本管若しくは分流管に接続し、
前記切換弁の切り換えによってこれらの流れの状態を選択的に変え、
それぞれ採取した試料を分析計により流体試料中の気体試料及び液体試料の分量を求めることを特徴とする気液2相試料分析装置。
A sample collection introduction pipe for collecting a sample in a fluid flowing through the sample main pipe, a sample detection cell section whose internal pressure is adjusted, and the sample is sucked into the sample detection cell section from the sample collection introduction pipe by a negative pressure. A gas-liquid two-phase sample analyzer comprising: a negative pressure suction mechanism that guides the sample; and a sample detection mechanism that detects the sample guided to the sample detection cell unit;
A shunt pipe for branching the flow of the sample main pipe,
A switching valve that temporarily shuts off the flow of the sample main pipe or the shunt pipe,
Connecting the sample collection introduction pipe to a sample main pipe or a branch pipe in the vicinity of the switching valve;
These flow states are selectively changed by switching the switching valve,
A gas-liquid two-phase sample analyzer characterized in that an amount of a gas sample and a liquid sample in a fluid sample is obtained from each sample collected by an analyzer.
試料本管を流れる流体中に混在する蒸気状態の気体試料及び凝縮状態の液体試料を試料採取導入管に採取し、内部圧力が調整された試料検出セル部に前記採取された試料を負圧によって吸引して導き、前記試料検出セル部に導かれた試料を検出する気液2相試料分析方法において、
少なくとも異なる2種類の試料採取導入管によってそれぞれ試料採取して得た分析計の出力情報に基づいて、流体試料中の気体試料及び液体試料の分量を求めることを特徴とする気液2相試料分析方法。
A gas sample in a vapor state and a liquid sample in a condensed state mixed in a fluid flowing through the sample main pipe are collected in a sample collection introduction pipe, and the sample collected in a sample detection cell section in which the internal pressure is adjusted by a negative pressure. In the gas-liquid two-phase sample analysis method for detecting a sample guided by suction and guided to the sample detection cell unit,
Gas-liquid two-phase sample analysis characterized in that the quantity of a gas sample and a liquid sample in a fluid sample is obtained based on output information of an analyzer obtained by sampling with at least two different types of sampling introduction pipes Method.
試料本管を流れる流体中の試料を試料採取導入管に採取し、内部圧力が調整された試料検出セル部に前記採取された試料を負圧によって吸引して導き、前記試料検出セル部に導かれた試料を検出する気液2相試料分析方法であって、
試料本管から分岐した分流管の流れを一時遮断するよう切り換え、前記分流管の流れの状態を選択的に変え、
それぞれ採取した試料を分析計により流体試料中の気体試料及び液体試料の分量を求めることを特徴とする気液2相試料分析方法。
The sample in the fluid flowing through the sample main pipe is collected in the sample collection introduction pipe, and the collected sample is sucked and guided to the sample detection cell section whose internal pressure is adjusted, and led to the sample detection cell section. A gas-liquid two-phase sample analysis method for detecting a read sample,
Switch to temporarily shut off the flow of the shunt pipe branched from the sample main pipe, selectively change the flow state of the shunt pipe,
A gas-liquid two-phase sample analysis method, characterized in that an amount of a gas sample and a liquid sample in a fluid sample is obtained from each sample collected by an analyzer.
前記液体試料の分量に基づいて液体の状態を推定することを特徴とする請求項6または請求項7記載の気液2相試料分析方法。   The gas-liquid two-phase sample analysis method according to claim 6 or 7, wherein a liquid state is estimated based on an amount of the liquid sample.
JP2003397404A 2003-11-27 2003-11-27 Gas-liquid two phase sample analyzer and analysis method Pending JP2005156438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397404A JP2005156438A (en) 2003-11-27 2003-11-27 Gas-liquid two phase sample analyzer and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397404A JP2005156438A (en) 2003-11-27 2003-11-27 Gas-liquid two phase sample analyzer and analysis method

Publications (1)

Publication Number Publication Date
JP2005156438A true JP2005156438A (en) 2005-06-16

Family

ID=34722570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397404A Pending JP2005156438A (en) 2003-11-27 2003-11-27 Gas-liquid two phase sample analyzer and analysis method

Country Status (1)

Country Link
JP (1) JP2005156438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122961A (en) * 2010-12-10 2012-06-28 Azbil Corp Dryness measuring device and dryness measuring method
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method
WO2014109228A1 (en) * 2013-01-10 2014-07-17 アズビル株式会社 Dryness distribution measurement device and dryness distribution measurement method
WO2014119641A1 (en) * 2013-02-04 2014-08-07 アズビル株式会社 Dryness measuring device and dryness measuring method
JP2014235116A (en) * 2013-06-04 2014-12-15 株式会社テイエルブイ Dryness measuring apparatus
KR20160043620A (en) * 2014-10-13 2016-04-22 주식회사 이알지 Portable real-time monitoring device for shale gas pollutants
WO2022064889A1 (en) * 2020-09-23 2022-03-31 株式会社堀場製作所 Gas analysis device and gas analysis method
CN114459958A (en) * 2022-02-11 2022-05-10 华北电力大学(保定) Device and method for quickly measuring airflow characteristics

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122961A (en) * 2010-12-10 2012-06-28 Azbil Corp Dryness measuring device and dryness measuring method
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method
WO2014109228A1 (en) * 2013-01-10 2014-07-17 アズビル株式会社 Dryness distribution measurement device and dryness distribution measurement method
US9372153B2 (en) 2013-01-10 2016-06-21 Azbil Corporation Dryness fraction distribution measuring device and dryness fraction distribution measuring method
WO2014119641A1 (en) * 2013-02-04 2014-08-07 アズビル株式会社 Dryness measuring device and dryness measuring method
US9625384B2 (en) 2013-02-04 2017-04-18 Azbil Corporation Dryness fraction distribution measuring device and dryness fraction distribution measuring method
JP2014235116A (en) * 2013-06-04 2014-12-15 株式会社テイエルブイ Dryness measuring apparatus
KR20160043620A (en) * 2014-10-13 2016-04-22 주식회사 이알지 Portable real-time monitoring device for shale gas pollutants
KR101713315B1 (en) 2014-10-13 2017-03-08 주식회사 이알지 Portable real-time monitoring device for shale gas pollutants
WO2022064889A1 (en) * 2020-09-23 2022-03-31 株式会社堀場製作所 Gas analysis device and gas analysis method
JP7528237B2 (en) 2020-09-23 2024-08-05 株式会社堀場製作所 Gas analysis device and gas analysis method
CN114459958A (en) * 2022-02-11 2022-05-10 华北电力大学(保定) Device and method for quickly measuring airflow characteristics

Similar Documents

Publication Publication Date Title
US7752929B2 (en) Mass velocity and area weighted averaging fluid compositions sampler and mass flow meter
CN101300476B (en) Photometric method and apparatus for measuring a liquid&#39;s turbidity, fluorescence, phosphorescence and/or absorption coefficient
MX2007014751A (en) Devices and methods for quantification of liquids in gas-condensate wells.
EP3015843A1 (en) Exhaust gas analyzing system and pumping device
JP5762273B2 (en) Mist-containing gas analyzer
US9857282B2 (en) Particle analyzing apparatus
KR20090101085A (en) Smoke sensing device
CN101241063B (en) Cigarette flue gas aerosol grain size distribution detection method
US7609368B2 (en) Optical device and method for sensing multiphase flow
US20180168556A1 (en) Capillary Slit Urine Sampling System
JP2005156438A (en) Gas-liquid two phase sample analyzer and analysis method
US8555732B2 (en) Substance detection device and method of removing blockages
CN201344933Y (en) Smoke gas on-line monitoring global calibrating device
JP3762619B2 (en) Analyzer
CN201133890Y (en) System for cigarette flue gas aerosol detection
KR100551586B1 (en) A fast response sampling apparatus for obtaining sample gas
CN201173888Y (en) Detection system for cigarette flue gas aerosol
CA2509974A1 (en) Characterization of mist sprays using a phase-doppler particle analyzer and an iso-kinetic sampling probe for validation of scale modeling of water mist fire suppression
JP2010512513A5 (en)
CN201173887Y (en) System for cigarette flue gas aerosol detection
EP2542874B1 (en) Improved dust discrimination for sensing systems
CN201130138Y (en) System for detecting cigarette gas aerosol
JP2005091006A (en) Gas-liquid two-phase sample analyzer
JP2002005943A5 (en)
CN113092216A (en) Gas-liquid separation device and gas-liquid separation method for gas-phase molecular absorption spectrometer