[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005144284A - Ceramic honeycomb structure - Google Patents

Ceramic honeycomb structure Download PDF

Info

Publication number
JP2005144284A
JP2005144284A JP2003383352A JP2003383352A JP2005144284A JP 2005144284 A JP2005144284 A JP 2005144284A JP 2003383352 A JP2003383352 A JP 2003383352A JP 2003383352 A JP2003383352 A JP 2003383352A JP 2005144284 A JP2005144284 A JP 2005144284A
Authority
JP
Japan
Prior art keywords
honeycomb structure
wall
ceramic
ceramic honeycomb
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383352A
Other languages
Japanese (ja)
Other versions
JP4504660B2 (en
Inventor
Koichi Ikejima
幸一 池島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003383352A priority Critical patent/JP4504660B2/en
Priority to US10/983,580 priority patent/US7465486B2/en
Priority to DE602004005130T priority patent/DE602004005130T2/en
Priority to EP04257018A priority patent/EP1535664B1/en
Publication of JP2005144284A publication Critical patent/JP2005144284A/en
Application granted granted Critical
Publication of JP4504660B2 publication Critical patent/JP4504660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • B01J35/57Honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb structure constituted so that a faulty part generated on the outer wall of this structure can be repaired surely without deteriorating the mechanical strength and thermal impact resistance of this structure and that a liquid leaks to the outer wall at a catalyzing step can be eliminated. <P>SOLUTION: This ceramic honeycomb structure has many flow passages divided by many partition walls and the outer wall for dividing the flow passages from the outside. At least one or more faulty parts being openings are filled/plugged with a ceramic material, which are generated on the surface of the outer wall and each of which has ≥0.1 mm width and is communicated with the flow passages. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、製造工程で生じる外壁を貫通する亀裂、クラックを含む孔状の欠陥を補修したセラミックハニカム構造体に関する。 The present invention relates to a ceramic honeycomb structure in which a crack penetrating an outer wall generated in a manufacturing process and a hole-like defect including a crack are repaired.

近年、大気汚染防止に関連して、自動車排ガス規制の強化が検討されている。
そして、現在、自動車用排ガス浄化には、押出成形により一体的に形成された、隔壁で囲まれた多数の貫通孔(セル)を有するセラミックハニカム構造体を担体とする触媒コンバーターが使用されているが、更にその浄化効率を向上させる方法として、セラミックハニカム構造体の熱容量を小さくして、温まり易くすることにより、運転開始初期からの触媒活性を高める、いわゆるウォームアップ特性の向上の検討が行われている。
In recent years, in connection with air pollution prevention, strengthening of automobile exhaust gas regulations has been studied.
Currently, a catalytic converter using as a carrier a ceramic honeycomb structure having a large number of through-holes (cells) surrounded by partition walls formed integrally by extrusion molding is used for exhaust gas purification for automobiles. However, as a method of further improving the purification efficiency, studies have been made on improving the so-called warm-up characteristics, which increases the catalyst activity from the beginning of the operation by reducing the heat capacity of the ceramic honeycomb structure and facilitating warming. ing.

そして、このようなハニカム構造体の熱容量を小さくするには、ハニカム構造体の幾何学的表面積を変更することなく、それを軽くすること(低嵩密度化)が必要であり、そのためにセルの隔壁の厚さ、即ちハニカムリブ厚を薄くしたり、気孔率を高くしたりといった対策が講じられることとなる。例えば、ハニカム隔壁の薄壁化は、通常、ハニカム構造体の機械的強度の低下を伴うものであり、生産技術上、極めて困難なものであって、その押出成形に際し、得られるハニカム構造体(ハニカム成形体)の外壁部分は練土の量が隔壁と異なるため、どうしてもアンバランスとなり、外壁を厚く作ればセル変形欠陥が、薄く作ると外壁のキレ(クラック)が生じたりするため、セラミックハニカム構造体の外壁部分の成形が製造技術のポイントとなっている。 In order to reduce the heat capacity of such a honeycomb structure, it is necessary to make it lighter (lower bulk density) without changing the geometric surface area of the honeycomb structure. Measures are taken such as reducing the thickness of the partition walls, that is, the thickness of the honeycomb ribs or increasing the porosity. For example, the thinning of the honeycomb partition walls is usually accompanied by a decrease in the mechanical strength of the honeycomb structure, which is extremely difficult in terms of production technology, and the honeycomb structure ( Since the outer wall of the honeycomb formed body) is different from the partition wall in the amount of the clay, it is inevitably unbalanced. If the outer wall is made thicker, cell deformation defects will occur, and if it is made thinner, the outer wall will be cracked. The molding of the outer wall portion of the structure is the point of manufacturing technology.

従って、このようなハニカム構造体の場合、乾燥及び焼成工程でどうしてもある割合で外壁を貫通する亀裂、クラックを含む孔状の欠陥、例えば、図1に示す様々な外壁を貫通する欠陥(ササクレ1、ヨコ切れ2、タテ切れ3)が発生してしまう。 Therefore, in the case of such a honeycomb structure, cracks penetrating the outer wall at a certain ratio in the drying and firing processes, and hole-like defects including cracks, such as defects penetrating various outer walls shown in FIG. , Horizontal cut 2 and vertical cut 3) will occur.

このように、セラミックハニカム構造体の製造過程で生じる外壁を貫通する亀裂、クラックを含む孔状の欠陥は、触媒化工程で不具合が生じる原因となる。触媒化工程では、セラミックハニカム構造体の外周部をシールして、比表面積を大きくするためのγ−アルミナ、酸素吸蔵材であるセリア、耐熱性を高めるジルコニア等を混合した材料を入れた水溶液スラリーをハニカム流路に圧力を掛け流すことが行われている。このとき、外壁を貫通する孔が開いていると、水溶液に正圧を掛けた場合、ハニカム外周部への漏れが生じ、漏れた部分が無駄となったり、次の処理のときシール不具合となり、一方、ハニカム構造体端面が負圧の場合、スラリーが付かない不具合が生じてしまう。 As described above, the cracks penetrating the outer wall generated in the manufacturing process of the ceramic honeycomb structure, and the hole-like defects including the cracks cause defects in the catalytic process. In the catalyzing step, an aqueous slurry containing a material mixed with γ-alumina for increasing the specific surface area, ceria which is an oxygen storage material, zirconia which enhances heat resistance, etc. is sealed at the outer periphery of the ceramic honeycomb structure. Is applied to the honeycomb flow path. At this time, if a hole penetrating the outer wall is opened, when positive pressure is applied to the aqueous solution, leakage to the honeycomb outer peripheral portion occurs, the leaked portion is wasted, and it becomes a sealing failure in the next processing, On the other hand, when the end face of the honeycomb structure has a negative pressure, a problem that the slurry does not adhere occurs.

また、触媒化工程で得られたハニカム触媒は、気密性の金属容器に入れ使用するが、金属容器の熱膨張がハニカム触媒の熱膨張係数より大きいため、使用中の熱せられたとき金属容器がハニカム触媒より大きく膨張しても緩まないよう予め機械的圧力を掛けてクッション性のあるセラミックマットを介して金属容器に入れられている。ここで、セラミックハニカム触媒の外壁に触媒が固着していると、その部分の機械的圧力が高まり、場合によってはハニカム触媒を破壊してしまう。 In addition, the honeycomb catalyst obtained in the catalyzing step is used in an airtight metal container. However, since the thermal expansion coefficient of the metal container is larger than the thermal expansion coefficient of the honeycomb catalyst, the metal container is heated when heated during use. In order not to loosen even if expanded more than the honeycomb catalyst, mechanical pressure is applied in advance so that the catalyst is put into a metal container through a ceramic mat having a cushioning property. Here, if the catalyst is fixed to the outer wall of the ceramic honeycomb catalyst, the mechanical pressure at that portion increases, and the honeycomb catalyst may be destroyed in some cases.

上記の問題点に対して、例えば、ハニカム構造体外周部に肉厚の補強材を被覆したもの(例えば、特許文献1参照)、成形・焼成したハニカム構造体から切り出した外壁のないハニカム構造体に外壁を付与するするもの(例えば、特許文献2参照)、ハニカム構造体の外周壁に釉薬を塗布するもの(例えば、特許文献3参照)、ハニカム構造体の外周部の流路をセラミック材料で充填するもの(例えば、特許文献4参照)、ハニカム構造体の外壁を含む外周部の気孔率を小さくするもの(例えば、特許文献5参照)、寸法精度の悪いハニカム構造体の外周にセラミック材料を補填し寸法精度の良いものを得る技術(例えば、特許文献6参照)、最外周の不完全セルを選択的にセラミック材料で塞いだもの(例えば、特許文献7参照)が開示されている。
特公昭51−44713号公報 実公昭53−34373号公報 実開昭53−133860号公報 特開昭56−129042号公報 特開昭56−129043号公報 実公平7−183号公報 特開平7−246341号公報
In order to solve the above problems, for example, a honeycomb structure whose outer peripheral portion is coated with a thick reinforcing material (see, for example, Patent Document 1), a honeycomb structure without an outer wall cut out from a molded and fired honeycomb structure For applying an outer wall to the outer periphery of the honeycomb structure (for example, see Patent Document 2), applying a glaze to the outer peripheral wall of the honeycomb structure (for example, see Patent Document 3), What is filled (for example, see Patent Document 4), what reduces the porosity of the outer peripheral portion including the outer wall of the honeycomb structure (for example, see Patent Document 5), and ceramic material on the outer periphery of the honeycomb structure having poor dimensional accuracy. A technology for obtaining a material with good dimensional accuracy (see, for example, Patent Document 6) and a technique in which an incomplete cell on the outermost periphery is selectively closed with a ceramic material (for example, see Patent Document 7) To have.
Japanese Patent Publication No. 51-44713 Japanese Utility Model Publication No. 53-34373 Japanese Utility Model Publication No. 53-133860 JP 56-129042 A JP-A-56-129043 No. 7-183 JP 7-246341 A

しかしながら、特許文献1〜7には、以下に示すような問題点があった。特許文献1は、確かに、外壁の欠陥を補修することができるが、補強材料の熱膨脹係数がコージェライトハニカム構造体よりも大きく、その材料を外壁に被覆した場合、耐熱衝撃性が低下するだけでなく、補強材料を被覆した分、熱容量が大きくなり、触媒の温度上昇が遅くなり、コールドスタートにおける浄化性能の悪化を招いてしまう。 However, Patent Documents 1 to 7 have the following problems. Patent Document 1 can certainly repair defects on the outer wall, but the thermal expansion coefficient of the reinforcing material is larger than that of the cordierite honeycomb structure, and when the material is coated on the outer wall, the thermal shock resistance is only reduced. In addition, since the reinforcing material is coated, the heat capacity is increased, the temperature rise of the catalyst is delayed, and the purification performance at the cold start is deteriorated.

特許文献2は、成形・焼成したハニカム構造体から切り出した外壁のないハニカム構造体に外壁を付与するための考案で、外壁を貫通した大きな貫通孔(例えば、直径が0.1mm以上の貫通孔)を塞ぐ技術ではない。 Patent Document 2 is a device for imparting an outer wall to a honeycomb structure without an outer wall cut out from a molded and fired honeycomb structure, and is a large through-hole penetrating the outer wall (for example, a through-hole having a diameter of 0.1 mm or more). ) Is not a technology to block.

特許文献3は、外周壁に釉薬を塗布するものであるが、例えば、直径が0.1mm以上の大きい穴や比較的深めの裂け目等の欠陥を埋めることはできない。また、釉薬の熱膨張係数は、ハニカム構造体の熱膨張係数より大きいため、耐熱衝撃性が低下してしまう。 Patent Document 3 applies glaze to the outer peripheral wall, but cannot fill defects such as large holes having a diameter of 0.1 mm or more and relatively deep cracks. Further, since the thermal expansion coefficient of the glaze is larger than that of the honeycomb structure, the thermal shock resistance is lowered.

特許文献4は、確かに、外壁の欠陥を補修することができるが、外周部のセルを埋めることにより、その部分は排気ガスが流れないため、触媒の目的である排ガス浄化に対してはデッドゾーンとなってしまう。最近では、全体積を使用する考えでハニカム構造体の側面のみの機械的保持をして使用するようになっているため、この技術では流路を埋めた部分が全く無駄となってしまう。因みにφ100mmの触媒の場合で幅3mmのデッドゾーンを設けると約10%以上の無駄が生じてしまう。 Although the patent document 4 can certainly repair the defect of the outer wall, since the exhaust gas does not flow through filling the cell in the outer peripheral portion, it is dead for the exhaust gas purification that is the purpose of the catalyst. It becomes a zone. Recently, since the entire volume is used, only the side surfaces of the honeycomb structure are mechanically held and used, and in this technique, the portion where the flow path is filled is completely wasted. Incidentally, in the case of a catalyst having a diameter of 100 mm, if a dead zone having a width of 3 mm is provided, a waste of about 10% or more is generated.

特許文献5は、通常のセラミックハニカム構造体の気孔は、主に50μm以下の小さな孔で、この技術はこれらの孔を埋める技術であり、例えば、直径が0.1mm以上の大きい穴や比較的深めの裂け目等の欠陥を埋めることはできなかった。 In Patent Document 5, the pores of a normal ceramic honeycomb structure are mainly small holes of 50 μm or less, and this technique is a technique for filling these holes. For example, a large hole having a diameter of 0.1 mm or more, Defects such as deep fissures could not be filled.

特許文献6は、寸法精度の悪いハニカム構造体の外周にセラミック材料を補填し寸法精度の良いものを得る技術であるが、場合によってはセラミック材料が補填されない部分もあり、また特許文献1と同様に部分的には0.5mm以上の被覆層が存在するため、コールドスタートにおける浄化性能悪化は免れない。 Patent Document 6 is a technique for obtaining a ceramic material with a good dimensional accuracy by supplementing the outer periphery of a honeycomb structure with a poor dimensional accuracy. However, in some cases, the ceramic material is not supplemented. In part, since a coating layer of 0.5 mm or more exists, purification performance deterioration at cold start is inevitable.

特許文献7は、最外周の不完全セルを選択的にセラミック材料で塞いだものであるが、外壁を貫通する亀裂、クラックを含む孔状の欠陥(図1参照)については全く考慮していないため、欠陥がたまたま不完全セルの部分にあれば欠陥は塞がれるが、完全セル部分に欠陥がある場合は塞ぐことができなかった。 In Patent Document 7, an incomplete cell on the outermost periphery is selectively closed with a ceramic material, but cracks penetrating the outer wall and hole-like defects including cracks (see FIG. 1) are not considered at all. For this reason, if the defect happens to be in the incomplete cell portion, the defect is blocked, but if the defect is in the complete cell portion, it cannot be closed.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、機械的強度や耐熱衝撃性を低下させることなく外壁に発生した欠陥部を確実に補修することができるとともに、触媒化工程における外壁への液漏れ不具合を解消することができるセラミックハニカム構造体を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to reliably repair a defective portion generated on the outer wall without reducing mechanical strength and thermal shock resistance. Another object of the present invention is to provide a ceramic honeycomb structure that can solve the problem of liquid leakage to the outer wall in the catalytic step.

即ち、本発明によれば、多数の隔壁により区画された多数の流路と、前記流路と外部とを区画する外壁を有するセラミックハニカム構造体であって、前記外壁表面に発生した開口部の幅が0.1mm以上で、且つ前記開口部が前記流路と連通した少なくとも1つ以上の欠陥部に、セラミック材料が詰め込まれ塞がれているセラミックハニカム構造体が提供される。 That is, according to the present invention, there is provided a ceramic honeycomb structure having a large number of flow paths partitioned by a large number of partition walls and an outer wall partitioning the flow path and the outside, and the openings generated on the surface of the outer wall. There is provided a ceramic honeycomb structure having a width of 0.1 mm or more and at least one defect portion in which the opening portion communicates with the flow path and filled with a ceramic material.

このとき、本発明では、隔壁の厚さが0.115mm以下であることが好ましく、また、セラミック材料が開口部だけでなく、開口部と連通した流路にも詰め込まれていることが好ましい。 At this time, in the present invention, the thickness of the partition wall is preferably 0.115 mm or less, and it is preferable that the ceramic material is packed not only in the opening but also in a flow path communicating with the opening.

また、本発明では、セラミック材料が、セラミックハニカム構造体と同じ材質を主成分とすることが好ましい。セラミックハニカム構造体が水溶性のバインダーを用いて成形された成形体である場合、セラミック材料がオイルで練られた生原料から構成されたものであることが好ましい。
セラミックハニカム構造体が焼成体である場合、セラミック材料(セメント材料(1))が、コージェライト粉末及びコロイダルシリカとを主成分とするものであることが好ましい。
In the present invention, the ceramic material is preferably composed mainly of the same material as the ceramic honeycomb structure. When the ceramic honeycomb structure is a molded body formed using a water-soluble binder, the ceramic material is preferably composed of a raw material kneaded with oil.
When the ceramic honeycomb structure is a fired body, the ceramic material (cement material (1)) is preferably composed mainly of cordierite powder and colloidal silica.

更に、本発明では、セラミックハニカム構造体が焼成体である場合、セラミック材料(セメント材料(2))が、γ−アルミナを主体とする触媒スラリー材料であることが好ましい。 Furthermore, in the present invention, when the ceramic honeycomb structure is a fired body, the ceramic material (cement material (2)) is preferably a catalyst slurry material mainly composed of γ-alumina.

尚、本発明では、セラミック材料を詰め込まれた部分のハニカム構造体の熱膨脹係数が、3.0×10-6/℃未満であることが好ましい。 In the present invention, the thermal expansion coefficient of the portion of the honeycomb structure packed with the ceramic material is preferably less than 3.0 × 10 −6 / ° C.

本発明のセラミックハニカム構造体は、機械的強度や耐熱衝撃性を低下させることなく外壁に発生した欠陥部を確実に補修することができるとともに、触媒化工程における外壁への液漏れ不具合を解消することができる。 The ceramic honeycomb structure of the present invention can surely repair a defective portion generated on the outer wall without deteriorating mechanical strength and thermal shock resistance, and solves a problem of liquid leakage to the outer wall in the catalyzing process. be able to.

本発明に係るセラミックハニカム構造体は、多数の隔壁により区画された多数の流路と、前記流路と外部とを区画する外壁を有するセラミックハニカム構造体であって、外壁表面に発生した開口部の幅が0.1mm以上で、且つ開口部が流路と連通した少なくとも1つ以上の欠陥部に、セラミック材料が詰め込まれ塞がれてなるものである。 A ceramic honeycomb structure according to the present invention is a ceramic honeycomb structure having a large number of flow paths partitioned by a large number of partition walls, and an outer wall that partitions the flow path and the outside, and an opening generated on the surface of the outer wall The ceramic material is filled and plugged into at least one defect portion having a width of 0.1 mm or more and an opening portion communicating with the flow path.

これにより、本発明のセラミックハニカム構造体は、従来の技術では困難であった直径が0.1mm以上の大きい穴や比較的深めの裂け目等の外壁に発生した欠陥部を、機械的強度や耐熱衝撃性を低下させることなく確実に補修することができるとともに、触媒化工程における外壁への液漏れ不具合を解消することができるため、セラミックハニカム触媒の歩留まりや性能を向上させることができる。 As a result, the ceramic honeycomb structure of the present invention has the mechanical strength and heat resistance of the defective portion generated in the outer wall such as a large hole having a diameter of 0.1 mm or more and a relatively deep crack, which has been difficult with the prior art. The repair can be surely performed without reducing the impact property, and the liquid leakage problem to the outer wall in the catalyzing process can be eliminated, so that the yield and performance of the ceramic honeycomb catalyst can be improved.

先ず、セラミックハニカム構造体の外壁欠陥とその問題点について詳細に説明する。
セラミックハニカム構造体の外壁には、図1に示すようにさまざまな貫通する欠陥が生じる。1は、「ササクレ」と呼ばれ、成形時に外壁形成のための材料供給が少ない場合生じる。小さいものは孔状になる。状態によっては裂け目状にもなり、また、端からクラックが生じる場合もある。2は、「ヨコ切れ」と呼ばれ、外壁の早い部分乾燥または焼成時の外周部の急激な収縮で発生する。3は「タテ切れ」と呼ばれ、成形時の材料の圧着不足で乾燥・焼成工程で顕在化するか、または外壁部の急激な乾燥・焼成の収縮で発生する。
First, the outer wall defects and problems of the ceramic honeycomb structure will be described in detail.
As shown in FIG. 1, various penetrating defects are generated on the outer wall of the ceramic honeycomb structure. No. 1 is called “Sasakure” and occurs when the material supply for forming the outer wall is small at the time of molding. Smaller ones become holes. Depending on the state, it may be a tear, and a crack may occur from the end. No. 2 is called “horizontal cut” and occurs due to rapid partial drying of the outer wall or rapid contraction of the outer periphery during firing. No. 3 is called “vertical cut” and is manifested in the drying / firing process due to insufficient pressure bonding of the material at the time of molding, or occurs due to rapid drying / firing shrinkage of the outer wall.

外壁を形成する原料の一部は、口金の隔壁を形成するためのスリットからも供給されるため、隔壁厚さの薄いものは外壁への原料供給が少なくなり勝ちで特に隔壁厚さが0.115mm以下のものでは外壁にササクレが発生し易い。また、ヨコ切れ、タテ切れも外壁厚さが薄い場合の方が厚い場合より外部の状態の変化をより大きくうけたり、圧着不足が発生し易く、隔壁厚さが0.115mmを超えるものより外観欠陥が発生し易い。1ヶ月間における成形時の欠陥発生率を表1に示す。 Since a part of the raw material forming the outer wall is also supplied from the slit for forming the partition wall of the die, the material with a small partition wall thickness tends to decrease the supply of the raw material to the outer wall. If the thickness is 115 mm or less, the outer wall is likely to be crumpled. In addition, when the outer wall thickness is thinner than the case where the outer wall thickness is thinner, the width of the slit and the length of the warp are more likely to be affected by changes in the external state and insufficient crimping, and the appearance of the partition wall is greater than 0.115 mm. Defects are likely to occur. Table 1 shows the defect occurrence rate during molding in one month.

Figure 2005144284
Figure 2005144284

これら欠陥の存在するハニカム構造体を触媒化工程で流した場合、種々の不具合が生じる。触媒化工程では、ハニカム構造体端面をスラリーに数mm浸しハニカム外壁部をシールし、他の端面に負圧を掛けるとスラリーがハニカム流路を上昇してくる。そして、所定の位置までスラリー液面が来たら圧力を開放すれば、液面は元に戻り、その後取りだしハニカム流路内の余分なスラリーを吹き飛ばす。 When the honeycomb structure having these defects is flowed in the catalytic step, various problems occur. In the catalyzing step, the honeycomb structure end face is immersed in the slurry for several mm to seal the outer wall of the honeycomb, and when negative pressure is applied to the other end face, the slurry rises in the honeycomb flow path. When the slurry level reaches the predetermined position, if the pressure is released, the level returns to the original level, and then the excess slurry in the taken-out honeycomb channel is blown off.

このとき、外壁に孔があるとその流路の圧力は孔から空気が入り負圧とならないため、スラリー液面が上昇しないため担持されない。また、前記状態で、液に正圧を掛ければ、液面はハニカム流路内を上昇してくるので、あとは同様処理されるが、外壁に孔がある場合その孔からスラリーが漏れてシール材を汚しシール性能を落したり、スラリーが外壁に垂れる。 At this time, if there is a hole in the outer wall, the pressure of the flow path is not carried because the slurry liquid level does not rise because air enters through the hole and does not become negative pressure. In addition, if a positive pressure is applied to the liquid in the above state, the liquid level rises in the honeycomb flow path, and the rest is processed in the same manner. However, if there is a hole in the outer wall, the slurry leaks from the hole and seals. The material is soiled to deteriorate the sealing performance, and the slurry hangs on the outer wall.

尚、触媒となる貴金属は、スラリー担持後、別途担持する場合と、予め貴金属を担持したスラリー材料を用いる場合があるが、いずれもスラリーに貴金属を担持するためには長時間かかるため、前者の場合、ハニカム構造体全体を貴金属溶液に浸漬するのが一般的で、従って、いずれの場合も外壁に垂れたスラリーに貴金属が担持され、無駄となる。 The noble metal to be used as a catalyst may be separately supported after the slurry is supported, or a slurry material in which the noble metal is previously supported may be used. However, it takes a long time to support the noble metal in the slurry. In this case, the entire honeycomb structure is generally immersed in the noble metal solution. Therefore, in any case, the noble metal is supported on the slurry dripping on the outer wall and is wasted.

また、欠陥の大きさとしては、通常のセラミックハニカム構造体には細孔があり、水銀圧入法で測定されるところの50μm以下が大半である。触媒工程では、その2倍の直径である0.1mm以上の貫通孔が外壁に存在すると、負圧でスラリーを流路へ導入するときに支障が生じ始める。また、外壁からスラリーが漏れ始める時の貫通孔の大きさは、スラリーの粘度に大きく左右されるが、経験的には約0.5mm程度以上からである。0.3mm程度の貫通孔では、漏れる場合もあるが一般的には極僅かで、許容されるレベルである。これらは、隔壁厚さが0.115mmあるいはそれより薄くなってきて、流路密度が62、93、140個/cm2と密になるに従って目詰まりを発生させないようにスラリーの粘度を下げてきて不具合がより顕在化してきた。 As for the size of the defect, the normal ceramic honeycomb structure has pores, and most of them are 50 μm or less as measured by mercury porosimetry. In the catalyst process, if a through hole having a diameter of 0.1 mm or more, which is twice the diameter, is present on the outer wall, troubles will occur when the slurry is introduced into the flow path under negative pressure. Further, the size of the through hole when the slurry starts to leak from the outer wall is greatly influenced by the viscosity of the slurry, but is empirically from about 0.5 mm or more. In the case of a through hole of about 0.3 mm, there is a case where it leaks, but generally it is very small and is an acceptable level. As the partition wall thickness is 0.115 mm or thinner, the viscosity of the slurry is lowered so as not to cause clogging as the flow path density becomes 62, 93, 140 / cm 2. Defects have become more apparent.

以上の問題点を考慮した上で、本発明のセラミックハニカム構造体は、隔壁の厚さが0.115mm以下であっても、触媒化工程における外壁への液漏れ不具合を解消したものである。 In consideration of the above problems, the ceramic honeycomb structure of the present invention has solved the problem of liquid leakage to the outer wall in the catalytic step even when the partition wall thickness is 0.115 mm or less.

このとき、隔壁厚さが0.115mm以下のセラミックハニカム構造体は、外壁の欠陥部が数個所以下のものが大半であるため、外壁補修用のセラミック材料をパテ状にして、塗り込むように欠陥部に補填することが好ましい。 At this time, most of the ceramic honeycomb structures having a partition wall thickness of 0.115 mm or less have few defects on the outer wall, so that the ceramic material for repairing the outer wall is put in a putty shape and applied. It is preferable to fill in the defective part.

この場合、セラミック材料が開口部だけでなく、開口部と連通した流路にも詰め込まれていることが好ましい。これは、流路が塞がってしまえば、スラリーは担持されないが排ガスも流れなく、流路が数個所程度補修で塞がっても浄化性能および圧力損失に影響はないからである。また、大きいサイズの欠陥の場合、外壁のみで補修材が接着されるより、流路まで塞ぐようにすれば、補修部分が剥れにくくなる。 In this case, it is preferable that the ceramic material is packed not only in the opening but also in a flow path communicating with the opening. This is because if the flow path is blocked, the slurry is not carried but the exhaust gas does not flow, and even if the flow path is closed by repairing several places, the purification performance and pressure loss are not affected. Further, in the case of a large-sized defect, the repaired portion is less likely to be peeled off if the repair material is bonded only by the outer wall and is closed to the flow path.

尚、本発明では、セラミック材料を詰め込まれた部分のハニカム構造体の熱膨脹係数が、ハニカム構造体の実使用時における機械的強度や耐熱衝撃性の低下を防止するため、3.0×10-6/℃未満であることが好ましい。 In the present invention, the thermal expansion coefficient of the honeycomb structure in which the ceramic material is packed is 3.0 × 10 − in order to prevent a decrease in mechanical strength and thermal shock resistance during actual use of the honeycomb structure. It is preferably less than 6 / ° C.

本発明のセラミックハニカム構造体を焼成前に補修を行う場合、セラミック材料(補修材)として、ハニカム構造体と同じ材料をパテ状にしたもので行なわれることが好ましい。
ここで、ハニカム構造体と同じ材料とは、成形するための液体およびバインダーを除いたセラミック原料を言う。このとき用いる焼成前のハニカム構造体の材料は、特に限定されることはないが、ハニカム構造体が焼成するとコージェライトとなるコージェライト生原料を用いたときは、補修材も同じコージェライト生原料を好適に用いることができる。
また、ハニカム構造体を成形する際に水および水溶性のバインダーを用いるときは、補修材料によってハニカム構造体の成形体が変質しないように非水溶性のオイル等を用いパテ状に練るのが好ましい。このとき用いるオイルは、特に限定されるものではないが、例えば、灯油を好適に用いることができる。液体およびバインダーが水および水溶性材料でなければオイルに限定されるものではなく、非水溶性の液体およびバインダーを用いた場合、補修材は水を用いることができる。
When repairing the ceramic honeycomb structure of the present invention before firing, it is preferable that the ceramic material (repair material) is made of the same material as the honeycomb structure in a putty shape.
Here, the same material as the honeycomb structure means a ceramic raw material excluding a liquid for forming and a binder. The material of the honeycomb structure before firing used at this time is not particularly limited, but when a cordierite raw material that becomes cordierite when the honeycomb structure is fired is used, the repair material is also the same cordierite raw material. Can be suitably used.
Further, when water and a water-soluble binder are used when forming the honeycomb structure, it is preferable to knead into a putty using water-insoluble oil or the like so that the honeycomb structure formed body is not deteriorated by the repair material. . Although the oil used at this time is not specifically limited, For example, kerosene can be used suitably. If the liquid and the binder are not water and a water-soluble material, the oil is not limited to oil. When a water-insoluble liquid and a binder are used, water can be used as the repair material.

また、本発明のセラミックハニカム構造体は、ハニカム構造体の焼成後に補修を行う場合、外壁の欠陥部の補修が、セラミック材料(補修材)として、セメント材料(セメント材料(1)又はセメント材料(2))で行われていることが好ましい。尚、セメント材料は、気孔率および吸水率はハニカム構造体本体と同等またはそれ以下であるとともに、撥水性があっても良い。また、セメント材料は、乾燥による収縮が小さいことが望まれ、乾燥により貫通するクラックが発生しないようにすることが必要である。 In the ceramic honeycomb structure of the present invention, when repair is performed after firing the honeycomb structure, the defect of the outer wall is repaired by using a cement material (cement material (1) or cement material (1) as a ceramic material (repair material)). 2)) is preferably performed. The cement material may have a porosity and a water absorption rate equivalent to or lower than those of the honeycomb structure body, and may have water repellency. The cement material is desired to have small shrinkage due to drying, and it is necessary to prevent cracks penetrating by drying.

セメント材(1)は、熱膨張係数がハニカム構造体と同じ程度であることが好ましく、骨材にハニカム構造体本体材料の粒体を使用し、熱膨張係数を近づけることがより好ましい。
ここで、ハニカム構造体本体材料の粒体とは、通常、コージェライト粉末のことであり、このコージェライト粉末にコロイド状酸化物を無機バインダーとして用いることにより、セメント材(1)を得ることができる。また、セメント材(1)は、コージェライト粉末とコロイド状酸化物(固形分換算)との割合が重量比で100:2〜100:50であることが、補修部のハニカム構造体本体への固着性や補修後のハニカム構造体の熱特性を良好に維持する上で好ましい。尚、コージェライト粉末は、一般に、50μm以下の平均粒径を有する焼成粉末であることが好ましく、微細な平均粒径を持つものと比較的粗い平均粒径を持つものとのブレンドにて構成される2段階の粒度分布を持つもの、例えば、平均粒径が15μm以下のものと平均粒径が30μm以上のものとの混合物等を適宜用いることができる。また、コロイド状酸化物は、特に限定されることはないが、例えば、コロイダルシリカを好適に用いることができる。
The cement material (1) preferably has the same thermal expansion coefficient as that of the honeycomb structure, and more preferably, the aggregate of the honeycomb structure body material is used for the aggregate to bring the thermal expansion coefficient closer.
Here, the granule of the honeycomb structure body material is usually cordierite powder, and a cement material (1) can be obtained by using a colloidal oxide as an inorganic binder in the cordierite powder. it can. In the cement material (1), the ratio of the cordierite powder and the colloidal oxide (in terms of solid content) is 100: 2 to 100: 50 by weight ratio. This is preferable in order to maintain the adhesiveness and the thermal characteristics of the honeycomb structure after repair. The cordierite powder is generally preferably a calcined powder having an average particle size of 50 μm or less, and is composed of a blend of a fine average particle size and a relatively coarse average particle size. For example, a mixture having a two-stage particle size distribution, for example, an average particle size of 15 μm or less and an average particle size of 30 μm or more can be used as appropriate. The colloidal oxide is not particularly limited, but for example, colloidal silica can be suitably used.

セメント材(2)は、触媒化工程で使用するγ−アルミナを主体とする触媒スラリー材料であり、触媒化工程でスラリーの粘度を調整し、補修材としても良い。 The cement material (2) is a catalyst slurry material mainly composed of γ-alumina used in the catalyzing step, and may be used as a repair material by adjusting the viscosity of the slurry in the catalyzing step.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1〜3、比較例1,2)
補修材料の選定のため、次の評価を行った。焼成するとコージェライトとなり、リブ厚さ0.09mm、流路数62個/cm2、直径φ106mm×高さ114mm、熱膨脹係数0.5×10-6/℃となるハニカム構造体の成形品及び焼成品をそれぞれ用意した。
成形品の中で、ササクレ又はタテ切れの欠陥のあるものを選定し、表2に示す「焼成前」のセラミック材料(補修材)で補修し、焼成後、補修部の観察を行った(実施例1、比較例1)。また、成形品の中で、ササクレ又はタテ切れの欠陥のあるものを選定・焼成し、表2に示す「焼成後」のセラミック材料(補修材料)で補修し、熱処理後、補修部の観察を行った(実施例2〜3、比較例2)。尚、熱膨張係数の測定は、タテ切れ部を補修した部分を含むように試料を3.5×3.5×50Lmmに切り出して実施した。また、熱処理は自動車で使用される可能性のある900℃とし、電気炉で10時間行った。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(Examples 1 to 3, Comparative Examples 1 and 2)
The following evaluation was performed to select repair materials. When fired, it becomes cordierite, and the molded product of the honeycomb structure having a rib thickness of 0.09 mm, the number of flow paths of 62 / cm 2 , a diameter of 106 mm × a height of 114 mm, and a thermal expansion coefficient of 0.5 × 10 −6 / ° C. Each item was prepared.
Among the molded products, those with defects of cracks or vertical cuts were selected, repaired with the “before firing” ceramic material (repair material) shown in Table 2, and the repaired part was observed after firing (implementation) Example 1 and Comparative Example 1). In addition, among the molded products, those with defects such as cracks or vertical cuts are selected and fired, repaired with a “fired” ceramic material (repair material) shown in Table 2, and after heat treatment, the repaired part is observed. (Examples 2-3 and Comparative Example 2). The measurement of the thermal expansion coefficient was performed by cutting the sample into 3.5 × 3.5 × 50 Lmm so as to include the portion where the vertical cut portion was repaired. The heat treatment was performed at 900 ° C. which could be used in an automobile, and was performed in an electric furnace for 10 hours.

Figure 2005144284
Figure 2005144284

表2の結果から、実施例1〜3では、セラミック材料(補修材料)の熱膨脹係数が、ハニカム構造体の熱膨脹係数に近似しているため、異常もなく良好な補修を行うことができた。一方、比較例1,2では、アルミナ(比較例1)や珪酸ジルコニア(比較例2)のセラミック材料(補修材料)の熱膨脹係数が、ハニカム構造体の熱膨脹係数よりも大きいため、補修部に異常が発生した。 From the results of Table 2, in Examples 1 to 3, since the thermal expansion coefficient of the ceramic material (repair material) approximated the thermal expansion coefficient of the honeycomb structure, it was possible to perform good repair without any abnormality. On the other hand, in Comparative Examples 1 and 2, the thermal expansion coefficient of the ceramic material (repair material) of alumina (Comparative Example 1) or zirconia silicate (Comparative Example 2) is larger than the thermal expansion coefficient of the honeycomb structure. There has occurred.

(実施例4,5、比較例3〜5)
ササクレ1(図1参照)を有する焼成前のセラミックハニカム構造体を40個準備した。ササクレは唇形状の裂け目状態で、最大開口幅約0.3mm〜4mm、長さ4〜10mm、その端に最大5mmのクラックを有するもので、流路と直角方向に伸び、全長方向30mmの長さ部分に15個〜21個並んでいるものである。ハニカム構造体材料は焼成するとコージェライトとなる生原料を用いており、このうち10個を、同材料をオイルにてパテ状に練ったものを外壁と同一面となるように塗り込み補修した。その後、補修しないササクレを有するもの30個およびササクレ等外観欠陥のないもの10個と共に焼成し、リブ厚さ0.065mm、流路数140個/cm2、直径φ106mm×高さ114mmのコージェライトハニカム構造体を得た。補修したものを実施例4、補修しないものを比較例3、欠陥のないものを比較例4とした。
(Examples 4 and 5, Comparative Examples 3 to 5)
Forty ceramic honeycomb structures before fired, which have the sacra crab 1 (see FIG. 1), were prepared. Sasacle is a lip-shaped tear, has a maximum opening width of about 0.3 mm to 4 mm, a length of 4 to 10 mm, and a crack with a maximum of 5 mm at its end, extends in a direction perpendicular to the flow path, and has a length of 30 mm in the full length direction. 15 to 21 pieces are arranged in this part. The honeycomb structure material used was a raw material that became cordierite when fired, and 10 of these were kneaded in a putty shape with the same material so as to be flush with the outer wall and repaired. Thereafter, it was fired together with 30 non-repaired sacres and 10 non-repaired ones having no appearance defects, such as a cordierite honeycomb having a rib thickness of 0.065 mm, a number of channels of 140 / cm 2 , a diameter of 106 mm and a height of 114 mm A structure was obtained. What was repaired was designated as Example 4, those not repaired as Comparative Example 3, and those without defects as Comparative Example 4.

また、補修しないで焼成したササクレを有するもの10個を、コロイダルシリカ20%とコージェライト微粒体を重量比で80%混入しパテ状に練った補修材をササクレ部に塗り込んで外壁と同一面となるように補修し乾燥し、実施例5を得た。また、同様のコロイダルシリカ20%に珪酸ジルコニウム粉末を重量比で80%混入しスラリー状にしたものをハニカム構造体の外周に約1mm厚さで均等に塗り乾燥し比較例5を得た。 In addition, 10 parts with baked salami without repair are mixed with 20% colloidal silica and 80% cordierite fine particles by weight, and a repair material kneaded into a putty shape is applied to the cradle part to be flush with the outer wall. The product was repaired and dried to obtain Example 5. Further, a mixture of 20% colloidal silica and zirconium silicate powder in a weight ratio of 80% in the form of a slurry was uniformly applied to the outer periphery of the honeycomb structure at a thickness of about 1 mm and dried to obtain Comparative Example 5.

これら実施例4,5および比較例5について、端面から流路を透かし観察した。その結果、ササクレの部分の外壁と隣接する流路が10〜12個補修材によって塞がれていた。これらのハニカム構造体の端面に近い側面に、薄い筒状の合成樹脂のシートを密封し取りつけ空気を9m3/分送り、補修部分を観察したが補修部が抜けることはなく、また外壁に手をかざしてみると、補修していない比較例3は空気が漏れたが、実施例4、5および比較例5は空気漏れがなかったため、補修の有効が確認された。 For Examples 4 and 5 and Comparative Example 5, the flow path was observed through the end face. As a result, 10 to 12 flow paths adjacent to the outer wall of the salamander portion were blocked by the repair material. A thin cylindrical synthetic resin sheet was sealed and attached to the side surface close to the end face of these honeycomb structures, air was sent at 9 m 3 / min, and the repaired part was observed. As a result, air was leaked in Comparative Example 3 which was not repaired. However, since Examples 4 and 5 and Comparative Example 5 were free of air leak, the effectiveness of repair was confirmed.

次に、実施例4,5、比較例3〜5について以下に示す各種性能試験をそれぞれ実施した、その結果を表3に示す。 Next, various performance tests shown below were conducted for Examples 4 and 5 and Comparative Examples 3 to 5, and the results are shown in Table 3.

Figure 2005144284
Figure 2005144284

圧力損失は、ハニカム構造体の外周にセラミックマットを巻き、円筒ケースの中に入れコーンを接続し室温空気を流しハニカムの前後における圧力の差を測定した。その結果、実施例4,5、比較例3〜5とも全ての試料が同じ値であり、補修を実施して流路が10〜12個補修材によって塞がれていても影響が無いことが確認された。 For the pressure loss, a ceramic mat was wound around the outer periphery of the honeycomb structure, put in a cylindrical case, connected with a cone, and air was flown at room temperature, and the difference in pressure before and after the honeycomb was measured. As a result, all samples in Examples 4 and 5 and Comparative Examples 3 to 5 have the same value, and there is no effect even if the repair is performed and 10 to 12 flow paths are blocked by the repair material. confirmed.

次に、担体性能確認のため、機械的強度試験および耐熱衝撃試験を以下の通りに実施した。
(1)機械的強度試験
機械的強度試験は、アイソスタティック試験とも言い、ハニカム構造体の上下端面に約0.5mm厚さのウレタンシートを介してφ約106mm、厚さ約20mmのアルミニウム板を当て、更に側面は厚さ約0.5mmのウレタンチューブで包み密封し水を満たした圧力容器に入れ、水圧を徐々に上昇させ1MPaに達したら容器から取り出し、外観観察を行った(耐荷重試験)。その後、再度ハニカム構造体を密封し圧力容器に入れ、水の圧力を上げ、破壊音がしたときの圧力を記録した(破壊試験)。尚、試験結果は、表3に5個試料の平均値で示す。
(2)耐熱衝撃性試験
耐熱衝撃性試験は、700℃+室温に保たれた電気炉の中に室温のハニカム構造体を入れ、自動車規格JASO−M−505−87に規定された方法にて試験を実施した。クラックの発生その他異常がなくかつ打音検査で金属音なら合格、クラックが発生するか打音検査で濁音となった場合不合格とし、電気炉の温度を50℃上げ、不合格となるまで繰り返した。試験結果は、表3に4個試料の平均値で示す。
Next, in order to confirm the carrier performance, a mechanical strength test and a thermal shock test were performed as follows.
(1) Mechanical strength test The mechanical strength test is also called an isostatic test, and an aluminum plate having a diameter of about 106 mm and a thickness of about 20 mm is placed on the upper and lower end surfaces of the honeycomb structure with a urethane sheet having a thickness of about 0.5 mm. Furthermore, the side was wrapped in a urethane tube with a thickness of about 0.5 mm and sealed in a pressure vessel filled with water. The water pressure was gradually increased, and when the pressure reached 1 MPa, it was removed from the vessel and the appearance was observed (load resistance test). ). Thereafter, the honeycomb structure was sealed again and placed in a pressure vessel, the pressure of water was increased, and the pressure when a breaking noise was made was recorded (destructive test). The test results are shown in Table 3 as average values of five samples.
(2) Thermal shock resistance test The thermal shock resistance test was carried out by placing a honeycomb structure at room temperature in an electric furnace maintained at 700 ° C + room temperature and using the method specified in the automotive standard JASO-M-505-87. The test was conducted. If there are no cracks or other abnormalities and metal sound is detected by hammering test, it is accepted. If crack is generated or muddy sound is detected by hammering test, it is rejected. It was. The test results are shown in Table 3 as an average value of four samples.

機械的強度試験では、実施例4,5および比較例4が試験前と全く同じ状態であったのに対し、補修していないもの(比較例3)はササクレの3〜4mm幅で開口していた隣接部分の外壁が剥れ、3〜4個がまとまった約5×4〜10×8mmの一つの欠損部4(図2のハッチング部)が発生していた。また、補修しないもの(比較例3)は、ササクレ個所で低値破壊したのに対し、補修したもの(実施例4,5、比較例4,5)は、補修した個所では破壊せずに別の個所で破壊し、補修が機械的強度にはむしろ改良されることが確認された。 In the mechanical strength test, Examples 4 and 5 and Comparative Example 4 were in exactly the same state as before the test, but those that were not repaired (Comparative Example 3) opened with a 3-4 mm width of the brush. In addition, the outer wall of the adjacent portion was peeled off, and one defective portion 4 (hatched portion in FIG. 2) of about 5 × 4 to 10 × 8 mm in which 3 to 4 pieces were collected was generated. In addition, those that were not repaired (Comparative Example 3) were destroyed at a low value at the Sasakuri location, while those that were repaired (Examples 4 and 5 and Comparative Examples 4 and 5) were not destroyed at the repaired location. It was confirmed that the repair was rather improved in terms of mechanical strength.

耐熱衝撃性試験では、合格の最高温度は、4種類の試料(実施例4,5、比較例3,4)すべて850℃差で、しかもササクレではない部分にクラックが入ったことから、ササクレおよびササクレを補修しても耐熱衝撃性には影響しないことが確認された。一方、比較例5は、外周に塗った補修材の影響で大幅な低下が確認された。これは、10×10-6/℃という大きい熱膨張係数の珪酸ジルコニウムを外周全面に塗ったことが原因であると考えられる。 In the thermal shock resistance test, the acceptable maximum temperature was a difference of 850 ° C. for all four types of samples (Examples 4 and 5 and Comparative Examples 3 and 4), and cracks were formed in the non-sacrifice portion. It has been confirmed that repairing the sacra crab does not affect the thermal shock resistance. On the other hand, in Comparative Example 5, a significant decrease was confirmed due to the effect of the repair material applied to the outer periphery. This is considered to be because zirconium silicate having a large thermal expansion coefficient of 10 × 10 −6 / ° C. was applied to the entire outer surface.

(実施例6,7、比較例6〜8)
タテ切れ3(図1参照)が、180°内に5本を有する焼成前のセラミックハニカム構造体を40個準備した。タテ切れは、外壁が約0.4mmの幅で、全長に亘って入っており、深さ(径方向)は外壁と次の壁2つまで切れているものである。実施例4と同様、10個についてオイルで練ったものを塗り込み補修した。その後、補修しないものと共に焼成し、リブ厚さ0.09mm、流路数62個/cm2、直径φ106mm×高さ114mmのコージェライトハニカム構造体を得た。
(Examples 6 and 7, Comparative Examples 6 to 8)
40 pre-fired ceramic honeycomb structures having 5 vertical cuts 3 (see FIG. 1) within 180 ° were prepared. In the vertical cut, the outer wall has a width of about 0.4 mm and extends over the entire length, and the depth (in the radial direction) is cut to the outer wall and the next two walls. As in Example 4, ten pieces kneaded with oil were applied and repaired. Then, it fired with the thing which is not repaired, and obtained the cordierite honeycomb structure of rib thickness 0.09mm, the number of flow paths 62 pieces / cm < 2 >, diameter (phi) 106mm x height 114mm.

補修したものを実施例6、補修しないものを比較例6、欠陥のないものを比較例7とした。
そして、補修しないで焼成したもの10個を、コロイダルシリカ20%にコージェライト微粒体を重量比で80%混入しパテ状に練った補修材で外壁と同一面となるように補修し、実施例7を得た。また、補修しないで焼成したもの10個を、比較例5と同じ手法で珪酸ジルコニウムを外壁に塗って比較例8とした。
What was repaired was designated as Example 6, those not repaired as Comparative Example 6, and those without defects as Comparative Example 7.
Then, 10 pieces fired without repairing were repaired so that the outer wall was flush with a repair material prepared by mixing 80% by weight of colloidal silica with 80% colloidal silica and kneading into a putty. 7 was obtained. Further, 10 samples fired without repair were coated with zirconium silicate on the outer wall in the same manner as in Comparative Example 5 to obtain Comparative Example 8.

次に、実施例6,7、比較例6〜8について以下に示す各種性能試験をそれぞれ実施した、その結果を表3に示す。実施例6,7は、端面から流路を観察した結果、外壁と隣接する流路1つのみが5ヶ所補修材によって塞がれていた。これらのハニカム構造体について、実施例1と同様抜け落ち、空気漏れの試験を実施したが異常はなかった。また、圧力損失も実施例1と同様、5者(実施例6,7、比較例6〜8)に差がなかった。 Next, various performance tests shown below were carried out for Examples 6 and 7 and Comparative Examples 6 to 8, respectively, and the results are shown in Table 3. In Examples 6 and 7, the flow path was observed from the end face, and as a result, only one flow path adjacent to the outer wall was blocked with the repair material at five locations. These honeycomb structures were dropped out as in Example 1 and tested for air leakage, but there was no abnormality. Moreover, the pressure loss was the same as in Example 1, and there was no difference among the five persons (Examples 6 and 7 and Comparative Examples 6 to 8).

機械的強度試験における耐荷重試験では、補修品(実施例6,7、比較例7,8)が優れ、また、破壊試験では、5者(実施例6,7、比較例6〜8)に差はなかった。耐荷重試験における外壁の折れ曲がり(比較例6)は、通常不合格とはならないが、キャンニング時に発生すれば使用中の振動等で曲がった部分の外壁が飛散し、1セル幅ではあるが排気ガスがハニカム構造体の機械的支持するためのセラミックマットと直接接触するため、どちらかというと好ましくない。 In the load resistance test in the mechanical strength test, the repaired product (Examples 6, 7 and Comparative Examples 7 and 8) is excellent, and in the destructive test, 5 persons (Examples 6 and 7 and Comparative Examples 6 to 8) are used. There was no difference. The bending of the outer wall in the load-bearing test (Comparative Example 6) is not normally rejected, but if it occurs during canning, the outer wall of the bent portion is scattered due to vibration during use, etc., but it is exhausted although it is 1 cell wide Since the gas is in direct contact with the ceramic mat for mechanical support of the honeycomb structure, it is rather undesirable.

耐熱衝撃試験では、補修品(実施例6,7)が8個中1個補修場所にクラックが入ったが(残り7個は補修していない個所でクラックが発生した)、非補修品(比較例6)は4個中1個タテ切れ部にクラックが入った。この結果から、タテ切れ部にはクラックが入ることがあるが、破壊温度に差がないことを考えれば、補修することによって破壊温度低下等の悪影響を与えることはないと考えられる。 In the thermal shock test, one of the repaired products (Examples 6 and 7) cracked at one of the repair points (the remaining seven had cracks at the unrepaired points), but the non-repaired product (comparison) In Example 6), one of the four pieces had cracks in the vertical cut portion. From this result, cracks may occur in the vertical cut portion, but considering that there is no difference in the destruction temperature, it is considered that the repair does not adversely affect the destruction temperature.

本発明のセラミックハニカム構造体は、内燃機関、ボイラー等の排ガス中の微粒子捕集フィルター等に好適に用いることができる。 The ceramic honeycomb structure of the present invention can be suitably used for a filter for collecting particulates in exhaust gas from an internal combustion engine, a boiler or the like.

セラミックハニカム構造体の外壁に発生する欠陥の各例を模式的に示す斜視図である。It is a perspective view which shows typically each example of the defect which generate | occur | produces in the outer wall of a ceramic honeycomb structure. 比較例3におけるササクレの3〜4mm幅で開口していた隣接部分の外壁が剥れて発生した欠損部を模式的に示す部分斜視図である。It is a fragmentary perspective view which shows typically the defect | deletion part which the outer wall of the adjacent part opened with the width | variety of 3-4 mm of the sacre in Comparative Example 3 generate | occur | produced.

符号の説明Explanation of symbols

1…ササクレ、2…ヨコ切れ、3…タテ切れ、4…欠損部、10…セラミックハニカム構造体。 DESCRIPTION OF SYMBOLS 1 ... Sasakure, 2 ... Slice, 3 ... Slice, 4 ... Defect part, 10 ... Ceramic honeycomb structure.

Claims (8)

多数の隔壁により区画された多数の流路と、前記流路と外部とを区画する外壁を有するセラミックハニカム構造体であって、
前記外壁表面に発生した開口部の幅が0.1mm以上で、且つ前記開口部が前記流路と連通した少なくとも1つ以上の欠陥部に、セラミック材料が詰め込まれ塞がれているセラミックハニカム構造体。
A ceramic honeycomb structure having a large number of flow paths partitioned by a large number of partition walls and an outer wall that partitions the flow paths and the outside,
A ceramic honeycomb structure in which a width of an opening generated on the outer wall surface is 0.1 mm or more, and at least one defect portion in which the opening communicates with the flow path is filled with a ceramic material and blocked. body.
前記隔壁の厚さが、0.115mm以下である請求項1に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to claim 1, wherein the partition wall has a thickness of 0.115 mm or less. 前記セラミック材料が、前記開口部だけでなく、前記開口部と連通した流路にも詰め込まれている請求項1又は2に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to claim 1 or 2, wherein the ceramic material is packed not only in the opening but also in a flow path communicating with the opening. 前記セラミック材料が、前記セラミックハニカム構造体と同じ材質を主成分とするものである請求項1〜3のいずれか1項に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to any one of claims 1 to 3, wherein the ceramic material is mainly composed of the same material as the ceramic honeycomb structure. 前記セラミックハニカム構造体が水溶性のバインダーを用いて成形された成形体である場合、前記セラミック材料が、オイルで練られた生原料から構成されたものである請求項4に記載のセラミックハニカム構造体。 5. The ceramic honeycomb structure according to claim 4, wherein when the ceramic honeycomb structure is a molded body formed using a water-soluble binder, the ceramic material is composed of a raw material kneaded with oil. body. 前記セラミックハニカム構造体が焼成体である場合、前記セラミック材料が、コージェライト粉末及びコロイダルシリカとを主成分とするものである請求項4に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to claim 4, wherein when the ceramic honeycomb structure is a fired body, the ceramic material is mainly composed of cordierite powder and colloidal silica. 前記セラミックハニカム構造体が焼成体である場合、前記セラミック材料が、γ−アルミナを主体とする触媒スラリー材料である請求項1〜3のいずれか1項に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to any one of claims 1 to 3, wherein when the ceramic honeycomb structure is a fired body, the ceramic material is a catalyst slurry material mainly composed of γ-alumina. 前記セラミック材料を詰め込まれた部分のハニカム構造体の熱膨脹係数が、3.0×10-6/℃未満である請求項1〜7のいずれか1項に記載のセラミックハニカム構造体。 The ceramic honeycomb structure according to any one of claims 1 to 7, wherein a thermal expansion coefficient of a portion of the honeycomb structure packed with the ceramic material is less than 3.0 x 10-6 / ° C.
JP2003383352A 2003-11-13 2003-11-13 Ceramic honeycomb structure Expired - Lifetime JP4504660B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003383352A JP4504660B2 (en) 2003-11-13 2003-11-13 Ceramic honeycomb structure
US10/983,580 US7465486B2 (en) 2003-11-13 2004-11-09 Ceramic honeycomb structure
DE602004005130T DE602004005130T2 (en) 2003-11-13 2004-11-12 Ceramic honeycomb body
EP04257018A EP1535664B1 (en) 2003-11-13 2004-11-12 Ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383352A JP4504660B2 (en) 2003-11-13 2003-11-13 Ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2005144284A true JP2005144284A (en) 2005-06-09
JP4504660B2 JP4504660B2 (en) 2010-07-14

Family

ID=34463753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383352A Expired - Lifetime JP4504660B2 (en) 2003-11-13 2003-11-13 Ceramic honeycomb structure

Country Status (4)

Country Link
US (1) US7465486B2 (en)
EP (1) EP1535664B1 (en)
JP (1) JP4504660B2 (en)
DE (1) DE602004005130T2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238372A (en) * 2006-03-08 2007-09-20 Tokuyama Corp Method of repairing ceramic sintered compact
JP2008169081A (en) * 2007-01-11 2008-07-24 Denso Corp Method for repairing and producing honeycomb structure
WO2008120385A1 (en) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. Honeycomb structure, process for producing the same, exhaust gas purification apparatus and process for manufacturing the apparatus
WO2008123369A1 (en) * 2007-03-27 2008-10-16 Ngk Insulators, Ltd. Sealed honeycomb structure
WO2008143225A1 (en) 2007-05-18 2008-11-27 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure and ceramic honeycomb structure
JP2010046583A (en) * 2008-08-20 2010-03-04 Honda Motor Co Ltd Exhaust cleaning filter and exhaust emission control device of internal combustion engine using the exhaust cleaning filter
JP2010090838A (en) * 2008-10-09 2010-04-22 Honda Motor Co Ltd Exhaust purifying filter
US8048508B2 (en) 2007-03-27 2011-11-01 Ngk Insulators, Ltd. Plugged honeycomb structure
WO2012117942A1 (en) * 2011-02-28 2012-09-07 日立金属株式会社 Manufacturing method for ceramic honeycomb filter, and ceramic honeycomb filter
JP2015017894A (en) * 2013-07-11 2015-01-29 株式会社デンソー Defect inspection method for honeycomb structure
JP2016094306A (en) * 2014-11-12 2016-05-26 株式会社村田製作所 Tool for burning and method for manufacturing tool for burning
KR20160122571A (en) * 2015-04-14 2016-10-24 주식회사 엘지화학 Anti-telescoping device for membrane separation device
WO2019026646A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Honeycomb catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310949B2 (en) * 2003-11-07 2007-12-25 General Electric Company Method and apparatus for arresting a crack within a body
JP4504660B2 (en) * 2003-11-13 2010-07-14 日本碍子株式会社 Ceramic honeycomb structure
US20060192324A1 (en) * 2003-12-26 2006-08-31 Ngk Insulators.Ltd. Method of producing honeycomb structure body
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
US7701570B2 (en) * 2005-12-12 2010-04-20 Corning Incorporated Collimated light method and system for detecting defects in honeycombs
JP5144075B2 (en) * 2006-03-30 2013-02-13 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
EP2024299A2 (en) * 2006-05-31 2009-02-18 Corning Incorporated Crack-resistant ceramic honeycomb articles and methods of manufacturing same
AT503770B1 (en) * 2006-06-06 2008-03-15 Porzellanfabrik Frauenthal Gmb PROCESS FOR PRODUCING WABENKÖRPERN FOR THERMAL REGENERATORS
CN109516833A (en) * 2019-01-15 2019-03-26 湖南红钻新材料有限公司 Infrared ray energy-saving ceramic wafer and preparation method thereof
CN114585490B (en) 2019-08-14 2023-04-28 康宁股份有限公司 System and method for reducing surface oil streaking on wet extrudates by irradiation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626856B2 (en) * 1980-03-14 1987-02-13 Ngk Insulators Ltd
JPH05269388A (en) * 1992-01-30 1993-10-19 Ngk Insulators Ltd Ceramic honeycomb structure, its production and coat material therefor
JPH06154598A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Manufacture of gamma-alumina catalyst carrier
JPH07246341A (en) * 1994-03-11 1995-09-26 Ngk Insulators Ltd Ceramic honeycomb structure
JPH09257671A (en) * 1996-03-22 1997-10-03 Ngk Insulators Ltd Method for inspecting outer surface defect of ceramic
JPH10123067A (en) * 1996-10-17 1998-05-15 Mitsubishi Heavy Ind Ltd Method for inspecting defect of porous body
JPH10244167A (en) * 1997-03-06 1998-09-14 Hino Motors Ltd Catalyst structure body for purifying exhaust gas
JP2001079405A (en) * 1999-09-17 2001-03-27 Hitachi Ltd Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903847A (en) 1974-08-16 1975-09-09 Gen Motors Corp Rotary combustion engine
JPS5855409B2 (en) 1976-09-09 1983-12-09 川崎重工業株式会社 Dry ash extraction device for municipal waste incineration equipment
JPS53133860A (en) 1977-04-22 1978-11-22 Komatsu Ltd Robbot control system
JPS56129042A (en) 1980-03-14 1981-10-08 Ngk Insulators Ltd Honeycomb structure of ceramic
JPS56129043A (en) 1980-03-14 1981-10-08 Ngk Insulators Ltd Honeycomb structure of ceramic
US4489774A (en) * 1983-10-11 1984-12-25 Ngk Insulators, Ltd. Rotary cordierite heat regenerator highly gas-tight and method of producing the same
US4956329A (en) * 1988-11-28 1990-09-11 Allied-Signal Inc. High surface area cordierite catalyst support structures
ES2060300T3 (en) 1990-04-12 1994-11-16 Ngk Insulators Ltd HEATER AND CATALYTIC CONVERTER.
US5629067A (en) 1992-01-30 1997-05-13 Ngk Insulators, Ltd. Ceramic honeycomb structure with grooves and outer coating, process of producing the same, and coating material used in the honeycomb structure
JPH07183A (en) 1993-03-30 1995-01-06 Amano Pharmaceut Co Ltd Production of cyclodextrin glucanotransferase produced by corynebacterium and use of the enzyme
TW400359B (en) 1996-02-09 2000-08-01 Kashima Sekiyu K K Process for producing highly reactive low-viscosity modified phenolic resins
JPH09262484A (en) * 1996-03-29 1997-10-07 Ngk Insulators Ltd Ceramic honeycomb catalyst having high thermal shock resistance
JP3394449B2 (en) * 1998-06-18 2003-04-07 日本碍子株式会社 Thin-walled honeycomb structure and method of reinforcing the same
JP2002173381A (en) * 2000-12-01 2002-06-21 Denso Corp Method of sealing honeycomb ceramic formed body
JP5189236B2 (en) 2001-07-25 2013-04-24 日本碍子株式会社 Exhaust gas purification honeycomb structure and exhaust gas purification honeycomb catalyst body
US6919103B2 (en) * 2001-08-10 2005-07-19 The Boeing Company Surface protection of porous ceramic bodies
JP4157304B2 (en) 2002-02-05 2008-10-01 日本碍子株式会社 Honeycomb structure
JP2003260322A (en) 2002-03-08 2003-09-16 Ngk Insulators Ltd Honeycomb structure, method for manufacturing the same, and system for cleaning waste gas
JP4504660B2 (en) * 2003-11-13 2010-07-14 日本碍子株式会社 Ceramic honeycomb structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626856B2 (en) * 1980-03-14 1987-02-13 Ngk Insulators Ltd
JPH05269388A (en) * 1992-01-30 1993-10-19 Ngk Insulators Ltd Ceramic honeycomb structure, its production and coat material therefor
JPH06154598A (en) * 1992-11-20 1994-06-03 Sumitomo Metal Mining Co Ltd Manufacture of gamma-alumina catalyst carrier
JPH07246341A (en) * 1994-03-11 1995-09-26 Ngk Insulators Ltd Ceramic honeycomb structure
JPH09257671A (en) * 1996-03-22 1997-10-03 Ngk Insulators Ltd Method for inspecting outer surface defect of ceramic
JPH10123067A (en) * 1996-10-17 1998-05-15 Mitsubishi Heavy Ind Ltd Method for inspecting defect of porous body
JPH10244167A (en) * 1997-03-06 1998-09-14 Hino Motors Ltd Catalyst structure body for purifying exhaust gas
JP2001079405A (en) * 1999-09-17 2001-03-27 Hitachi Ltd Exhaust gas cleaning catalyst, exhaust gas cleaning catalyst carrying honeycomb structure and exhaust gas cleaning method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238372A (en) * 2006-03-08 2007-09-20 Tokuyama Corp Method of repairing ceramic sintered compact
JP4652255B2 (en) * 2006-03-08 2011-03-16 株式会社トクヤマ Repair method for sintered ceramics
JP2008169081A (en) * 2007-01-11 2008-07-24 Denso Corp Method for repairing and producing honeycomb structure
WO2008123369A1 (en) * 2007-03-27 2008-10-16 Ngk Insulators, Ltd. Sealed honeycomb structure
US7972677B2 (en) 2007-03-27 2011-07-05 Ngk Insulators, Ltd. Plugged honeycomb structure
US8048508B2 (en) 2007-03-27 2011-11-01 Ngk Insulators, Ltd. Plugged honeycomb structure
JP5164575B2 (en) * 2007-03-29 2013-03-21 イビデン株式会社 Honeycomb structure, honeycomb structure manufacturing method, exhaust gas purification device, and exhaust gas purification device manufacturing method
WO2008120385A1 (en) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. Honeycomb structure, process for producing the same, exhaust gas purification apparatus and process for manufacturing the apparatus
US8043398B2 (en) 2007-03-29 2011-10-25 Ibiden Co., Ltd. Honeycomb structure, method of manufacturing honeycomb structure, exhaust gas treating apparatus, and method of manufacturing exhaust gas treating apparatus
WO2008143225A1 (en) 2007-05-18 2008-11-27 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure and ceramic honeycomb structure
US8642137B2 (en) 2007-05-18 2014-02-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP2010046583A (en) * 2008-08-20 2010-03-04 Honda Motor Co Ltd Exhaust cleaning filter and exhaust emission control device of internal combustion engine using the exhaust cleaning filter
JP2010090838A (en) * 2008-10-09 2010-04-22 Honda Motor Co Ltd Exhaust purifying filter
WO2012117942A1 (en) * 2011-02-28 2012-09-07 日立金属株式会社 Manufacturing method for ceramic honeycomb filter, and ceramic honeycomb filter
JP2015017894A (en) * 2013-07-11 2015-01-29 株式会社デンソー Defect inspection method for honeycomb structure
JP2016094306A (en) * 2014-11-12 2016-05-26 株式会社村田製作所 Tool for burning and method for manufacturing tool for burning
KR20160122571A (en) * 2015-04-14 2016-10-24 주식회사 엘지화학 Anti-telescoping device for membrane separation device
KR102045100B1 (en) 2015-04-14 2019-11-14 주식회사 엘지화학 Anti-telescoping device for membrane separation device
WO2019026646A1 (en) * 2017-08-03 2019-02-07 イビデン株式会社 Honeycomb catalyst
JP2019025462A (en) * 2017-08-03 2019-02-21 イビデン株式会社 Honeycomb catalyst

Also Published As

Publication number Publication date
US7465486B2 (en) 2008-12-16
DE602004005130D1 (en) 2007-04-19
DE602004005130T2 (en) 2007-11-15
EP1535664A1 (en) 2005-06-01
US20050106356A1 (en) 2005-05-19
JP4504660B2 (en) 2010-07-14
EP1535664B1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP4504660B2 (en) Ceramic honeycomb structure
JP5144075B2 (en) Honeycomb structure and manufacturing method thereof
JP5185616B2 (en) Honeycomb structure
EP2006010B1 (en) Honeycomb structured body and method for manufacturing honeycomb structured body
US7754160B2 (en) Honeycomb catalytic body and process for manufacturing honeycomb catalytic body
EP1696109B1 (en) Method of manufacturing a plugged honeycomb structure
JP4216174B2 (en) COATING MATERIAL, CERAMIC HONEYCOMB STRUCTURE, AND ITS MANUFACTURING METHOD
US9416057B2 (en) Honeycomb structure
EP2737945A1 (en) Honeycomb Catalyst Body
JP5409053B2 (en) Honeycomb structure
JP4001800B2 (en) Method for manufacturing honeycomb catalyst carrier
JP2010184218A (en) Honeycomb structure
EP2644244A2 (en) Honeycomb structure
JP2005087805A (en) Honeycomb structure and manufacturing method therefor
JP5612588B2 (en) Method for manufacturing plugged honeycomb structure
EP2138290B1 (en) Method for manufacturing a honeycomb structure
JP6689641B2 (en) Honeycomb structure
CN111718190A (en) Method for manufacturing ceramic honeycomb structure
JP2010115896A (en) Method of manufacturing honey-comb structure
US11511268B2 (en) Pillar-shaped honeycomb structure and method for manufacturing same
EP2233194B1 (en) Honeycomb structure
JP6581917B2 (en) Honeycomb structure
JP2019171245A (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

EXPY Cancellation because of completion of term