JP2005150155A - Copper foil for electromagnetic-wave shielding, its manufacturing method and electromagnetic-wave shielding body made of copper foil - Google Patents
Copper foil for electromagnetic-wave shielding, its manufacturing method and electromagnetic-wave shielding body made of copper foil Download PDFInfo
- Publication number
- JP2005150155A JP2005150155A JP2003381398A JP2003381398A JP2005150155A JP 2005150155 A JP2005150155 A JP 2005150155A JP 2003381398 A JP2003381398 A JP 2003381398A JP 2003381398 A JP2003381398 A JP 2003381398A JP 2005150155 A JP2005150155 A JP 2005150155A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- copper
- particle layer
- wave shielding
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、主としてディスプレイの電磁波シールド用として好適な銅箔に関するものであり、さらに詳しくはプラズマディスプレイパネル(以下PDPと云うことがある)用に好適に用いられる電磁波シールド体を作成する素材としての銅箔、並びに該銅箔で作成した電磁波シールド体に関するものである。 The present invention mainly relates to a copper foil suitable for use as an electromagnetic shield for a display, and more specifically as a material for producing an electromagnetic shield suitable for use in a plasma display panel (hereinafter sometimes referred to as PDP). The present invention relates to a copper foil and an electromagnetic wave shield made of the copper foil.
光エレクトロニクス関連部品等の電子機器が高度化するに従って、それらの機器は著しく進歩している。中でも、画像を表示するディスプレイは、テレビジョン受像器、コンピューターモニター装置用等としてめざましい普及を遂げている。近年、その中でもディスプレイの大型化及び薄型化に対する市場要求が高まり、最近では大型かつ薄型化を実現したPDPが注目されている。 As electronic devices such as optoelectronic components have become more sophisticated, these devices have made significant progress. Among them, displays for displaying images have been remarkably spread for television receivers, computer monitor devices, and the like. In recent years, among them, market demands for increasing the size and thickness of displays have increased, and recently, PDPs that have become large and thin have attracted attention.
しかし、PDPは、原理上、強度の電磁波を装置外に放出する。電磁波は、各種計器に障害を及ぼす恐れがあり、最近では、電磁波が人体にも障害を及ぼすため、電磁波放出に関する法的規制が厳しくなってきている。例えば、電気用品取締法を始め、VCCI(Voluntary Control Council for Interference by data processing equipment electronic officemachine)、FCC(Federal Communication Commission)等の製品規制がある。 However, in principle, the PDP emits strong electromagnetic waves outside the device. Electromagnetic waves may cause damage to various instruments, and recently, electromagnetic waves also have an effect on the human body, so legal regulations regarding electromagnetic wave emission have become stricter. For example, the Electrical Appliance and Material Control Law, VCCI (Voluntary Control Council for Information by data processing equipment electronic machinery), FCC (Federal Communication Commission) and other products.
電磁波シールド体は、シールド面全面に渡って導電性があり、しかも透明性に優れていることが必須要件である。この要求を満たし、実用化された電磁波シールド体として、透明導電性薄膜をPDP全面に配置したものがある。しかしこの製品は、電磁波シールド能として例えば、60dB以上の能力を得ようとすると透明導電層自体の透過率が減少し、透明性に課題を有している。 It is essential that the electromagnetic wave shield has conductivity over the entire shield surface and is excellent in transparency. As an electromagnetic wave shield body that satisfies this requirement and has been put into practical use, there is one in which a transparent conductive thin film is disposed on the entire surface of the PDP. However, this product has a problem in transparency because the transmittance of the transparent conductive layer itself is reduced when an electromagnetic wave shielding ability of, for example, 60 dB or more is obtained.
上記課題を解決するために、金属繊維をメッシュ状に編んだものをフィルムや、ガラス、高分子基板に挟み電磁波シールド体とする方法が提案されている。しかしながら、金属繊維の編み物はよじれ等が発生しやすく、PDPと合わせるとモアレパターンが発生する等の外観上の問題が発生する。
そこで更に、金属箔、特に銅箔を透明な高分子フィルムに接着剤を用いて貼り合わせ、次にエッチングにより金属箔に網の目状のパターンを形成する方法が提案されているが、金属部分は実質的に不透明になるので透過率をどの様にして上げるかが難しい課題であった。
In order to solve the above problems, a method has been proposed in which a metal fiber knitted in a mesh shape is sandwiched between a film, glass, and a polymer substrate to form an electromagnetic wave shield. However, knitting of metal fibers is likely to be kinked, and problems with appearance such as moire patterns occur when combined with a PDP.
Therefore, a method has been proposed in which a metal foil, particularly a copper foil, is bonded to a transparent polymer film using an adhesive, and then a mesh pattern is formed on the metal foil by etching. Since it becomes substantially opaque, it was a difficult task how to increase the transmittance.
一方、最近では金属箔を電磁波シールド体に加工する際に、金属箔からの粉落ちや、金属箔表面の色斑が問題視されてきている。
また、金属箔表面を黒色処理する電解工程において、砒素等の有毒物質を使用し、環境を害する電解液の使用も問題視されてきている。
銅箔からの粉落ちや有害物質を除いた電解液についても研究が進められており、プリント配線板用の銅箔については本願出願人が先に特許文献1に開示している。しかし、この特許文献1に開示した技術では、電磁波シールド体用として要求される色調や色斑、更なる粉落ち対策が充分とは云えない状況にある。
Further, in the electrolysis process for black-treating the surface of the metal foil, the use of a toxic substance such as arsenic and the use of an electrolyte solution that harms the environment has been regarded as a problem.
Research has also been conducted on electrolytic solutions excluding powder fall off from copper foil and harmful substances, and the applicant of the present application has previously disclosed a copper foil for a printed wiring board in Patent Document 1. However, the technique disclosed in Patent Document 1 is in a situation where it cannot be said that sufficient countermeasures against color tone and color spots and further powder removal are required for the electromagnetic wave shield.
本発明が解決しようとする課題は、環境に悪影響を及ぼすことのないめっき液で、電磁波シールド用銅箔として黒色処理面の色調が均一で色斑がなく、粉落ちせず、電磁波シールド能に優れ、透過率が高い電磁波シールド体用として最適な銅箔を提供することにある。
本発明は、特にPDP用の電磁波シールド体を製作する素材として優れた銅箔と、該銅箔により製作されたPDPに好適に使用できる電磁波シールド体を提供することにある。
The problem to be solved by the present invention is a plating solution that does not adversely affect the environment, and as a copper foil for electromagnetic shielding, the color tone of the black treated surface is uniform, there are no color spots, powder does not fall off, and electromagnetic shielding ability is achieved. An object of the present invention is to provide an optimal copper foil for an electromagnetic wave shielding body having excellent and high transmittance.
An object of the present invention is to provide an excellent copper foil as a material for producing an electromagnetic wave shield for PDP, and an electromagnetic wave shield that can be suitably used for a PDP produced from the copper foil.
即ち、本発明電磁波シールド用銅箔は、銅箔の少なくとも片面にCu又はCu合金からなる微細粗化粒子層が設けられ、該微細粗化粒子層上に、Co,Ni、In又はこれらの合金からなる平滑層が設けられていることを特徴とするものである。 That is, the copper foil for electromagnetic wave shielding of the present invention is provided with a fine roughened particle layer made of Cu or Cu alloy on at least one surface of the copper foil, and Co, Ni, In or an alloy thereof on the finely roughened particle layer. A smooth layer made of is provided.
前記微細粗化粒子層は、前記Cu又はCu合金Cuに変えて、Cu微細粗化粒子層の上にCu合金からなる銅合金微細粗化粒子層を積層した微細粗化粒子層であってもよい。 The fine roughened particle layer may be a fine roughened particle layer obtained by stacking a copper alloy fine roughened particle layer made of a Cu alloy on a Cu fine roughened particle layer instead of the Cu or Cu alloy Cu. Good.
また、前記微細粗化粒子層はCoまたは/およびNiを含有するCu合金で形成してもよい。 The fine roughened particle layer may be formed of a Cu alloy containing Co or / and Ni.
更に前記微細粗化粒子層を構成するCu合金は、Se,Sb,W,Te,Bi,Mo,Feの少なくとも何れか1種を含むCu合金であってもよい。 Further, the Cu alloy constituting the fine roughened particle layer may be a Cu alloy containing at least one of Se, Sb, W, Te, Bi, Mo, and Fe.
前記銅合金微細粗化粒子層を構成するCu合金は、Se,Sb,W,Te,Bi,Mo,Feの少なくとも何れか1種を含むCu合金であってもよい。 The Cu alloy constituting the copper alloy fine roughened particle layer may be a Cu alloy containing at least one of Se, Sb, W, Te, Bi, Mo, and Fe.
前記平滑層はCu含有量が5%以下のCo合金であってもよい。 The smooth layer may be a Co alloy having a Cu content of 5% or less.
前記銅箔の表面粗さRzが3μm以下の粒状結晶であることが好ましい。 The copper foil is preferably a granular crystal having a surface roughness Rz of 3 μm or less.
前記平滑層の表面粗さRzが3.5μm以下の粒状結晶であることが好ましい。 The smooth layer is preferably a granular crystal having a surface roughness Rz of 3.5 μm or less.
本発明の電磁波シールド用銅箔の製造方法は、銅箔の少なくとも片面にCu又はCu合金の微細粗化粒子層を設け、該微細粗化粒子層上に、Co,Ni、Inまたはこれらの合金からなる平滑層を設けてなることを特徴とする製造方法である。 The method for producing a copper foil for electromagnetic shielding according to the present invention comprises providing a finely roughened particle layer of Cu or Cu alloy on at least one surface of a copper foil, and Co, Ni, In or an alloy thereof on the finely roughened particle layer. It is a manufacturing method characterized by providing the smooth layer which consists of these.
前記微細粗化粒子層は硫酸銅浴でめっきすることが好ましい。 The fine roughened particle layer is preferably plated with a copper sulfate bath.
また、前記平滑層はCu含有量が100ppm以下のめっき銅浴でめっきするが好ましい。 The smooth layer is preferably plated with a plated copper bath having a Cu content of 100 ppm or less.
本発明の電磁波シールド体は、前記本発明電磁波シールド用銅箔、或いは本発明電磁波シールド用銅箔の製造方法で製造した電磁波シールド用銅箔を電磁波シールド体に加工した電磁波シールド体である。 The electromagnetic wave shielding body of the present invention is an electromagnetic wave shielding body obtained by processing the copper foil for electromagnetic wave shielding produced by the method for producing the copper foil for electromagnetic wave shielding of the present invention or the copper foil for electromagnetic wave shielding of the present invention into an electromagnetic wave shielding body.
本発明電磁波シールド用銅箔は、砒素等の環境を害する恐れのある電解液を使用せずに製膜でき、電磁波シールド能に優れ、透過率が高く、色調が均一で色斑がなく、かつ粉落ちがない、電磁波シールド用銅箔として好適に用いることができる電磁波シールド用銅箔であり、さらに、該銅箔を用いることにより、PDP等に使用できる良好な電磁波シールド体を提供しうる優れた効果を有するものである。 The copper foil for electromagnetic shielding of the present invention can be formed without using an electrolytic solution that may harm the environment such as arsenic, has excellent electromagnetic shielding ability, high transmittance, uniform color tone, no color spots, and It is a copper foil for electromagnetic shielding that can be suitably used as a copper foil for electromagnetic shielding without powder falling, and further, by using the copper foil, an excellent electromagnetic shielding body that can be used for PDP and the like can be provided. It has the effect.
本発明の電磁波シールド用銅箔は、本実施形態では主として圧延銅箔、電解銅箔を使用する。本発明の電磁波シールド用銅箔は、電解銅箔或いは圧延銅箔の少なくとも片方の表面に銅或いは銅合金の微細粗化粒子層を1乃至数層設け、或いは電解処理時間や電流密度を調整することにより膜厚を調整し、次いで該微細粗化粒子層上にCo、Ni、Inまたはこれらの合金からなる平滑層を1乃至数層設け、或いは電解処理時間や電流密度を調整することにより膜厚を調整したものである。 In the present embodiment, the copper foil for electromagnetic wave shielding of the present invention mainly uses a rolled copper foil or an electrolytic copper foil. The copper foil for electromagnetic shielding according to the present invention is provided with one or several finely roughened particle layers of copper or copper alloy on at least one surface of an electrolytic copper foil or a rolled copper foil, or adjusts the electrolytic treatment time and current density. By adjusting the film thickness, and then providing one or several smooth layers made of Co, Ni, In or their alloys on the fine roughened particle layer, or adjusting the electrolytic treatment time and current density. The thickness is adjusted.
銅箔表面に銅または銅合金の微細粗化粒子層を設けるのは、銅箔表面を微細粒子とすることにより表面の乱反射をし易くし、反射率を低くするためである。
なお、前記微細粗化粒子層をCu−Co合金、Cu−Ni合金、Cu−Co−Ni合金で形成すると、微細粗化粒子層を微細粒子化し易く、好ましい。
Cu−Co合金で形成する微細粗化粒子層の厚みは電磁波シールド体として要求される色合いにより、色合いが濃い黒色を要求する場合には、Co等による平滑層の厚さにもよるが、微細粗化粒子層の堆積層の数を増やし、或いは電解時間を長くし(厚さを厚くし)、薄い黒色を要求される場合は1乃至3層程度とし、或いは電解時間を短くして薄くすると良い。
The reason why the finely roughened particle layer of copper or copper alloy is provided on the surface of the copper foil is to make the surface of the copper foil fine particles so that the surface is easily irregularly reflected and the reflectance is lowered.
In addition, it is preferable that the fine roughened particle layer is formed of a Cu—Co alloy, a Cu—Ni alloy, or a Cu—Co—Ni alloy because the fine roughened particle layer is easily formed into fine particles.
The thickness of the fine roughened particle layer formed of the Cu-Co alloy depends on the color required for the electromagnetic wave shield, and when a dark black color is required, it depends on the thickness of the smooth layer made of Co or the like. Increasing the number of roughened particle layers deposited or increasing the electrolysis time (thickening the thickness), if thin black is required, about 1 to 3 layers, or shortening the electrolysis time and reducing the thickness good.
最外層にCo等からなる平滑層を設けるのは、微細粗化粒子層が下工程の処理において器物等に触れると落下する、いわゆる粉落ち現象を防止するためである。
本発明の電磁波シールド用銅箔においては、明度(反射率)と粉落ち現象は平滑層の厚さに関連している。即ち、平滑層の厚さが厚いと明度は上がるが粉落ちは少なく、逆に厚さが薄いと明度は下がるが粉落ちは多くなる。
また、微細粗化粒子層上に設けるCo等からなる平滑層は銅箔表面の黒色の濃淡に影響する。そのため、平滑層の層数或いは電解時間(厚さ)を黒色の濃淡によって任意に選択し、黒色の色合いの要求に応じる膜厚を堆積する。
The reason why the smooth layer made of Co or the like is provided in the outermost layer is to prevent the so-called powder falling phenomenon that the fine roughened particle layer falls when it comes into contact with the container or the like in the processing of the lower process.
In the copper foil for electromagnetic wave shielding of the present invention, the brightness (reflectance) and the powder falling phenomenon are related to the thickness of the smooth layer. That is, if the thickness of the smooth layer is thick, the brightness increases but the powder fall is small. Conversely, if the thickness is thin, the brightness decreases but the powder fall increases.
Further, the smooth layer made of Co or the like provided on the fine roughened particle layer affects the black shade of the copper foil surface. Therefore, the number of smooth layers or the electrolysis time (thickness) is arbitrarily selected according to the density of black, and a film thickness that meets the demand for black hue is deposited.
上記本発明電磁波シールド用銅箔においては、銅箔の少なくとも片面に直接微細粗化粒子層を設けるが、銅箔表面の粗さによっては銅箔表面と微細粗化粒子層との間に銅めっきにより微細銅粒子層を更に設けることが好ましく、銅箔表面の表面粗さRzが3μm以下とすることが好ましい。
即ち、銅箔上に先ず銅めっきにより微細銅粒子層を施す。この微細銅粒子層は銅箔表面の粗度を一定にするとともに、一つにはその上に設ける銅微細粗化粒子層の厚さを薄くしても黒色の色合いが濃くなる効果も合わせて期待することができるためである。二つ目は、微細銅粒子層を設けることで黒色色合いを濃くできるために、微細粗化粒子層の厚さを薄くでき、しかも、微細銅粒子層は銅箔と同一金属であるために両者の接着力が強く、その上に設ける特に銅合金(例えばCu−Co合金、Cu−Ni合金、Cu−Co−Ni合金)微細粗化粒子層を薄くできることから粉落ち現象が少なくなり、平滑層をより薄くすることができるためである。
In the copper foil for electromagnetic shielding according to the present invention, a fine roughened particle layer is directly provided on at least one surface of the copper foil. Depending on the roughness of the copper foil surface, the copper plating is provided between the copper foil surface and the fine roughened particle layer. It is preferable to further provide a fine copper particle layer, and the surface roughness Rz of the copper foil surface is preferably 3 μm or less.
That is, a fine copper particle layer is first applied on a copper foil by copper plating. This fine copper particle layer keeps the surface roughness of the copper foil constant and, in part, has the effect of darkening the black hue even if the copper fine grained particle layer provided on it is thin. This is because it can be expected. Second, since the black color can be darkened by providing a fine copper particle layer, the thickness of the fine roughened particle layer can be reduced, and since the fine copper particle layer is the same metal as the copper foil, both In particular, a copper alloy (for example, Cu-Co alloy, Cu-Ni alloy, Cu-Co-Ni alloy) provided on the surface can be made finer and coarsened particle layer can be thinned, so that the powder fall phenomenon is reduced and the smooth layer is formed. This is because the thickness can be made thinner.
更に、前記平滑層上に、各種表面処理を施すと良い。具体的には、クロメート処理、酸洗処理、ジンク・クロメート処理等の防錆処理、或いはシランカップリング剤処理等である。 Furthermore, various surface treatments may be performed on the smooth layer. Specifically, rust prevention treatment such as chromate treatment, pickling treatment, zinc / chromate treatment, or silane coupling agent treatment.
銅箔の厚さは、3μm〜30μmが好ましく、より好ましくは5〜20μm、更に好ましくは7〜12μmである。この厚さより厚いとエッチングに時間を要し、また、この厚さよりも薄いと銅箔の取り扱いが極めて困難になるからである。 The thickness of the copper foil is preferably 3 μm to 30 μm, more preferably 5 to 20 μm, still more preferably 7 to 12 μm. If it is thicker than this thickness, etching takes time, and if it is thinner than this thickness, handling of the copper foil becomes extremely difficult.
銅箔を電磁波シールド用として使用するときの光透過部分の開口率は60%以上、97%以下が好ましく、より好ましくは70%以上であり、開口率は大きい方が好ましい。
開口部の形状は、特に限定されるものではないが、正三角形、正四角形、正六角形、円形、長方形、菱形等に形がそろっており、面内に均一に並んでいる形状が好まれる。光透過部分の開口部の代表的な大きさは一辺もしくは直径が100〜300μmの範囲である。この値が大きすぎると電磁波シールド能が低下し、また、小さすぎるとディスプレイの画像に好ましくない影響を与えるためである。
When the copper foil is used for electromagnetic wave shielding, the aperture ratio of the light transmitting portion is preferably 60% or more and 97% or less, more preferably 70% or more, and a larger aperture ratio is preferable.
The shape of the opening is not particularly limited, but a regular triangle, a regular square, a regular hexagon, a circle, a rectangle, a rhombus, and the like are aligned, and a shape that is uniformly arranged in the plane is preferable. A typical size of the opening of the light transmitting portion is in the range of one side or diameter of 100 to 300 μm. This is because when this value is too large, the electromagnetic wave shielding ability is lowered, and when it is too small, the display image is unfavorably affected.
また、開口部を形成しない部分の銅箔の幅は5〜50μmが好ましい。すなわちピッチが100〜350μmであることが好ましい。この幅よりも細いとエッチング加工が極めて困難となり、この幅よりも太いと画像に好ましくない影響を与えるからである。 Moreover, as for the width | variety of the copper foil of the part which does not form an opening part, 5-50 micrometers is preferable. That is, the pitch is preferably 100 to 350 μm. This is because if the width is smaller than this width, the etching process becomes extremely difficult, and if the width is larger than this width, the image is unfavorably affected.
光透過部分を有する銅箔の実質的なシート抵抗は、上記パターンよりも5倍以上大きな電極を用いて、上記パターンの繰り返し単位よりも5倍以上の電極間隔をもつ4端子法により測定することができる。例えば、開口部の形状が一辺100μmの正方形で金属層の幅が20μmをもって規則的に正方形が並べられたものであれば、φ1mmの電極を1mm間隔で並べて測定することができる。あるいは、パターンを形成したフィルムを短冊状に加工し、その、長手方向の両端に電極を設けて、その抵抗を計り(R)、長手方向の長さをa、短手方向の長さをbとすると、実質的なシート抵抗は、抵抗=R×b/aで求めることができる。このように測定された値は、0.005/□以上、0.5/□以下が好ましく、より好ましくは0.01/□以上、0.3/□以下である。この値よりも小さな値を得ようとすると膜が厚くなり過ぎ、かつ、開口部が充分取れなくなり、一方、これ以上大きな値にすると充分な電磁波シールド能を得ることができなくなる。 The substantial sheet resistance of a copper foil having a light transmitting portion is measured by a four-terminal method using an electrode larger than the pattern by 5 times or more and having an electrode interval of 5 times or more than the repeating unit of the pattern. Can do. For example, if the shape of the opening is a square having a side of 100 μm and the metal layer has a width of 20 μm and the squares are regularly arranged, it is possible to measure by arranging electrodes of φ1 mm at intervals of 1 mm. Alternatively, the film on which the pattern is formed is processed into a strip shape, electrodes are provided at both ends in the longitudinal direction, the resistance is measured (R), the length in the longitudinal direction is a, and the length in the lateral direction is b. Then, a substantial sheet resistance can be obtained by resistance = R × b / a. The value thus measured is preferably 0.005 / □ or more and 0.5 / □ or less, more preferably 0.01 / □ or more and 0.3 / □ or less. If an attempt is made to obtain a value smaller than this value, the film becomes too thick and the opening cannot be sufficiently removed. On the other hand, if the value is larger than this value, sufficient electromagnetic wave shielding ability cannot be obtained.
本発明銅箔に接着する樹脂基板としては適度な耐熱性と透明性を有している透明高分子フィルムが好ましく、耐熱性についてはガラス転位温度が少なくとも40℃以上、透明性に関しては550nmの光の透過率が少なくとも80%以上であるものが好ましい。 As the resin substrate to be bonded to the copper foil of the present invention, a transparent polymer film having appropriate heat resistance and transparency is preferable. Regarding the heat resistance, the glass transition temperature is at least 40 ° C. or higher, and the transparency is a light of 550 nm. The transmittance is preferably at least 80% or more.
透明高分子フィルムとしては、ポリスルフォン(PSF)、ポリエーテルスルフォン(PES)、ポリエチレンテレフタレート(PET)、ポリメチレンメタクリレート(PMMA)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン(PP)、トリアセチルセルロース(TAC)等が挙げられる。 Transparent polymer films include polysulfone (PSF), polyethersulfone (PES), polyethylene terephthalate (PET), polymethylene methacrylate (PMMA), polycarbonate (PC), polyetheretherketone (PEEK), polypropylene (PP) And triacetylcellulose (TAC).
電磁波シールド用銅箔に光透過部分を形成する方法としては、印刷法やフォトレジスト法を用いる。印刷法ではマスク層を印刷レジスト材料でスクリーン印刷してパターンを形成する。フォトレジスト材料を用いる方法では、ロールコーティング法、スピンコーティング法、全面印刷法、転写法などで、金属箔上にフォトレジスト材料を形成し、フォトマスクを用いて露光現像してレジストのパターニングを行う。レジストのパターンニングを完成させた後、開口部とする銅箔部分をエッチングで除去し、所望の開口形状と開口率の光透過部分を有する銅箔層を設ける。 A printing method or a photoresist method is used as a method for forming the light transmission portion on the copper foil for electromagnetic wave shielding. In the printing method, the mask layer is screen-printed with a printing resist material to form a pattern. In the method using a photoresist material, a photoresist material is formed on a metal foil by a roll coating method, a spin coating method, a full surface printing method, a transfer method, etc., and the resist is patterned by exposure and development using a photomask. . After the resist patterning is completed, the copper foil portion used as the opening is removed by etching, and a copper foil layer having a light transmitting portion having a desired opening shape and an opening ratio is provided.
電磁波シールド用銅箔の表面光反射率は1%以上、50%以下とすることが望ましい。これは、電磁波シールド用銅箔を透光性の電磁波シールド体として用いる場合に、光の反射が視認性を阻害するからである。反射率は一般的には400nmから600nmの平均的な反射率であるが、ここでの反射率は波長依存性がないとして、波長550nmの光の反射率で代表して決めている。 The surface light reflectance of the copper foil for electromagnetic wave shielding is desirably 1% or more and 50% or less. This is because when the copper foil for electromagnetic wave shielding is used as a translucent electromagnetic wave shielding body, the reflection of light hinders visibility. The reflectivity is generally an average reflectivity from 400 nm to 600 nm, but the reflectivity here is determined by representing the reflectivity of light having a wavelength of 550 nm, assuming that there is no wavelength dependency.
上記平滑層としては、Co、Ni、Inまたはこれらの合金からなる平滑めっき層である。電磁波シールド用銅箔の反射率は微細粗化粒子層と平滑層の厚さに左右されが、反射率:1%〜50%を得るための平滑層の層数(厚さ)は、特に厚い必要はなく、実質的には5nm以上、100nm以下が適当な範囲である。これ以上薄いと粉落ちを防げず、これ以上の厚みでは反射率が高くなり、材料の無駄でもある。 The smooth layer is a smooth plating layer made of Co, Ni, In, or an alloy thereof. The reflectivity of the copper foil for electromagnetic wave shielding depends on the thickness of the fine roughened particle layer and the smooth layer, but the number of the smooth layer (thickness) for obtaining the reflectivity: 1% to 50% is particularly thick. There is no need, and a suitable range is substantially 5 nm or more and 100 nm or less. If it is thinner than this, powder fall-off cannot be prevented, and if it is more than this, the reflectivity becomes high, which is also a waste of material.
上記銅箔の平滑層を設けていない側の表面にも反射を防止する処置として黒色処理を行い、両面を黒化した銅箔とすることも好ましい例である。反射防止処理としては、上記と同様に銅、Co、Ni、その合金等の微細粗化粒子層を設けることで達成でき、或いは通常の黒化処理方法で黒色層を設けても良い。 It is also a preferable example that the surface of the copper foil not provided with the smooth layer is subjected to black treatment as a treatment for preventing reflection to obtain a copper foil blackened on both sides. The antireflection treatment can be achieved by providing a fine roughened particle layer such as copper, Co, Ni, or an alloy thereof as described above, or a black layer may be provided by a normal blackening treatment method.
次に、本発明を実施例により具体的に説明する。なお、本発明は以下の実施例によって限定を受けるものではない。 Next, the present invention will be specifically described with reference to examples. The present invention is not limited by the following examples.
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 15g/l
硫酸 :160g/l
亜セレン酸ナトリウム :0.015g/l
めっき条件
温度 :20℃
電流密度 :20A/dm2
処理時間 :1.5秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は5.4mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 15 g / l
Sulfuric acid: 160 g / l
Sodium selenite: 0.015 g / l
Plating conditions
Temperature: 20 ° C
Current density: 20 A / dm 2
Treatment time: 1.5 seconds The adhesion amount of the copper fine-roughened particles plated under the above conditions to the copper foil was 5.4 mg / dm 2 .
次いで上記銅微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
硫酸Co(Co金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
めっき条件
温度 :50℃
電流密度 : 6A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は37mg/dm2であった。
Next, a smooth layer made of Co was plated on the copper fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
Co sulfate (as Co metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
Plating conditions
Temperature: 50 ° C
Current density: 6A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 37 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅合金微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 15g/l
Fe(金属として) : 4g/l
Mo(金属として) : 0.3g/l
W(金属として) : 0.3ppm
硫酸 :160g/l
めっき条件
温度 :20℃
電流密度 :50A/dm2
処理時間 :4.5秒
上記条件によりめっきした銅合金微細粗化粒子の銅箔への付着量は21.1mg/dm2であった。
次いで上記銅微細粗化粒子層の上に次のめっき条件でInからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
In(金属として) : 8g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :2.5
めっき条件
温度 :40℃
電流密度 : 3A/dm2
処理時間 :15秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は9.5mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper alloy fine roughened particle layer Plating bath composition Cu (as metal): 15 g / l
Fe (as metal): 4 g / l
Mo (as metal): 0.3 g / l
W (as metal): 0.3 ppm
Sulfuric acid: 160 g / l
Plating conditions
Temperature: 20 ° C
Current density: 50 A / dm 2
Treatment time: 4.5 seconds The adhesion amount of the copper alloy fine roughened particles plated under the above conditions to the copper foil was 21.1 mg / dm 2 .
Next, a smooth layer made of In was plated on the copper fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
In (as metal): 8g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 2.5
Plating conditions
Temperature: 40 ° C
Current density: 3A / dm 2
Treatment time: 15 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 9.5 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 65g/l
硫酸 :120g/l
めっき条件
温度 :50℃
電流密度 :65A/dm2
処理時間 :1.2秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は218.8mg/dm2であった。
次いで、上記銅微細粗化粒子層の上に銅合金からなる銅合金微細粗化粒子層のめっきを行なった。
めっき浴組成
Cu(金属として) : 1g/l
Co(金属として) : 8g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :3.8
めっき条件
温度 :40℃
電流密度 :15A/dm2
処理時間 : 3秒
上記条件によりめっきした銅合金微細粗化粒子の付着量はCu:3.5mg/dm2、Co:5.0mg/dm2であった。
次いで上記銅合金微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :2.5
めっき条件
温度 :40℃
電流密度 : 3A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅合金微細粗化粒子層への付着量は24.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 65 g / l
Sulfuric acid: 120 g / l
Plating conditions
Temperature: 50 ° C
Current density: 65 A / dm 2
Treatment time: 1.2 seconds The adhesion amount of the copper fine-roughened particles plated under the above conditions to the copper foil was 218.8 mg / dm 2 .
Next, a copper alloy fine roughened particle layer made of a copper alloy was plated on the copper fine roughened particle layer.
Plating bath composition Cu (as metal): 1 g / l
Co (as metal): 8 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 3.8
Plating conditions
Temperature: 40 ° C
Current density: 15 A / dm 2
Treatment time: 3 seconds The adhesion amount of the copper alloy fine-roughened particles plated under the above conditions was Cu: 3.5 mg / dm 2 and Co: 5.0 mg / dm 2 .
Next, a smooth layer made of Co was plated on the copper alloy fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 2.5
Plating conditions
Temperature: 40 ° C
Current density: 3A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper alloy fine roughened particle layer was 24.2 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 65g/l
硫酸 :120g/l
めっき条件
温度 :50℃
電流密度 :65A/dm2
処理時間 :1.2秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は218.8mg/dm2であった。
次いで、上記銅微細粗化粒子層の上に銅合金からなる銅合金微細粗化粒子層のめっきを行なった。
めっき浴組成
Cu(金属として) :10g/l
Fe(金属として) : 4g/l
Mo(金属として) :0.3g/l
W(金属として) :0.3ppm
pH : 2.5
めっき条件
温度 :20℃
電流密度 :50A/dm2
処理時間 :1.2秒
上記条件によりめっきした銅合金微細粗化粒子の付着量は5.6mg/dm2であった。
次いで上記銅合金微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :2.5
めっき条件
温度 :40℃
電流密度 : 3A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅合金微細粗化粒子層への付着量は24.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 65 g / l
Sulfuric acid: 120 g / l
Plating conditions
Temperature: 50 ° C
Current density: 65 A / dm 2
Treatment time: 1.2 seconds The adhesion amount of the copper fine-roughened particles plated under the above conditions to the copper foil was 218.8 mg / dm 2 .
Next, a copper alloy fine roughened particle layer made of a copper alloy was plated on the copper fine roughened particle layer.
Plating bath composition Cu (as metal): 10 g / l
Fe (as metal): 4 g / l
Mo (as metal): 0.3 g / l
W (as metal): 0.3 ppm
pH: 2.5
Plating conditions
Temperature: 20 ° C
Current density: 50 A / dm 2
Treatment time: 1.2 seconds The adhesion amount of the copper alloy fine roughened particles plated under the above conditions was 5.6 mg / dm 2 .
Next, a smooth layer made of Co was plated on the copper alloy fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 2.5
Plating conditions
Temperature: 40 ° C
Current density: 3A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper alloy fine roughened particle layer was 24.2 mg / dm 2 .
厚さ12μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 2g/l
Co(金属として) : 8g/l
Ni(金属として) : 8g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :3.5〜4.0
めっき条件
温度 :40℃
電流密度 :40A/dm2
処理時間 :2.4秒
上記条件によりめっきした合金微細粗化粒子層の組成は、分析した結果、実組成mg/dm2箔として、Cu:4.7、Co:9.56、Ni:8.4であった。
平滑層形成条件
次いで上記銅微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
めっき条件
温度 :50℃
電流密度 : 4A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は32.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 12 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 2 g / l
Co (as metal): 8 g / l
Ni (as metal): 8g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 3.5-4.0
Plating conditions
Temperature: 40 ° C
Current density: 40 A / dm 2
Treatment time: 2.4 seconds The composition of the alloy fine roughened particle layer plated under the above conditions was analyzed, and as a result, the actual composition mg / dm 2 foil was Cu: 4.7, Co: 9.56, Ni: 8 .4.
Smooth layer formation conditions Next, a smooth layer made of Co was plated on the copper fine-roughened particle layer under the following plating conditions.
Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
Plating conditions
Temperature: 50 ° C
Current density: 4A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 32.2 mg / dm 2 .
厚さ12μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 15g/l
硫酸 :160g/l
Sb :0.2g/l
W : 4ppm
めっき条件
温度 :20℃
電流密度 :20A/dm2
処理時間 :2.5秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は9.7mg/dm2であった。
平滑層形成条件
次いで上記銅微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
めっき条件
温度 :50℃
電流密度 : 3A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は24.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 12 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 15 g / l
Sulfuric acid: 160 g / l
Sb: 0.2 g / l
W: 4 ppm
Plating conditions
Temperature: 20 ° C
Current density: 20 A / dm 2
Treatment time: 2.5 seconds The adhesion amount of the copper coarse particles plated under the above conditions to the copper foil was 9.7 mg / dm 2 .
Smooth layer formation conditions Next, a smooth layer made of Co was plated on the copper fine-roughened particle layer under the following plating conditions.
Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
Plating conditions
Temperature: 50 ° C
Current density: 3A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 24.2 mg / dm 2 .
厚さ12μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 15g/l
硫酸 :160g/l
Te :0.02g/l
めっき条件
温度 :50℃
電流密度 :30A/dm2
処理時間 : 2秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は13.1mg/dm2であった。
平滑層形成条件
次いで上記銅微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
めっき条件
温度 :50℃
電流密度 : 4A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は32.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 12 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 15 g / l
Sulfuric acid: 160 g / l
Te: 0.02 g / l
Plating conditions
Temperature: 50 ° C
Current density: 30 A / dm 2
Treatment time: 2 seconds The adhesion amount of the copper coarse particles plated under the above conditions to the copper foil was 13.1 mg / dm 2 .
Smooth layer formation conditions Next, a smooth layer made of Co was plated on the copper fine-roughened particle layer under the following plating conditions.
Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
Plating conditions
Temperature: 50 ° C
Current density: 4A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 32.2 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 15g/l
硫酸 :160g/l
Bi :0.02g/l
W : 4ppm
めっき条件
温度 :50℃
電流密度 :20A/dm2
処理時間 : 2秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は13.9mg/dm2であった。
平滑層形成条件
次いで上記銅微細粗化粒子層の上に次のめっき条件でCoからなる平滑層のめっきを行った。
めっき浴組成
Co(金属として) :10g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
めっき条件
温度 :50℃
電流密度 : 4A/dm2
処理時間 :30秒
上記条件によりめっきした平滑層の銅微細粗化粒子層への付着量は32.2mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 15 g / l
Sulfuric acid: 160 g / l
Bi: 0.02 g / l
W: 4 ppm
Plating conditions
Temperature: 50 ° C
Current density: 20 A / dm 2
Treatment time: 2 seconds The adhesion amount of the copper coarse particles plated under the above conditions to the copper foil was 13.9 mg / dm 2 .
Smooth layer formation conditions Next, a smooth layer made of Co was plated on the copper fine-roughened particle layer under the following plating conditions.
Plating bath composition
Co (as metal): 10 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
Plating conditions
Temperature: 50 ° C
Current density: 4A / dm 2
Treatment time: 30 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper fine-roughened particle layer was 32.2 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) : 10g/l
Fe(金属として) : 4g/l
Mo(金属として) :0.3g/l
W(金属として) :0.3ppm
硫酸 :160g/l
めっき条件
温度 :20℃
電流密度 :50A/dm2
処理時間 :4.5秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は21.1mg/dm2であった。
次いで上記微細粗化粒子層の上に次のめっき条件でCo、Niからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
Co(金属として) : 8g/l
Ni(金属として) :0.5g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH : 4.5
めっき条件
温度 :40℃
電流密度 : 3A/dm2
処理時間 :20秒
上記条件によりめっきした平滑層の銅合金微細粗化粒子層への付着量はCo:20.1mg/dm2、Ni:0.42mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 10 g / l
Fe (as metal): 4 g / l
Mo (as metal): 0.3 g / l
W (as metal): 0.3 ppm
Sulfuric acid: 160 g / l
Plating conditions
Temperature: 20 ° C
Current density: 50 A / dm 2
Treatment time: 4.5 seconds The adhesion amount of the copper coarse particles plated under the above conditions to the copper foil was 21.1 mg / dm 2 .
Next, a smooth layer made of Co and Ni was plated on the fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
Co (as metal): 8 g / l
Ni (as metal): 0.5 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 4.5
Plating conditions
Temperature: 40 ° C
Current density: 3A / dm 2
Treatment time: 20 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper alloy fine roughened particle layer was Co: 20.1 mg / dm 2 and Ni: 0.42 mg / dm 2 .
厚さ10μmの電解銅箔の片面に先ず微細粗化粒子を銅めっきにより設ける。
銅微細粗化粒子層のめっき条件
めっき浴組成
Cu(金属として) :10g/l
Fe(金属として) : 4g/l
Mo(金属として) :0.3g/l
W(金属として) :0.3ppm
硫酸 :160g/l
めっき条件
温度 :20℃
電流密度 :50A/dm2
処理時間 :4.5秒
上記条件によりめっきした銅微細粗化粒子の銅箔への付着量は21.1mg/dm2であった。
次いで上記微細粗化粒子層の上に次のめっき条件でCu、Coからなる平滑層のめっきを行った。
平滑層形成条件
めっき浴組成
Co(金属として) : 8g/l
Cu(金属として) :0.5g/l
硫酸アンモニウム :40g/l
硼酸 :20g/l
pH :4.5
めっき条件
温度 :40℃
電流密度 : 3A/dm2
処理時間 :20秒
上記条件によりめっきした平滑層の銅合金微細粗化粒子層への付着量はCo:18.2mg/dm2、Cu:0.61mg/dm2であった。
First, fine roughened particles are provided on one side of an electrolytic copper foil having a thickness of 10 μm by copper plating.
Plating conditions for copper fine roughening particle layer Plating bath composition Cu (as metal): 10 g / l
Fe (as metal): 4 g / l
Mo (as metal): 0.3 g / l
W (as metal): 0.3 ppm
Sulfuric acid: 160 g / l
Plating conditions
Temperature: 20 ° C
Current density: 50 A / dm 2
Treatment time: 4.5 seconds The adhesion amount of the copper coarse particles plated under the above conditions to the copper foil was 21.1 mg / dm 2 .
Next, a smooth layer made of Cu and Co was plated on the fine roughened particle layer under the following plating conditions.
Smooth layer formation conditions Plating bath composition
Co (as metal): 8 g / l
Cu (as metal): 0.5 g / l
Ammonium sulfate: 40 g / l
Boric acid: 20 g / l
pH: 4.5
Plating conditions
Temperature: 40 ° C
Current density: 3A / dm 2
Treatment time: 20 seconds The adhesion amount of the smooth layer plated under the above conditions to the copper alloy fine roughened particle layer was Co: 18.2 mg / dm 2 and Cu: 0.61 mg / dm 2 .
実施例1乃至10で作成した銅箔の平滑層上に、必要により防錆処理、シランカップリング剤処理を施した。防錆処理、シランカップリング剤処理方法は従来一般に行われている処理方法を適用した。
〔比較例〕
On the smooth layer of the copper foil prepared in Examples 1 to 10, rust prevention treatment and silane coupling agent treatment were performed as necessary. The treatment method generally performed conventionally was applied to the rust prevention treatment and the silane coupling agent treatment method.
[Comparative example]
実施例1,5、10と同一条件で電解銅箔の片面に微細粗化粒子を銅めっきし、平滑層を設けずに直接防錆処理、シランカップリング処理を施した。これを比較例1,2,3とした。 Finely roughened particles were plated with copper on one surface of the electrolytic copper foil under the same conditions as in Examples 1, 5, and 10, and directly subjected to rust prevention treatment and silane coupling treatment without providing a smooth layer. This was designated as Comparative Examples 1, 2, and 3.
評価1 粉落ち特性
実施例1乃至5で作成した銅箔の黒色処理面を上にして平らな台の上に置き、水でぬらした濾紙(東洋濾紙 No.2)を乗せ、その上に重り(底部直径 15mmφの円形で重さ250g)を置き、濾紙を15cm移動させた後、濾紙への銅粉付着有無を見た結果、全ての実施例について粉落ちの発生は見られなかった。
これに対し、比較例1,2,3では、ともに多くの粉落ちが見られた。
Evaluation 1 Powder-off characteristics Place the copper foil prepared in Examples 1 to 5 on a flat table with the black treated surface facing up, place the filter paper (Toyo Filter Paper No. 2) wet with water, and weight on it (Circular shape with a bottom diameter of 15 mmφ and a weight of 250 g) was placed, the filter paper was moved 15 cm, and then the presence or absence of copper powder adhering to the filter paper was examined. As a result, no occurrence of powder falling was observed in all examples.
In contrast, in Comparative Examples 1, 2, and 3, a lot of powder fallen was observed.
評価2 シールド特性1
ポリエチレンテレフタレートフィルム(厚さ75μm)の上に、実施例1乃至5の黒色処理を施した銅箔を架橋剤を含むポリエステル系の接着剤を10μmに塗布し両者を接着した。次に、熱硬化型のインキを用いて、スクリーン印刷にて銅箔上に格子幅20μm、目の大きさ150μm×150μmの格子模様を印刷した。90℃×5分の加熱によりインキを硬化させた後、塩化第二鉄水溶液によりインキにより保護されていない部分の金属層を除去し、次に、溶剤でインキを除去した。かくして、開口率75%の電磁波シールド体となる積層体を作成した。この積層体の可視光線の平均透過率を測定したところ67%以上であった。シート抵抗を測定したところ、0.11Ω/□以上で、優れた電磁波シールド体を得ることができた。
Evaluation 2 Shield characteristics 1
On the polyethylene terephthalate film (thickness 75 μm), the copper foil subjected to the black treatment of Examples 1 to 5 was applied to a polyester adhesive containing a cross-linking agent to 10 μm, and both were adhered. Next, a grid pattern having a grid width of 20 μm and an eye size of 150 μm × 150 μm was printed on the copper foil by screen printing using a thermosetting ink. After the ink was cured by heating at 90 ° C. for 5 minutes, the metal layer of the portion not protected by the ink was removed with an aqueous ferric chloride solution, and then the ink was removed with a solvent. In this way, a laminated body that was an electromagnetic wave shield with an aperture ratio of 75% was prepared. The average visible light transmittance of this laminate was measured and found to be 67% or more. When the sheet resistance was measured, it was possible to obtain an excellent electromagnetic wave shield at 0.11 Ω / □ or more.
評価3 シールド特性2
ポリエチレンテレフタレートフィルム(厚さ100μm)の上に、フッ素樹脂のコーティングにより反射防止フィルムを作製した。このフィルムのフッ素樹脂をコーティングしていない面に、アクリル系の接着剤で、実施例1乃至10で作成の銅箔をラミネートした。次に、アルカリ現像型のフォトレジストを銅箔の上にロールコーティング法でコーティングし、プレベーク後にフォトマスクを用いて露光、現像して格子幅25μm、目の大きさ125μm×125μmの格子パターンを設けた後、塩化第二鉄溶液によりレジストにより保護されていない部分の金属層をエッチングし、次にアルカリ溶液中でレジストを除去した。かくして、開口率69%以上の積層体を作成することができた。可視光線の平均透過率を測定したところ65%以上を得た。シート抵抗を測定したところ0.07/□以上で優れた電磁波遮蔽シートであった。
Evaluation 3 Shield characteristics 2
An antireflection film was produced on a polyethylene terephthalate film (thickness: 100 μm) by coating with a fluororesin. The copper foil prepared in Examples 1 to 10 was laminated with an acrylic adhesive on the surface of the film not coated with the fluororesin. Next, an alkali development type photoresist is coated on a copper foil by a roll coating method, and after pre-baking, exposure and development are performed using a photomask to provide a lattice pattern with a lattice width of 25 μm and an eye size of 125 μm × 125 μm. After that, the part of the metal layer not protected by the resist was etched with a ferric chloride solution, and then the resist was removed in an alkaline solution. Thus, a laminate having an aperture ratio of 69% or more could be produced. When the average transmittance of visible light was measured, 65% or more was obtained. When the sheet resistance was measured, it was an excellent electromagnetic shielding sheet at 0.07 / □ or more.
上述したように銅箔を電磁波シールド用として使用するときの光透過部分の開口率は70%以上が好ましい。本実施例で製作した電磁波シールド用銅箔にて一辺もしくは直径が200μmの正三角形、正四角形、正六角形、円形、菱形の開口窓を面内に均一にエッチングで開口したところ、全て光透過部分が70%以上の開口率にエッチングすることができた。
また、上記で開口した光透過部分を有する銅箔の実質的なシート抵抗を、4端子法により測定した結果、0.01/□以上と0.3/□との間のシート抵抗値が得られ、充分な電磁波シールド能を有するものであった。
As described above, when the copper foil is used for electromagnetic wave shielding, the aperture ratio of the light transmitting portion is preferably 70% or more. In the copper foil for electromagnetic shielding produced in this example, a regular triangle, a regular square, a regular hexagon, a circle, and a diamond-shaped opening window having a side or a diameter of 200 μm are uniformly etched in the plane, all light transmitting portions Can be etched to an opening ratio of 70% or more.
Moreover, as a result of measuring the substantial sheet resistance of the copper foil having the light transmitting portion opened as described above by the four-terminal method, a sheet resistance value between 0.01 / □ and 0.3 / □ was obtained. And has sufficient electromagnetic wave shielding ability.
評価4 色斑
表面の色調と黒色色斑につき、目視で評価した。その結果、箔表面の色調は何れも均一で、色むらの存在も発見できなかった。
Evaluation 4 Color spots The surface color tone and black color spots were visually evaluated. As a result, the color tone on the foil surface was uniform, and the presence of uneven color could not be found.
本発明の電磁シールド用銅箔は、電解液組成に有害物質を使用しないので環境に優しい製造方法で製造でき、製造された銅箔は電磁波シールド能に優れ、透過率が高く、かつ粉落ち、表面の色斑がなく、電磁波シールド用銅箔として好適に用いることができる優れた効果を有し、さらに、該銅箔を用いることにより、PDPに使用できる良好な電磁波シールド体を提供することが可能となる等の優れた効果を有するものである。
The copper foil for electromagnetic shielding of the present invention can be manufactured by an environmentally friendly manufacturing method since no harmful substances are used in the electrolyte composition, and the manufactured copper foil has excellent electromagnetic shielding ability, high transmittance, and powder falling off, There is no color spot on the surface, and it has an excellent effect that can be suitably used as a copper foil for electromagnetic wave shielding. Furthermore, by using the copper foil, it is possible to provide a good electromagnetic wave shielding body that can be used for PDP. It has excellent effects such as being possible.
Claims (14)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003381398A JP4629969B2 (en) | 2003-11-11 | 2003-11-11 | Copper foil for electromagnetic wave shield, method for producing the same, and electromagnetic wave shield produced with the copper foil |
US10/785,973 US7476449B2 (en) | 2003-02-27 | 2004-02-26 | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
KR1020040013125A KR101065758B1 (en) | 2003-02-27 | 2004-02-26 | Copper foil for shielding electromagnetic wave, manufacturing method thereof and electromagnetic wave shield structure |
TW093105159A TW200500200A (en) | 2003-02-27 | 2004-02-27 | Electromagnetic waves shielding copper foil, method of production thereof and electromagnetic waves shield |
CN2004100082169A CN1525492B (en) | 2003-02-27 | 2004-02-27 | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
EP04004493A EP1452627A3 (en) | 2003-02-27 | 2004-02-27 | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
US11/711,729 US7569282B2 (en) | 2003-02-27 | 2007-02-28 | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003381398A JP4629969B2 (en) | 2003-11-11 | 2003-11-11 | Copper foil for electromagnetic wave shield, method for producing the same, and electromagnetic wave shield produced with the copper foil |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008100445A Division JP2008199051A (en) | 2008-04-08 | 2008-04-08 | Copper foil for electromagnetic-wave shielding, and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005150155A true JP2005150155A (en) | 2005-06-09 |
JP4629969B2 JP4629969B2 (en) | 2011-02-09 |
Family
ID=34690784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003381398A Expired - Fee Related JP4629969B2 (en) | 2003-02-27 | 2003-11-11 | Copper foil for electromagnetic wave shield, method for producing the same, and electromagnetic wave shield produced with the copper foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4629969B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332418A (en) * | 2006-06-15 | 2007-12-27 | Fukuda Metal Foil & Powder Co Ltd | Surface treated copper foil |
JP2014187057A (en) * | 2013-01-04 | 2014-10-02 | Jx Nippon Mining & Metals Corp | Metal foil for electromagnetic wave shield, and electromagnetic wave shield material |
JP2014187056A (en) * | 2013-01-04 | 2014-10-02 | Jx Nippon Mining & Metals Corp | Metal foil for electromagnetic wave shield, and electromagnetic wave shield material |
KR101800993B1 (en) * | 2010-06-28 | 2017-11-23 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07314603A (en) * | 1993-12-28 | 1995-12-05 | Nippon Denkai Kk | Copper clad laminate, multilayered printed circuit board and treatment of them |
JPH11256389A (en) * | 1998-03-09 | 1999-09-21 | Furukawa Circuit Foil Kk | Copper foil for printed circuit board and its production |
JP2000151181A (en) * | 1998-11-05 | 2000-05-30 | Mitsubishi Materials Corp | Corrosion resistant antibacterial conductive film and treating liquid therefor |
JP2002246712A (en) * | 2001-02-16 | 2002-08-30 | Furukawa Circuit Foil Kk | Electrolytic copper foil for fine patterning |
JP2002322586A (en) * | 1995-09-22 | 2002-11-08 | Furukawa Circuit Foil Kk | Electrolytic copper foil for fine pattern and its manufacturing method |
JP2003092490A (en) * | 2001-09-17 | 2003-03-28 | Tomoegawa Paper Co Ltd | Electromagnetic wave shield sheet, electromagnetic wave shield laminated structure and manufacturing method therefor |
JP2003198181A (en) * | 2001-12-28 | 2003-07-11 | Dainippon Printing Co Ltd | Sheet for shielding electromagnetic wave |
JP2003201597A (en) * | 2002-01-09 | 2003-07-18 | Nippon Denkai Kk | Copper foil, production method therefor and electromagnetic wave shield body obtained by using the copper foil |
JP2003218583A (en) * | 2002-01-22 | 2003-07-31 | Nitto Denko Corp | Manufacturing method for translucent electromagnetic shield member |
JP2003304090A (en) * | 2002-04-11 | 2003-10-24 | Sumitomo Chem Co Ltd | Electromagnetic wave shielding material and its manufacturing method |
JP2004260068A (en) * | 2003-02-27 | 2004-09-16 | Furukawa Techno Research Kk | Copper foil for shielding electromagnetic wave, and electromagnetic wave shielding structure |
JP2006278881A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Circuit Foil Kk | Copper foil for shielding electromagnetic wave and electromagnetic wave shielding body produced thereby |
-
2003
- 2003-11-11 JP JP2003381398A patent/JP4629969B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07314603A (en) * | 1993-12-28 | 1995-12-05 | Nippon Denkai Kk | Copper clad laminate, multilayered printed circuit board and treatment of them |
JP2002322586A (en) * | 1995-09-22 | 2002-11-08 | Furukawa Circuit Foil Kk | Electrolytic copper foil for fine pattern and its manufacturing method |
JPH11256389A (en) * | 1998-03-09 | 1999-09-21 | Furukawa Circuit Foil Kk | Copper foil for printed circuit board and its production |
JP2000151181A (en) * | 1998-11-05 | 2000-05-30 | Mitsubishi Materials Corp | Corrosion resistant antibacterial conductive film and treating liquid therefor |
JP2002246712A (en) * | 2001-02-16 | 2002-08-30 | Furukawa Circuit Foil Kk | Electrolytic copper foil for fine patterning |
JP2003092490A (en) * | 2001-09-17 | 2003-03-28 | Tomoegawa Paper Co Ltd | Electromagnetic wave shield sheet, electromagnetic wave shield laminated structure and manufacturing method therefor |
JP2003198181A (en) * | 2001-12-28 | 2003-07-11 | Dainippon Printing Co Ltd | Sheet for shielding electromagnetic wave |
JP2003201597A (en) * | 2002-01-09 | 2003-07-18 | Nippon Denkai Kk | Copper foil, production method therefor and electromagnetic wave shield body obtained by using the copper foil |
JP2003218583A (en) * | 2002-01-22 | 2003-07-31 | Nitto Denko Corp | Manufacturing method for translucent electromagnetic shield member |
JP2003304090A (en) * | 2002-04-11 | 2003-10-24 | Sumitomo Chem Co Ltd | Electromagnetic wave shielding material and its manufacturing method |
JP2004260068A (en) * | 2003-02-27 | 2004-09-16 | Furukawa Techno Research Kk | Copper foil for shielding electromagnetic wave, and electromagnetic wave shielding structure |
JP2006278881A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Circuit Foil Kk | Copper foil for shielding electromagnetic wave and electromagnetic wave shielding body produced thereby |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007332418A (en) * | 2006-06-15 | 2007-12-27 | Fukuda Metal Foil & Powder Co Ltd | Surface treated copper foil |
KR101800993B1 (en) * | 2010-06-28 | 2017-11-23 | 후루카와 덴키 고교 가부시키가이샤 | Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode |
JP2014187057A (en) * | 2013-01-04 | 2014-10-02 | Jx Nippon Mining & Metals Corp | Metal foil for electromagnetic wave shield, and electromagnetic wave shield material |
JP2014187056A (en) * | 2013-01-04 | 2014-10-02 | Jx Nippon Mining & Metals Corp | Metal foil for electromagnetic wave shield, and electromagnetic wave shield material |
Also Published As
Publication number | Publication date |
---|---|
JP4629969B2 (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7569282B2 (en) | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield | |
EP1909551B1 (en) | Method for producing electromagnetic wave shielding sheet, electromagnetic wave shielding sheet produced by such method, and filter and display employing same | |
EP0963146B1 (en) | Transparent member for shielding electromagnetic waves and method of producing the same | |
TWI236023B (en) | Electromagnetic shielding sheet, front plate for display, and method for producing electromagnetic shielding sheet | |
KR101021735B1 (en) | Electromagnetic shielding sheet and method for manufacturing same | |
KR20090051007A (en) | Light transparent electromagnetic wave shield member and method for manufacturing the same | |
US7560135B2 (en) | Electromagnetic-wave shielding and light transmitting plate and manufacturing method thereof | |
JP2008199051A (en) | Copper foil for electromagnetic-wave shielding, and manufacturing method therefor | |
US7859179B2 (en) | Electromagnetic wave shielding material and display using the same | |
KR102197435B1 (en) | Conductive film, touch panel sensor, and touch panel | |
CA2324169A1 (en) | Transparent electromagnetic radiation shield material and method of producing the same | |
WO2006011457A1 (en) | Electromagnetic wave shielding device | |
JP4398894B2 (en) | Copper foil for electromagnetic wave shielding, and electromagnetic wave shield made with the copper foil | |
JP4629969B2 (en) | Copper foil for electromagnetic wave shield, method for producing the same, and electromagnetic wave shield produced with the copper foil | |
JP4762484B2 (en) | Copper foil for electromagnetic shielding and electromagnetic shielding body | |
JPWO2005072040A1 (en) | Electromagnetic wave shielding film and manufacturing method thereof | |
JP2004241761A (en) | Sheet for electromagnetic wave shielding and manufacturing method therefor | |
JPH11330772A (en) | High-electromagnetic shielding transparent sheet | |
JP2007227532A (en) | Electromagnetic wave shielding sheet | |
JPH10335883A (en) | Transparent material for electromagnetic shield | |
JP4867261B2 (en) | Electromagnetic wave shielding sheet | |
JP4867263B2 (en) | Electromagnetic wave shielding sheet | |
JP2012064846A (en) | Electromagnetic wave shield sheet, method of producing the same, and image display unit | |
JP4867262B2 (en) | Electromagnetic wave shielding sheet | |
JPH11317593A (en) | Highly visible electromagnetic shielding transparent sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070821 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080219 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080321 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080417 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080513 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080718 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080828 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |