[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005026625A - Surface-emitting laser and its manufacturing method - Google Patents

Surface-emitting laser and its manufacturing method Download PDF

Info

Publication number
JP2005026625A
JP2005026625A JP2003270710A JP2003270710A JP2005026625A JP 2005026625 A JP2005026625 A JP 2005026625A JP 2003270710 A JP2003270710 A JP 2003270710A JP 2003270710 A JP2003270710 A JP 2003270710A JP 2005026625 A JP2005026625 A JP 2005026625A
Authority
JP
Japan
Prior art keywords
region
oxidized
semiconductor laser
emitting semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270710A
Other languages
Japanese (ja)
Inventor
Akio Sato
彰生 佐藤
Kazuhisa Sanpei
和久 三瓶
Hiroshi Ito
伊藤  博
Toru Kachi
徹 加地
Hiroyuki Matsubara
弘幸 松原
Kenji Ito
健治 伊藤
Kazuo Hasegawa
和男 長谷川
Daisuke Inoue
大介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003270710A priority Critical patent/JP2005026625A/en
Publication of JP2005026625A publication Critical patent/JP2005026625A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the uniformity and yield of processing by increasing the controllability of an oxidizing process. <P>SOLUTION: An area of an AlAs layer 15 to be oxidized is irradiated with laser light according to the pattern of a mask layer 18 and the difference in reactivity between the laser irradiated part and an unirradiated part is used to generate a difference in oxidation speed, thereby making the oxidation stop at a laser light irradiation boundary. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い光出力を有する面発光半導体レーザ及びその製造方法に関する。   The present invention relates to a surface emitting semiconductor laser having a high light output and a method for manufacturing the same.

面発光半導体レーザは、端面発光型の半導体レーザと比較してレーザ発振に必要とされる閾値電流が小さいなどの特徴をもっているが、閾値電流を小さくするためには微小な領域に電流と光を同時に閉じ込める必要がある。従来は、発光層の上部に堆積されたAlAs層等のAl含有層を横方向から酸化することにより、垂直共振器内に絶縁層を導入し、酸化されずに残った微小な非酸化領域(電流狭窄領域)に電流経路を絞り込むことにより低閾値発振を実現していた。特に、電流狭窄領域の寸法を数μm以下(発振波長に依存)とすることにより、単一モード発振を実現できる。   A surface-emitting semiconductor laser has a feature that a threshold current required for laser oscillation is smaller than that of an edge-emitting semiconductor laser. However, in order to reduce the threshold current, current and light are applied to a minute region. It is necessary to confine at the same time. Conventionally, by oxidizing an Al-containing layer such as an AlAs layer deposited on the light emitting layer from the lateral direction, an insulating layer is introduced into the vertical resonator, and a small non-oxidized region remaining without being oxidized ( Low threshold oscillation has been realized by narrowing the current path to the current confinement region. In particular, single mode oscillation can be realized by setting the size of the current confinement region to several μm or less (depending on the oscillation wavelength).

特開2002−353562号公報JP 2002-353562 A

発光層の上部に堆積されたAl含有層を横方向から酸化して直径数μmの電流経路を残すためには、ウエハ面内で均一な横方向酸化が行われることが必要である。ウエハ面内で横方向酸化のばらつきが大きい場合、酸化されすぎたデバイスでは、電流経路が塞がれることにより電流が流れないあるいは極めて出力が小さいという不具合が生じる。また、酸化が少ないデバイスでは、電流経路が大きくなってマルチモード化し、レーザ光の拡がり角が大きくなるため、光ファイバとの結合効率が低下するなどの問題が生じる。これらの問題は、酸化工程の制御性や均一性に起因するもので、加工処理条件の余裕度が少ないために生じるものである。   In order to oxidize the Al-containing layer deposited on the light emitting layer from the lateral direction and leave a current path having a diameter of several μm, it is necessary to perform uniform lateral oxidation within the wafer surface. When the lateral oxidation variation is large in the wafer surface, a device that has been oxidized excessively has a problem that current does not flow or output is extremely small due to the current path being blocked. Further, a device with little oxidation has a problem that the current path becomes large and becomes multimode, and the spread angle of the laser beam becomes large, so that the coupling efficiency with the optical fiber is lowered. These problems are caused by the controllability and uniformity of the oxidation process, and are caused by a small margin of processing conditions.

また、従来の製造方法では、Al含有層を横方向端部から酸化して形成する酸化層の寸法、言い換えると電流狭窄領域の径(電流経路径)は、酸化速度と酸化時間によって管理していた。酸化時間の余裕度を確保するには酸化速度を比較的遅くする必要があり、そうすると酸化時間が長くなり生産性が悪化するという問題が生じる。   In the conventional manufacturing method, the size of the oxide layer formed by oxidizing the Al-containing layer from the lateral end, in other words, the diameter of the current confinement region (current path diameter) is controlled by the oxidation rate and the oxidation time. It was. In order to ensure a sufficient allowance for the oxidation time, it is necessary to make the oxidation rate relatively slow, which causes a problem that the oxidation time becomes long and the productivity deteriorates.

更に、従来のAl含有層酸化方法では酸化領域の形状(換言すると、非酸化領域である電流狭窄領域の形状)を自由に制御したり、酸化領域中に複数の非酸化領域を配置するなど、酸化領域の形状をパターン化したりすることは出来なかった。   Furthermore, in the conventional Al-containing layer oxidation method, the shape of the oxidized region (in other words, the shape of the current confinement region that is a non-oxidized region) can be freely controlled, or a plurality of non-oxidized regions are arranged in the oxidized region. The shape of the oxidized region could not be patterned.

本発明は、このような従来技術の問題点に鑑み、酸化工程の制御性を高め、加工の均一性及び歩留まりを向上させた面発光半導体レーザの製造方法、また、酸化領域の形状をパターン化することのできる面発光半導体レーザの製造方法を提供することを目的とする。本発明は、また、複数の電流狭窄領域が島状に独立して形成された面発光半導体レーザを提供することを目的とする。   In view of the above-described problems of the conventional technology, the present invention provides a method for manufacturing a surface emitting semiconductor laser with improved controllability of an oxidation process and improved processing uniformity and yield, and patterning the shape of an oxidized region. It is an object of the present invention to provide a method for manufacturing a surface emitting semiconductor laser capable of performing the same. Another object of the present invention is to provide a surface emitting semiconductor laser in which a plurality of current confinement regions are independently formed in an island shape.

上記目的を達成するため、本発明では、膜の横方向の酸化が時間的によらずある場所で停止する、酸化の自己停止機構を導入する。より詳細には、膜の酸化させる領域の酸化速度と酸化させない領域の酸化速度に大きな差を生じさせることにより、擬似的に酸化の自己停止を実現する。具体的には、酸化させる領域へレーザ光を照射することにより酸化速度を速める。すなわち、本発明は、パターンに従ってレーザ光を照射することによって、照射部と非照射部に生じる反応性の違いを利用して酸化速度に差をつけ、レーザ光照射境界において酸化を自己停止させることによって酸化工程の均一性及び歩留まりの向上を図るものである。   In order to achieve the above object, the present invention introduces an oxidation self-stop mechanism in which the lateral oxidation of the film stops at a certain place regardless of time. More specifically, by causing a large difference between the oxidation rate of the region to be oxidized and the oxidation rate of the non-oxidized region, the self-stop of oxidation is realized in a pseudo manner. Specifically, the oxidation rate is increased by irradiating the region to be oxidized with laser light. That is, according to the present invention, by irradiating the laser beam according to the pattern, the difference in the oxidation rate is utilized by utilizing the difference in reactivity generated between the irradiated part and the non-irradiated part, and the oxidation is self-stopped at the laser light irradiation boundary. Thus, the uniformity of the oxidation process and the yield are improved.

照射するレーザ光の波長は、半導体多層膜反射鏡を構成する材料では吸収されることなく、発光層でのみ吸収される波長とする。すなわち半導体多層膜反射鏡を構成する材料のうち、最も小さいバンドギャップをもつ材料のバンドギャップをEglowとし、発光層を構成する材料のバンドギャップをEgactとすれば、照射するレーザ光の波長Airrは、hをプランク定数、cを光速度として、次の式(1)を満たすことが必要である。
hc/Eglow>Airr>hc/Egact …(1)
The wavelength of the laser beam to be irradiated is not absorbed by the material constituting the semiconductor multilayer film reflector, but is absorbed only by the light emitting layer. That is, if the band gap of the material having the smallest band gap among the materials constituting the semiconductor multilayer mirror is Eg low and the band gap of the material constituting the light emitting layer is Eg act , the wavelength of the laser beam to be irradiated A irr needs to satisfy the following equation (1), where h is a Planck constant and c is the speed of light.
hc / Eg low > A irr > hc / Eg act (1)

照射したレーザ光は発光層に吸収されて発熱し、それに伴い発光層の直上の半導体層も加熱されて昇温する。その結果、レーザ光が照射された領域と照射されていない領域には温度差が生じ、両領域では酸化速度が大幅に異なるため、酸化時には酸化層になるべき領域の境界で酸化が自動的に停止したような状態になる。本発明の方法を用いると、酸化速度を速くして酸化時間を短くすることができ生産性が向上すると共に、酸化時間の許容誤差が大きくなるため、面内の均一性や歩留まりが向上する。   The irradiated laser light is absorbed by the light emitting layer and generates heat, and accordingly, the semiconductor layer immediately above the light emitting layer is also heated to raise the temperature. As a result, there is a temperature difference between the region irradiated with laser light and the region not irradiated, and the oxidation rate is significantly different between the two regions. Therefore, oxidation is automatically performed at the boundary between the regions that should be oxidized layers during oxidation. It seems to have stopped. When the method of the present invention is used, the oxidation rate can be increased to shorten the oxidation time, thereby improving productivity and increasing the tolerance of the oxidation time, thereby improving in-plane uniformity and yield.

面発光半導体レーザは、基板上に下部多層膜反射鏡、発光層、酸化領域と該酸化領域によって囲まれた非酸化領域とを有するAl含有層、上部多層膜反射鏡が順次形成された構造を有するが、本発明による面発光半導体レーザは、Al含有層に、それぞれが酸化領域で囲まれた複数の独立した非酸化領域が設けられていることを特徴とする。   A surface emitting semiconductor laser has a structure in which a lower multilayer reflector, a light emitting layer, an Al-containing layer having an oxidized region and a non-oxidized region surrounded by the oxidized region, and an upper multilayer reflector are sequentially formed on a substrate. However, the surface emitting semiconductor laser according to the present invention is characterized in that the Al-containing layer is provided with a plurality of independent non-oxidized regions each surrounded by an oxidized region.

複数の独立した非酸化領域はほぼ同じ形状を有し、典型的には2次元アレイ状に配列されている。電極は、隣接する2つの非酸化領域で挟まれた酸化領域の上方に設けられる。   The plurality of independent non-oxidized regions have substantially the same shape, and are typically arranged in a two-dimensional array. The electrode is provided above the oxidized region sandwiched between two adjacent non-oxidized regions.

本発明による面発光半導体レーザの製造方法は、基板上に下部多層膜反射鏡、発光層、電流狭窄領域を設定するためのAl含有層、上部多層膜反射鏡を順次形成する工程と、Al含有層の端部を露出させる工程と、非酸化領域となるべき領域に比べて酸化領域となるべき領域が高温となるようにAl含有層に温度分布を与える工程と、温度分布を与えた状態でAl含有層を露出端部から酸化させる工程とを含むことを特徴とする。   A method of manufacturing a surface emitting semiconductor laser according to the present invention includes: a step of sequentially forming a lower multilayer reflector, a light emitting layer, an Al-containing layer for setting a current confinement region, and an upper multilayer reflector on a substrate; A step of exposing the end of the layer, a step of giving a temperature distribution to the Al-containing layer so that a region to be an oxidized region is at a higher temperature than a region to be a non-oxidized region, and a state in which the temperature distribution is given And a step of oxidizing the Al-containing layer from the exposed end portion.

温度分布は、上部多層膜反射鏡に吸収されず発光層に吸収される波長のレーザ光を酸化領域となるべき領域に選択的に照射することで与えることができる。この時、基板をAl含有層の酸化が可能な温度の下限付近に昇温しておくのが好ましい。レーザ光の選択的照射は、上部多層膜反射鏡の上方に形成した電流狭窄領域の形状を有するマスクを介して行うことができる。電流狭窄領域は2次元アレイ状に整列した複数の独立した領域から構成することができる。   The temperature distribution can be given by selectively irradiating a region to be an oxidized region with laser light having a wavelength that is not absorbed by the upper multilayer mirror and absorbed by the light emitting layer. At this time, it is preferable to raise the temperature of the substrate to near the lower limit of the temperature at which the Al-containing layer can be oxidized. The selective irradiation of the laser beam can be performed through a mask having a shape of a current confinement region formed above the upper multilayer film reflecting mirror. The current confinement region can be composed of a plurality of independent regions arranged in a two-dimensional array.

本発明によると、面発光半導体レーザの製造方法において、酸化工程の制御性を高め、加工の均一性及び歩留まりを向上させることができる。また、酸化領域の形状をパターン化することが可能になる。   According to the present invention, in the method for manufacturing a surface emitting semiconductor laser, the controllability of the oxidation process can be improved, and the processing uniformity and yield can be improved. In addition, the shape of the oxidized region can be patterned.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による面発光半導体レーザ製造方法の一例を説明する工程図である。
図1(a)に示すように、厚さ650μm、キャリア濃度3×1018cm-3のn型GaAs(100)基板11を用意し、その上に有機金属気相成長法(MOCVD法)により以下の層を順にエピタキシャル成長させた。n型不純物であるSiを添加したGaAsバッファ層(キャリア濃度2×1018cm-3、厚さ0.5μm)12を堆積し、その上に同じくSiを2×1018cm-3の濃度で添加したn型Al0.12Ga0.88As/Al0.9Ga0.1As半導体多層膜反射鏡13を形成した。多層膜反射鏡13における各層の膜厚はそれぞれ51nm及び61nmであり、層間における抵抗を低減するため各層の間には20nmの組成傾斜層を挿入した。ここでは反射率を高めるためこれらを1周期として32周期を作製した。その上に、不純物を添加していないAl0.3Ga0.7As障壁層103nm、不純物を添加していないGaAs障壁層15nmとIn0.2Ga0.8As量子井戸層7nmを交互に3.5ペア堆積した量子井戸構造、不純物を添加していないAl0.3Ga0.7As障壁層103nmをこの順に堆積し、発光層14を形成した。さらに、電流狭窄用として30nmのAlAs層15をその上に堆積し、最後に、p型不純物であるCを添加したAl0.12Ga0.88As/Al0.9Ga0.1As半導体多層膜反射鏡16を前記のn型半導体多層膜反射鏡13と同様な膜厚構成により形成した。
FIG. 1 is a process diagram for explaining an example of a surface emitting semiconductor laser manufacturing method according to the present invention.
As shown in FIG. 1A, an n-type GaAs (100) substrate 11 having a thickness of 650 μm and a carrier concentration of 3 × 10 18 cm −3 is prepared, and a metal organic chemical vapor deposition method (MOCVD method) is formed thereon. The following layers were epitaxially grown in order. A GaAs buffer layer (carrier concentration 2 × 10 18 cm −3 , thickness 0.5 μm) 12 doped with Si, which is an n-type impurity, is deposited, and Si is also deposited thereon at a concentration of 2 × 10 18 cm −3 . The added n-type Al 0.12 Ga 0.88 As / Al 0.9 Ga 0.1 As semiconductor multilayer mirror 13 was formed. The film thickness of each layer in the multilayer reflector 13 was 51 nm and 61 nm, respectively, and a 20 nm composition gradient layer was inserted between each layer in order to reduce the resistance between the layers. Here, in order to increase the reflectance, 32 periods were prepared with these as one period. A quantum well in which 3.5 pairs of Al 0.3 Ga 0.7 As barrier layer 103 nm without addition of impurities, GaAs barrier layer 15 nm without addition of impurities and 7 nm of In 0.2 Ga 0.8 As quantum well layers are alternately deposited thereon. A light emitting layer 14 was formed by depositing an Al 0.3 Ga 0.7 As barrier layer 103 nm having no structure and impurities added in this order. Further, an AlAs layer 15 of 30 nm is deposited thereon for current confinement, and finally an Al 0.12 Ga 0.88 As / Al 0.9 Ga 0.1 As semiconductor multilayer mirror 16 to which C is added as a p-type impurity is provided. It was formed with the same film thickness configuration as the n-type semiconductor multilayer mirror 13.

エピタキシャルウエハを作製した後、プラズマCVDによりSiN表面保護膜17を150nm堆積した。フォトリソグラフィーと蒸着により、AlAs層15を酸化させない領域(直径10μm)の表面のみにマスク層18としてAu層を300nm蒸着した。このマスク層18は、発光層14にレーザ光が照射される領域と照射されない領域を作るためのものである。AlAs層15を横方向に酸化するためには、AlAs層15の端部が、酸化雰囲気(たとえば水蒸気)と接触できる環境及び構造にあることが必要である。そこで、図1(b)に示すように、マスク層18を蒸着した領域よりも大きな領域(直径40μm)のメサを形成するようフォトリソグラフィーとSiN表面保護膜17の除去、エピタキシャル層のエッチングを行い、メサ側壁部へAlAs層15の端部を露出させた。   After producing the epitaxial wafer, a SiN surface protection film 17 was deposited to 150 nm by plasma CVD. An Au layer of 300 nm was deposited as the mask layer 18 only on the surface of the region (diameter 10 μm) where the AlAs layer 15 was not oxidized by photolithography and vapor deposition. The mask layer 18 is for creating a region where the light emitting layer 14 is irradiated with laser light and a region where the light is not irradiated. In order to oxidize the AlAs layer 15 in the lateral direction, it is necessary that the end of the AlAs layer 15 be in an environment and structure that can contact an oxidizing atmosphere (for example, water vapor). Therefore, as shown in FIG. 1B, photolithography, removal of the SiN surface protective film 17 and etching of the epitaxial layer are performed so as to form a mesa having a larger area (diameter 40 μm) than the area where the mask layer 18 is deposited. The end of the AlAs layer 15 was exposed to the mesa side wall.

次に、図1(c)に示すように、水蒸気雰囲気中へウエハを導入し、基板温度を380℃まで昇温した。基板温度の昇温は、基板を酸化可能な温度の下限まで上昇させて、温度変化に対して酸化速度が変化しやすい状態を作るために行う。その後、レーザ光を照射する。本実施例の場合、半導体多層膜反射鏡13,16を構成している材料はAl0.12Ga0.88As及びAl0.9Ga0.1Asであり、これらの材料はそのバンドギャップの大きさから810nmよりも短い波長の光を吸収し、これよりも長い波長の光のみが透過できる。発光層14であるIn0.2Ga0.8Asは980nmよりも短い波長の光を吸収することが可能であるため、上式(1)より、照射レーザ光の波長としては810〜980nmが適当であることがわかる。そこで、本実施例では、発振波長0.9μmの半導体レーザを用いて基板全面を10分間照射した。照射したレーザ光は、マスクのない領域では発光層14に吸収される。そのため発光層14が加熱されると同時に、発光層の直上にあるAlAs層15も加熱される。 Next, as shown in FIG.1 (c), the wafer was introduce | transduced into water vapor | steam atmosphere and the substrate temperature was heated up to 380 degreeC. The substrate temperature is raised in order to raise the substrate to the lower limit of the temperature at which the substrate can be oxidized and to create a state in which the oxidation rate is likely to change with respect to the temperature change. Thereafter, laser light is irradiated. In this embodiment, the materials constituting the semiconductor multilayer mirrors 13 and 16 are Al 0.12 Ga 0.88 As and Al 0.9 Ga 0.1 As, and these materials are shorter than 810 nm due to the size of the band gap. It absorbs light of a wavelength and can transmit only light having a longer wavelength. Since In 0.2 Ga 0.8 As that is the light emitting layer 14 can absorb light having a wavelength shorter than 980 nm, the wavelength of the irradiation laser light is appropriately 810 to 980 nm from the above formula (1). I understand. Therefore, in this example, the entire surface of the substrate was irradiated for 10 minutes using a semiconductor laser having an oscillation wavelength of 0.9 μm. The irradiated laser light is absorbed by the light emitting layer 14 in a region without a mask. Therefore, at the same time as the light emitting layer 14 is heated, the AlAs layer 15 immediately above the light emitting layer is also heated.

図2は、AlAs層15の酸化速度の温度依存性を示す図である。出力1Wのレーザ光を直径0.1mmに集光して照射することにより、およそ50℃の昇温が見込まれるため、レーザ光照射による選択的な酸化速度の向上が期待できる。本例では、マスク層18によって照射レーザ光が遮光されたAlAs層15の領域は380℃のままのため酸化は起こらない。一方、レーザ光が照射されているAlAs層15の領域は430℃に昇温されるため、AlAs層15の露出端部から供給される水蒸気によって酸化が進行する。こうして、基板温度を酸化のおこらない380℃以下にした後、マスクを用いた部分的なレーザ照射によって照射部のみ酸化速度を上昇させることにより選択性の高い酸化が可能になる。   FIG. 2 is a diagram showing the temperature dependence of the oxidation rate of the AlAs layer 15. By condensing and irradiating a laser beam with an output of 1 W to a diameter of 0.1 mm, a temperature increase of about 50 ° C. is expected, so that selective oxidation rate improvement by laser beam irradiation can be expected. In this example, since the region of the AlAs layer 15 where the irradiation laser beam is shielded by the mask layer 18 remains at 380 ° C., no oxidation occurs. On the other hand, since the region of the AlAs layer 15 irradiated with the laser light is heated to 430 ° C., the oxidation proceeds with the water vapor supplied from the exposed end of the AlAs layer 15. Thus, after the substrate temperature is lowered to 380 ° C. or less where oxidation does not occur, oxidation with high selectivity can be achieved by increasing the oxidation rate only at the irradiated portion by partial laser irradiation using a mask.

図1(d)は酸化終了後の状態を示している。AlAs層15は、マスクされていない領域はマスクされた領域と比較して温度が高くなるため、酸化速度が速くなる。従って、マスクされた領域との境界では酸化速度の差が大きいため、酸化が自動的に停止したような状態になる。そのためマスクの大きさに合わせて酸化を停止することが可能になる。本例では、AlAs層15の内部に、マスク層18のパターン形状と実質的に同一形状の非酸化領域が形成される。   FIG. 1 (d) shows a state after the end of oxidation. Since the AlAs layer 15 has a higher temperature in the unmasked region than in the masked region, the oxidation rate is increased. Therefore, since the difference in the oxidation rate is large at the boundary with the masked region, the oxidation is automatically stopped. Therefore, oxidation can be stopped according to the size of the mask. In this example, a non-oxidized region having substantially the same shape as the pattern shape of the mask layer 18 is formed inside the AlAs layer 15.

以上説明したように、本発明の面発光半導体レーザ製造方法によると、マスクパターンの形状によって、AlAs層15の酸化領域の形状を自由に制御することが可能である。また、酸化時間の許容誤差が大きくなるためウエハ面内での均一性や歩留まりの向上を図ることができる。   As described above, according to the surface emitting semiconductor laser manufacturing method of the present invention, the shape of the oxidized region of the AlAs layer 15 can be freely controlled by the shape of the mask pattern. Further, since the tolerance of the oxidation time is increased, the uniformity within the wafer surface and the yield can be improved.

また、従来の電流狭窄領域形成方法ではエッチングにより露出させた端面から横方向に一様に酸化が進み、酸化速度を制御することができないため、得られる電流狭窄領域の形状(発光領域の形状)は、必然的にエッチングによって形成したメサ形状と相似な形状になる。一方、本発明の電流狭窄領域形成方法は、発光領域の形状に関する自由度が大きく、酸化速度とマスクパターンを調整することにより非酸化領域の内側に酸化領域を形成することも可能になる。   Further, in the conventional current confinement region forming method, oxidation progresses uniformly laterally from the end face exposed by etching, and the oxidation rate cannot be controlled, so that the shape of the current confinement region (the shape of the light emitting region) is obtained. Inevitably becomes a shape similar to the mesa shape formed by etching. On the other hand, the current confinement region forming method of the present invention has a large degree of freedom regarding the shape of the light emitting region, and it becomes possible to form an oxidized region inside the non-oxidized region by adjusting the oxidation rate and the mask pattern.

図3は、本発明の製造方法によって製造した面発光半導体レーザの一例の説明図である。図は、1つのメサの中に、独立した複数の発光領域を形成した面発光半導体レーザの例を示すものであり、図3(a)は製造工程の一工程における上面模式図、図3(b)は製造された面発光半導体レーザの上面模式図、図3(c)は図3(b)のAA断面図である。   FIG. 3 is an explanatory view of an example of a surface emitting semiconductor laser manufactured by the manufacturing method of the present invention. FIG. 3 shows an example of a surface emitting semiconductor laser in which a plurality of independent light emitting regions are formed in one mesa. FIG. 3A is a schematic top view in one step of the manufacturing process. FIG. 3B is a schematic top view of the manufactured surface emitting semiconductor laser, and FIG. 3C is an AA cross-sectional view of FIG.

図3(a)は、図1(b)あるいは図1(c)に相当する上面模式図である。本実施例では、まず、図1(a)と同様にして、n型GaAs(100)基板上にGaAsバッファ層、n型Al0.12Ga0.88As/Al0.9Ga0.1As半導体多層膜反射鏡、発光層、電流狭窄用のAlAs層、p型Al0.12Ga0.88As/Al0.9Ga0.1As半導体多層膜反射鏡を順次エピタキシャル成長し、その上にSiN表面保護膜を形成した。次に、レーザ光照射時にレーザ光が照射されない領域を作るために、表面保護膜上にAu層を300nm蒸着し、それを4つの分離した矩形領域21a〜21dを形成するようにパターニングしてマスク層とした。4つの矩形領域の大きさはすべて10μm角とした。 FIG. 3A is a schematic top view corresponding to FIG. 1B or FIG. In this embodiment, first, as in FIG. 1A, a GaAs buffer layer, an n-type Al 0.12 Ga 0.88 As / Al 0.9 Ga 0.1 As semiconductor multilayer mirror, an emission, on an n-type GaAs (100) substrate. A layer, an AlAs layer for current confinement, and a p-type Al 0.12 Ga 0.88 As / Al 0.9 Ga 0.1 As semiconductor multilayer reflector were sequentially epitaxially grown, and a SiN surface protective film was formed thereon. Next, in order to create a region that is not irradiated with laser light during laser light irradiation, an Au layer is deposited on the surface protective film by 300 nm, and is patterned to form four separated rectangular regions 21a to 21d. Layered. All four rectangular regions were 10 μm square.

その後、図1(b)にて説明したように、マスク層21a〜21dを蒸着した領域よりも大きな領域(50μm)のメサを形成するようフォトリソグラフィーとSiN表面保護膜の除去、エピタキシャル層のエッチングを行い、メサ側壁部へAlAs層の端部を露出させた。次に、水蒸気雰囲気中へウエハを導入し、基板温度を380℃まで昇温した後、発振波長0.9μmの半導体レーザを用いて基板全面を10分間照射した。照射したレーザ光は、マスクのない領域では発光層に吸収、発光層が昇温すると同時に、発光層の直上にあるAlAs層も昇温する。マスク層21a〜21dによって照射レーザ光が遮光されたAlAs層の領域は温度が低いため酸化速度が遅く、レーザ光が照射されているAlAs層の領域は温度が高いためAlAs層の露出端部から供給される水蒸気によって酸化が進行する。   Thereafter, as described in FIG. 1B, photolithography, removal of the SiN surface protective film, and etching of the epitaxial layer are performed so as to form a mesa having a larger area (50 μm) than the area where the mask layers 21a to 21d are deposited. To expose the end of the AlAs layer on the side wall of the mesa. Next, the wafer was introduced into a water vapor atmosphere, the substrate temperature was raised to 380 ° C., and then the entire surface of the substrate was irradiated with a semiconductor laser having an oscillation wavelength of 0.9 μm for 10 minutes. The irradiated laser light is absorbed in the light emitting layer in the region without the mask, and the temperature of the light emitting layer is increased, and at the same time, the AlAs layer immediately above the light emitting layer is also heated. The region of the AlAs layer in which the irradiation laser light is shielded by the mask layers 21a to 21d has a low temperature and thus the oxidation rate is slow, and the region of the AlAs layer irradiated with the laser light has a high temperature and therefore from the exposed end of the AlAs layer. Oxidation proceeds with the supplied steam.

こうしてAlAs層は、マスク層21a〜21dと同じ形状の領域を残して酸化され、AlAs層には4つの独立した非酸化領域24a〜24d、すなわち電流狭窄領域が形成される。マスク層21a〜21dを除去した後、上部電極22を形成した状態を示すのが図3(b)である。上部電極22は4つの独立した電流狭窄領域をそれぞれ包囲するようにAlAs層の酸化領域23の上方に形成した。   Thus, the AlAs layer is oxidized leaving the same shape as the mask layers 21a to 21d, and four independent non-oxidized regions 24a to 24d, that is, current confinement regions are formed in the AlAs layer. FIG. 3B shows a state in which the upper electrode 22 is formed after the mask layers 21a to 21d are removed. The upper electrode 22 was formed above the oxidized region 23 of the AlAs layer so as to surround four independent current confinement regions.

図3(c)に、本実施例の面発光半導体レーザに電流を流してレーザ発光させたときの状態を模式的に示す。上部電極22から下部電極25に流れる電流はAlAs層の酸化領域23で電流路が制限され、非酸化領域24a〜24dの部分を通って発光層に入り、発光が生じる。発光層で生じた発光は、上下の半導体多層膜反射鏡によって構成されるレーザ共振器内で共振し、図示の例の場合、上部半導体多層膜反射鏡を通してレーザ光26として出力される。この場合、図に示されているように、4つの独立した非酸化領域24a〜24dに対応して4つの独立した発光領域からそれぞれレーザ光26が発生される。図示した面発光半導体レーザは、4個の微小な面発光半導体レーザから構成されたレーザアレイであるということもできる。   FIG. 3C schematically shows a state in which laser is emitted by supplying a current to the surface emitting semiconductor laser of this example. The current path flowing from the upper electrode 22 to the lower electrode 25 is limited in current path in the oxidized region 23 of the AlAs layer, enters the light emitting layer through the non-oxidized regions 24a to 24d, and emits light. Light emitted from the light emitting layer resonates in a laser resonator constituted by upper and lower semiconductor multilayer reflectors, and in the case of the illustrated example, is output as laser light 26 through the upper semiconductor multilayer reflector. In this case, as shown in the figure, laser beams 26 are generated from four independent light emitting regions corresponding to the four independent non-oxidized regions 24a to 24d, respectively. The surface-emitting semiconductor laser shown in the figure can be said to be a laser array composed of four minute surface-emitting semiconductor lasers.

図4は、従来法で製造した図3に対応する面発光半導体レーザの説明図である。図4(a)、(b)はそれぞれ図3(b)、(c)に対応する図である。   FIG. 4 is an explanatory view of a surface emitting semiconductor laser corresponding to FIG. 3 manufactured by a conventional method. 4 (a) and 4 (b) correspond to FIGS. 3 (b) and 3 (c), respectively.

図3(b)、(c)に示したような、非酸化領域の更に内側に酸化領域を持つ構造は、酸化時間のみの制御を用いた従来方法では製造不可能であるため、図4(b)に示すように電極形状を格子状にする方法がとられる。すなわち、1つの大きな非酸化領域24eの上に交差するように電極22を設ける。   A structure having an oxidized region further inside the non-oxidized region as shown in FIGS. 3B and 3C cannot be manufactured by the conventional method using only the oxidation time control. As shown in b), a method is adopted in which the electrode shape is a lattice. That is, the electrode 22 is provided so as to cross over one large non-oxidized region 24e.

このような構造をとると、発光に寄与しない電流分が多くなり、電気−光変換効率が低い点で問題があった。一方、本発明の製造方法によると、選択的な酸化によって発光に寄与しない電流をなくすことが可能となるため、変換効率を向上することができる。すなわち、図3の例で示したように、本発明の製造方法は、酸化領域がつながっていれば、周囲のみでなく、内部にも酸化領域を作製することが可能であるため、電極形状に合せて酸化領域を作ることが可能である。従来方法と比較すると、それにより、発光部のみに電流を流すことが可能となるため高い電気−光変換効率が得られる。発光領域間の距離を1μm程度まで近づけることにより、レーザ間の光による相互作用が可能となるため位相同期したレーザアレイを作製することができる。本方法を用いれば、従来と比較して前記変換効率の高い位相同期アレイを作製することが可能になる。   With such a structure, there is a problem in that the amount of current that does not contribute to light emission increases, and the electro-optical conversion efficiency is low. On the other hand, according to the manufacturing method of the present invention, it is possible to eliminate a current that does not contribute to light emission by selective oxidation, so that the conversion efficiency can be improved. That is, as shown in the example of FIG. 3, in the manufacturing method of the present invention, if the oxidized region is connected, the oxidized region can be formed not only in the periphery but also in the inside. Together, it is possible to create an oxidized region. Compared with the conventional method, it is thereby possible to pass a current only through the light emitting part, so that high electro-optical conversion efficiency can be obtained. When the distance between the light emitting regions is reduced to about 1 μm, the interaction between the lasers becomes possible, so that a phase-locked laser array can be manufactured. If this method is used, it becomes possible to produce a phase-locked array having a higher conversion efficiency than the conventional one.

本発明による面発光半導体レーザ製造方法の一例を説明する工程図。Process drawing explaining an example of the surface emitting semiconductor laser manufacturing method by this invention. AlAs層の酸化速度の温度依存性を示す図。The figure which shows the temperature dependence of the oxidation rate of an AlAs layer. 本発明の製造方法によって製造した面発光半導体レーザの他の例の説明図。Explanatory drawing of the other example of the surface emitting semiconductor laser manufactured with the manufacturing method of this invention. 従来法で製造した図3に対応する面発光半導体レーザの説明図。Explanatory drawing of the surface emitting semiconductor laser corresponding to FIG. 3 manufactured with the conventional method.

符号の説明Explanation of symbols

11:基板、12:バッファ層、13:半導体多層膜反射鏡、14:発光層、15:AlAs層、16:半導体多層膜反射鏡、17:表面保護膜、18:マスク層、21a〜21d:マスク層、22:上部電極、23:酸化領域、24a〜24e:非酸化領域、25:下部電極、26:レーザ光 11: Substrate, 12: Buffer layer, 13: Semiconductor multilayer mirror, 14: Light emitting layer, 15: AlAs layer, 16: Semiconductor multilayer reflector, 17: Surface protective film, 18: Mask layer, 21a to 21d: Mask layer, 22: upper electrode, 23: oxidized region, 24a to 24e: non-oxidized region, 25: lower electrode, 26: laser beam

Claims (11)

基板上に下部多層膜反射鏡、発光層、酸化領域と該酸化領域によって囲まれた非酸化領域とを有するAl含有層、上部多層膜反射鏡が順次形成された面発光半導体レーザにおいて、
前記Al含有層は、それぞれが酸化領域で囲まれた複数の独立した非酸化領域を有することを特徴とする面発光半導体レーザ。
In a surface emitting semiconductor laser in which a lower multilayer reflector, a light emitting layer, an Al-containing layer having an oxidized region and a non-oxidized region surrounded by the oxidized region, and an upper multilayer reflector are sequentially formed on a substrate,
The surface-emitting semiconductor laser, wherein the Al-containing layer has a plurality of independent non-oxidized regions each surrounded by an oxidized region.
請求項1記載の面発光半導体レーザにおいて、前記複数の独立した非酸化領域はほぼ同じ形状を有することを特徴とする面発光半導体レーザ。   2. The surface emitting semiconductor laser according to claim 1, wherein the plurality of independent non-oxidized regions have substantially the same shape. 請求項1記載の面発光半導体レーザにおいて、前記複数の独立した非酸化領域は2次元アレイ状に配列されていることを特徴とする面発光半導体レーザ。   2. The surface emitting semiconductor laser according to claim 1, wherein the plurality of independent non-oxidized regions are arranged in a two-dimensional array. 請求項3記載の面発光半導体レーザにおいて、隣接する2つの非酸化領域で挟まれた酸化領域の上方に電極が設けられていることを特徴とする面発光半導体レーザ。   4. The surface emitting semiconductor laser according to claim 3, wherein an electrode is provided above an oxidized region sandwiched between two adjacent non-oxidized regions. 基板上に下部多層膜反射鏡、発光層、電流狭窄領域を設定するためのAl含有層、上部多層膜反射鏡を順次形成する工程と、
前記Al含有層の端部を露出させる工程と、
非酸化領域となるべき領域に比べて酸化領域となるべき領域が高温となるように前記Al含有層に温度分布を与える工程と、
前記温度分布を与えた状態で前記Al含有層を前記露出させた端部から酸化させる工程と
を含むことを特徴とする面発光半導体レーザの製造方法。
A step of sequentially forming a lower multilayer reflector, a light emitting layer, an Al-containing layer for setting a current confinement region, and an upper multilayer reflector on a substrate;
Exposing an end of the Al-containing layer;
Providing the Al-containing layer with a temperature distribution such that a region to be an oxidized region has a higher temperature than a region to be a non-oxidized region;
And a step of oxidizing the Al-containing layer from the exposed end portion in a state where the temperature distribution is given.
請求項5記載の面発光半導体レーザの製造方法において、前記Al含有層に温度分布を与える工程では、前記上部多層膜反射鏡に吸収されず前記発光層に吸収される波長のレーザ光を前記酸化領域となるべき領域に選択的に照射することを特徴とする面発光半導体レーザの製造方法。   6. The method of manufacturing a surface emitting semiconductor laser according to claim 5, wherein in the step of giving a temperature distribution to the Al-containing layer, laser light having a wavelength that is not absorbed by the upper multilayer reflector but is absorbed by the light emitting layer is oxidized. A method of manufacturing a surface emitting semiconductor laser, wherein a region to be a region is selectively irradiated. 請求項6記載の面発光半導体レーザの製造方法において、前記基板を前記Al含有層の酸化が可能な温度の下限付近に昇温することを特徴とする面発光半導体レーザの製造方法。   7. The method for manufacturing a surface emitting semiconductor laser according to claim 6, wherein the temperature of the substrate is raised to a temperature near a lower limit of the temperature at which the Al-containing layer can be oxidized. 請求項6又は7記載の面発光半導体レーザの製造方法において、前記レーザ光の選択的照射は、前記上部多層膜反射鏡の上方に形成したマスクを介して行うことを特徴とする面発光半導体レーザの製造方法。   8. The surface emitting semiconductor laser according to claim 6, wherein the selective irradiation of the laser beam is performed through a mask formed above the upper multilayer reflector. Manufacturing method. 請求項8記載の面発光半導体レーザの製造方法において、前記マスクは前記電流狭窄領域の形状を有することを特徴とする面発光半導体レーザの製造方法。   9. The method for manufacturing a surface emitting semiconductor laser according to claim 8, wherein the mask has a shape of the current confinement region. 請求項9記載の面発光半導体レーザの製造方法において、前記電流狭窄領域は複数の独立した領域からなることを特徴とする面発光半導体レーザの製造方法。   10. The method for manufacturing a surface emitting semiconductor laser according to claim 9, wherein the current confinement region includes a plurality of independent regions. 請求項9記載の面発光半導体レーザの製造方法において、前記複数の独立した領域は2次元アレイ状に整列していることを特徴とする面発光半導体レーザの製造方法。   10. The method for manufacturing a surface emitting semiconductor laser according to claim 9, wherein the plurality of independent regions are aligned in a two-dimensional array.
JP2003270710A 2003-07-03 2003-07-03 Surface-emitting laser and its manufacturing method Pending JP2005026625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270710A JP2005026625A (en) 2003-07-03 2003-07-03 Surface-emitting laser and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270710A JP2005026625A (en) 2003-07-03 2003-07-03 Surface-emitting laser and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005026625A true JP2005026625A (en) 2005-01-27

Family

ID=34190600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270710A Pending JP2005026625A (en) 2003-07-03 2003-07-03 Surface-emitting laser and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005026625A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022424B2 (en) 2006-06-20 2011-09-20 Sony Corporation Semiconductor device and method of manufacturing it
US8183074B2 (en) 2007-01-19 2012-05-22 Sony Corporation Light emitting element, method for manufacturing light emitting element, light emitting element assembly, and method for manufacturing light emitting element assembly
US8761221B2 (en) 2007-04-18 2014-06-24 Sony Corporation Light-emitting element and method for manufacturing the same
JP2019525485A (en) * 2016-08-08 2019-09-05 フィニサー コーポレイション Etched planarization VCSEL

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022424B2 (en) 2006-06-20 2011-09-20 Sony Corporation Semiconductor device and method of manufacturing it
US8497141B2 (en) 2006-06-20 2013-07-30 Sony Corporation Semiconductor device and method of manufacturing it
US8183074B2 (en) 2007-01-19 2012-05-22 Sony Corporation Light emitting element, method for manufacturing light emitting element, light emitting element assembly, and method for manufacturing light emitting element assembly
US8761221B2 (en) 2007-04-18 2014-06-24 Sony Corporation Light-emitting element and method for manufacturing the same
US9252565B2 (en) 2007-04-18 2016-02-02 Sony Corporation Light-emitting element
US9407064B2 (en) 2007-04-18 2016-08-02 Sony Corporation Light-emitting element and method for manufacturing the same
US9484713B2 (en) 2007-04-18 2016-11-01 Sony Corporation Light-emitting element and method for manufacturing the same
US9941662B2 (en) 2007-04-18 2018-04-10 Sony Corporation Light-emitting element and method for manufacturing the same
US10153613B2 (en) 2007-04-18 2018-12-11 Sony Corporation Light-emitting element and method for manufacturing the same
US10833479B2 (en) 2007-04-18 2020-11-10 Sony Corporation Light-emitting element and method for manufacturing the same
US11658463B2 (en) 2007-04-18 2023-05-23 Sony Group Corporation Light-emitting element and method for manufacturing the same
JP2019525485A (en) * 2016-08-08 2019-09-05 フィニサー コーポレイション Etched planarization VCSEL

Similar Documents

Publication Publication Date Title
JP4347369B2 (en) Manufacturing method of surface emitting laser
JP5026905B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3876895B2 (en) Surface emitting semiconductor laser
JP4058635B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2008053353A (en) Surface emitting laser array, surface emitting laser element used therefor, and method for manufacturing the array
JP4141172B2 (en) Surface emitting semiconductor laser device manufacturing method, surface emitting semiconductor laser device, and optical transmission system
JP2011155087A (en) Surface-emitting semiconductor laser and manufacturing method thereof
KR102208567B1 (en) VCSEL Arrays with Uniform Threshold Current and Method of Manufacturing the Same
JP2019040953A (en) Vertical resonance type surface emitting laser, and method for manufacturing the same
JP2005026625A (en) Surface-emitting laser and its manufacturing method
KR102046237B1 (en) Wide-area laser including anti-guiding regions for higher lateral mode suppression
JP3459003B2 (en) Semiconductor device and manufacturing method thereof
JPH01246891A (en) Distributed feedback type semiconductor laser
JP4124017B2 (en) Manufacturing method of surface emitting semiconductor laser device
JP2005045107A (en) Surface emitting laser and method for manufacturing the same
JP2008226884A (en) Method for fabricating n-type group xiii nitride semiconductor, surface light-emitting laser, method for fabricating current pinching structure in surface light-emitting laser, method for changing resistance of nitride semiconductor, and method for fabricating emiconductor laser
JP2007194390A (en) Method of manufacturing semiconductor light emitting device
JP2004297064A (en) Vertical resonator surface light emitting laser
JP2009032716A (en) Surface emitting laser, and manufacturing method thereof
JPH04255286A (en) Semiconductor laser device
JPH03123092A (en) Semiconductor laser
CN111463653A (en) Semiconductor laser and preparation method thereof
KR0141057B1 (en) A method of manufacturing semiconductor laser
JP3876910B2 (en) Surface emitting semiconductor laser manufacturing method and electronic device manufacturing method
JP2005150519A (en) Plane-emission semiconductor laser and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020