[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005019514A - Method of forming permanent protective film on surface of printed wiring board - Google Patents

Method of forming permanent protective film on surface of printed wiring board Download PDF

Info

Publication number
JP2005019514A
JP2005019514A JP2003179398A JP2003179398A JP2005019514A JP 2005019514 A JP2005019514 A JP 2005019514A JP 2003179398 A JP2003179398 A JP 2003179398A JP 2003179398 A JP2003179398 A JP 2003179398A JP 2005019514 A JP2005019514 A JP 2005019514A
Authority
JP
Japan
Prior art keywords
resin composition
printed wiring
wiring board
protective film
permanent protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179398A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Takafumi Omori
貴文 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003179398A priority Critical patent/JP2005019514A/en
Publication of JP2005019514A publication Critical patent/JP2005019514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a permanent protective film on the surface of a printed wiring board, wherein the permanent protective film has a smooth surface and is excellent in properties, such as thermal resistance, migration resistance and the like, and high in reliability. <P>SOLUTION: A thermosetting resin composition sheet attached to one side of a releasing film is laminated on a copper circuit conductor printed wiring board, the releasing film is separated off after the thermosetting resin composition sheet is cured, the resin composition layer of a room-temperature adhesive resin composition layer-attached metal foil where a prescribed hole is bored at a spot subjected to precious metal plating is laminated and bonded thereon, the room-temperature adhesive resin composition layer-attached metal foil is subjected to plasma processing from above, the room-temperature adhesive resin composition layer-attached metal foil is removed off after a circuit conductor is exposed, and then precious metal plating is carried out to obtain a permanent protective film-attached printed wiring board. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、プリント配線板の表面の永久保護皮膜の形成方法に関し、得られたプリント配線板は、永久保護皮膜の信頼性に優れた高密度プリント配線板として、半導体チップを搭載し、小型、軽量の新規な半導体プラスチックパッケージ用等に主に使用される。
【0002】
【従来の技術】
近年、ますます小型、薄型、軽量化する電子機器において、高密度のプリント配線板が使用されるようになってきている。このプリント配線板は、従来貴金属メッキを行う場合に、スクリーン印刷法で表面の永久保護皮膜を形成していたが、この印刷法では細密な回路を有するプリント配線板では印刷による位置精度が悪く、問題があるために、近年はUV選択熱硬化型レジストが多く使用されている。しかしながら、このUV選択熱硬化型レジストは、露光、現像等を行うために多くのアクリル系樹脂、不飽和基含有ポリカルボン酸樹脂、脱泡剤、レベリング剤、光重合開始剤等を添加しており(例えば、特許文献1〜3参照)、特性上、信頼性上は熱硬化型レジストには及ばないものであった。又、塗布し、乾燥して得られる従来の溶剤タイプのUVレジストは、導体回路の凹凸があるために、乾燥後に表面の凹凸が大きく、特にフリップチップ搭載時の問題が見られた。
【0003】
【特許文献1】特開平11−103166号公報
【特許文献2】特開平11−333975号公報
【特許文献3】特開平10−322027号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、表面平滑性に優れ、更には電気的特性、各種信頼性等にも優れた永久保護皮膜の形成方法を提供するものである。
【0005】
【発明が解決するための手段】
プリント配線板の表面に形成する永久保護皮膜形成方法において、離型フィルムの片面に付着した熱硬化型樹脂組成物シートを銅回路導体プリント配線板上に積層硬化後に、離型フィルムを剥離し、この上に、貴金属メッキを行う箇所に所定の孔をあけた室温粘着型樹脂組成物層付着金属箔の樹脂組成物層をラミネート接着し、この上からプラズマ処理を行って回路導体を露出後に室温粘着型樹脂組成物層付着金属箔を剥離し、貴金属メッキを行ってプリント配線板とすることにより、表面平滑性に優れ、電気的特性に優れ、且つ信頼性にも優れた永久保護皮膜を有するプリント配線板を作製することができる。
【0006】
【発明の実施の形態】
本発明の永久保護皮膜に使用する熱硬化性樹脂組成物の樹脂としては一般に公知のものが使用できる。具体的には一般に公知の各種エポキシ樹脂、多官能性シアン酸エステル樹脂、多官能性シアン酸エステルー多官能性マレイミド樹脂、ポリイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、ポリスチレン樹脂等が1種或いは2種以上組み合わせて使用される。しかしながら、回路間の耐マイグレーション性、耐熱性等の点からは、多官能性シアン酸エステル系樹脂組成物が好適に使用される。
【0007】
本発明の好適な熱硬化性樹脂としての多官能性シアン酸エステル化合物は、一般に公知のものが使用される。具体的には、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類等である。
【0008】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類も用いら得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。この樹脂中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。分子内に臭素、リン等が含有されるものも使用できる。これらは1種或いは2種以上が組み合わせて使用され、一般には可溶な有機溶剤に溶解させて使用する。
【0009】
エポキシ樹脂としては、特に限定はなく、一般に公知のものが使用できる。例えばビスフェノールA型ポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等が1種或いは2種以上組み合わせて使用される。
【0010】
有機溶剤として使用されるものは特に限定はないが、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;N,N−ジメチルホルムアミド等のアミド類等が挙げられ、これらは1種或いは2種以上が組み合わせて使用される。
【0011】
本発明の硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて上記以外の種々の添加物を配合することができる。これらの添加物としては、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂等、更にこれらの公知の臭素化物、リン含有化合物等の各種樹脂類、公知の上記以外の無機、有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は公知の硬化剤、触媒が適宜配合される。
【0012】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した硬化性樹脂に対して公知の硬化触媒を用いる。使用量は、それぞれの硬化性樹脂100重量部に対し、0.005〜10重量部、好ましくは0.01〜5重量部である。
【0013】
本発明の各成分を均一に分散する方法は、一般に公知の方法が使用され得る。例えば、各成分を配合し、溶剤を加えてホモミキサ−で高速攪拌する方法、三本ロールにて、室温或いは加熱下に混練するか、ボールミル、ライカイ機等、一般に公知の方法が使用される。
【0014】
作製された硬化性樹脂組成物は、無溶剤、溶剤入りいずれでも良い。Bステージ樹脂組成物シートは離型フィルム上に直接ロール等で塗布、乾燥してBステージ化する。この場合、樹脂組成物中に少量の溶剤が残存していても良い。反対側の樹脂面は汚染防止等の点から保護フィルムを使用するのが好ましい。保護フィルムは加熱ロール等で圧力をかけて一体化するのが良い。これを基板に積層又はラミネートして使用する際はこの保護フィルムを剥離して使用する。樹脂組成物の厚みは特に限定はないが、好適には3〜100μmである。この製造方法は特に限定するものではなく、一般に公知の方法が使用され得る。
【0015】
離型フィルムは公知のものが使用される。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステル等が使用される。
【0016】
本発明のBステージ樹脂組成物シート等を使用して銅回路導体を有するプリント配線板の上に積層する場合、導体回路を形成した内層板の導体に公知の表面処理を施した後、この上に保護フィルムを剥離除去して配置し、その外側には表面平滑な金属板を置き、加熱、加圧、好適には真空下で積層する。積層後に表面の離型フィルムを剥離除去し、この上に、好適には室温粘着性を有する樹脂組成物層が付着した金属箔をカバーシートとして室温でラミネート接着する。これはプラズマで加工する箇所がくり抜かれており、この上からプラズマで樹脂層を処理して除去し、貴金属メッキを行う銅回路導体を露出させる。その後、貴金属メッキを施し、プリント配線板とする。もちろん、加熱溶融型樹脂を付着した金属箔付きカバーシートも使用可能である。
【0017】
室温で粘着性を有する樹脂は特に限定はなく、例えばポリエステル樹脂、ポリウレタン樹脂等、一般に公知のものが単独或いは他の樹脂と配合されて使用される。金属箔表面にこの樹脂組成物層を形成する方法は上記の方法等が使用される。
【0018】
本発明の保護皮膜を銅回路導体表面に積層形成する際の成形条件は、特に限定はないが、一般には温度60〜250℃、圧力2〜50kgf/cm 、時間は0.5〜3時間である。又、真空下に積層成形するのが好ましい。装置は真空ラミネータプレス、一般の多段プレス等、公知のものが使用できる。もちろんラミネートして使用することも可能である。しかしながら、表面を平滑にするためには積層形成する方法が好ましい。
【0019】
積層形成されたものの表面の離型フィルムを剥離後、この上にプラズマで加工除去する箇所をくり抜いた粘着剤付き金属箔を配置し、一般には1〜15kgf/cmの線圧で接着する。その後、プラズマ処理でくり抜いた部分の樹脂層を銅回路導体が露出するまで加工除去し、その後、粘着剤付き金属箔を除去し、貴金属メッキを行ってプリント配線板とする。
【0020】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパンモノマーを400部150℃に熔融させ、撹拌しながら4時間反応させ、平均分子量1,900のモノマーとプレポリマーの混合物を得た。これをメチルエチルケトンに溶解し、ワニスAとした。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン<株>製)350部、ノボラック型エポキシ樹脂(商品名:DEN431、ダウケミカル<株>製)50部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN−220F、住友化学工業<株>製)100部を配合し、硬化触媒としてアセチルアセトン鉄0.3部をメチルエチルケトンに溶解して加え、ワニスBとした。このワニスBを厚さ25μmのPETフィルムの片面に連続的に塗布、乾燥して樹脂組成物層厚さ20μmのBステージ樹脂組成物シートC(170℃でのゲル化時間130秒)を作製し、乾燥ゾーンから出てきた時に厚さ25μmの保護ポリプロピレンフィルムを温度100℃、線圧4kgf/cmでラミネート接着した。
【0021】
一方、プリント配線板としてサイズ500x500mmの絶縁層厚さ0.2mm、12μm両面銅箔のBTレジン銅張積層板(商品名:CCL−HL830、三菱ガス化学<株>製 )を用い、これに回路を形成し、この上に上記Bステージ樹脂組成物シートCの保護フィルムを剥離して配置し、その外側に厚さ1.5mmのステンレス板を配置し、20kgf/cm、温度200℃、10mmHg以下の真空下で90分積層成形し、離型PETフィルムを剥離除去した表面凹凸の殆どない保護皮膜付きプリント配線板Dとした。又、厚さ20μmのアルミニウム箔の片面に室温で粘着性を有するポリエステル樹脂を厚さ10μmとなるように付着させ、貴金属メッキを施す箇所をくり抜いた後、これを上記保護皮膜付きプリント配線板Dの上に配置し、室温で、線圧7kgf/cmにてラミネート接着した。これをプラズマ装置の中に入れ、くり抜いた箇所の樹脂組成物層を加工除去して銅回路導体を露出し、装置から取り出した後、粘着樹脂層付きアルミニウム箔を剥離後、これにニッケルメッキ、金メッキを付着して永久保護皮膜付きプリント配線板とした。この評価結果を表1に示す。
【0022】
(実施例2)
実施例1のビスフェノールA型エポキシ樹脂(エピコート1001)500部、フェノールノボラック型エポキシ樹脂(商品名:DEN−431、ダウケミカル<株>製)450部を配合し、ジシアンジアミド 部、イミダゾール系硬化剤(商品名:2E4MZ、四国化成<株>製)30部を加え、ワニスEとした。ワニスEを厚さ25μmのPETフィルムの片面に厚さ20μmとなるように付着させ、加熱、乾燥してBステージ樹脂組成物シートF(170℃のゲル化時間101秒)を作製した。
【0023】
一方、サイズ500x500mmの厚さ0.2mm、両面18μm銅箔のエポキシ樹脂銅張積層板(商品名:CCL−EL170、三菱ガス化学<株>製)に回路を形成し、銅回路表面を薬液処理(メック社:CZ処理)し、この上に上記Bステージ樹脂組成物シートFの保護ポリプロピレンフィルムを剥離して配置し、その外側に厚さ1.5mmのステンレス板を配置し、180℃、20kgf/cm、10mmHg以下の真空下で90分間積層して永久保護皮膜とした。この表面の離型PETフィルムを剥離した後の表面凹凸は殆どなかった。この上に実施例1の粘着剤付きアルミニウム箔の、貴金属メッキを行う箇所をくり抜いた後、これを実施例1と同様にラミネート接着し、同様にプラズマ処理し、装置から取り出し、貴金属メッキを行って、プリント配線板とした。評価結果を表2に示す。
【0024】
(比較例1)
実施例1において、市販のUV選択熱硬化型レジストを使用し、これを塗布して乾燥、露光、現像、硬化し、貴金属メッキを行って永久保護皮膜付きプリント配線板とした。評価結果を表1に示す。
【0025】

Figure 2005019514
【0026】
<測定方法>
1)表面凹凸 : 表面凹凸計を用いて測定した。
2)半田耐熱性 : 50x50mmの試験片に切断してPCT(121℃/203kPa)で5時間処理後に取り出して、260℃の半田中に30sec.浸漬してから異常の有無を観察した。
3)耐マイグレーション性 : 各実施例、比較例の銅回路導体のライン/スペース=30/30μmの回路を形成し、各実施例、比較例の構成と同様に永久保護皮膜を形成し、この試験片を85℃・85%RH、100VDC 印加して端子間の絶縁抵抗値を測定した。
【0027】
【発明の効果】
表面凹凸が極めて小さく、半田耐熱性等の特性に優れ、耐マイグレーション性等の信頼性にも優れた永久保護皮膜を形成することができた。[0001]
[Industrial application fields]
The present invention relates to a method for forming a permanent protective film on the surface of a printed wiring board, and the obtained printed wiring board is mounted with a semiconductor chip as a high-density printed wiring board excellent in the reliability of the permanent protective film, and is compact, It is mainly used for light-weight new semiconductor plastic packages.
[0002]
[Prior art]
In recent years, high-density printed wiring boards have been used in increasingly smaller, thinner, and lighter electronic devices. This printed wiring board has conventionally formed a permanent protective film on the surface by a screen printing method when precious metal plating is performed, but in this printing method, a printed wiring board having a fine circuit has poor positional accuracy by printing, In recent years, UV selective thermosetting resists are often used due to problems. However, this UV selective thermosetting resist has many acrylic resins, unsaturated group-containing polycarboxylic acid resins, defoaming agents, leveling agents, photopolymerization initiators, etc. added for exposure, development, etc. (For example, refer to Patent Documents 1 to 3), and the characteristics and reliability are not as good as those of thermosetting resists. In addition, the conventional solvent type UV resist obtained by applying and drying has irregularities on the conductor circuit, so that the irregularities on the surface are large after drying, and there is a problem especially when the flip chip is mounted.
[0003]
[Patent Document 1] JP-A-11-103166 [Patent Document 2] JP-A-11-333975 [Patent Document 3] JP-A-10-322027
[Problems to be solved by the invention]
The present invention provides a method for forming a permanent protective film that solves the above-described problems, is excellent in surface smoothness, and further excellent in electrical characteristics, various reliability, and the like.
[0005]
[Means for Solving the Invention]
In the method for forming a permanent protective film to be formed on the surface of the printed wiring board, the thermosetting resin composition sheet attached to one side of the release film is laminated and cured on the copper circuit conductor printed wiring board, and then the release film is peeled off, On this, a resin composition layer of a metal foil having a room temperature adhesive resin composition layer attached with a predetermined hole is laminated and bonded to the position where noble metal plating is performed, and plasma treatment is performed thereon to expose the circuit conductor to room temperature. By peeling the metal foil attached to the adhesive resin composition layer and plating it with precious metal to form a printed wiring board, it has a permanent protective film with excellent surface smoothness, excellent electrical characteristics, and excellent reliability. A printed wiring board can be produced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Generally well-known thing can be used as resin of the thermosetting resin composition used for the permanent protective film of this invention. Specifically, one or two of various known epoxy resins, polyfunctional cyanate ester resins, polyfunctional cyanate ester-polyfunctional maleimide resins, polyimide resins, double bond-added polyphenylene ether resins, polystyrene resins, etc. Used in combination with more than one species. However, from the viewpoints of migration resistance between circuits, heat resistance, and the like, a polyfunctional cyanate ester resin composition is preferably used.
[0007]
As the polyfunctional cyanate ester compound as a suitable thermosetting resin of the present invention, generally known ones are used. Specifically, it is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-2, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato) Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide, etc. A.
[0008]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-47-26853, and JP-A-51-63149 Ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This resin also contains a partially unreacted monomer and is in the form of a mixture of a monomer and a prepolymer, and such a raw material is suitably used for the application of the present invention. Those containing bromine, phosphorus or the like in the molecule can also be used. These are used alone or in combination of two or more, and are generally used after being dissolved in a soluble organic solvent.
[0009]
There is no limitation in particular as an epoxy resin, Generally a well-known thing can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, alicyclic epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, and the like are used alone or in combination.
[0010]
Although what is used as an organic solvent is not specifically limited, For example, ketones, such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Aromatic hydrocarbons, such as toluene and xylene; Amides, such as N, N-dimethylformamide, etc. These may be used alone or in combination of two or more.
[0011]
In the curable resin composition of the present invention, various additives other than the above can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polyphenylene ether resins, polyolefin resins, etc., various known resins such as brominated products, phosphorus-containing compounds, other known inorganic and organic fillers, dyes, pigments, thickeners. Various additives such as an agent, a lubricant, an antifoaming agent, a dispersing agent, a leveling agent, a photosensitizer, a flame retardant, a brightening agent, a polymerization inhibitor, and a thixotropic agent are appropriately used in combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a known curing agent and catalyst.
[0012]
The thermosetting resin composition of the present invention is cured by heating, but has a slow curing rate and is inferior in workability, economy and the like, and therefore a known curing catalyst is used for the curable resin used. The usage-amount is 0.005-10 weight part with respect to 100 weight part of each curable resin, Preferably it is 0.01-5 weight part.
[0013]
As a method for uniformly dispersing the components of the present invention, generally known methods can be used. For example, generally known methods such as a method of blending each component, adding a solvent and stirring at high speed with a homomixer, kneading with a three-roller at room temperature or under heating, a ball mill, a reiki machine or the like are used.
[0014]
The produced curable resin composition may be solventless or solvent-containing. The B-stage resin composition sheet is directly applied on a release film with a roll or the like and dried to form a B-stage. In this case, a small amount of solvent may remain in the resin composition. It is preferable to use a protective film on the opposite resin surface from the viewpoint of preventing contamination. The protective film is preferably integrated by applying pressure with a heating roll or the like. When this is laminated or laminated on a substrate, the protective film is peeled off and used. The thickness of the resin composition is not particularly limited, but is preferably 3 to 100 μm. This production method is not particularly limited, and generally known methods can be used.
[0015]
A known release film is used. For example, polyethylene terephthalate, polybutylene terephthalate, polyester or the like is used.
[0016]
When laminating on a printed wiring board having a copper circuit conductor using the B-stage resin composition sheet of the present invention, after conducting a known surface treatment on the conductor of the inner layer board on which the conductor circuit is formed, The protective film is peeled and removed, and a metal plate having a smooth surface is placed outside the protective film and laminated under heating and pressurization, preferably under vacuum. After the lamination, the release film on the surface is peeled and removed, and a metal foil to which a resin composition layer having room temperature adhesiveness is preferably attached is laminated and bonded at room temperature as a cover sheet. In this, a portion to be processed with plasma is hollowed out, and the resin layer is processed and removed from above with the plasma to expose a copper circuit conductor for precious metal plating. Thereafter, precious metal plating is applied to obtain a printed wiring board. Of course, a cover sheet with a metal foil to which a heat-melt type resin is attached can also be used.
[0017]
The resin having adhesiveness at room temperature is not particularly limited, and generally known resins such as polyester resins and polyurethane resins are used alone or in combination with other resins. As a method for forming the resin composition layer on the surface of the metal foil, the above-described method or the like is used.
[0018]
The molding conditions for laminating and forming the protective film of the present invention on the surface of the copper circuit conductor are not particularly limited, but in general, the temperature is 60 to 250 ° C., the pressure is 2 to 50 kgf / cm 2 , and the time is 0.5 to 3 hours. It is. Moreover, it is preferable to laminate and form under vacuum. A known apparatus such as a vacuum laminator press or a general multi-stage press can be used. Of course, it is also possible to use it after laminating. However, in order to smooth the surface, a lamination method is preferable.
[0019]
After peeling off the release film on the surface of the laminated one, a metal foil with an adhesive in which a portion to be processed and removed by plasma is cut out is disposed on the release film, and generally adhered at a linear pressure of 1 to 15 kgf / cm. Thereafter, the resin layer in the portion hollowed out by the plasma treatment is processed and removed until the copper circuit conductor is exposed, and then the metal foil with adhesive is removed, and noble metal plating is performed to obtain a printed wiring board.
[0020]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
2,2-Bis (4-cyanatophenyl) propane monomer was melted at 400 parts at 150 ° C. and reacted for 4 hours with stirring to obtain a monomer and prepolymer mixture having an average molecular weight of 1,900. This was dissolved in methyl ethyl ketone to obtain varnish A. 350 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.), 50 parts of novolak type epoxy resin (trade name: DEN431, manufactured by Dow Chemical Co., Ltd.), cresol novolac type epoxy resin (Product name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) 100 parts were blended, and 0.3 part of acetylacetone iron was dissolved in methyl ethyl ketone as a curing catalyst to obtain varnish B. This varnish B was continuously applied to one side of a 25 μm thick PET film and dried to prepare a B stage resin composition sheet C (gelling time at 170 ° C. of 130 seconds) having a resin composition layer thickness of 20 μm. When it came out of the drying zone, a protective polypropylene film having a thickness of 25 μm was laminated and bonded at a temperature of 100 ° C. and a linear pressure of 4 kgf / cm.
[0021]
On the other hand, a BT resin copper-clad laminate (trade name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a size of 500 × 500 mm, an insulating layer thickness of 0.2 mm, and a 12 μm double-sided copper foil is used as a printed wiring board. A protective film of the B-stage resin composition sheet C is peeled and disposed thereon, a stainless steel plate having a thickness of 1.5 mm is disposed on the outer side thereof, 20 kgf / cm 2 , a temperature of 200 ° C., and 10 mmHg. The printed wiring board D with a protective film having almost no surface unevenness was obtained by laminating and forming for 90 minutes under the following vacuum and peeling off the release PET film. In addition, a polyester resin having adhesiveness at room temperature is attached to one side of an aluminum foil having a thickness of 20 μm so as to have a thickness of 10 μm. And laminated and bonded at room temperature at a linear pressure of 7 kgf / cm. Put this in the plasma device, process and remove the resin composition layer of the hollowed out portion to expose the copper circuit conductor, take it out from the device, peel off the aluminum foil with the adhesive resin layer, and then nickel plating, A gold-plated plate was attached to obtain a printed wiring board with a permanent protective film. The evaluation results are shown in Table 1.
[0022]
(Example 2)
500 parts of bisphenol A type epoxy resin (Epicoat 1001) of Example 1 and 450 parts of phenol novolac type epoxy resin (trade name: DEN-431, manufactured by Dow Chemical Co., Ltd.) are blended, and a dicyandiamide part, an imidazole-based curing agent ( Product name: 2E4MZ, 30 parts of Shikoku Kasei Co., Ltd.) was added to make Varnish E. Varnish E was attached to one side of a PET film having a thickness of 25 μm so as to have a thickness of 20 μm, and heated and dried to prepare B-stage resin composition sheet F (gelation time at 170 ° C. of 101 seconds).
[0023]
On the other hand, a circuit is formed on an epoxy resin copper-clad laminate (trade name: CCL-EL170, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a size of 500 x 500 mm, a thickness of 0.2 mm, and both sides of 18 μm copper foil, and the copper circuit surface is treated with a chemical solution. (MEC Co., Ltd .: CZ treatment), a protective polypropylene film of the B-stage resin composition sheet F is peeled off and disposed thereon, a stainless steel plate having a thickness of 1.5 mm is disposed on the outer side thereof, 180 ° C., 20 kgf / Cm 2 , and laminated for 90 minutes under a vacuum of 10 mmHg or less to obtain a permanent protective film. There was almost no surface unevenness after peeling the release PET film on the surface. On the aluminum foil with pressure-sensitive adhesive of Example 1, the portion where the noble metal plating is performed is cut out, and then this is laminated and bonded in the same manner as in Example 1, and the plasma treatment is performed in the same manner. Thus, a printed wiring board was obtained. The evaluation results are shown in Table 2.
[0024]
(Comparative Example 1)
In Example 1, a commercially available UV selective thermosetting resist was used, which was applied, dried, exposed, developed and cured, and precious metal-plated to obtain a printed wiring board with a permanent protective film. The evaluation results are shown in Table 1.
[0025]
Figure 2005019514
[0026]
<Measurement method>
1) Surface unevenness: Measured using a surface unevenness meter.
2) Solder heat resistance: Cut into a 50 × 50 mm test piece, taken out after treatment with PCT (121 ° C./203 kPa) for 5 hours, and placed in solder at 260 ° C. for 30 sec. After immersion, the presence or absence of abnormality was observed.
3) Migration resistance: A circuit of lines / spaces = 30/30 μm of copper circuit conductors of each example and comparative example was formed, and a permanent protective film was formed in the same manner as the configuration of each example and comparative example. The piece was applied at 85 ° C./85% RH and 100 VDC, and the insulation resistance value between the terminals was measured.
[0027]
【The invention's effect】
It was possible to form a permanent protective film having extremely small surface irregularities, excellent properties such as solder heat resistance, and excellent reliability such as migration resistance.

Claims (2)

プリント配線板の表面に形成する永久保護皮膜形成方法において、離型フィルムの片面に付着した熱硬化型樹脂組成物シートを銅回路導体プリント配線板上に積層硬化後に、離型フィルムを剥離し、この上に、貴金属メッキを行う箇所に所定の孔をあけた室温粘着型樹脂組成物層付着金属箔の樹脂組成物層をラミネート接着し、この上からプラズマ処理を行って回路導体を露出後に室温粘着型樹脂組成物層付着金属箔を剥離し、貴金属メッキを行ってプリント配線板とすることを特徴とするプリント配線板表面の永久保護皮膜形成方法。In the method for forming a permanent protective film to be formed on the surface of the printed wiring board, the thermosetting resin composition sheet attached to one side of the release film is laminated and cured on the copper circuit conductor printed wiring board, and then the release film is peeled off, On top of this, a resin composition layer of a metal foil having a room temperature pressure-sensitive adhesive resin composition layer attached with a predetermined hole at a position where noble metal plating is performed is laminated and bonded, and plasma treatment is performed thereon to expose the circuit conductor to room temperature. A method for forming a permanent protective film on the surface of a printed wiring board, comprising peeling off the metal foil attached to the adhesive resin composition layer and performing precious metal plating to obtain a printed wiring board. 該永久保護皮膜が、多官能性シアン酸エステル樹脂組成物である請求項1記載のプリント配線板表面の永久保護皮膜形成方法。The method for forming a permanent protective film on the surface of a printed wiring board according to claim 1, wherein the permanent protective film is a polyfunctional cyanate ester resin composition.
JP2003179398A 2003-06-24 2003-06-24 Method of forming permanent protective film on surface of printed wiring board Pending JP2005019514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179398A JP2005019514A (en) 2003-06-24 2003-06-24 Method of forming permanent protective film on surface of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179398A JP2005019514A (en) 2003-06-24 2003-06-24 Method of forming permanent protective film on surface of printed wiring board

Publications (1)

Publication Number Publication Date
JP2005019514A true JP2005019514A (en) 2005-01-20

Family

ID=34180730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179398A Pending JP2005019514A (en) 2003-06-24 2003-06-24 Method of forming permanent protective film on surface of printed wiring board

Country Status (1)

Country Link
JP (1) JP2005019514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841217A (en) * 2019-08-10 2021-12-24 小宫山电子株式会社 Method for hydrophilizing resin surface, plasma treatment device, laminate, and method for producing laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841217A (en) * 2019-08-10 2021-12-24 小宫山电子株式会社 Method for hydrophilizing resin surface, plasma treatment device, laminate, and method for producing laminate

Similar Documents

Publication Publication Date Title
TWI754668B (en) Copper clad laminate for flexible printed circuit board and flexible printed circuit board
JP6648425B2 (en) Resin composition
KR102323830B1 (en) Polyimide, adhesive, film-shaped adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper clad laminate, printed wiring board, and multi-layer board and manufacturing method thereof
JP7114214B2 (en) adhesive film
WO2016125664A1 (en) Resin composition
CN106010421A (en) Adhesive composition, film adhesive, adhesive layer, adhesive sheet, copper-clad laminate, wiring board and printing circuit board
JP2018044040A (en) Resin composition
WO2005080466A1 (en) Thermosetting resin composition and use thereof
JP2017179014A (en) Resin composition
TWI771496B (en) resin composition layer
JP6620457B2 (en) Resin composition
JP6519307B2 (en) Thermosetting insulating resin composition, and insulating film with support using the same, prepreg, laminate and multilayer printed wiring board
CN108727837A (en) Resin combination
JP2020172663A (en) Resin composition
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2019044097A (en) Resin composition
TW202200707A (en) Resin composition
JPWO2020045112A1 (en) Laminates, metal foil-clad laminates, patterned metal foil laminates, laminates with build-up structures, printed wiring boards, multilayer coreless substrates, and methods of manufacturing them.
JP2020132679A (en) Resin composition
JP2005019514A (en) Method of forming permanent protective film on surface of printed wiring board
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
JP7087912B2 (en) Resin composition
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2004356200A (en) Method for forming permanent protective film on printed wiring board
JP2004296601A (en) Method of manufacturing multilayer board employing b stage resin composition sheet containing heat resistant film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A02 Decision of refusal

Effective date: 20081126

Free format text: JAPANESE INTERMEDIATE CODE: A02