[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005034132A - Method for colorimetric determination - Google Patents

Method for colorimetric determination Download PDF

Info

Publication number
JP2005034132A
JP2005034132A JP2003380986A JP2003380986A JP2005034132A JP 2005034132 A JP2005034132 A JP 2005034132A JP 2003380986 A JP2003380986 A JP 2003380986A JP 2003380986 A JP2003380986 A JP 2003380986A JP 2005034132 A JP2005034132 A JP 2005034132A
Authority
JP
Japan
Prior art keywords
polymer
reagent
creatinine
reaction
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380986A
Other languages
Japanese (ja)
Other versions
JP3520874B1 (en
Inventor
Takashi Gorai
隆 五来
Masaru Tsukamoto
賢 塚本
Shunsuke Takeshima
俊介 竹嶋
Hidejiro Sakaki
秀次郎 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2003380986A priority Critical patent/JP3520874B1/en
Application granted granted Critical
Publication of JP3520874B1 publication Critical patent/JP3520874B1/en
Publication of JP2005034132A publication Critical patent/JP2005034132A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for colorimetric determination influenced by less effects from reducing substances such as bilirubin in a specimen, a method for stabilizing measuring reagents, a method for inhibiting the effect with bilirubin, and to obtain reagents used for the determination, capable of being preserved for a long period, or the like, in a determination mediated by H<SB>2</SB>O<SB>2</SB>. <P>SOLUTION: The method for a colorimetric determination inducing hydrogen peroxide from creatinine, creatine or uric acid in a specimen by an enzymatic reaction and producing a color-developing pigment in the presence of a peroxidase is provided by coexisting a polymer consisting of units based on monomers expressed by formula (I) (R is H or methyl) or formula (II) (R is H or methyl; and X is a 12-20C alkyl) and having 5,000-5,000,000 molecular weight in the reaction system. The methods for stabilizing the preservation and inhibiting the bilirubin are provided by coexisting the polymer in the reaction system. The reagent contains the polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、臨床診断等のための比色定量方法に関する。   The present invention relates to a colorimetric method for clinical diagnosis and the like.

臨床検査における生化学項目の測定方法には大きく分けると化学法と酵素法が存在する。このうち酵素法には、例えば、デヒドロゲナーゼを用いてNADH等の補酵素を検出する方法と、オキシダーゼを用いて測定対象物質から定量的に発生させた過酸化水素を検出する方法がある。オキシダーゼを用いる方法は、他法より高感度であるため微量の物質を測定するのに適するが、過酸化水素を介する測定系であるため、試料中に還元作用を有する物質が存在すると、それらにより過酸化水素が還元され、測定結果に影響を及ぼし、正確な測定を妨害するという問題点がある(以下、このように定量のためのものではない還元作用を示す物質を、単に「還元物質」という)。   There are two methods for measuring biochemical items in clinical tests: chemical methods and enzymatic methods. Among these methods, for example, there are a method of detecting a coenzyme such as NADH using dehydrogenase and a method of detecting hydrogen peroxide quantitatively generated from a substance to be measured using oxidase. The method using oxidase is more sensitive than other methods because it is more sensitive, so it is suitable for measuring trace amounts of substances.However, because it is a measurement system that uses hydrogen peroxide, if there is a substance having a reducing action in the sample, There is a problem that hydrogen peroxide is reduced, which affects measurement results and interferes with accurate measurement (hereinafter, substances that exhibit a reducing action that is not intended for quantification are simply referred to as `` reducing substances ''. Called).

前記還元物質としては、具体的には採血時の溶血により遊離するヘモグロビンや、肝疾患患者の血中に高濃度で存在するビリルビン、あるいは栄養剤として服用されるアスコルビン酸、肝臓や赤血球、白血球等の溶液に存在する還元型グルタチオン(GSH)等が挙げられる。   Specific examples of the reducing substance include hemoglobin released by hemolysis at the time of blood collection, bilirubin present in a high concentration in the blood of patients with liver disease, ascorbic acid taken as a nutrient, liver, red blood cells, white blood cells, etc. And reduced glutathione (GSH) present in the above solution.

これらの還元物質は、比較的高濃度の対象物質の濃度を測定する場合にはあまり問題とはならないが、低濃度の対象物質の濃度を測定する場合には多大な測定誤差を生じる原因となる。換言すればこれらの還元物質により消去される過酸化水素が一定量である場合、測定対象物質の濃度が低いほど大きな影響を受ける。   These reducing substances are not so much a problem when measuring the concentration of a relatively high concentration of the target substance, but cause a large measurement error when measuring the concentration of a low concentration of the target substance. . In other words, when a certain amount of hydrogen peroxide is erased by these reducing substances, the lower the concentration of the substance to be measured, the greater the influence.

例えば腎機能のマーカーであるクレアチニンは正確な測定が要求される測定項目の1つであるが、他の生化学項目と比較して検体中の存在量は微量である。このため還元物質によって過酸化水素が僅かに消去されても測定値に著しい影響を与える。しかしクレアチニンはその臨床上の意義から正確な測定が求められるため、還元物質による影響を極力回避して低濃度おいても正確に測定することが求められる。   For example, creatinine, which is a marker for renal function, is one of the measurement items that require accurate measurement, but its amount in the sample is very small compared to other biochemical items. For this reason, even if hydrogen peroxide is slightly erased by the reducing substance, the measured value is significantly affected. However, since creatinine requires accurate measurement because of its clinical significance, it is required to accurately measure even at low concentrations while avoiding the effects of reducing substances as much as possible.

過酸化水素を介する測定系において還元物質の影響を回避する手段としては、カチオン性界面活性剤又は両性界面活性剤を試薬に添加する方法(特許文献4)、及びベタイン系界面活性剤を試薬に添加する方法(特許文献5)が提案されている。しかしながら、これらの方法においてもビリルビン等の還元物質の影響を完全に解決しているとは言い難く、特にクレアチニンの測定においては依然として十分であるとは言い難い。   As a means to avoid the influence of reducing substances in the measurement system via hydrogen peroxide, a method of adding a cationic surfactant or an amphoteric surfactant to the reagent (Patent Document 4), and a betaine surfactant as a reagent A method of adding (Patent Document 5) has been proposed. However, it cannot be said that these methods completely solve the influence of a reducing substance such as bilirubin, and it is still not sufficient in the measurement of creatinine.

さらにイオン性界面活性剤は、酵素等の他の成分と共に溶液とした場合、当該他の成分を経時的に変性、若しくは沈殿させる性質があるため、性能に対する影響、特に他の成分の保存安定性に対する影響が大きい。このことは、臨床検査用の上記反応のための試薬の大半が液状試薬として提供されている現状では大きな問題となる。還元物質の影響を回避するのに十分な量のイオン性界面活性剤を添加すると、それだけ酵素等の反応を妨げることになる。この問題を解決する手段として、酵素等の反応に関与する成分を過剰量配合することが考えられるが、その場合製造コストがかかるという問題点がある。   In addition, ionic surfactants, when made into a solution together with other components such as enzymes, have the property of denaturing or precipitating other components over time, so they affect performance, especially the storage stability of other components. The impact on is great. This is a big problem at present when most of the reagents for the above-mentioned reaction for clinical examination are provided as liquid reagents. If a sufficient amount of the ionic surfactant is added to avoid the influence of the reducing substance, the reaction of the enzyme or the like is prevented accordingly. As a means for solving this problem, it is conceivable to add an excessive amount of a component involved in the reaction such as an enzyme. However, in this case, there is a problem that a manufacturing cost is required.

ところで、臨床診断において、(メタ)アクリロイルホスホリルコリンに基づく構成単位を有する重合体を共存させて測定する方法は、例えば特許文献1〜3に開示されている。特許文献1には、抗原-抗体反応、酵素-基質反応、DNA-DNA反応等における反応促進剤が開示されている。特許文献2には、ラテックスを用いる凝集方法において、免疫学的な凝集促進剤としての(メタ)アクリロイルホスホリルコリンの用途が開示されている。特許文献3には、(メタ)アクリロイルホスホリルコリン等の重合体を用いて、ラテックスを用いる測定で希釈することなくプロゾーン現象を回避してC-反応性蛋白質を測定する方法が開示されている。   By the way, in clinical diagnosis, methods for measuring in the presence of a polymer having a structural unit based on (meth) acryloylphosphorylcholine are disclosed in Patent Documents 1 to 3, for example. Patent Document 1 discloses a reaction accelerator for antigen-antibody reaction, enzyme-substrate reaction, DNA-DNA reaction and the like. Patent Document 2 discloses the use of (meth) acryloylphosphorylcholine as an immunological aggregation promoter in an aggregation method using latex. Patent Document 3 discloses a method for measuring a C-reactive protein by using a polymer such as (meth) acryloylphosphorylcholine and avoiding the prozone phenomenon without diluting by measurement using latex.

しかしながら、検体中の測定対象物質をオキシダーゼにより過酸化水素に導き、これをパーオキシダーゼの存在下で発色色素を生成させる比色定量方法において、ビリルビン等の還元物質の影響を抑制して、測定対象物質が低濃度であっても高精度の測定を可能とする方法は開示されていない。
特開2002-22740号公報(第2頁) 特開2002-365296号公報(第2頁) 特開2001-318099号公報(第2頁) 特開平3-10696号公報 特開平7-39394号公報
However, in the colorimetric determination method in which the substance to be measured in the sample is led to hydrogen peroxide by oxidase and this is generated in the presence of peroxidase, the influence of the reducing substance such as bilirubin is suppressed and the object to be measured There is no disclosure of a method that enables highly accurate measurement even at low concentrations of substances.
JP 2002-22740 (2nd page) JP 2002-365296 A (page 2) JP 2001-318099 (2nd page) Japanese Patent Laid-Open No. 3-10696 Japanese Unexamined Patent Publication No. 7-39394

本発明の目的は、過酸化水素を介する測定対象物質の定量において、検体中に含まれるビリルビン等の還元物質の存在による影響の少ない比色定量方法、測定試薬の安定化方法又はビリルビンの影響を抑制する方法を提供することにある。   The object of the present invention is to provide a colorimetric determination method, a method for stabilizing a measurement reagent, or an effect of bilirubin that is less affected by the presence of a reducing substance such as bilirubin contained in a sample in the determination of a measurement target substance through hydrogen peroxide It is in providing the method of suppressing.

本発明の別の目的は、過酸化水素を介する測定対象物質の定量に用いる試薬であって、長期間保存することができ、酵素の反応性、特異性、安定性等を損なうことなく、且つ検体中に含まれるビリルビン等の還元物質の存在による影響の少ない定量を行なうことができる試薬を提供することにある。   Another object of the present invention is a reagent used for the determination of a substance to be measured via hydrogen peroxide, which can be stored for a long period of time without impairing the reactivity, specificity, stability, etc. of the enzyme, and An object of the present invention is to provide a reagent capable of performing quantification with little influence by the presence of a reducing substance such as bilirubin contained in a specimen.

本発明者らは、前記の問題点に鑑み鋭意検討した結果、特定の重合体を反応系に存在させると、ビリルビン等の還元物質が混在していてもその影響を抑制することができることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that when a specific polymer is present in the reaction system, the influence can be suppressed even if a reducing substance such as bilirubin is present. The present invention has been completed.

すなわち、本発明によれば、検体中のクレアチニン、クレアチン又は尿酸を測定対象物質とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させるクレアチニン、クレアチン又は尿酸の比色定量方法において、反応系に下記式(I):   That is, according to the present invention, creatinine, creatine or uric acid in a specimen is used as a substance to be measured, hydrogen peroxide is induced by an enzymatic reaction, and a chromogenic dye is produced in the presence of peroxidase. In the quantification method, the reaction system has the following formula (I):

Figure 2005034132
Figure 2005034132

(ここで、Rは水素原子またはメチル基を示す。)及び式(II): (Wherein R represents a hydrogen atom or a methyl group) and formula (II):

Figure 2005034132
(ここで、Rは水素原子又はメチル基を示す。Xは、炭素数12〜20のアルキル基を示す。)で表される単量体に基く単位からなる、重量平均分子量5,000〜5,000,000の重合体(以下、重合体Aという。)を存在させることを特徴とする、クレアチニン、クレアチン又は尿酸の比色定量方法が提供される。
Figure 2005034132
(Wherein R represents a hydrogen atom or a methyl group, X represents an alkyl group having 12 to 20 carbon atoms), and a unit having a weight average molecular weight of 5,000 to 5,000,000. There is provided a method for colorimetric determination of creatinine, creatine or uric acid, characterized by the presence of a polymer (hereinafter referred to as polymer A).

さらに、本発明によれば、前記比色定量のための比色定量試薬であって、溶媒と、酵素と、前記重合体Aとを含む比色定量試薬が提供される。   Furthermore, according to the present invention, there is provided a colorimetric reagent for colorimetric determination, which comprises a solvent, an enzyme, and the polymer A.

さらに、本発明によれば、ビリルビンを含む検体中のクレアチニン、クレアチン又は尿酸を測定対象とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させる、クレアチニン、クレアチン又は尿酸の比色定量において検体中のビリルビンの影響を抑制する方法であって、反応系に前記重合体Aを存在させることを特徴とする抑制方法が提供される。   Furthermore, according to the present invention, creatinine, creatine, or uric acid, which is targeted for measurement of creatinine, creatine, or uric acid in a sample containing bilirubin, induces hydrogen peroxide by an enzymatic reaction and generates a coloring pigment in the presence of peroxidase. There is provided a method for suppressing the influence of bilirubin in a sample in the colorimetric determination of the method, wherein the polymer A is present in a reaction system.

さらに、本発明によれば、検体中のクレアチニン、クレアチン又は尿酸を測定対象とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させるクレアチニン、クレアチン又は尿酸の比色定量における測定試薬の保存安定化方法であって、反応系に前記重合体Aを存在させることを特徴とする保存安定化方法が提供される。   Furthermore, according to the present invention, colorimetric determination of creatinine, creatine, or uric acid, which uses creatinine, creatine, or uric acid in a sample as a measurement target, induces hydrogen peroxide by an enzymatic reaction, and generates a coloring pigment in the presence of peroxidase. A method for stabilizing the storage of a measuring reagent in the above-mentioned method, wherein the polymer A is present in a reaction system is provided.

本発明の比色定量方法、本発明の安定化方法及び本発明の抑制方法では、反応系に特定の重合体を存在させることにより、酵素の反応性、特異性、安定性等を損なうことなく、還元物質の影響を軽減することができる。例えば、本来は50%以上受ける負の影響を5%以下に抑えうる。したがって、本発明の比色定量方法では、検体中の測定対象物質が低濃度である場合であっても、真値に近い正確な定量を簡便に行なうことができる。   In the colorimetric determination method of the present invention, the stabilization method of the present invention, and the suppression method of the present invention, the presence of a specific polymer in the reaction system does not impair the reactivity, specificity, stability, etc. of the enzyme. The effect of reducing substances can be reduced. For example, it is possible to suppress the negative effect of 50% or more to 5% or less. Therefore, in the colorimetric determination method of the present invention, accurate determination close to the true value can be easily performed even when the measurement target substance in the sample has a low concentration.

本発明の比色定量試薬は、酵素等の成分に加えて特定の重合体を含むので、長期間保存することができ、酵素の反応性、特異性、安定性等を損なうことなく、検体中の測定対象物質が低濃度である場合であっても、真値に近い正確な定量を簡便に行なうことを可能とする。   Since the colorimetric reagent of the present invention contains a specific polymer in addition to the components such as the enzyme, it can be stored for a long period of time, and it does not impair the reactivity, specificity, stability, etc. of the enzyme. Even when the measurement target substance has a low concentration, accurate quantification close to the true value can be easily performed.

本発明の比色定量方法、本発明の安定化方法又は本発明の抑制方法では、反応系に特定の重合体(重合体A)を存在させることを特徴とする。重合体Aは、前記式(I)で表される単量体(以下、単量体A1という。)及び前記式(II)で表される単量体(以下、単量体A2という。)に基く単位からなる。具体的には、下記式(III)で表わされる単位及び(IV)で表される単位を含むことができる。下記式(III)及び(IV)において、R及びXは、式(I)及び(II)中のものと同じものを示す。   The colorimetric determination method of the present invention, the stabilization method of the present invention, or the suppression method of the present invention is characterized in that a specific polymer (polymer A) is present in the reaction system. The polymer A includes a monomer represented by the formula (I) (hereinafter referred to as monomer A1) and a monomer represented by the formula (II) (hereinafter referred to as monomer A2). It consists of units based on Specifically, a unit represented by the following formula (III) and a unit represented by (IV) can be included. In the following formulas (III) and (IV), R and X are the same as those in the formulas (I) and (II).

Figure 2005034132
Figure 2005034132

Figure 2005034132
Figure 2005034132

式(II)又は(IV)において、Xで表されるアルキル基を炭素数12以上のものとすることにより、反応系中に存在する還元物質の影響を良好に軽減することができる。
単量体A2としては、具体的には例えば、ラウリル(メタ)アクリレート及びステアリル(メタ)アクリレート等の直鎖又は分岐アルキル(メタ)アクリレート等が挙げられる。重合体Aにおいて、式(III)の単位及び式(IV)の単位は、ランダム重合、交互重合、ブロック共重合等のいずれの形態をとって共重合していてもよい。
In the formula (II) or (IV), when the alkyl group represented by X has 12 or more carbon atoms, the influence of the reducing substance present in the reaction system can be reduced well.
Specific examples of the monomer A2 include linear or branched alkyl (meth) acrylates such as lauryl (meth) acrylate and stearyl (meth) acrylate. In the polymer A, the unit of the formula (III) and the unit of the formula (IV) may be copolymerized in any form such as random polymerization, alternating polymerization, block copolymerization and the like.

重合体Aは、単量体A1及びA2を通常のラジカル共重合等により共重合し、さらに必要に応じて溶媒等に溶解し精製することにより製造することができる。具体的には、特許文献1〜3記載の方法に準じて製造することができる。   The polymer A can be produced by copolymerizing the monomers A1 and A2 by ordinary radical copolymerization or the like, and further dissolving and purifying as necessary in a solvent or the like. Specifically, it can be produced according to the methods described in Patent Documents 1 to 3.

単量体A1及び単量体A2を共重合させる際のこれらの比は、特に限定されないが、通常、モル比で単量体A1/単量体A2=99/1〜10/90、好ましくは90/10〜20/80、さらに好ましくは80/20〜30/70とすることができる。単量体A1及び単量体A2の合計に対する単量体Aの割合を10モル%以上とすることにより、ホスホリルコリン基による効果を十分に発揮することができる。   These ratios when copolymerizing the monomer A1 and the monomer A2 are not particularly limited, but are usually monomer A1 / monomer A2 = 99/1 to 10/90 in molar ratio, preferably 90/10 to 20/80, more preferably 80/20 to 30/70. By setting the ratio of the monomer A to the sum of the monomers A1 and A2 to 10 mol% or more, the effect of the phosphorylcholine group can be sufficiently exerted.

重合体Aの分子量は、重量平均分子量として5,000〜5,000,000の範囲であり、10,000〜1,000,000の範囲であることが好ましい。重合体Aの分子量を5,000以上とすることにより十分に生化学的反応を促進することでき、5,000,000以下とすることにより重合体Aの粘性による生化学的反応の阻害を避けることができる。   The molecular weight of the polymer A is in the range of 5,000 to 5,000,000 as the weight average molecular weight, and preferably in the range of 10,000 to 1,000,000. When the molecular weight of the polymer A is 5,000 or more, the biochemical reaction can be sufficiently promoted, and when it is 5,000,000 or less, the inhibition of the biochemical reaction due to the viscosity of the polymer A can be avoided.

本発明の比色定量方法、本発明の安定化方法又は本発明の抑制方法では、前記の重合体Aの存在下、検体中の測定対象物質を酵素反応により過酸化水素に導き、これからパーオキシダーゼの存在下で発色色素を生成させる。   In the colorimetric determination method of the present invention, the stabilization method of the present invention, or the suppression method of the present invention, in the presence of the polymer A, the substance to be measured in the sample is led to hydrogen peroxide by an enzymatic reaction, and then peroxidase In the presence of the chromogenic dye.

前記測定対象物質は、クレアチニン、クレアチン又は尿酸である。   The substance to be measured is creatinine, creatine or uric acid.

前記酵素反応としては、前記測定対象物質から過酸化水素を導く反応を適宜選択することができる。前記酵素反応は、1段階の反応でもよく、複数段階の反応でもよい。前記酵素反応は、その少なくとも1段階において、前記測定対象物質又は前記測定対象物質と他の物質との反応物から過酸化水素を発生させる反応を含む。当該過酸化水素を発生させる反応としては、具体的には例えば、ウリカーゼ、ザルコシンオキシダーゼ等のオキシダーゼによる反応を挙げることができる。   As the enzyme reaction, a reaction for deriving hydrogen peroxide from the substance to be measured can be appropriately selected. The enzyme reaction may be a single-stage reaction or a multi-stage reaction. The enzyme reaction includes, in at least one stage, a reaction for generating hydrogen peroxide from the measurement target substance or a reaction product of the measurement target substance and another substance. Specific examples of the reaction for generating hydrogen peroxide include reactions with oxidases such as uricase and sarcosine oxidase.

前記パーオキシダーゼは、過酸化水素を水に還元し発色色素を生成させうるものであれば特に限定されないが、具体的には例えば、西洋ワサビ由来、又は大豆由来のパーオキシダーゼを用いることができる。   The peroxidase is not particularly limited as long as it can reduce hydrogen peroxide to water to produce a coloring pigment. Specifically, for example, peroxidase derived from horseradish or soybean can be used.

前記発色色素は、パーオキシダーゼにより過酸化水素量に応じて発生することができるものであれば特に限定されず、各種のキノン系色素等を発生させることができる。前記発色色素は、パーオキシダーゼと組み合わせて過酸化水素量に応じて前記発色色素を発生させる発色色素生成物質を反応系に存在させることにより発生させることができる。前記発色色素生成物質としては、ロイコ体又は各種のトリンダー試薬等を用いることができる。前記トリンダー試薬は、4-アミノアンチピリン等の発色色素生成を補助する物質と組み合わせて用いることができる。前記発色色素生成物質のうちの前記ロイコ体としては、具体的には例えば、N-(カルボキシメチルアミノカルボニル)-4,4'-ビス(ジメチルアミノ)-ジフェニルアミン、及び10-(カルボキシメチルアミノカルボニル)-3,7'-ビス(ジメチルアミノ)-フェノシアジン等が挙げられる。また前記発色色素生成物質のうちの前記トリンダー試薬としては、具体的には例えば、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン、3-ヒドロキシ-2,4,6-トリヨード安息香酸等が挙げられる。   The coloring dye is not particularly limited as long as it can be generated according to the amount of hydrogen peroxide by peroxidase, and various quinone dyes and the like can be generated. The coloring dye can be generated by combining a coloring agent-forming substance that generates the coloring dye according to the amount of hydrogen peroxide in combination with peroxidase in the reaction system. As the coloring dye-forming substance, a leuco body or various Trinder reagents can be used. The Trinder reagent can be used in combination with a substance that assists the production of a coloring dye such as 4-aminoantipyrine. Specific examples of the leuco form of the coloring dye-forming substance include N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) -diphenylamine and 10- (carboxymethylaminocarbonyl). ) -3,7'-bis (dimethylamino) -phenocyanazine and the like. In addition, the Trinder reagent of the coloring dye-forming substance specifically includes, for example, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline, N-ethyl-N- ( 2-hydroxy-3-sulfopropyl) -3-methoxyaniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline, N- (2-hydroxy-3-sulfopropyl) ) -3,5-dimethoxyaniline, 3-hydroxy-2,4,6-triiodobenzoic acid and the like.

本発明の比色定量の測定対象物質及びその測定に用いる酵素の組み合わせの具体例を下記表1に示す。   Specific examples of the measurement target substances for colorimetric determination of the present invention and combinations of enzymes used for the measurement are shown in Table 1 below.

Figure 2005034132
Figure 2005034132

本発明の比色定量方法は、測定対象物質、各種酵素、発色色素生成物質及び重合体A等を水等の溶媒中において混合し、反応させることにより行なうことができる。具体的には例えば、測定対象物質を含む検体と、各種酵素、発色色素生成物質及び重合体A等を含む溶液とを混合することにより行なうことができる。各種酵素、発色色素生成物質及び重合体Aを含む溶液は、これらを別々に含む2以上の溶液として別々に調製し、反応を開始するにあたりそれらを混合することにより反応を行なうことができる。また、かかる溶液は、必要に応じて、前記発色色素の生成を補助する物質、緩衝剤等の他の物質を適宜含むことができる。   The colorimetric determination method of the present invention can be carried out by mixing and reacting a substance to be measured, various enzymes, a coloring pigment forming substance, polymer A and the like in a solvent such as water. Specifically, for example, it can be carried out by mixing a specimen containing the substance to be measured with a solution containing various enzymes, a coloring dye-forming substance, polymer A and the like. A solution containing various enzymes, a coloring dye-forming substance, and a polymer A can be prepared by separately preparing them as two or more solutions containing these separately, and mixing them before starting the reaction. In addition, such a solution can appropriately contain other substances such as a substance that assists the production of the coloring dye and a buffer as necessary.

本発明の比色定量方法における反応系中の各成分の濃度は、測定対象物質、各種酵素、発色色素生成物質及び重合体Aを含む混合液中の終濃度として、以下の濃度とすることができる。測定対象物質の濃度は、例えばクレアチニンの場合、0.0008〜1.6mg/dL、尿酸の場合0.002〜2.0mg/dLとすることができるが、特に、クレアチニンの場合0.016mg/dL(約1.4μmol/L)以下、尿酸の場合0.06mg/dL(3.6μmol/L)以下程度の低濃度である場合でも、還元物質の影響を受けずに正確な測定ができる。オキシダーゼの濃度は1〜100u/mL、好ましくは5〜20u/mLとすることができる。パーオキシダーゼの濃度は1〜100u/mL、好ましくは5〜20u/mLとすることができる。オキシダーゼの添加割合に対するパーオキシダーゼの添加割合は、オキシダーゼ1uに対してパーオキシダーゼ0.3〜100uとすることができる。発色色素生成物質の濃度は0.5〜10mmol/L、好ましくは1〜5mmol/Lとすることができる。さらに、発色色素生成物質と共に4-アミノアンチピリン等の発色色素の生成を補助する物質を用いる場合、その濃度は、0.5〜10mmol/L、好ましくは1〜5mmol/Lとすることができる。   In the colorimetric determination method of the present invention, the concentration of each component in the reaction system may be the following concentration as the final concentration in the mixed solution containing the substance to be measured, various enzymes, the coloring pigment-forming substance, and the polymer A. it can. The concentration of the substance to be measured can be, for example, 0.0008 to 1.6 mg / dL in the case of creatinine and 0.002 to 2.0 mg / dL in the case of uric acid, but in particular 0.0116 mg / dL (about 1.4 μmol / L in the case of creatinine. ) Hereinafter, in the case of uric acid, even when the concentration is as low as 0.06 mg / dL (3.6 μmol / L) or less, accurate measurement can be performed without being affected by the reducing substance. The concentration of the oxidase can be 1 to 100 u / mL, preferably 5 to 20 u / mL. The concentration of peroxidase can be 1 to 100 u / mL, preferably 5 to 20 u / mL. The peroxidase addition ratio relative to the oxidase addition ratio can be 0.3 to 100 u peroxidase per oxidase 1u. The concentration of the color forming substance can be 0.5 to 10 mmol / L, preferably 1 to 5 mmol / L. Further, when a substance that assists the production of a coloring dye such as 4-aminoantipyrine is used together with the coloring dye-forming substance, the concentration thereof can be 0.5 to 10 mmol / L, preferably 1 to 5 mmol / L.

反応系中の重合体Aの濃度は、反応系に含まれる測定対象物質、還元物質及び他の試薬の量に応じて適宜選択することができるが、具体的には例えば終濃度として概ね0.05〜0.75w/v%であることが好ましい。   The concentration of the polymer A in the reaction system can be appropriately selected according to the amounts of the substance to be measured, the reducing substance and other reagents contained in the reaction system. Specifically, for example, the final concentration is generally 0.05 to It is preferably 0.75 w / v%.

反応系に重合体Aを存在させることにより、還元物質による影響を抑制することができる。重合体Aは、生体膜の成分であるリン脂質と類似の構造を持ち、タンパク質を変性、失活、沈殿させる等の悪影響が少なく、したがって酵素に対する影響が少なく酵素の反応性、特異性、安定性を損なうことが無い。そのため、酵素を含む反応系に高濃度添加することも可能であり、ビリルビンの影響回避に十分な濃度を添加することが可能である。また予め調製した比色定量用の試薬に重合体Aを配合してから長期間経過しても試薬の劣化が少ないので、予め調製した試薬による簡便な定量の操作を行なうことができる。   The presence of the polymer A in the reaction system can suppress the influence of the reducing substance. Polymer A has a structure similar to that of phospholipids, which are components of biological membranes, and has little adverse effects such as denaturation, inactivation, and precipitation, and therefore has little effect on enzymes, and the reactivity, specificity, and stability of enzymes. There is no loss of sex. Therefore, it is possible to add a high concentration to the reaction system containing the enzyme, and it is possible to add a concentration sufficient to avoid the influence of bilirubin. Further, since the deterioration of the reagent is small even after a long period of time since the polymer A is blended with the colorimetric reagent prepared in advance, a simple quantitative operation with the reagent prepared in advance can be performed.

本発明の比色定量方法の好ましい例として、還元物質としてビリルビンを含む検体中のクレアチニン、クレアチン又は尿酸を測定する方法が挙げられる。本発明によるクレアチニン、クレアチン及び尿酸の比色定量は、それぞれ下記反応式(i)〜(iii)に示される反応に基いて行なうことができる:   A preferred example of the colorimetric determination method of the present invention is a method of measuring creatinine, creatine or uric acid in a specimen containing bilirubin as a reducing substance. The colorimetric determination of creatinine, creatine and uric acid according to the present invention can be carried out based on the reactions shown in the following reaction formulas (i) to (iii), respectively:

Figure 2005034132
Figure 2005034132

Figure 2005034132
Figure 2005034132

Figure 2005034132
Figure 2005034132

略号は次のものを示す。
CRN:クレアチニナーゼ
CR:クレアチナーゼ
SOD:ザルコシンオキシダーゼ
POD:パーオキシダーゼ
TODB:N,N-ビス(4-スルホブチル)-3-メチルアニリン
4AAP:4-アミノアンチピリン
Abbreviations indicate the following:
CRN: Creatininase
CR: creatinase
SOD: Sarcosine oxidase
POD: Peroxidase
TODB: N, N-bis (4-sulfobutyl) -3-methylaniline
4AAP: 4-aminoantipyrine

上記反応による比色定量は、各成分を適宜混合することにより発色させ、吸光度の変化を測定することにより行なうことができる。各成分の混合の手順は特に限定されないが、具体的には例えばクレアチニンの定量の場合、以下の手順により行なうことができる:   The colorimetric determination by the above reaction can be performed by coloring each component appropriately and measuring the change in absorbance. The procedure for mixing each component is not particularly limited, and specifically, for example, in the case of quantification of creatinine, it can be performed by the following procedure:

(1) N,N-ビス(4-スルホブチル)-3-メチルアニリン、クレアチナーゼ及びザルコシンオキシダーゼを含む試薬1と、4-アミノアンチピリン、クレアチニナーゼ及びパーオキシダーゼを含む試薬2とを調製する。試薬1又は2のいずれか一方又は両方に重合体Aを配合する。
(2) クレアチニンとビリルビン等の還元物質とを含む検体と、試薬1とを混合し、37℃で5分間保温する。
(3) (2)の混合物に試薬2を添加する。
(4) (3)の混合物中で発色したキノン色素の生成量を、500〜600nmの吸光度変化として測定することによりクレアチニンの濃度を定量する。
(1) Reagent 1 containing N, N-bis (4-sulfobutyl) -3-methylaniline, creatinase and sarcosine oxidase and Reagent 2 containing 4-aminoantipyrine, creatininase and peroxidase are prepared. Polymer A is blended in either or both of Reagents 1 and 2.
(2) A sample containing creatinine and a reducing substance such as bilirubin and reagent 1 are mixed and incubated at 37 ° C. for 5 minutes.
(3) Add Reagent 2 to the mixture of (2).
(4) The concentration of creatinine is quantified by measuring the amount of quinone dye produced in the mixture of (3) as a change in absorbance at 500 to 600 nm.

前記試薬1及び試薬2中の各成分の配合割合は、試薬1、試薬2及び検体との混合物中の終濃度として、クレアチニナーゼは20〜400u/mL、クレアチナーゼは50〜100u/mL、ザルコシンオキシダーゼは1〜20u/mL、パーオキシダーゼは1〜100u/mL、好ましくは5〜20u/mL、N,N-ビス(4-スルホブチル)-3-メチルアニリン及び4-アミノアンチピリンはそれぞれ0.5〜10mmol/L、好ましくは1〜5mmol/Lとすることができる。重合体Aの配合割合は、例えば検体中に50mg/dLのビリルビンが存在し、検体と試薬1及び2の合計との量比がおよそ1:60(体積比)の場合、重合体Aは反応系中に、終濃度として概ね0.05〜0.75w/v%含まれていることが好ましい。   The mixing ratio of each component in Reagent 1 and Reagent 2 is 20 to 400 u / mL for creatininase, 50 to 100 u / mL for creatinase, and colander as final concentrations in the mixture of Reagent 1, Reagent 2 and the specimen. Cosin oxidase is 1 to 20 u / mL, peroxidase is 1 to 100 u / mL, preferably 5 to 20 u / mL, and N, N-bis (4-sulfobutyl) -3-methylaniline and 4-aminoantipyrine are each 0.5 to It can be 10 mmol / L, preferably 1 to 5 mmol / L. The blending ratio of polymer A is, for example, when 50 mg / dL of bilirubin is present in the specimen, and when the quantity ratio of the specimen and the total of reagents 1 and 2 is approximately 1:60 (volume ratio), polymer A reacts. It is preferable that the final concentration is generally 0.05 to 0.75 w / v% in the system.

前記試薬1及び試薬2には、必要に応じて緩衝剤を配合し所望のpHに維持することができる。緩衝剤は特に限定されず通常の比色定量において用いられているものを適宜選択することができる。具体的には例えば、2-ヒドロキシ-N-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(以下「TAPSO」という。)又はN-トリス(ヒドロキシメチル)メチル-3-アミノプロパンスルホン酸(以下「TAPS」という。)を10〜1000mmol/Lの範囲内で配合し、さらに塩酸、水酸化ナトリウム等で所望のpHに調整することができる。   The reagent 1 and the reagent 2 can be mixed with a buffer as necessary to maintain a desired pH. The buffer is not particularly limited, and a buffer used in normal colorimetric determination can be appropriately selected. Specifically, for example, 2-hydroxy-N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (hereinafter referred to as “TAPSO”) or N-tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid ( (Hereinafter referred to as “TAPS”) within a range of 10 to 1000 mmol / L, and further adjusted to a desired pH with hydrochloric acid, sodium hydroxide or the like.

本発明の比色定量試薬は、前記本発明の比色定量方法のための試薬であって、溶媒と、酵素と、重合体Aとを含む。当該溶媒としては、水等を挙げることができる。当該酵素としては、オキシダーゼ、パーオキシダーゼ、測定対象物質を基質としてオキシダーゼにより過酸化水素を定量的に発生させうる物質を生成しうる酵素、又はこれらの組み合わせを含むことができる。また、必要に応じて、上記の緩衝剤、発色色素生成物質、発色色素生成を補助する物質等を含むことができる。より具体的には例えば、上記試薬1及び2のように、2液以上を混合することにより本発明における反応を行なえるようにした複数の試薬の組み合わせにおいて、それら複数の試薬の1以上において重合体Aを含んだ試薬とすることができる。   The colorimetric reagent of the present invention is a reagent for the colorimetric method of the present invention, and includes a solvent, an enzyme, and a polymer A. Examples of the solvent include water. Examples of the enzyme include oxidase, peroxidase, an enzyme that can generate a substance capable of quantitatively generating hydrogen peroxide by oxidase using a substance to be measured as a substrate, or a combination thereof. Further, if necessary, the above-mentioned buffering agent, a coloring dye-forming substance, a substance for assisting the coloring dye generation, and the like can be included. More specifically, for example, in the combination of a plurality of reagents capable of performing the reaction in the present invention by mixing two or more liquids, such as the above-described reagents 1 and 2, in one or more of the plurality of reagents, A reagent containing the combined A can be obtained.

以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらに限定されない。なお、実施例中、同一の略語で示された試薬等は、別に断らない限り同一の製品を用いた。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these. In the examples, the same products were used for the reagents indicated by the same abbreviations unless otherwise noted.

合成例1
(PC重合体-1の合成)
メタクリロイルホスホリルコリン(MPC) 29.1g及びステアリルメタクリレート(C18MA)8.4gをエタノール204gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でアゾビスイソブチロニトリル(以下AIBNと略す)0.67gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-1 30.1gを粉末として得た。
Synthesis example 1
(Synthesis of PC polymer-1)
29.1 g of methacryloyl phosphorylcholine (MPC) and 8.4 g of stearyl methacrylate (C 18 MA) are dissolved in 204 g of ethanol, put into a four-necked flask, blown with nitrogen for 30 minutes, and then azobisisobutyronitrile (hereinafter referred to as AIBN) at 60 ° C. And 0.67 g was added, and the polymerization reaction was carried out for 8 hours. After completion of the reaction, the reaction solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 30.1 g of PC polymer-1 as a powder.

合成例2
(PC重合体-2の合成)
MPC50.0gをエタノール100gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でAIBN 0.24gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-2 29.6gを粉末として得た。
Synthesis example 2
(Synthesis of PC polymer-2)
MPC (50.0 g) was dissolved in ethanol (100 g), placed in a four-necked flask, and nitrogen was blown for 30 minutes. Then, AIBN (0.24 g) was added at 60 ° C., and a polymerization reaction was carried out for 8 hours. After completion of the reaction, the reaction solution was dropped into 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 29.6 g of PC polymer-2 as a powder.

合成例3
(PC重合体-3の合成)
MPC 35.7g及びブチルメタクリレート(BMA)4.3gをエタノール160gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でAIBN 0.82gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-3 29.6gを粉末として得た。
Synthesis example 3
(Synthesis of PC polymer-3)
MPC (35.7 g) and butyl methacrylate (BMA) (4.3 g) were dissolved in ethanol (160 g), placed in a four-necked flask, and nitrogen was blown for 30 minutes. After completion of the reaction, the reaction solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 29.6 g of PC polymer-3 as a powder.

合成例4
(PC重合体-4の合成)
MPC 23.0g及び式CH2=C(CH3)-CO-(OCH2CH2)4-OHで表されるメトキシポリ(エチレンオキシド)モノメタクリレート7.7gをエタノール160gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でAIBN 0.82gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-4 19.8gを粉末として得た。
Synthesis example 4
(Synthesis of PC polymer-4)
MPC 23.0 g and the formula CH 2 ═C (CH 3 ) —CO— (OCH 2 CH 2 ) 4 —OH methoxypoly (ethylene oxide) monomethacrylate 7.7 g was dissolved in ethanol 160 g and placed in a four-necked flask, After nitrogen was blown for 30 minutes, 0.82 g of AIBN was added at 60 ° C. and a polymerization reaction was carried out for 8 hours. After completion of the reaction, the reaction solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 19.8 g of PC polymer-4 as a powder.

合成例5
(PC重合体-5の合成)
MPC 12.0g及びメタクリル酸8.0gを水40gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でコハク酸パーオキサイド 0.82gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-5 19.8gを粉末として得た。
Synthesis example 5
(Synthesis of PC polymer-5)
12.0 g of MPC and 8.0 g of methacrylic acid were dissolved in 40 g of water, put into a four-necked flask, and nitrogen was blown for 30 minutes. Then, 0.82 g of succinic acid peroxide was added at 60 ° C., and a polymerization reaction was performed for 8 hours. After completion of the reaction, the reaction solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 19.8 g of PC polymer-5 as a powder.

合成例6
(PC重合体-6の合成)
MPC 13.4gと、2-ヒドロキシ-3-メタクリロイルオキシプロピルトリメチルアンモニウムクロライド50w/w%含有水溶液9.2gとを水77gに溶解し4つ口フラスコに入れ、30分間窒素を吹き込んだ後に、60℃でコハク酸パーオキサイド 0.15gを加えて8時間重合反応させた。反応終了後、反応液を3Lのジエチルエーテル中に撹拌しながら滴下し、析出した沈殿を濾過し、48時間室温で真空乾燥を行って、PC重合体-6 14.8gを粉末として得た。
Synthesis example 6
(Synthesis of PC polymer-6)
13.4 g of MPC and 9.2 g of 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride 50 w / w% aqueous solution were dissolved in 77 g of water, placed in a four-necked flask, blown with nitrogen for 30 minutes, and then heated at 60 ° C. 0.15 g of succinic acid peroxide was added and a polymerization reaction was carried out for 8 hours. After completion of the reaction, the reaction solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and vacuum dried at room temperature for 48 hours to obtain 14.8 g of PC polymer-6 as a powder.

合成例1〜5で得たPC重合体-1〜6の分子量をゲルパーミエーションクロマトグラフィー(GPC)により分析した。分析条件は20mMリン酸緩衝液(pH7.4)を溶離液とし、ポリエチレングリコールを標準物質とし、共重合体の溶出を屈折率により検出した。結果を表2に示す。また、これらの重合体の共重合組成比を1H-NMRにより分析した。結果を表2に示す。 The molecular weights of PC polymers-1 to 6 obtained in Synthesis Examples 1 to 5 were analyzed by gel permeation chromatography (GPC). The analysis conditions were 20 mM phosphate buffer (pH 7.4) as eluent, polyethylene glycol as a standard substance, and elution of the copolymer was detected by refractive index. The results are shown in Table 2. Further, the copolymer composition ratio of these polymers was analyzed by 1 H-NMR. The results are shown in Table 2.

Figure 2005034132
Figure 2005034132

実施例1-1〜1-4及び比較例1
(ビリルビン存在下及び非存在下におけるクレアチニン濃度測定の対比;その1)
TAPSO 50mmo1/L、TODB 1mmo1/L、CR(キッコーマン株式会社製)30u/mL及びSOD(キッコーマン株式会社製)10u/mL、ならびに各種濃度のPC重合体-1を含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH8.0に調整し、試薬1-1を得た。なお、試薬1-1中のPC重合体-1の濃度は、後述する試薬1-2及び血清検体1又は2と混合した際の終濃度が0.00w/v%(比較例1)、0.15w/v%(実施例1-1)、0.30w/v%(実施例1-2)、0.45w/v%(実施例1-3)又は0.75w/v%(実施例1-4)となる濃度とした。
Examples 1-1 to 1-4 and Comparative Example 1
(Contrast of creatinine concentration measurement in the presence and absence of bilirubin; part 1)
Prepare an aqueous solution containing TAPSO 50mmo1 / L, TODB 1mmo1 / L, CR (manufactured by Kikkoman Corporation) 30u / mL and SOD (manufactured by Kikkoman Corporation) 10u / mL, and various concentrations of PC polymer-1. The pH was adjusted to 8.0 with L hydrochloric acid or sodium hydroxide to obtain Reagent 1-1. The concentration of the PC polymer-1 in the reagent 1-1 is 0.00w / v% (Comparative Example 1), 0.15w at the final concentration when mixed with the reagent 1-2 and the serum sample 1 or 2 described later. / v% (Example 1-1), 0.30 w / v% (Example 1-2), 0.45 w / v% (Example 1-3) or 0.75 w / v% (Example 1-4) Concentration.

一方、TAPSO 50mmo1/L、4AAP 1mmo1/L、CRN(キッコーマン株式会社製)400u/mL及びPOD(天野エンザイム株式会社製)10u/mLを含む水溶液を調製し、lmo1/Lの塩酸または水酸化ナトリウムでpH8.0に調整し、試薬1-2を得た。   Meanwhile, an aqueous solution containing TAPSO 50mmo1 / L, 4AAP 1mmo1 / L, CRN (Kikkoman Co., Ltd.) 400u / mL and POD (Amano Enzyme Co., Ltd.) 10u / mL was prepared, and lmo1 / L hydrochloric acid or sodium hydroxide was prepared. To pH 8.0 to obtain Reagent 1-2.

クレアチニン0.85mg/dL、尿酸3.1mg/dL及びクレアチン1.0mg/dLを含有するヒト血清(商品名「スイトロールN」、日本水産株式会社製、ベース血清)(血清検体1)、及びそれにビリルビンを50mg/dL添加したもの(血清検体2)を調製した。   Human serum containing creatinine 0.85mg / dL, uric acid 3.1mg / dL and creatine 1.0mg / dL (trade name `` Suitrol N '', manufactured by Nihon Suisan Co., Ltd., base serum) (serum sample 1), and 50 mg of bilirubin A sample to which / dL was added (serum sample 2) was prepared.

5μLの血清検体1又は2に、試薬1-1を240μL添加し、37℃で5分間加温後、更に試薬1-2を80μL加えて、546nmの吸光度変化を自動分析装置H7170型((株)日立製作所製)を用いて、反応系内の温度を37℃に保って測定した。測定方法にはエンドポイント法を適用した。   To 5 μL of serum sample 1 or 2, add 240 μL of reagent 1-1, warm at 37 ° C. for 5 minutes, then add 80 μL of reagent 1-2, and change the absorbance at 546 nm using the automatic analyzer H7170 The temperature in the reaction system was kept at 37 ° C. The endpoint method was applied as the measurement method.

血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表3に示す。   The change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 3.

Figure 2005034132
Figure 2005034132

PC重合体-1を添加しなかった比較例1では、ビリルビンに基く-56%の負の影響を認めたが、PC重合体-1を添加した実施例1-1〜1-4においてはビリルビンの影響が軽減し、-4〜-2%の負の影響に止まった。よってPC重合体-1にビリルビンの影響を軽減する効果があることがわかる。以上より、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減し、クレアチニン濃度を正確に定量できることがわかった。   In Comparative Example 1 in which PC polymer-1 was not added, a negative effect of -56% based on bilirubin was observed, but in Examples 1-1 to 1-4 in which PC polymer-1 was added, bilirubin was added. The effect of 軽 減 was reduced, and the negative effect was -4 to -2%. Therefore, it can be seen that PC polymer-1 has an effect of reducing the influence of bilirubin. From the above, it was found that by using the colorimetric determination method and colorimetric reagent of the present invention, the influence of bilirubin as a reducing substance can be reduced and the creatinine concentration can be accurately determined.

実施例2-1〜2-5及び比較例2
(ビリルビン存在下及び非存在下におけるクレアチニン濃度測定の対比;その2)
TAPS 50mmo1/L、TODB 1mmo1/L、CR 50u/mL及びSOD 15u/mLを含む水溶液を調製し、1mo1/L塩酸または水酸化ナトリウムでpH8.0に調整し、試薬2-1を得た。
Examples 2-1 to 2-5 and Comparative Example 2
(Contrast of creatinine concentration measurement in the presence and absence of bilirubin; Part 2)
An aqueous solution containing TAPS 50mmo1 / L, TODB 1mmo1 / L, CR 50u / mL and SOD 15u / mL was prepared, and adjusted to pH 8.0 with 1mo1 / L hydrochloric acid or sodium hydroxide to obtain Reagent 2-1.

一方、TAPS 100mmo1/L、4AAP 3mmo1/L、CRN 450u/mL及びPOD 15u/mL、並びに各種濃度のPC重合体-1を含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH8.0に調整し、試薬2-2を得た。なお、試薬2-2中のPC重合体-1の濃度は、試薬2-1及び血清検体1又は2と混合した際の終濃度が0.00%(比較例2)、0.05%(実施例2-1)、0.10%(実施例2-2)、0.15%(実施例2-3)、0.20%(実施例2-4)又は0.25%(実施例2-5)(W/V)となる濃度とした。   On the other hand, TAPS 100mmo1 / L, 4AAP 3mmo1 / L, CRN 450u / mL and POD 15u / mL, and aqueous solutions containing various concentrations of PC polymer-1 were prepared, and pH 8 with 1mo1 / L hydrochloric acid or sodium hydroxide. Adjustment to 0 gave reagent 2-2. The concentration of PC polymer-1 in Reagent 2-2 was 0.00% (Comparative Example 2), 0.05% (Example 2-) when mixed with Reagent 2-1 and serum sample 1 or 2. 1), 0.10% (Example 2-2), 0.15% (Example 2-3), 0.20% (Example 2-4) or 0.25% (Example 2-5) (W / V) concentration It was.

5μLの血清検体1又は2に、試薬2-1を240μL添加し、37℃で5分間加温後、更に試薬2-2を80μL加えて、546nmの吸光度変化を自動分析装置H7170型を用いて測定した。測定方法にはエンドポイント法を適用した。   Add 240 μL of reagent 2-1 to 5 μL of serum sample 1 or 2 and warm at 37 ° C. for 5 minutes, then add 80 μL of reagent 2-2 and change the absorbance at 546 nm using automatic analyzer H7170 It was measured. The endpoint method was applied as the measurement method.

血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表4に示す。   The change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 4.

Figure 2005034132
Figure 2005034132

PC重合体-1を添加しなかった比較例2では、ビリルビンに基く-56%の負の影響を認めたが、PC重合体-1を添加した実施例2-1〜2-5においてはビリルビンの影響が軽減し、-17〜-5%の負の影響に止まった。よってPC重合体-1にビリルビンの影響を軽減する効果があることがわかる。以上より、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減し、クレアチニン濃度を正確に定量できることがわかった。   In Comparative Example 2 where PC polymer-1 was not added, a negative effect of -56% based on bilirubin was observed, but in Examples 2-1 to 2-5 where PC polymer-1 was added, bilirubin was added. The effect of 軽 減 was reduced, and the negative effect was -17 to -5%. Therefore, it can be seen that PC polymer-1 has an effect of reducing the influence of bilirubin. From the above, it was found that by using the colorimetric determination method and colorimetric reagent of the present invention, the influence of bilirubin as a reducing substance can be reduced and the creatinine concentration can be accurately determined.

また実施例1及び2の結果より、PC重合体-1は、クレアチナーゼを含む試薬(試薬1-1又は2-1)とクレアチニナーゼを含む試薬(試薬1-2又は試薬2-2)とを混合する反応系において、そのいずれの試薬に添加してもビリルビンの影響の軽減に有効であることがわかる。   Further, from the results of Examples 1 and 2, PC polymer-1 is a reagent containing creatinase (reagent 1-1 or 2-1) and a reagent containing creatininase (reagent 1-2 or reagent 2-2). It can be seen that, in a reaction system in which the mixture is added, it is effective to reduce the influence of bilirubin even if it is added to any of the reagents.

実施例3
(他のベタイン型界面活性剤を含む反応系との対比)
TAPS 50mmo1/L、TODB 1mmo1/L、CR 50u/mL、SOD 15u/mL、及びPC重合体-1 0.3w/v%を含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH7.9に調整し、試薬3-1を得た。
Example 3
(Comparison with other reaction systems containing betaine surfactants)
Prepare an aqueous solution containing TAPS 50mmo1 / L, TODB 1mmo1 / L, CR 50u / mL, SOD 15u / mL, and PC polymer-1 0.3w / v%, pH 7 with 1mo1 / L hydrochloric acid or sodium hydroxide. Adjustment to 9 gave reagent 3-1.

一方、TAPS 100mmo1/L、4AAP 3mmo1/L、CRN 450u/mL及びPOD 15u/mLを含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH8.3に調整し、試薬3-2を得た。   Meanwhile, prepare an aqueous solution containing TAPS 100mmo1 / L, 4AAP 3mmo1 / L, CRN 450u / mL and POD 15u / mL, adjust the pH to 8.3 with 1mo1 / L hydrochloric acid or sodium hydroxide, and add reagent 3-2. Obtained.

5μLの血清検体1又は2に、試薬3-1を240μL添加し、37℃で5分間加温後、更に試薬3-2を80μL加えて、546nmの吸光度変化を自動分析装置H7170型を用いて測定した。測定方法にはエンドポイント法を適用した。   Add 240 μL of reagent 3-1 to 5 μL of serum sample 1 or 2 and warm at 37 ° C. for 5 minutes, then add 80 μL of reagent 3-2, and change the absorbance at 546 nm using automatic analyzer H7170 It was measured. The endpoint method was applied as the measurement method.

血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表5に示す。   The change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 5.

比較例3-1
PC重合体-1 0.3w/v%を添加しなかった他は、実施例3と同様に操作し、試薬を調製し、反応させ、吸光度変化を測定し、血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表5に示す。
Comparative Example 3-1
PC polymer-1 The procedure was the same as in Example 3 except that 0.3 w / v% was not added, and the reagent was prepared, reacted, the change in absorbance was measured, and the change in absorbance in serum sample 1 was measured. The change in absorbance in Sample 2 was determined as relative sensitivity (%). The results are shown in Table 5.

比較例3-2〜3-12
PC重合体-1 0.3w/v%の代わりに、アンヒトール24B(商品名、花王株式会杜製、ラウリルベタイン)(比較例3-2)、アンヒトール20BS(商品名、花王株式会杜製、ラウリルベタイン)(比較例3-3)、AM-3130N(商品名、日光ケミカルズ株式会杜製、ヤシ油脂肪酸アミドプロピルジメチルアミノ酢酸ベタインR-CO-NH-(CH2)3-N+(CH3)2-CH2COO-) (比較例3-4)、AM-301(商品名、日光ケミカルズ株式会杜製、ラウリルジメチルアミノ酢酸ベタインR-N+(CH3)2-CH2-COO-)(比較例3-5)、SB3-8(商品名、3-(N,N-ジメチルオクチルアンモニオ)プロパンスルホン酸、シグマ社製)(比較例3-6)、SB3-12(商品名、3-(ドデシルジメチルアンモニオ)プロパンスルホン酸、シグマ社製)(比較例3-7)、又はPC重合体-2〜6(比較例3-8〜3-12)を0.3w/v%添加した他は、実施例3と同様に操作し、試薬を調製し、反応させ、吸光度変化を測定し、血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表5に示す。
Comparative Examples 3-2 to 3-12
PC polymer-1 Instead of 0.3 w / v%, Amphitol 24B (trade name, manufactured by Kao Corporation, lauryl betaine) (Comparative Example 3-2), Amphitol 20BS (trade name, manufactured by Kao Corporation, lauryl) Betaine) (Comparative Example 3-3), AM-3130N (trade name, manufactured by Nikko Chemicals Co., Ltd., palm oil fatty acid amidopropyldimethylaminoacetic acid betaine R-CO-NH- (CH 2 ) 3 -N + (CH 3 ) 2 -CH 2 COO -) (Comparative Example 3-4), AM-301 (trade name, Nikko Chemicals stock meeting Mori made, lauryl betaine RN + (CH 3) 2 -CH 2 -COO -) ( Comparative Example 3-5), SB3 -8 (trade name, 3- (N, N-dimethyloctylammonio) propanesulfonic acid, manufactured by Sigma) (Comparative Example 3-6), SB3-12 (trade name, 3- (dodecyldimethylammonio) propane Except for adding 0.3 w / v% of sulfonic acid (manufactured by Sigma) (Comparative Example 3-7) or PC polymer-2 to 6 (Comparative Examples 3-8 to 3-12), the same as Example 3. The reagent was prepared and reacted, the change in absorbance was measured, and the change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 5.

Figure 2005034132
Figure 2005034132

各試薬でのビリルビンの影響は、PC重合体-1の場合、-1%;アンヒトール24Bの場合、-8%;アンヒトール20BSの場合、-7%;AM-3130Nの場合、-6%、AM-301の場合、-19%;SB3-8の場合、-9%;SB3-12の場合、-9%;PC重合体-2〜6の場合、概ね-50%であった。この結果よりPC重合体-1は、他のベタイン型界面活性剤と比較して、ビリルビンの影響をおよそ1/5以下、また他のPC重合体と比較して1/50以下とすることができ、ビリルビンの影響を軽減する効果が著しいことがわかる。以上より、ベタイン系界面活性剤(比較例3-2〜比較例3-7)、及び重合体A以外のPC重合体(比較例3-8〜比較例3-12)を用いた場合と比較すると、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減し、クレアチニン濃度を正確に定量できることがわかった。   The effect of bilirubin on each reagent is as follows: -1% for PC polymer-1; -8% for Amphital 24B; -7% for Amphital 20BS; -6% for AM-3130N; In the case of -301, it was -19%; in the case of SB3-8, -9%; in the case of SB3-12, -9%; From this result, PC polymer-1 has a bilirubin effect of about 1/5 or less compared to other betaine surfactants, and 1/50 or less compared to other PC polymers. It can be seen that the effect of reducing the influence of bilirubin is remarkable. From the above, compared with the case of using a betaine surfactant (Comparative Example 3-2 to Comparative Example 3-7) and a PC polymer other than Polymer A (Comparative Example 3-8 to Comparative Example 3-12) Then, it was found that by using the colorimetric determination method and colorimetric reagent of the present invention, the influence of the reducing substance bilirubin can be reduced and the creatinine concentration can be accurately determined.

実施例4
(試薬の保存安定性;その1)
TAPS 50mmo1/L、TODB 1mmo1/L、CR 50u/mL、SOD 15u/mL、及びPC重合体-1 0.3w/v%を含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH7.9に調整し、試薬4-1を得た。
Example 4
(Reagent storage stability; Part 1)
Prepare an aqueous solution containing TAPS 50mmo1 / L, TODB 1mmo1 / L, CR 50u / mL, SOD 15u / mL, and PC polymer-1 0.3w / v%, pH 7 with 1mo1 / L hydrochloric acid or sodium hydroxide. Adjustment to 9 gave reagent 4-1.

一方、TAPS 100mmo1/L、4AAP 3mmo1/L、CRN 450u/mL及びPOD 15u/mLを含む水溶液を調製し、1mo1/Lの塩酸または水酸化ナトリウムでpH8.3に調整し、試薬4-2を得た。   Meanwhile, prepare an aqueous solution containing TAPS 100mmo1 / L, 4AAP 3mmo1 / L, CRN 450u / mL and POD 15u / mL, adjust the pH to 8.3 with 1mo1 / L hydrochloric acid or sodium hydroxide, and add reagent 4-2. Obtained.

さらに、検体として、クレアチニンの5mg/dL水溶液(検体3)を調製した。   Furthermore, a 5 mg / dL aqueous solution of creatinine (Sample 3) was prepared as a sample.

試薬4-1を、調製後直ちに(実施例4A)又は調製後37℃で1週間保存後(実施例4B)、5μLの検体3に240μL添加し、37℃で5分間加温後、更に試薬4-2を80μL加えて、546nmの吸光度変化を自動分析装置H7170型を用いて測定した。吸光度変化は、試薬4-1を添加した時点を0分として、経時的に測定した。結果を図1に示す。図1中、白抜き円及び中黒円のプロットは、それぞれ実施例4A及び実施例4Bの結果をそれぞれ示す。   Reagent 4-1 immediately after preparation (Example 4A) or after preparation and storage at 37 ° C. for 1 week (Example 4B), 240 μL is added to 5 μL of specimen 3, heated at 37 ° C. for 5 minutes, and further reagent 80 μL of 4-2 was added, and the change in absorbance at 546 nm was measured using an automatic analyzer H7170. The change in absorbance was measured over time with the time when reagent 4-1 was added as 0 minutes. The results are shown in Figure 1. In FIG. 1, the white circle and the black circle plots show the results of Example 4A and Example 4B, respectively.

図1の結果より、PC重合体-1を添加した試薬を用いた反応系においては、37℃で1週間保存した後にも反応速度の低下が見られず、PC重合体-1による試薬の安定性の低下がないことがわかる。   From the results shown in FIG. 1, in the reaction system using the reagent to which PC polymer-1 was added, there was no decrease in the reaction rate even after storage at 37 ° C. for 1 week, and the stability of the reagent by PC polymer-1 It can be seen that there is no decline in sex.

比較例4-1
PC重合体-1 0.3w/v%を添加しなかった他は、実施例4A及び4Bと同様に操作し、試薬を調製し、反応させ、吸光度変化を経時的に測定した。結果を図2に示す。図2中、白抜き円及び中黒円のプロットは、それぞれ試薬4-1を調製後直ちに用いた場合(比較例4-1A)又は調製後37℃で1週間保存後に用いた場合(比較例4-1B)の結果をそれぞれ示す。
Comparative Example 4-1
PC Polymer-1 A reagent was prepared and reacted in the same manner as in Examples 4A and 4B, except that 0.3 w / v% was not added, and the change in absorbance was measured over time. The result is shown in figure 2. In FIG. 2, the white circles and the black circles are plotted when the reagent 4-1 is used immediately after preparation (Comparative Example 4-1A) or when it is used after storage at 37 ° C. for 1 week (Comparative Example). The results of 4-1B) are shown respectively.

比較例4-2〜4-3
PC重合体-1 0.3w/v%の代わりに、アンヒトール24B(比較例4-2)、又はAM-301(比較例4-3)を0.3w/v%添加した他は、実施例4A及び4Bと同様に操作し、試薬を調製し、反応させ、吸光度変化を経時的に測定した。比較例4-2及び4-3の結果をそれぞれ図3及び図4に示す。図3及び図4中、白抜き円及び中黒円のプロットは、それぞれ試薬4-1を調製後直ちに用いた場合(比較例4-2A、4-3A)又は調製後37℃で1週間保存後に用いた場合(比較例4-2B、4-3B)の結果をそれぞれ示す。
Comparative Examples 4-2 to 4-3
PC polymer-1 Instead of 0.3 w / v%, Example 4A and Example 4A except that Amphital 24B (Comparative Example 4-2) or AM-301 (Comparative Example 4-3) was added in an amount of 0.3 w / v%. By operating in the same manner as in 4B, reagents were prepared and reacted, and changes in absorbance were measured over time. The results of Comparative Examples 4-2 and 4-3 are shown in FIGS. 3 and 4, respectively. In FIG. 3 and FIG. 4, the white circle and the black circle plots are stored when reagent 4-1 is used immediately after preparation (Comparative Example 4-2A, 4-3A) or stored at 37 ° C. for 1 week, respectively. The results when used later (Comparative Examples 4-2B and 4-3B) are shown respectively.

実施例4及び比較例4-1〜4-3において、各反応系中のクレアチニン濃度の指標として、試薬4-2を添加した後35秒から71秒間の吸光度(mAbs)の変化量を算出した。実施例4Aの吸光度変化量に対する実施例4Bの吸光度変化量の割合を、保存安定性(%)として求めた。また、比較例4-1〜4-3についても、同様に保存安定性を求めた。求めた値を表6に示す。また、これらの結果と並べて、実施例3、比較例3-1、アンヒトール24Bを用いた比較例3-2、及びAM-201を用いた比較例3-5におけるビリルビンに対する効果についての実験結果を、併せて表6に示す。   In Example 4 and Comparative Examples 4-1 to 4-3, as an index of creatinine concentration in each reaction system, the amount of change in absorbance (mAbs) from 71 seconds to 35 seconds after the addition of reagent 4-2 was calculated. . The ratio of the absorbance change amount of Example 4B to the absorbance change amount of Example 4A was determined as storage stability (%). Moreover, the storage stability was similarly determined for Comparative Examples 4-1 to 4-3. Table 6 shows the obtained values. In addition to these results, the experimental results on the effect on bilirubin in Example 3, Comparative Example 3-1, Comparative Example 3-2 using Amphital 24B, and Comparative Example 3-5 using AM-201 are shown. These are also shown in Table 6.

Figure 2005034132
Figure 2005034132

表6より、本願発明の比色定量試薬は、その保存安定性に優れることが分かった。更に、表3、表4、表5及び表6より、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減しクレアチニン濃度を正確に定量することができ、且つ試薬の保存安定性を維持できることがわかった。   From Table 6, it was found that the colorimetric reagent of the present invention is excellent in storage stability. Furthermore, from Table 3, Table 4, Table 5, and Table 6, by using the colorimetric determination method and colorimetric reagent of the present invention, the effect of the reducing substance bilirubin is reduced and the creatinine concentration is accurately determined. And the storage stability of the reagent can be maintained.

実施例5
(尿酸の測定)
水に、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(以下BESという。)50mmol/L、TODB 2mmol/L及びPOD 5u/mL、ならびにPC重合体-1を溶解し、1mol/Lの塩酸又は水酸化ナトリウムでpHを7.5に調整し、試薬5-1を調製した。なお、試薬5-1中のPC重合体-1の濃度は、後述する試薬5-2及び血清検体1又は2と混合した際の終濃度が0.4w/v%となる濃度とした。
Example 5
(Measurement of uric acid)
In water, N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (hereinafter referred to as BES) 50 mmol / L, TODB 2 mmol / L and POD 5 u / mL, and PC polymer-1 were dissolved. Reagent 5-1 was prepared by adjusting the pH to 7.5 with 1 mol / L hydrochloric acid or sodium hydroxide. The concentration of PC polymer-1 in reagent 5-1 was such that the final concentration when mixed with later-described reagent 5-2 and serum sample 1 or 2 was 0.4 w / v%.

一方、水に、BES 50mmol/L、4AAP 2mmol/L及びウリカーゼ(東洋紡績株式会社製) 1u/mLを溶解し、1mol/Lの塩酸又は水酸化ナトリウムでpHを7.5に調整し、試薬5-2を調製した。   On the other hand, BES 50 mmol / L, 4AAP 2 mmol / L and uricase (Toyobo Co., Ltd.) 1 u / mL are dissolved in water, and the pH is adjusted to 7.5 with 1 mol / L hydrochloric acid or sodium hydroxide. 2 was prepared.

5μLの血清検体1又は2に、試薬5-1を240μL添加し、37℃で5分間加温後、更に試薬5-2を60μL加えて、546nmの吸光度を自動分析装置H7170型((株)日立製作所製)を用いて、反応系内の温度を37℃に保って測定した。測定方法にはエンドポイント法を適用した。   To 5 μL of serum sample 1 or 2, add 240 μL of reagent 5-1 and warm at 37 ° C. for 5 minutes, then add 60 μL of reagent 5-2, and measure the absorbance at 546 nm with automatic analyzer H7170 type (Corporation) (Manufactured by Hitachi, Ltd.) and the temperature in the reaction system was kept at 37 ° C. for measurement. The endpoint method was applied as the measurement method.

血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表7に示す。   The change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 7.

比較例5
試薬5-1にPC重合体-1を添加しなかった他は、実施例5と同様に操作し、吸光度変化を測定した。結果を表7に示す。
Comparative Example 5
The change in absorbance was measured in the same manner as in Example 5 except that PC polymer-1 was not added to reagent 5-1. The results are shown in Table 7.

Figure 2005034132
Figure 2005034132

PC重合体-1を添加しなかった比較例5においては、ビリルビンに基づく-73%の負の影響を認めたが、PC重合体-1を添加した実施例5においてはビリルビンの影響が軽減し、-5%の負の影響に止まった。以上より、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減し、尿酸濃度を正確に定量できることがわかった。   In Comparative Example 5 in which PC polymer-1 was not added, a negative effect of -733% based on bilirubin was observed, but in Example 5 in which PC polymer-1 was added, the effect of bilirubin was reduced. -5% negative effect. From the above, it was found that by using the colorimetric determination method and colorimetric reagent of the present invention, the effect of bilirubin as a reducing substance can be reduced and the uric acid concentration can be accurately determined.

実施例6
(クレアチンの測定)
水に、TAPS 30mmol/L、TODB 1mmol/L及びSOD 15u/mL、ならびにPC重合体-1を溶解し、1mol/Lの塩酸又は水酸化ナトリウムでpHを8.2に調整し、試薬6-1を調製した。なお、試薬6-1中のPC重合体-1の濃度は、後述する試薬6-2及び血清検体1又は2と混合した際の終濃度が0.4w/v%となる濃度とした。
Example 6
(Measurement of creatine)
Dissolve TAPS 30mmol / L, TODB 1mmol / L and SOD 15u / mL, and PC polymer-1 in water, adjust the pH to 8.2 with 1mol / L hydrochloric acid or sodium hydroxide, and add reagent 6-1. Prepared. The concentration of PC polymer-1 in reagent 6-1 was such that the final concentration when mixed with reagent 6-2 and serum sample 1 or 2 described later was 0.4 w / v%.

一方、水に、TAPS 30mmol/L、4AAP 2mmol/L、CR150u/mL及びPOD 20u/mLを溶解し、1mol/Lの塩酸又は水酸化ナトリウムでpHを8.0に調整し、試薬6-2を調製した。   On the other hand, TAPS 30mmol / L, 4AAP 2mmol / L, CR150u / mL and POD 20u / mL are dissolved in water, pH is adjusted to 8.0 with 1mol / L hydrochloric acid or sodium hydroxide, and reagent 6-2 is prepared. did.

5μLの血清検体1又は2に、試薬6-1を240μL添加し、37℃で5分間加温後、更に試薬6-2を80μL加えて、546nmの吸光度から600nmの吸光度を減じた値の変化を自動分析装置H7170型((株)日立製作所製)を用いて、反応系内の温度を37℃に保って測定した。測定方法にはエンドポイント法を適用した。   Change of the value obtained by adding 240 μL of reagent 6-1 to 5 μL of serum sample 1 or 2 and heating at 37 ° C. for 5 minutes, then adding 80 μL of reagent 6-2, and subtracting the absorbance at 600 nm from the absorbance at 546 nm Was measured using an automatic analyzer H7170 type (manufactured by Hitachi, Ltd.) while maintaining the temperature in the reaction system at 37 ° C. The endpoint method was applied as the measurement method.

血清検体1における吸光度変化に対する、血清検体2における吸光度変化を、相対感度(%)として求めた。結果を表8に示す。   The change in absorbance in serum sample 2 relative to the change in absorbance in serum sample 1 was determined as relative sensitivity (%). The results are shown in Table 8.

比較例6
試薬6-1にPC重合体-1を添加しなかった他は、実施例6と同様に操作し、吸光度変化を測定した。結果を表8に示す。
Comparative Example 6
The change in absorbance was measured in the same manner as in Example 6 except that PC polymer-1 was not added to reagent 6-1. The results are shown in Table 8.

Figure 2005034132
Figure 2005034132

PC重合体-1を添加しなかった比較例6においては、ビリルビンに基づく-72%の負の影響を認めたが、PC重合体-1を添加した実施例6においてはビリルビンの影響が軽減し、-3%の負の影響に止まった。以上より、本発明の比色定量方法及び比色定量試薬を用いることにより、還元物質であるビリルビンの影響を軽減し、クレアチン濃度を正確に定量できることがわかった。   In Comparative Example 6 where PC polymer-1 was not added, a negative effect of -72% based on bilirubin was observed, but in Example 6 where PC polymer-1 was added, the effect of bilirubin was reduced. , Stopped at a negative effect of -3%. From the above, it was found that the use of the colorimetric determination method and colorimetric reagent of the present invention can reduce the influence of the reducing substance bilirubin and accurately determine the creatine concentration.

実施例4における、反応時間と吸光度との関係を示すグラフである。6 is a graph showing the relationship between reaction time and absorbance in Example 4. 比較例4-1における、反応時間と吸光度との関係を示すグラフである。It is a graph which shows the relationship between reaction time and the light absorbency in the comparative example 4-1. 比較例4-2における、反応時間と吸光度との関係を示すグラフである。14 is a graph showing the relationship between reaction time and absorbance in Comparative Example 4-2. 比較例4-3における、反応時間と吸光度との関係を示すグラフである。6 is a graph showing the relationship between reaction time and absorbance in Comparative Example 4-3.

Claims (4)

検体中のクレアチニン、クレアチン又は尿酸を測定対象物質とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させるクレアチニン、クレアチン又は尿酸の比色定量方法において、反応系に下記式(I):
Figure 2005034132
(ここで、Rは水素原子またはメチル基を示す。)
及び式(II):
Figure 2005034132
(ここで、Rは水素原子又はメチル基を示す。Xは、炭素数12〜20のアルキル基を示す。)
で表される単量体に基く単位からなる、重量平均分子量5,000〜5,000,000の重合体Aを存在させることを特徴とする、クレアチニン、クレアチン又は尿酸の比色定量方法。
In the colorimetric determination method of creatinine, creatine, or uric acid that uses creatinine, creatine, or uric acid in a sample as a substance to be measured, induces hydrogen peroxide by an enzymatic reaction, and generates a coloring dye in the presence of peroxidase, Formula (I):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group.)
And formula (II):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group. X represents an alkyl group having 12 to 20 carbon atoms.)
A method for the colorimetric determination of creatinine, creatine, or uric acid, comprising the presence of a polymer A having a weight average molecular weight of 5,000 to 5,000,000, comprising units based on the monomer represented by the formula:
請求項1又は2記載の比色定量方法のための比色定量試薬であって、溶媒と、酵素と、前記重合体Aとを含む比色定量試薬。   A colorimetric reagent for colorimetric determination according to claim 1 or 2, comprising a solvent, an enzyme, and the polymer A. ビリルビンを含む検体中のクレアチニン、クレアチン又は尿酸を測定対象物質とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させる、クレアチニン、クレアチン又は尿酸の比色定量において検体中のビリルビンの影響を抑制する方法であって、反応系に下記式(I):
Figure 2005034132
(ここで、Rは水素原子またはメチル基を示す。)
及び式(II):
Figure 2005034132
(ここで、Rは水素原子又はメチル基を示す。Xは、炭素数12〜20のアルキル基を示す。)
で表わされる単量体に基く単位からなる、重量平均分子量5,000〜5,000,000の重合体Aを存在させることを特徴とする抑制方法。
In the colorimetric determination of creatinine, creatine, or uric acid, which uses creatinine, creatine, or uric acid in a sample containing bilirubin as a substance to be measured, induces hydrogen peroxide by an enzymatic reaction, and generates a coloring pigment in the presence of peroxidase. In which the reaction system has the following formula (I):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group.)
And formula (II):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group. X represents an alkyl group having 12 to 20 carbon atoms.)
And a polymer A having a weight average molecular weight of 5,000 to 5,000,000, comprising a unit based on a monomer represented by the formula:
検体中のクレアチニン、クレアチン又は尿酸を測定対象物質とし、酵素反応により過酸化水素を導き、パーオキシダーゼの存在下で発色色素を生成させるクレアチニン、クレアチン又は尿酸の比色定量における測定試薬の保存安定化方法であって、反応系に下記式(I):
Figure 2005034132
(ここで、Rは水素原子またはメチル基を示す。)
及び式(II):
Figure 2005034132
(ここで、Rは水素原子又はメチル基を示す。Xは、炭素数12〜20のアルキル基を示す。)
で表される単量体に基く単位からなる、重量平均分子量5,000〜5,000,000の重合体Aを存在させることを特徴とする保存安定化方法。
Storage stability of measurement reagents in the colorimetric determination of creatinine, creatine, or uric acid, which uses creatinine, creatine, or uric acid in a sample as a substance to be measured, induces hydrogen peroxide by an enzymatic reaction, and produces a coloring dye in the presence of peroxidase Wherein the reaction system comprises the following formula (I):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group.)
And formula (II):
Figure 2005034132
(Here, R represents a hydrogen atom or a methyl group. X represents an alkyl group having 12 to 20 carbon atoms.)
A storage stabilization method comprising the presence of a polymer A having a weight average molecular weight of 5,000 to 5,000,000, which comprises units based on a monomer represented by the formula:
JP2003380986A 2003-06-24 2003-11-11 Colorimetric method Expired - Lifetime JP3520874B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380986A JP3520874B1 (en) 2003-06-24 2003-11-11 Colorimetric method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003180036 2003-06-24
JP2003-180036 2003-06-24
JP2003380986A JP3520874B1 (en) 2003-06-24 2003-11-11 Colorimetric method

Publications (2)

Publication Number Publication Date
JP3520874B1 JP3520874B1 (en) 2004-04-19
JP2005034132A true JP2005034132A (en) 2005-02-10

Family

ID=32301874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380986A Expired - Lifetime JP3520874B1 (en) 2003-06-24 2003-11-11 Colorimetric method

Country Status (1)

Country Link
JP (1) JP3520874B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161677A1 (en) * 2012-04-27 2013-10-31 協和メデックス株式会社 Method for assaying component to be assayed in specimen
JP2016517514A (en) * 2013-03-14 2016-06-16 インストゥルメンテーション ラボラトリー カンパニー Whole blood hemolysis sensor
KR102077301B1 (en) * 2018-08-30 2020-02-13 한양대학교 산학협력단 Method, Apparatus and Composition for Detecting Uric Acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104856680B (en) * 2015-05-11 2016-09-07 深圳贝申医疗技术有限公司 The automatic testing method of a kind of icterus neonatorum and system
CN112525844B (en) * 2020-11-12 2024-06-04 德莱福(重庆)医疗器械有限公司 Stable urea concentration test method in dialyser clearance simulation liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161677A1 (en) * 2012-04-27 2013-10-31 協和メデックス株式会社 Method for assaying component to be assayed in specimen
US9663816B2 (en) 2012-04-27 2017-05-30 Kyowa Medex Co., Ltd. Method for measuring a component of a biological fluid and reducing the effect of interfering substances
JP2016517514A (en) * 2013-03-14 2016-06-16 インストゥルメンテーション ラボラトリー カンパニー Whole blood hemolysis sensor
US9658181B2 (en) 2013-03-14 2017-05-23 Instrumentation Laboratory Company Whole blood hemolysis sensor
KR102077301B1 (en) * 2018-08-30 2020-02-13 한양대학교 산학협력단 Method, Apparatus and Composition for Detecting Uric Acid

Also Published As

Publication number Publication date
JP3520874B1 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
JP5129572B2 (en) Method for simultaneous fractionation and quantification of two measurement objects in biological samples
JP5646323B2 (en) Method for measuring components in blood using hemolyzed whole blood and kit thereof
JP6569193B2 (en) Biological component measuring method and measuring composition
JP6703722B1 (en) Method for measuring L-glutamine and kit therefor
JPWO2002027331A1 (en) Measurement method using redox reaction
JP6435605B2 (en) Biological component measuring method and measuring composition
JP2016019496A (en) Biogenic component measurement method and measurement composition therefor
CN109613226A (en) A kind of creatinine assay kit and its application
JP6004942B2 (en) Method for measuring the component to be measured
JP6459268B2 (en) Biological component measuring method and measuring composition
JP3520874B1 (en) Colorimetric method
JP5864858B2 (en) Method for measuring cholesterol in low density lipoprotein, reagent for measurement and kit for measurement
TW200528717A (en) A method, reagent and kit for the quantitative analysis of the cholesterol in the very-low-density lipoprotein remnant(vldl remnant)
JP5017614B2 (en) Method and reagent for measuring substance to be measured in sample, method for suppressing nonspecific color development, and nonspecific color development inhibitor
JP3797603B2 (en) Method for stabilizing reagent composition
CN109813918A (en) A kind of total bilirubin determination reagent kit
JP5534809B2 (en) Method and kit for measuring cholesterol in low density lipoprotein
JP2009039015A (en) Method for measuring objective substance to be measured in sample by using tetrazoleum compound as chromogen, reagent for measurement, method for inhibiting nonspecific color development and nonspecific color development inhibitor
EP3126493B1 (en) High load enzyme immobilisation by crosslinking
WO2012124340A1 (en) Method for measuring cholesterol in hdl subfraction, and reagents and kit therefor
CN104049091B (en) A kind of method and test kit detecting ethanol dehydrogenase
JP6047778B2 (en) Method and reagent for measuring substance to be measured, and method for avoiding influence derived from bilirubin
JP6372921B2 (en) Method for measuring cholesterol in high density lipoprotein
RU2284040C2 (en) Method for diagnosing metastases in lung root lymph node in pulmonary carcinoma cases
JP7274272B2 (en) Biocomponent measurement reagent and measurement method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

R151 Written notification of patent or utility model registration

Ref document number: 3520874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

EXPY Cancellation because of completion of term