[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005019246A - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP2005019246A
JP2005019246A JP2003183448A JP2003183448A JP2005019246A JP 2005019246 A JP2005019246 A JP 2005019246A JP 2003183448 A JP2003183448 A JP 2003183448A JP 2003183448 A JP2003183448 A JP 2003183448A JP 2005019246 A JP2005019246 A JP 2005019246A
Authority
JP
Japan
Prior art keywords
heating element
component
ceramic heater
ceramic
auxiliary component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183448A
Other languages
Japanese (ja)
Other versions
JP4146766B2 (en
Inventor
Kazutoshi Kitahara
和利 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003183448A priority Critical patent/JP4146766B2/en
Publication of JP2005019246A publication Critical patent/JP2005019246A/en
Application granted granted Critical
Publication of JP4146766B2 publication Critical patent/JP4146766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: when a heat cycle is repeatedly applied, the resistance change of a heating element is great, and disconnection is easily caused and durability is lowered. <P>SOLUTION: In this ceramic heater 1 wherein a heating element 4 is embedded in a ceramic base material 3 to heat the heating element 4 by supplying power to it, the heating element 4 is composed of a conducting component, an insulating component, and an auxiliary component, and 50% or more of the auxiliary component exists as a crystal phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用グロープラグ、燃焼式車載暖房装置の点火あるいは炎検知用ヒータ、石油ファンヒータ等の各種燃焼機器の点火用ヒータ、酸素センサ等の各種センサや測定機器の加熱用ヒータなどに利用されるセラミックヒータに関するものである。
【0002】
【従来の技術】
従来、ディーゼルエンジン等の始動促進に用いられるセラミックヒータとしては、耐熱合金製のシース内に耐熱絶縁性粉末を充填し、該耐熱絶縁粉末中にニッケル(Ni)−クロム(Cr)等を主成分とする高融点金属線からなる発熱体を埋設したシーズヒータが使用されていた。
【0003】
しかしながら、上記シーズヒータは、耐熱金属製のシース内に充填された耐絶縁性粉末を介して発熱体の熱を伝えるため、短時間の急速昇温が困難であった。その上、耐磨耗性や耐酸化性に劣るという問題があった。
【0004】
そこで、短時間の急速昇温が可能で、耐磨耗性と耐酸化性に優れた信頼性の高いセラミックヒータとして、発熱体を電気絶縁性のセラミック焼結体中に埋設したセラミックヒータが広く利用されるようになってきた。
【0005】
このセラミックヒータとしては、例えば、高強度で耐酸化性に優れた窒化珪素(Si)を主成分とするセラミック基体中にタングステンカーバイド(WC)等の導電成分、窒化珪素(Si)、窒化アルミ(AlN)等の絶縁成分、Yb、MoSi、Ai、C等のうち少なくとも1つの成分を含む助材成分とからなる発熱体を埋設し、上記発熱体中に窒化珪素(Si)を分散させることにより、上記セラミック基体と上記発熱体との熱膨張差を小さくしたセラミックヒータを得ることが提案されている(特許文献1参照)。
【0006】
このセラミックヒータにおけるセラミック基体は、窒化珪素から形成されており、セラミックヒータの耐久性を良好にするためには、発熱体に高融点で熱膨張率がセラミック基体に近いWCを用い、さらに熱膨張率をセラミック基体に用いられるセラミックスの熱膨張率に近づけるため、BNや窒化珪素粉末を添加している。一方、セラミック基体の原料については、MoSiやWC等の導電成分を添加することにより発熱体に熱膨張率を近づけるような調整を行うと共に、例えば窒化珪素質セラミックスの場合、窒化珪素の不可避不純物でありマイグレーションの原因となるSiOを減らす目的で炭素(C)を添加する。炭素を添加することにより、SiOがSiとCOもしくはCOとなり、さらにSiが周囲のN2と反応してSiとなる。このようにして、SiOを減らすことにより、セラミック基体の粒界層がより高融点となり、マイグレーションを抑制する効果がある。
【0007】
また、セラミック基体の助剤成分を結晶化させることによってマイグレーションを抑制しセラミック基体の強度を向上させ、セラミックヒータの耐久性を向上させることが提案されている(特許文献2参照)。
【0008】
【特許文献1】
実開平2−20293号公報
【0009】
【特許文献2】
特開2002−178740号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献2では、これまでに比べて各段に耐久性が向上させることができたものの、未だ僅かではあるが、長期に使用した場合、温度サイクルによる負荷のためと思われる発熱体の抵抗が変化し、ひどいものでは発熱異常、発熱体の断線を生じると言う問題があった。
【0011】
これは、セラミックヒータの発熱体は、導電成分、絶縁成分、および助剤成分とか形成されており、発熱体中の助剤成分がガラス相等の非晶質相として導電成分又は絶縁成分の粒界に存在しているため、発熱体に電力を供給した際にマイグレーションがおこり、発熱体中に欠陥を生じさせ熱サイクルを繰り返すことによって、クラック等が発生し、耐久性が劣化するという問題があった。
【0012】
そこで、本発明は、長期間の使用に際して熱サイクルを繰り返した場合にも、発熱体の抵抗を小さくでき、断線等を防止して、長期にわたって耐久性に優れたセラミックヒータを提供することにある。
【0013】
【課題を解決するための手段】
本発明品のセラミックヒータは、セラミック基体中に発熱体を埋設し、該発熱体に電力を供給して発熱させるセラミックヒータにおいて、上記発熱体は導電成分、絶縁成分および助剤成分からなるとともに、該助剤成分の50%以上が結晶相として存在することを特徴とする。
【0014】
即ち、発熱体の助剤成分を結晶化することにより、発熱体を基点としたクラックの発生を押さえることができるという知見に基づき、セラミック基体中に埋設した発熱体を有するセラミックヒータにおいて発熱体の抵抗変化が小さく、耐久性の高いセラミックヒータを実現したものである。これにより発熱体に電力を供給した際に生じるマイグレーションが起こりにくくなり、発熱体中に欠陥を生じにくくし、その結果クラックの発生を抑制し、発熱体の抵抗変化を小さくし、耐久性が向上する。
【0015】
また、本発明のセラミックヒータは、上記発熱体が助剤成分を1〜15重量%含有することを特徴とする。これにより、発熱体中の助剤成分の結晶化を促進することができ、それによって耐久性の高いセラミックヒータを得ることができる。
【0016】
さらに、本発明のセラミックヒータは、上記発熱体が助剤成分としてAlを含み、該Alの含有量が0.05〜0.8重量%含有することを特徴とする。これにより、発熱体中の助剤成分の結晶化を促進することができ、それによって耐久性の高いセラミックヒータを得ることができる。
【0017】
またさらに、本発明のセラミックヒータは、上記発熱体が助剤成分としてCを含み、その含有量が0.05〜4.0重量%含有することを特徴とする。これにより、発熱体中の助剤成分の結晶化率を促進することができ、それによって耐久性の高いセラミックヒータを得ることができる。
【0018】
さらにまた、本発明のセラミックヒータは、上記セラミック基体が、窒化珪素質セラミックスからなることを特徴とする。これによって熱衝撃性を向上させることができるようになり、耐久性を向上させることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて詳しく説明する。
【0020】
図1は本発明のセラミックヒータの一実施形態を示す図面であり、図1(a)は斜視図、(b)は同図(a)のX−X’線における断面図である。また、図2は図1(b)のY−Y’線における断面図である。
【0021】
図1に示すように、本発明のセラミックヒータ1は、セラミック基体3中に発熱体4を埋設し、該発熱体4の両端にリード部5を設け、該リード部5の両端に電極引き出し部6を形成し、電力を供給して発熱させるものであり、セラミック基体3の内部に、U字状の発熱体4を設け、該発熱体4の端部にそれぞれリード部5を接続して、リード部5の他端側に電極取り出し部6を形成することで、それぞれを電気的に接続したものを2組、略平行にセラミック基体3中に埋設し、発熱体4側のセラミック基体3の先端が略球面状で、少なくとも最高発熱部に相当する部分の横断面が円形である棒状を成すものである。
【0022】
上記セラミック基体3は、窒化珪素(Si)質セラミックス、窒化アルミニウム質セラミックス(AlN)等の絶縁セラミックスからなり、耐熱衝撃性に優れ、急昇温に耐えるという点で窒化珪素質セラミックスからなることが好ましい。また、この窒化珪素質セラミックスにはYb、MoSi2、YB、Y等の助剤成分を含有させることで、焼結しやすく、耐久性が向上する。
【0023】
また、上記セラミック基体3中に埋設された発熱体4は、W、Mo、Re等の金属又はこれら金属元素の珪化物、炭化物等の導電成分、Si、AlN等の絶縁成分、およびYb、MoSi、Ai、C等を含む助剤成分からなる。
【0024】
なお、上記助剤成分とは、導電成分と絶縁成分を焼結させるための微量成分のことである。例えば、導電成分をW、絶縁成分をSiとした場合、助剤成分としてYや希土類元素、Al、C等を用いることができる。
【0025】
また、上記導電成分は、その熱膨張率がセラミック基体3や、絶縁成分と差が小さいものを用いることが好ましく、特にWC、MoSiからなることが好ましい。
【0026】
さらに、上記絶縁成分は、セラミック基体3を構成する材質と同様の材質を用いることが好ましい。
【0027】
図3は、本発明のセラミックヒータ1の発熱体4における組織の透過型電子顕微鏡(TEM)で撮影した写真を示す発熱体断面模式図である。図中、白抜きの部分は電流を流すための導電成分の結晶相7、斜線を施した部分が絶縁成分の結晶相8であり、各結晶相間は粒界相9である。なお、粒界相9は、そのほとんどが助剤成分からなるが、TEMでは助剤成分の結晶相、非晶質相を区別できない。
【0028】
また、上記粒界相9のうち黒い部分が二面間粒界9aおよび三重点粒界9bである。ここで、二面間粒界9aとは導電成分の結晶相7同士、絶縁成分の結晶相8同士、または導電成分の結晶相7と絶縁成分の結晶相8のように2つの成分からなる結晶粒子に挟まれた粒界相であり、三重点粒界9bとは導電成分の結晶相7、絶縁成分の結晶相8のいずれか3つ以上の結晶粒子に囲まれた粒界相のことである。
【0029】
この粒界層9は、ほとんどが助剤成分で構成されており、本発明のセラミックヒータ1では、発熱体4中の助剤成分の50%以上が結晶相として存在することが重要である。
【0030】
発熱体4中の助剤成分は、通常、そのほとんどが粒界相9に非晶質相として存在するが、結晶相として発熱体4中に存在することによって、発熱体4に電力を供給したときに生じる助剤成分の陽イオン成分(たとえば、Yb3+、Y3+)のマイグレーションを押さえることができる。その結果、発熱体4の抵抗変化及び断線を抑制することができ、セラミックヒータ1に繰り返し熱サイクルが加わった場合においても、発熱体4の抵抗が一定に保持され耐久性の高いセラミックヒータを得ることができる。
【0031】
このマイグレーションには助剤成分の結晶相の割合が大きく影響し、発熱体4中の助剤成分の結晶相の割合が50%未満となると、マイグレーションにより発熱体4中の粒界相9の空洞化が生じ、発熱体4の抵抗変化が発生するため、セラミックヒータ1の温度が低下したり、最悪の場合は、断線を生じる恐れがある。特に、助剤成分の70%以上が結晶相として存在することがより好ましく、発熱体4の抵抗変化の原因と思われる粒界相9がマイグレーションにより空洞化する現象を十分に抑制でき、耐久性を向上させることができる。
【0032】
ここで助剤成分の結晶相の割合の測定方法について説明する。
【0033】
まず、発熱体4における任意断面90ヶ所を透過型電子顕微鏡によって撮影する。なお、測定装置としては、透過型電子顕微鏡:JEM209F(JEOL製)、条件:加速電圧(200KV)とした。
【0034】
発熱体4中の助剤成分は、上記図3に示すように透過型電子顕微鏡による写真では、助剤成分の結晶相、非晶質相は区別できないため、助剤成分の結晶相は粒界相9中に存在する。
【0035】
そこで、写真の粒界相9として写った部分を電子線回折によって結晶相か否かの判断を行い、90個所のうち結晶相となっているものの割合を助剤成分の結晶相の割合とした。
【0036】
なお、上記粒界相9のうち二面間粒界9aは、非常に厚みが薄く結晶相を確認するのが困難なため、本発明においては、比較的厚みがあって結晶相か否かの判断がしやすい三重点粒界9bのみを調べた。
【0037】
また、上記電子線回折は、その格子面によるブラッグの反射がスポットとして表示されれば結晶相、ハローが表示されれば非晶質(ガラス)相として判断した。
【0038】
また、電子線回折に用いる装置としては、エネルギー分散型分光分析(EDS):(Noran lnstruments製)、条件:スポット径(5nmφ)、測定時間(50sec)、測定エネルギ−幅(0.12〜20.48keV)にて測定することができる。
【0039】
ここで、発熱体4中の助剤成分のうち50%以上を結晶相として存在させるためには、焼成条件を制御することが重要である。すなわち、還元雰囲気下、昇温スピードは5℃/分〜25℃/分、焼成温度1650℃〜1750℃、キープ時間30分〜240分、圧力は一次圧3〜5MPa、二次圧は30〜45MPaとしてホットプレスにより焼成する事が好ましい。また、詳細を後述するように助剤成分としてAlやCを用い、その含有量を制御することによって調整することができる。
【0040】
また、上記発熱体4中の助剤成分は、発熱体4を100重量%とした場合に、1〜15重量%含有していることが好ましい。これにより発熱体4中の粒界相9の割合が低減し、発熱体4のクラックの発生が抑えられるため、発熱体4の抵抗を一定値に保持することができる。ここで、助剤成分が15重量%より多いと、ガラス化を促進するため、助剤成分が結唱化されにくくなり、抵抗値の変化が大きくなり耐久性が低下する。また、助剤成分が1重量%より少ないと、発熱体4の焼結性が悪くなり抵抗の変化が大きくなり耐久性が低下する。
【0041】
さらに、上記助剤成分としてAlを含み、その含有量が発熱体4を100重量%とした場合に0.05〜0.8重量%であることが好ましい。これにより、発熱体4中の助剤成分の結晶化が促進され、発熱体4を基点とするクラックの発生が抑えられるため、発熱体4の抵抗変化が小さく、セラミックヒータ1としての耐久性を向上することができる。また、Alの含有量を0.05〜0.8重量%とすることで結晶化を促すとともに、発熱体4の抵抗の変化率を微小なものとすることができる。Alの含有量が0.05重量%より少ないと、助剤成分が結晶化されにくく、一方、0.8重量%より多くなると、発熱体4の抵抗変化が大きくなるため、セラミックヒータ1の耐久性が低下する。
【0042】
またさらに、上記発熱体4中の助剤成分としてCを含み、その含有量が発熱体4を100重量%とした場合に0.05〜4.0重量%であることが好ましい。これにより、上記Alと同様、発熱体4中の助剤成分の結晶化が促進され、発熱体4を基点とするクラックの発生が抑えられるため、発熱体4の抵抗変化が小さく、セラミックヒータ1としての耐久性を向上することができる。Cの含有量が0.05重量%より少ないと、助剤成分が結晶化されにくく、一方、4.0重量%より多くなると、発熱体4の抵抗の変化が大きくなるため、セラミックヒータ1の耐久性が低下する。
【0043】
また、上記発熱体4を90重量%とした場合に、導電成分を50重量%以上、絶縁成分を15重量%以上とすることが好ましく、導電成分が50重量%より少ないと、抵抗値が異常に高くなったり、導通の低下を招く。また、絶縁成分が15重量%より少ないと、セラミック基体3と熱膨張率の差が大きくなり、発熱体4にクラックが生じやすい。
【0044】
次に本発明のセラミックヒータ1の製法について図4を用いて説明する。
【0045】
まず、窒化珪素(Si)粉末にイッテリビウム(Yb)やイットリウム(Y)等の希土類元素の酸化物からなる焼結助剤を添加したセラミック原料粉末を周知のプレス成形法や押し出し成形等でセラミック成形体10を得る。
【0046】
セラミック成形体10の上にW、Mo、Re等の金属又は、金属元素の珪化物、炭化物等の導電成分、Si、AlN等からなる絶縁成分、およびAlを0.03〜9重量%、Cを0.03〜4.0重量%、Ybを9〜12重量%、MoSiを4.0〜9.0重量%のいずれかからなる助剤成分の微粉末をそれぞれ秤量し酢酸ブチル等の溶媒を加えて調整したペーストをスクリーン印刷法や射出成形等により形成する。
【0047】
次いで、リード部5となるタングステンピンを発熱体4と電極取り出し部6が電気的に導通するように設置し、セラミック成形体10を2層と、さらに、その上面に別のセラミック成形体10’を重ねて密着させ、還元雰囲気下、昇温スピードは5℃/分〜25℃/分、焼成温度1650℃〜1750℃、キープ時間30分〜240分、圧力は一次圧3〜5MPa、二次圧は30〜45MPaとしてホットプレスにより焼成した後、得られた焼結体を円柱状に加工し、表面に露出した電極引き出し部6にNiからなる引き出し線2を取り付けセラミックヒータ1を得る。
【0048】
以上のように構成された本発明のセラミックヒータ1は、特に優れた耐久性を有するため自動車用グロープラグ、燃焼式車載暖房装置の点火あるいは炎検知用ヒータ、石油ファンヒータ等の各種燃焼器の点火用ヒータ、酸素センサ等の各種センサや測定機器の加熱用ヒータなど好適に使用できる。
【0049】
【実施例】
以下本発明の実施例を説明する。
【0050】
図1に示すようなセラミックヒータを作製するため、図4に示すように、まず、窒化珪素(Si)粉末にイッテリビウム(Yb)希土類元素の酸化物からなる焼結助剤を添加したセラミック原料粉末をプレス成形法や押し出し成形法等でセラミック成形体10を得る。
【0051】
次に、セラミック成形体10の上面に発熱体4を形成する。発熱体4は、導電成分、絶縁成分、助剤成分の微粉末を添加混合し、焼成後に表1の組成になるように助剤成分を調整した。助剤成分としては、Ybを0.1〜12重量%、MoSiを0.05〜9.0重量%Alを0.03〜9重量%、Cを0.03〜4.0重量%の範囲で秤量し酢酸ブチル等の溶媒を加えて調整したペーストを発熱体4として、スクリーン印刷法や射出成形等により形成する。
【0052】
次いで、リード部5となるタングステンピンを発熱体4と電極取り出し部6が電気的に導通するように設置し、セラミック成形体10を2層とさらに、その上面に別のセラミック成形体10’を重ねて密着させ、還元雰囲気下、昇温スピードは5℃/分〜25℃/分、焼成温度1650℃〜1750℃、キープ時間30分〜240分、圧力は一次圧3〜5MPa、二次圧は30〜45MPaとしてホットプレスにより焼成した後、得られた焼結体を円柱状に加工し、表面に露出した電極引き出し部6にNiからなるリード線2を取り付けセラミックヒータ1を得る。
【0053】
なお、発熱体4の各成分の割合を蛍光X線分析装置(RIX3000)及び、炭素分析装置(ERIA−511型)にて測定し、助剤成分の結晶相の割合を、発熱体4における任意断面90ヶ所を透過型電子顕微鏡(透過型電子顕微鏡:JEM209F(JEOL製)、条件:加速電圧(200KV)とした。)によって撮影した後、写真の三重点粒界9bを電子線回折(エネルギー分散型分光分析(EDS):(Noran lnstruments製)、条件:スポット径(5nmφ)、測定時間(50sec)、測定エネルギ−幅(0.12〜20.48keV))によって、格子面によるブラッグの反射がスポットとして表示されれば結晶相、ハローが表示されれば非晶質(ガラス)相として判断した。
【0054】
そして、各試料について、通電耐久性能を確認するための試験を実施した。セラミックヒータ1に通電し、温度1300℃、昇温保持時間3分とした後、通電を止めて外部冷却ファンにより1分冷却するサイクルを1サイクルとして、30000サイクルを実施した後、初期抵抗値に対する変化率を算出し、評価としての5%未満のものを◎、5〜9%未満のものを○、9%以上のものを×として耐久性能を判断した。
【0055】
その結果を表1に示す。
【0056】
【表1】

Figure 2005019246
【0057】
表1から判るように、助剤成分の結晶相の割合がそれぞれ41%、42%である試料(No.103)は、耐久試験後の抵抗変化率が32%以上と非常に大きく、また助剤成分の結晶相の割合が29%である試料(No.14)は、断線してしまい耐久性が非常に悪いものであった。
【0058】
これに対し、助剤成分の結晶相の割合が50%以上である試料(No.1、3〜12、15)は、耐久試験後の抵抗変化率が9%以下と小さく、耐久性の高いセラミックヒータを得ることができた。さらに、発熱体中の助剤成分の含有量が1〜15重量%で、Alの含有量が、0.05〜0.8%、Cの含有量が0.05〜4.0%である試料(No.1、3〜7、9〜10)は、耐久試験後の抵抗変化率が5%以下と微小となり、耐久性がより向上することがわかった。
【0059】
【発明の効果】
本発明のセラミックヒータは、セラミック基体中に発熱体を埋設し、該発熱体に電力を供給して発熱させるセラミックヒータにおいて、上記発熱体は導電成分、絶縁成分および助剤成分からなるとともに、該助剤成分の50%以上が結晶相として存在することによって、発熱体を基点としたクラックの発生を押さえることができ、発熱体の抵抗変化を小さく、耐久性に優れたセラミックヒータを提供することができる。
【0060】
特に、発熱体の助剤成分を含有量を1〜15重量%として、Alの含有量を0.05〜0.8重量%、Cの含有量を0.05〜4重量%とすることにより、さらに抵抗変化を微小なものとして、繰り返し熱サイクルがかかっても長期間にわたって耐久性に優れたセラミックヒータを得ることができる。
【図面の簡単な説明】
【図1】(a)は本発明のセラミックヒータの一実施形態を示す斜視図であり、(b)同図(a)のX−X’線における断面図である。
【図2】図1に示すセラミックヒータのY−Y’線における横断面図である。
【図3】本発明のセラミックヒータにおける発熱体の結晶組織を示す模式図である。
【図4】本発明のセラミックヒータの製法を説明する展開斜視図である。
【符号の説明】
1:セラミックヒータ
2:引き出し線
3:セラミック基体
4:発熱体
5:リード部
6:電極引き出し部
7:導電成分の結晶相
8:絶縁成分の結晶相
9:粒界相
9a:二面間粒界層
9b:三重点粒界層
10:セラミック成形体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automotive glow plug, an ignition or flame detection heater for a combustion-type in-vehicle heating device, an ignition heater for various combustion devices such as an oil fan heater, various sensors such as an oxygen sensor, and a heating heater for a measurement device. The present invention relates to a ceramic heater to be used.
[0002]
[Prior art]
Conventionally, as a ceramic heater used for acceleration of starting a diesel engine or the like, a heat-resistant alloy sheath is filled with a heat-resistant insulating powder, and nickel (Ni) -chromium (Cr) or the like is mainly contained in the heat-resistant insulating powder. A sheathed heater embedded with a heating element made of a high melting point metal wire was used.
[0003]
However, since the sheathed heater transmits the heat of the heating element via the insulating powder filled in the sheath made of a heat-resistant metal, it is difficult to rapidly raise the temperature in a short time. In addition, there is a problem that it is inferior in wear resistance and oxidation resistance.
[0004]
Therefore, as a highly reliable ceramic heater that is capable of rapid temperature rise in a short time and has excellent wear resistance and oxidation resistance, ceramic heaters with a heating element embedded in an electrically insulating ceramic sintered body are widely used. It has come to be used.
[0005]
As the ceramic heater, for example, a conductive component of tungsten carbide (WC) or the like in a ceramic substrate mainly composed of excellent silicon nitride oxidation resistance at high strength (Si 3 N 4), silicon nitride (Si 3 N 4 ) A heating element composed of an insulating component such as aluminum nitride (AlN), an auxiliary component containing at least one of Yb 2 O 3 , MoSi 2 , Ai 2 O 3 , C and the like is embedded, and the heat generation It has been proposed to obtain a ceramic heater in which the difference in thermal expansion between the ceramic base and the heating element is reduced by dispersing silicon nitride (Si 3 N 4 ) in the body (see Patent Document 1).
[0006]
The ceramic substrate in this ceramic heater is made of silicon nitride, and in order to improve the durability of the ceramic heater, the heating element is made of WC having a high melting point and a thermal expansion coefficient close to that of the ceramic substrate, and further thermal expansion. In order to bring the rate close to the thermal expansion coefficient of the ceramic used for the ceramic substrate, BN or silicon nitride powder is added. On the other hand, with respect to the raw material of the ceramic substrate, adjustment is made to bring the coefficient of thermal expansion close to the heating element by adding a conductive component such as MoSi 2 or WC. For example, in the case of silicon nitride ceramics, inevitable impurities of silicon nitride Carbon (C) is added for the purpose of reducing SiO 2 that causes migration. By adding carbon, SiO 2 becomes Si and CO or CO 2 , and Si reacts with surrounding N 2 to become Si 3 N 4 . Thus, by reducing SiO 2 , the grain boundary layer of the ceramic substrate has a higher melting point, and there is an effect of suppressing migration.
[0007]
In addition, it has been proposed to crystallize the auxiliary component of the ceramic substrate to suppress migration, improve the strength of the ceramic substrate, and improve the durability of the ceramic heater (see Patent Document 2).
[0008]
[Patent Document 1]
Japanese Utility Model Publication No. 2-20293 [0009]
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-178740
[Problems to be solved by the invention]
However, in Patent Document 2, although the durability can be improved in each stage as compared with the past, although it is still a little, when it is used for a long time, the heating element that seems to be due to the load due to the temperature cycle is There was a problem that the resistance changed, and if it was terrible, it would cause abnormal heating and disconnection of the heating element.
[0011]
This is because the heating element of the ceramic heater is formed of a conductive component, an insulating component, and an auxiliary component, and the auxiliary component in the heating element is an amorphous phase such as a glass phase and the grain boundary of the conductive component or the insulating component. Therefore, migration occurs when power is supplied to the heating element, causing defects in the heating element and repeating the thermal cycle, causing cracks and the like, resulting in deterioration of durability. It was.
[0012]
Therefore, the present invention is to provide a ceramic heater that can reduce the resistance of a heating element even when a thermal cycle is repeated during long-term use, prevents disconnection, and has excellent durability over a long period of time. .
[0013]
[Means for Solving the Problems]
The ceramic heater according to the present invention is a ceramic heater in which a heating element is embedded in a ceramic base and power is supplied to the heating element to generate heat.The heating element includes a conductive component, an insulating component, and an auxiliary component. 50% or more of the auxiliary component is present as a crystalline phase.
[0014]
That is, based on the knowledge that the generation of cracks based on the heating element can be suppressed by crystallizing the auxiliary component of the heating element, the ceramic heater having the heating element embedded in the ceramic substrate This is a ceramic heater with a small resistance change and high durability. This makes it difficult for migration to occur when power is supplied to the heating element, making it difficult for defects to occur in the heating element, thereby suppressing the occurrence of cracks, reducing resistance changes in the heating element, and improving durability. To do.
[0015]
In the ceramic heater of the present invention, the heating element contains 1 to 15% by weight of an auxiliary component. Thereby, crystallization of the auxiliary component in the heating element can be promoted, and thereby a highly durable ceramic heater can be obtained.
[0016]
Furthermore, the ceramic heater of the present invention is characterized in that the heating element contains Al 2 O 3 as an auxiliary component, and the content of Al 2 O 3 is 0.05 to 0.8% by weight. Thereby, crystallization of the auxiliary component in the heating element can be promoted, and thereby a highly durable ceramic heater can be obtained.
[0017]
Furthermore, the ceramic heater of the present invention is characterized in that the heating element contains C as an auxiliary component, and the content thereof is 0.05 to 4.0% by weight. Thereby, the crystallization rate of the auxiliary component in the heating element can be promoted, and thereby a highly durable ceramic heater can be obtained.
[0018]
Furthermore, the ceramic heater of the present invention is characterized in that the ceramic base is made of silicon nitride ceramics. As a result, thermal shock resistance can be improved, and durability can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020]
FIG. 1 is a view showing an embodiment of the ceramic heater of the present invention, FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a cross-sectional view taken along line XX ′ of FIG. FIG. 2 is a cross-sectional view taken along line YY ′ of FIG.
[0021]
As shown in FIG. 1, the ceramic heater 1 of the present invention has a heating element 4 embedded in a ceramic base 3, lead portions 5 provided at both ends of the heating element 4, and electrode lead portions at both ends of the lead portion 5. 6 is provided to generate heat by supplying electric power, and a U-shaped heating element 4 is provided inside the ceramic base 3, and lead portions 5 are respectively connected to ends of the heating element 4, By forming the electrode lead-out part 6 on the other end side of the lead part 5, two sets each electrically connected are embedded in the ceramic base 3 substantially in parallel, and the ceramic base 3 on the heating element 4 side is embedded. The tip has a substantially spherical shape, and at least a portion corresponding to the highest heat generating portion has a rod shape with a circular cross section.
[0022]
The ceramic substrate 3 is made of insulating ceramics such as silicon nitride (Si 3 N 4 ) ceramics, aluminum nitride ceramics (AlN), etc., and is excellent in thermal shock resistance and withstands rapid temperature rise. It is preferable to become. Further, by adding an auxiliary component such as Yb 2 O 3 , MoSi 2, YB, Y to the silicon nitride ceramics, it is easy to sinter and the durability is improved.
[0023]
The heating element 4 embedded in the ceramic substrate 3 is made of a metal such as W, Mo, Re or the like, a conductive component such as silicide or carbide of these metal elements, an insulating component such as Si 3 N 4 or AlN, and It consists of auxiliary components including Yb 2 O 3 , MoSi 2 , Ai 2 O 3 , C and the like.
[0024]
The auxiliary component is a trace component for sintering the conductive component and the insulating component. For example, when the conductive component is W and the insulating component is Si 3 N 4 , Y 2 O 3 , rare earth elements, Al 2 O 3 , C, or the like can be used as an auxiliary component.
[0025]
Moreover, it is preferable to use the conductive component having a coefficient of thermal expansion that is small from that of the ceramic substrate 3 or the insulating component, and particularly preferably composed of WC or MoSi 2 .
[0026]
Furthermore, it is preferable to use the same material as the material constituting the ceramic substrate 3 as the insulating component.
[0027]
FIG. 3 is a schematic cross-sectional view of a heating element showing a photograph taken with a transmission electron microscope (TEM) of the tissue in the heating element 4 of the ceramic heater 1 of the present invention. In the figure, the white portions are the crystalline phase 7 of the conductive component for flowing current, the shaded portions are the crystalline phase 8 of the insulating component, and the grain boundaries 9 are between the crystalline phases. The grain boundary phase 9 is mostly composed of an auxiliary component, but TEM cannot distinguish the crystalline phase and the amorphous phase of the auxiliary component.
[0028]
Further, the black portions of the grain boundary phase 9 are the inter-surface grain boundaries 9a and the triple point grain boundaries 9b. Here, the grain boundary 9a is a crystal composed of two components such as the crystalline phases 7 of the conductive component, the crystalline phases 8 of the insulating component, or the crystalline phase 7 of the conductive component and the crystalline phase 8 of the insulating component. It is a grain boundary phase sandwiched between grains, and the triple point grain boundary 9b is a grain boundary phase surrounded by three or more crystal grains of the crystalline phase 7 of the conductive component and the crystalline phase 8 of the insulating component. is there.
[0029]
Most of the grain boundary layer 9 is composed of an auxiliary component. In the ceramic heater 1 of the present invention, it is important that 50% or more of the auxiliary component in the heating element 4 exists as a crystal phase.
[0030]
Most of the auxiliary components in the heating element 4 are usually present in the grain boundary phase 9 as an amorphous phase, but since they exist in the heating element 4 as a crystal phase, power is supplied to the heating element 4. Migration of the cation component (for example, Yb 3+ , Y 3+ ) of the auxiliary component that occurs sometimes can be suppressed. As a result, the resistance change and disconnection of the heating element 4 can be suppressed, and a highly durable ceramic heater in which the resistance of the heating element 4 is kept constant even when the ceramic heater 1 is repeatedly subjected to a thermal cycle is obtained. be able to.
[0031]
This migration is greatly influenced by the ratio of the crystal phase of the auxiliary component, and when the ratio of the crystal phase of the auxiliary component in the heating element 4 is less than 50%, the migration of the grain boundary phase 9 in the heating element 4 is caused by the migration. As a result, the resistance of the heating element 4 changes, and the temperature of the ceramic heater 1 may be lowered, or in the worst case, disconnection may occur. In particular, it is more preferable that 70% or more of the auxiliary component exists as a crystal phase, and the phenomenon that the grain boundary phase 9 that seems to be the cause of the resistance change of the heating element 4 can be sufficiently suppressed due to migration can be sufficiently suppressed. Can be improved.
[0032]
Here, a method for measuring the ratio of the crystal phase of the auxiliary component will be described.
[0033]
First, 90 arbitrary cross sections of the heating element 4 are photographed with a transmission electron microscope. The measurement apparatus was a transmission electron microscope: JEM209F (manufactured by JEOL), and conditions: acceleration voltage (200 KV).
[0034]
As shown in FIG. 3, the auxiliary component in the heating element 4 cannot be distinguished from the crystalline phase and the amorphous phase of the auxiliary component in the photograph taken with a transmission electron microscope. Present in phase 9.
[0035]
Therefore, it is determined whether or not the portion shown as the grain boundary phase 9 in the photograph is a crystal phase by electron beam diffraction, and the ratio of the crystal phase of 90 parts is defined as the ratio of the crystal phase of the auxiliary component. .
[0036]
Of the grain boundary phase 9, the inter-surface grain boundary 9a is very thin and it is difficult to confirm the crystalline phase. Therefore, in the present invention, whether the crystalline phase is relatively thick or not is determined. Only the triple point grain boundary 9b which was easy to judge was investigated.
[0037]
The electron diffraction was judged as a crystalline phase when Bragg reflection by the lattice plane was displayed as a spot, and as an amorphous (glass) phase when halo was displayed.
[0038]
Moreover, as an apparatus used for electron beam diffraction, energy dispersive spectroscopy (EDS): (manufactured by Noran Instruments), conditions: spot diameter (5 nmφ), measurement time (50 sec), measurement energy width (0.12 to 20) .48 keV).
[0039]
Here, in order for 50% or more of the auxiliary component in the heating element 4 to exist as a crystal phase, it is important to control the firing conditions. That is, under a reducing atmosphere, the temperature rising speed is 5 ° C./min to 25 ° C./min, the firing temperature is 1650 ° C. to 1750 ° C., the keeping time is 30 minutes to 240 minutes, the pressure is 3 to 5 MPa, and the secondary pressure is 30 to 30 minutes. It is preferable to fire at 45 MPa by hot pressing. Also, using as Al 2 O 3 and C as aid components, as described in detail below, it can be adjusted by controlling the content thereof.
[0040]
Moreover, it is preferable that the auxiliary | assistant component in the said heat generating body 4 contains 1-15 weight% when the heat generating body 4 is 100 weight%. As a result, the ratio of the grain boundary phase 9 in the heating element 4 is reduced and the generation of cracks in the heating element 4 is suppressed, so that the resistance of the heating element 4 can be maintained at a constant value. Here, when there is more auxiliary agent component than 15 weight%, since vitrification is accelerated | stimulated, an auxiliary component will become difficult to be choked, a change of resistance value will become large, and durability will fall. On the other hand, if the amount of the auxiliary component is less than 1% by weight, the sinterability of the heating element 4 is deteriorated, the resistance change is increased, and the durability is lowered.
[0041]
Furthermore, it is preferable that Al 2 O 3 is contained as the auxiliary component, and the content thereof is 0.05 to 0.8% by weight when the heating element 4 is 100% by weight. As a result, the crystallization of the auxiliary component in the heating element 4 is promoted and the generation of cracks starting from the heating element 4 is suppressed, so that the resistance change of the heating element 4 is small and the durability as the ceramic heater 1 is improved. Can be improved. Further, by setting the content of Al 2 O 3 to 0.05 to 0.8% by weight, crystallization can be promoted and the rate of change in resistance of the heating element 4 can be made minute. If the content of Al 2 O 3 is less than 0.05% by weight, the auxiliary component is difficult to crystallize. On the other hand, if it exceeds 0.8% by weight, the resistance change of the heating element 4 increases, so that the ceramic heater 1 durability is reduced.
[0042]
Furthermore, it is preferable that C is contained as an auxiliary component in the heating element 4 and the content thereof is 0.05 to 4.0% by weight when the heating element 4 is 100% by weight. Thereby, similarly to the above Al 2 O 3 , the crystallization of the auxiliary component in the heating element 4 is promoted, and the generation of cracks based on the heating element 4 is suppressed, so that the resistance change of the heating element 4 is small. The durability as the ceramic heater 1 can be improved. If the C content is less than 0.05% by weight, the auxiliary component is difficult to crystallize. On the other hand, if it exceeds 4.0% by weight, the resistance change of the heating element 4 becomes large. Durability decreases.
[0043]
When the heating element 4 is 90% by weight, the conductive component is preferably 50% by weight or more and the insulating component is preferably 15% by weight or more. If the conductive component is less than 50% by weight, the resistance value is abnormal. Or increase in conduction. On the other hand, if the insulating component is less than 15% by weight, the difference between the thermal expansion coefficient and the ceramic substrate 3 becomes large, and the heating element 4 is likely to crack.
[0044]
Next, the manufacturing method of the ceramic heater 1 of this invention is demonstrated using FIG.
[0045]
First, a ceramic raw material powder obtained by adding a sintering aid made of an oxide of a rare earth element such as ytterbium (Yb) or yttrium (Y) to silicon nitride (Si 3 N 4 ) powder is known to be a press forming method or an extrusion forming method. Thus, the ceramic molded body 10 is obtained.
[0046]
On the ceramic molded body 10, a metal such as W, Mo, Re or the like, a conductive component such as silicide or carbide of a metal element, an insulating component made of Si 3 N 4 , AlN, or the like, and Al 2 O 3 of 0.03 Minor auxiliary component consisting of ˜9 wt%, C 0.03-4.0 wt%, Yb 2 O 3 9-12 wt%, MoSi 2 4.0-9.0 wt% Each powder is weighed and a paste prepared by adding a solvent such as butyl acetate is formed by a screen printing method or injection molding.
[0047]
Next, a tungsten pin serving as the lead portion 5 is installed so that the heating element 4 and the electrode lead-out portion 6 are electrically connected, and the ceramic molded body 10 has two layers, and another ceramic molded body 10 ′ on the upper surface thereof. In a reducing atmosphere, the heating rate is 5 ° C./min to 25 ° C./min, the firing temperature is 1650 ° C. to 1750 ° C., the keeping time is 30 minutes to 240 minutes, the pressure is the primary pressure of 3 to 5 MPa, and the secondary pressure After firing with a hot press at a pressure of 30 to 45 MPa, the obtained sintered body is processed into a cylindrical shape, and a lead wire 2 made of Ni is attached to the electrode lead portion 6 exposed on the surface to obtain a ceramic heater 1.
[0048]
Since the ceramic heater 1 of the present invention configured as described above has particularly excellent durability, it can be used for various types of combustors such as an automotive glow plug, an ignition or flame detection heater for a combustion-type in-vehicle heating device, and an oil fan heater. Various sensors such as an ignition heater and an oxygen sensor, and a heater for measuring equipment can be suitably used.
[0049]
【Example】
Examples of the present invention will be described below.
[0050]
In order to produce a ceramic heater as shown in FIG. 1, as shown in FIG. 4, first, a sintering aid comprising silicon nitride (Si 3 N 4 ) powder and ytterbium (Yb 2 O 3 ) rare earth element oxide. The ceramic molded body 10 is obtained by press forming or extruding the ceramic raw material powder to which is added.
[0051]
Next, the heating element 4 is formed on the upper surface of the ceramic molded body 10. For the heating element 4, fine powders of a conductive component, an insulating component, and an auxiliary component were added and mixed, and the auxiliary component was adjusted so that the composition shown in Table 1 was obtained after firing. As auxiliary components, Yb 2 O 3 is 0.1 to 12 wt%, MoSi 2 is 0.05 to 9.0 wt%, Al 2 O 3 is 0.03 to 9 wt%, and C is 0.03 to 0.03 wt%. A paste prepared by weighing in a range of 4.0% by weight and adding a solvent such as butyl acetate as a heating element 4 is formed by screen printing or injection molding.
[0052]
Next, a tungsten pin serving as the lead portion 5 is installed so that the heating element 4 and the electrode lead-out portion 6 are electrically connected to each other. Two layers of the ceramic molded body 10 and another ceramic molded body 10 ′ on the upper surface thereof. In close contact with each other, under a reducing atmosphere, the heating rate is 5 ° C./min to 25 ° C./min, the firing temperature is 1650 ° C. to 1750 ° C., the keeping time is 30 minutes to 240 minutes, the pressure is primary pressure 3 to 5 MPa, and the secondary pressure After firing at 30 to 45 MPa by hot pressing, the obtained sintered body is processed into a cylindrical shape, and the lead wire 2 made of Ni is attached to the electrode lead-out portion 6 exposed on the surface to obtain the ceramic heater 1.
[0053]
In addition, the ratio of each component of the heating element 4 is measured with a fluorescent X-ray analyzer (RIX3000) and a carbon analyzer (ERIA-511 type), and the ratio of the crystal phase of the auxiliary component is arbitrarily determined in the heating element 4. After photographing 90 cross-sections with a transmission electron microscope (transmission electron microscope: JEM209F (manufactured by JEOL), condition: acceleration voltage (200 KV)), the triple point grain boundary 9b of the photograph was subjected to electron diffraction (energy dispersion). Type spectroscopic analysis (EDS): (manufactured by Noran lnstremens), conditions: spot diameter (5 nmφ), measurement time (50 sec), measurement energy-width (0.12 to 20.48 keV)) A crystal phase was judged if displayed as a spot, and an amorphous (glass) phase was judged if halo was displayed.
[0054]
And about each sample, the test for confirming an energization durability performance was implemented. After energizing the ceramic heater 1 and setting the temperature to 1300 ° C. and the temperature raising and holding time to 3 minutes, the cycle in which the energization is stopped and the external cooling fan cools for 1 minute is taken as 1 cycle, and after 30000 cycles, The rate of change was calculated, and the durability performance was judged as を for evaluation of less than 5%, ○ for less than 5-9%, and x for 9% or more.
[0055]
The results are shown in Table 1.
[0056]
[Table 1]
Figure 2005019246
[0057]
As can be seen from Table 1, the sample (No. 103) in which the proportion of the crystal phase of the auxiliary component is 41% and 42%, respectively, has a very large resistance change rate of 32% or more after the durability test. The sample (No. 14) in which the proportion of the crystal phase of the agent component was 29% was very poor in durability due to disconnection.
[0058]
On the other hand, samples (No. 1, 3-12, 15) in which the ratio of the crystal phase of the auxiliary component is 50% or more have a small resistance change rate after the durability test of 9% or less, and have high durability. A ceramic heater could be obtained. Furthermore, the content of the auxiliary component in the heating element is 1 to 15% by weight, the content of Al 2 O 3 is 0.05 to 0.8%, and the content of C is 0.05 to 4.0. % (No. 1, 3-7, 9-10), the resistance change rate after the durability test was as small as 5% or less, and it was found that the durability was further improved.
[0059]
【The invention's effect】
The ceramic heater according to the present invention is a ceramic heater in which a heating element is embedded in a ceramic substrate and power is supplied to the heating element to generate heat. The heating element includes a conductive component, an insulating component, and an auxiliary component. To provide a ceramic heater that can suppress the generation of cracks based on a heating element and that has a small resistance change and has excellent durability when 50% or more of an auxiliary component exists as a crystalline phase. Can do.
[0060]
In particular, the content of the auxiliary component of the heating element is 1 to 15% by weight, the content of Al 2 O 3 is 0.05 to 0.8% by weight, and the content of C is 0.05 to 4% by weight. By doing so, it is possible to obtain a ceramic heater that is excellent in durability over a long period of time even when repeated thermal cycles are applied, with a further small resistance change.
[Brief description of the drawings]
FIG. 1A is a perspective view showing an embodiment of a ceramic heater according to the present invention, and FIG. 1B is a cross-sectional view taken along line XX ′ in FIG.
2 is a cross-sectional view taken along the line YY ′ of the ceramic heater shown in FIG. 1;
FIG. 3 is a schematic view showing a crystal structure of a heating element in the ceramic heater of the present invention.
FIG. 4 is a developed perspective view illustrating a method for producing a ceramic heater according to the present invention.
[Explanation of symbols]
1: Ceramic heater 2: Lead wire 3: Ceramic substrate 4: Heating element 5: Lead portion 6: Electrode lead portion 7: Crystal phase of conductive component 8: Crystal phase of insulating component 9: Grain boundary phase 9a: Grain between two faces Boundary layer 9b: Triple point grain boundary layer 10: Ceramic molded body

Claims (5)

セラミック基体中に発熱体を埋設し、該発熱体に電力を供給して発熱させるセラミックヒータにおいて、上記発熱体は導電成分、絶縁成分および助剤成分からなるとともに、該助剤成分の50%以上が結晶相として存在することを特徴とするセラミックヒータ。In a ceramic heater in which a heating element is embedded in a ceramic base and electric power is supplied to the heating element to generate heat, the heating element includes a conductive component, an insulating component, and an auxiliary component, and 50% or more of the auxiliary component. Exists as a crystalline phase. 上記発熱体が助剤成分を1〜15重量%含有することを特徴とする請求項1に記載のセラミックヒータ。2. The ceramic heater according to claim 1, wherein the heating element contains 1 to 15% by weight of an auxiliary component. 上記発熱体が助剤成分としてAlを含み、該Alの含有量が0.05〜0.8重量%であることを特徴とする請求項1または2に記載のセラミックヒータ。The heating body comprises for Al 2 O 3 auxiliary component, the ceramic heater according to claim 1 or 2 content of the Al 2 O 3 is characterized in that 0.05 to 0.8 wt% . 上記発熱体が助剤成分としてCを含み、該Cの含有量が0.05〜4重量%であることを特徴とする請求項1乃至3の何れかに記載のセラミックヒータ。4. The ceramic heater according to claim 1, wherein the heating element contains C as an auxiliary component, and the content of C is 0.05 to 4% by weight. 上記セラミック基体が窒化珪素質セラミックスからなることを特徴とする請求項1乃至4の何れかに記載のセラミックヒータ。The ceramic heater according to any one of claims 1 to 4, wherein the ceramic base is made of silicon nitride ceramics.
JP2003183448A 2003-06-26 2003-06-26 Ceramic heater Expired - Fee Related JP4146766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183448A JP4146766B2 (en) 2003-06-26 2003-06-26 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183448A JP4146766B2 (en) 2003-06-26 2003-06-26 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2005019246A true JP2005019246A (en) 2005-01-20
JP4146766B2 JP4146766B2 (en) 2008-09-10

Family

ID=34183554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183448A Expired - Fee Related JP4146766B2 (en) 2003-06-26 2003-06-26 Ceramic heater

Country Status (1)

Country Link
JP (1) JP4146766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135773A1 (en) * 2006-05-18 2007-11-29 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
JP2007335397A (en) * 2006-05-18 2007-12-27 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
JP2008235012A (en) * 2007-03-20 2008-10-02 Ngk Spark Plug Co Ltd Ceramic heater
JP2009121807A (en) * 2007-11-12 2009-06-04 Robert Bosch Gmbh Ceramic glow plug having reduced heater interval

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135773A1 (en) * 2006-05-18 2007-11-29 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
JP2007335397A (en) * 2006-05-18 2007-12-27 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
CN101455118B (en) * 2006-05-18 2011-08-17 日本特殊陶业株式会社 Ceramic heater and glow plug
US8227726B2 (en) 2006-05-18 2012-07-24 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
JP2008235012A (en) * 2007-03-20 2008-10-02 Ngk Spark Plug Co Ltd Ceramic heater
JP2009121807A (en) * 2007-11-12 2009-06-04 Robert Bosch Gmbh Ceramic glow plug having reduced heater interval

Also Published As

Publication number Publication date
JP4146766B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP5989896B2 (en) Ceramic heater
US5750958A (en) Ceramic glow plug
JPH0536470A (en) Ceramic heater
EP1225159B1 (en) Silicon nitride-tungsten carbide composite sintered material, production process therefor and glow plug comprising the same
JPWO2011065366A1 (en) Ceramic heater
JP4146766B2 (en) Ceramic heater
US9689570B2 (en) Heater and glow plug with the same
JP3078418B2 (en) Ceramic heating element
JP4018998B2 (en) Ceramic heater and glow plug
JP6426338B2 (en) Glow plug
JP2735725B2 (en) Ceramic heating element
CN104396342B (en) Heater and possess the glow plug of this heater
JP4153840B2 (en) Ceramic heater
JP2948963B2 (en) Ceramic exothermic element
JP3588240B2 (en) Ceramic heater
JP3004168B2 (en) Ceramic heating element
JPH07151332A (en) Ceramic glow plug
JPH1022064A (en) Ceramic heating element
JPH01317170A (en) Electrically conductive ceramic material
JP4597352B2 (en) Ceramic heater
JP4038138B2 (en) Ceramic heater and manufacturing method thereof
JP3004141B2 (en) Ceramic heating element
JPH03152893A (en) Ceramic heater
JPH05174948A (en) Ceramic heating unit
JPH06201128A (en) Heat generating body for ignition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Ref document number: 4146766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees